
Dorylus: Affordable, Scalable, and Accurate GNN Training with
Distributed CPU Servers and Serverless Threads

John Thorpe†♣ Yifan Qiao†♣ Jonathan Eyolfson† Shen Teng† Guanzhou Hu†‡ Zhihao Jia§

Jinliang Wei∗ Keval Vora[Ravi Netravali] Miryung Kim† Guoqing Harry Xu†

UCLA† University of Wisconsin‡ CMU§ Google Brain∗ Simon Fraser[Princeton University]

Abstract
A graph neural network (GNN) enables deep learning on

structured graph data. There are two major GNN training
obstacles: 1) it relies on high-end servers with many GPUs
which are expensive to purchase and maintain, and 2) limited
memory on GPUs cannot scale to today’s billion-edge graphs.
This paper presents Dorylus: a distributed system for training
GNNs. Uniquely, Dorylus can take advantage of serverless
computing to increase scalability at a low cost.

The key insight guiding our design is computation separa-
tion. Computation separation makes it possible to construct a
deep, bounded-asynchronous pipeline where graph and ten-
sor parallel tasks can fully overlap, effectively hiding the
network latency incurred by Lambdas. With the help of thou-
sands of Lambda threads, Dorylus scales GNN training to
billion-edge graphs. Currently, for large graphs, CPU servers
offer the best performance per dollar over GPU servers. Just
using Lambdas on top of Dorylus offers up to 2.75× more
performance-per-dollar than CPU-only servers. Concretely,
Dorylus is 1.22× faster and 4.83× cheaper than GPU servers
for massive sparse graphs. Dorylus is up to 3.8× faster and
10.7× cheaper compared to existing sampling-based systems.

1 Introduction
Graph Neural Networks (GNN) [40, 55, 71, 50, 53, 35]
are a family of NNs designed for deep learning on graph
structured data [103, 92]. The most well-known model in
this family is the graph convolutional network (GCN) [40],
which uses the connectivity structure of the graph as the fil-
ter to perform neighborhood mixing. Other models include
graph recursive network (GRN) [51, 67], graph attention net-
work (GAT) [6, 78, 100], and graph transformer network
(GTN) [96]. Due to the prevalence of graph datasets, GNNs
have gained increasing popularity across diverse domains
such as drug discovery [85], chemistry [19], program anal-
ysis [2, 5], and recommendation systems [91, 95]. In fact,
GNN is one of the most popular topics in recent AI/ML con-
ferences [32, 45].

♣ Contributed equally.

GPUs are the de facto platform to train a GNN due to their
ability to provide highly-parallel computations. While GPUs
offer great efficiency for training, they (and their host ma-
chines) are expensive to use. To train a (small) million-edge
graph, recent works such as NeuGraph [55] and Roc [34]
need at least four such machines. A public cloud offers flex-
ible pricing options, but cloud GPU instances still incur a
non-trivial cost — the lowest-configured p3 instance type on
AWS has a price of $3.06/h; training realistic models requires
dozens/hundreds of such machines to work 24/7. While cost
is not a concern for big tech firms, it can place a heavy finan-
cial burden on small businesses and organizations.

In addition to being expensive, GPUs have limited mem-
ory, hindering scalability. For context, real-world graphs are
routinely billion-edge scale [69] and continue to grow [95].
NeuGraph and Roc enable coordinated use of multiple GPUs
to improve scalability (at higher costs), but they remain un-
able to handle the billion-edge graphs that are commonplace
today. Two main approaches exist for reducing the costs
and improving the scalability of GNN training, but they each
introduce new drawbacks:

• CPUs face far looser memory restrictions than GPUs, and
operate at significantly lower costs. However, CPUs are un-
able to provide the parallelism in computations that GPUs
can, and thus deliver far inferior efficiency (or speed).

• Graph sampling techniques select certain vertices and sam-
ple their neighbors when gathering data [25, 95]. Sampling
techniques improve scalability by considering less graph
data, and it is a generic technique that can be used on ei-
ther GPU or CPU platforms. However, our experiments
(§7.5) and prior work [34] highlight two limitations with
graph sampling: (1) sampling must be done repeatedly
per epoch, incurring time overheads and (2) sampling typi-
cally reduces accuracy of the trained GNNs. Furthermore,
although sampling-based training converges often in prac-
tice, there is no convergence guarantee for trivial sampling
methods [9].

Affordable, Scalable, and Accurate GNN Training. This

paper devises a low-cost training framework for GNNs on
billion-edge graphs. Our goal is to simultaneously deliver
high efficiency (e.g., close to GPUs) and high accuracy (e.g.,
higher than sampling). Scaling to billion-edge graphs is cru-
cial for applicability to real-world use cases. Ensuring low
costs and practical performance improves the accessibility for
small organizations and domain experts to make the most out
of their rich graph data.

To achieve these goals, we turn to the serverless computing
paradigm, which has gained increasing traction [20, 43, 37] in
recent years through platforms such as AWS Lambda, Google
Cloud Functions, or Azure Functions. Serverless computing
provides large numbers of parallel “cloud function” threads,
or Lambdas, at an extremely low price (i.e., $0.20 for launch-
ing one million threads on AWS [3]). Furthermore, Lambda
presents a pay-only-for-what-you-use model, which is much
more appealing than dedicated servers for applications that
need only massive parallelism.

Although it appears that serverless threads could be used
to complement CPU servers without significantly increasing
costs, they were built to execute light asynchronous tasks,
presenting two challenges for NN training:

• Limited compute resources (e.g., 2 weak vCPUs)
• Restricted network resources (e.g., 200 Mbps between

Lambda servers and standard EC2 servers [42])

A neural network makes heavy use of (linear algebra based)
tensor kernels. A Lambda1 thread is often too weak to exe-
cute a tensor kernel on large data; breaking the data to tiny
minibatches mitigates the compute problem at the cost of
higher data-transfer overheads. Consequently, using Lamb-
das naı̈vely for training an NN could result in significant
slowdowns (e.g., 21× slowdowns for training of multi-layer
perceptron NNs [29], even compared to CPUs).
Dorylus. To overcome these weaknesses, we developed
Dorylus2, a distributed system that uses cheap CPU servers
and serverless threads to achieve the aforementioned goals for
GNN training. Dorylus leverages GNN’s special computation
model to overcome the two challenges associated with the
use of Lambdas. Details are elaborated below:

The first challenge is how to make computation fit into
Lambda’s weak compute profile? We observed: not all opera-
tions in GNN training need Lambda’s parallelism. GNN train-
ing comprises of two classes of tasks [55] – neighbor propa-
gations (e.g., Gather and Scatter) over the input graph and
per-vertex/edge NN operations (such as Apply) over the ten-
sor data (e.g., features and parameters). Training a GNN over
a large graph is dominated by graph computation (see §7.6),
not tensor computation that exhibits strong SIMD behaviors
and benefits the most from massive parallelism.

Based on this observation, we divide a training pipeline into

1We use “Lambda” in this paper due to our AWS-based implementation
while our idea is generally applicable to all types of serverless threads.

2Dorylus is a genus of army ants that form large marching columns.

a set of fine-grained tasks (Figure 3, §4) based on the type of
data they process. Tasks that operate over the graph structure
belong to a graph-parallel path, executed by CPU instances,
while those that process tensor data are in a tensor-parallel
path, executed by Lambdas. Since the graph structure is taken
out of tensors (i.e., it is no longer represented as a matrix), the
amount of tensor data and computation can be significantly
reduced, providing an opportunity for each tensor-parallel
task to run a lightweight linear algebra operation on a data
chunk of a small size — a granularity that a Lambda is capable
of executing quickly.

Note that Lambdas are a perfect fit to GNNs’ tensor compu-
tations. While one could also employ regular CPU instances
for compute, using such instances would incur a much higher
monetary cost to provide the same level of burst parallelism
(e.g., 2.2× in our experiments) since users not only pay for
the compute but also other unneeded resources (e.g., storage).

The second challenge is how to minimize the negative im-
pact of Lambda’s network latency? Our experiments show
that Lambdas can spend one-third of their time on communi-
cation. To not let communication bottleneck training, Dorylus
employs a novel parallel computation model, referred to as
bounded pipeline asynchronous computation (BPAC). BPAC
makes full use of pipelining where different fine-grained tasks
overlap with each other, e.g., when graph-parallel tasks pro-
cess graph data on CPUs, tensor-parallel tasks process tensor
data, simultaneously, with Lambdas. Although pipelining
has been used in prior work [34, 63], in the setting of GNN
training, pipelining would be impossible without fine-grained
tasks, which are, in turn, enabled by computation separation.

To further reduce the wait time between tasks, BPAC in-
corporates asynchrony into the pipeline so that a fast task
does not have to wait until a slow task finishes even if data
dependencies exist between them. Although asynchronous
processing has been widely used in the past, Dorylus faces a
unique technical difficulty that no other systems have dealt
with: as Dorylus has two computation paths, where exactly
should asynchrony be introduced?

Dorylus uses asynchrony in a novel way at two distinct lo-
cations where staleness can be tolerated: parameter updates
(in the tensor-parallel path) and data gathering from neighbor
vertices (in the graph-parallel path). To not let asynchrony
slow down the convergence, Dorylus bounds the degree of
asynchrony at each location using different approaches (§5):
weight stashing [63] at parameter updates and bounded stale-
ness at data gathering. We have formally proved the conver-
gence of our asynchronous model in §5.
Results. We have implemented two popular GNNs – GCN
and GAT – on Dorylus and trained them over four real-world
graphs: Friendster (3.6B edges), Reddit-full (1.3B),
Amazon (313.9M), and Reddit-small (114.8M). With the
help of 32 graph servers and thousands of Lambda threads,
Dorylus was able to train a GCN, for the first time without
sampling, over billion-edge graphs such as Friendster.

To enable direct comparisons among different platforms,
we built new GPU- and CPU-based training backends based
on Dorylus’ distributed architecture (with computation separa-
tion). Across our graphs, Dorylus’s performance is 2.05× and
1.83× higher than that of GPU-only and CPU-only servers
under the same monetary budget. Sampling is surprisingly
slow — to reach the same accuracy target, it is 2.62× slower
than Dorylus due to its slow accuracy climbing. In terms of
accuracy, Dorylus can train a model with an accuracy 1.05×
higher than sampling-based techniques.

Key Takeaway. Prior work has demonstrated that Lambdas
can only achieve suboptimal performance for DNN training
due to the limited compute resources on a Lambda and the ex-
tra overheads to transfer model parameters/gradients between
Lambdas. Through computation separation, Dorylus makes
it possible, for the first time, for Lambdas to provide a scal-
able, efficient, and low-cost distributed computing scheme
for GNN training.

Dorylus is useful in two scenarios. First, for small organi-
zations that have tight cost constraints, Dorylus provides an
affordable solution by exploiting Lambdas at an extremely
low price. Second, for those who need to train GNNs on very
large graphs, Dorylus provides a scalable solution that sup-
ports fast and accurate GNN training on billion-edge graphs.

2 Background
A GNN takes graph-structured data as input, where each ver-
tex is associated with a feature vector, and outputs a feature
vector for each individual vertex or the whole graph. The out-
put feature vectors can then be used by various downstream
tasks, such as, graph or vertex classification. By combining
the feature vectors and the graph structure, GNNs are able
to learn the patterns and relationships among the data, rather
than relying solely on the features of a single data point.

GNN training combines graph propagation (e.g., Gather
and Scatter) and NN computations. Prior work [17, 89]
discovered that GNN development can be made much easier
with a programming model that provides a graph-parallel
interface, which allows programmers to develop the NN with
familiar graph operations. A typical example is the deep
graph library (DGL) [17], which unifies a variety of GNN
models with a common GAS-like interface.
Forward Pass. To illustrate, consider graph convo-
lutional network (GCN) as an example. GCN is the
simplest and yet most popular model in the GNN family, with
the following forward propagation rule for theL-th layer [40]:

(R1) HL+1 = σ(ÂHLWL)

A is the adjacency matrix of the input graph, and
Ã = A + IN is the adjacency matrix with self-loops
constructed by adding A with IN , the identity matrix. D̃ is
a diagonal matrix such that D̃ii = ΣjÃij . With D̃, we
can construct a normalized adjacency matrix, represented by
Â = D̃−

1
2 ÃD̃−

1
2 . WL is a layer-specific trainable weight

matrix. σ(.) denotes a non-linear activation function, such as

ApplyVertex
(AV)

ApplyEdge
(AE)

Gather (GA)

Scatter (SC)

GA

AV

SC

AE

GA

AV

SC

AE

ÂHL

σ
((

ÂHL

)
WL

)

(a) Computation model (b) Annotated dataflow graph

Figure 1: A graphical illustration of GCN’s computation
model and dataflow graph in each forward layer. In (a), edges
in red represent those along which information is being propa-
gated; solid edges represent standard Gather/Scatter oper-
ations while dashed edges represent NN operations. (b) shows
a mapping between the SAGA-NN programming model and
the rule R1.

ReLU . HL is the activations matrix of the L-th layer; H0 =
X is the input feature matrix for all vertices.

Mapping R1 to the vertex-centric computation model is
familiar to the systems community [55] — each forward
layer has four components: Gather (GA), ApplyVertex
(AV), Scatter (SC), and ApplyEdge (AE), as shown in Fig-
ure 1(a). One can think of layer L’s activations matrix HL as
a group of activations vectors, each associated with a vertex
(as analogous to vertex value in the graph system’s terminol-
ogy). The goal of each forward layer is to compute a new
activations vector for each vertex based on the vertex’s previ-
ous activations vector (which, initially, is its feature vector)
and the information received from its in-neighbors. Different
from traditional graph processing, the computation of the
new activations matrix HL+1 is based on computationally
intensive NN operations rather than a numerical function.

Figure 1(b) illustrates how these vertex-centric graph op-
erations correspond to various components in R1. First, GA
retrieves a vector from each in-edge of a vertex and aggregates
these vectors into a new vector v. In essence, applying GA
on all vertices can be implemented as a matrix multiplication
ÂHL, where Â is the normalized adjacency matrix and HL

is the input activations matrix. Second, (ÂHL) is fed to AV,
which performs neural network operations to obtain a new
activations matrix HL+1. For GCN, AV multiplies (ÂHL)
with a trainable weight matrix WL and applies a non-linear
activation function σ. Third, the output of AV goes to SC,
which propagates the new activations vector of each vertex
along all out-edges of the vertex. Finally, the new activations
vector of each vertex goes into an edge-level NN architecture
to compute an activations vector for each edge. For GCN, the
edge-level NN is not needed, and hence, AE is an identity

function. We leave AE in the figure for generality as it is
needed by other GNN models.

The output of AE is fed to GA in the next layer. Repeat-
ing this process k times (i.e., k layers) allows the vertex to
consider features of vertices k hops away. Other GNNs such
as GGNNs and GATs have similar computation models, but
each varies the method used for aggregation and the NN.
Backward Pass. A GNN’s backward pass computes
the gradients for all trainable weights in the vertex- and
edge-level NN architectures (i.e., AV and AE). The backward
pass is performed following the chain rule of back propa-
gation. For example, the following rule specifies how to
compute the gradients in the first layer for a 2-layer GCN:

(R2) ∇W0L =
(
ÂX

)T [
σ′ (in1)� ÂT (Z − Y)WT

1

]

Here Z is the output of the GCN, Y is the label matrix (i.e.,
ground truth), X is the input features matrix, Wi is the weight
matrix for layer i, and in1 = ÂXW0. ÂT and WT

i are the
transpose of Â and Wi, respectively.

A training epoch consists of a forward and a backward
pass, followed by weights update, which uses the gradients
computed in the backward pass to update the trainable weights
in the vertex- and edge-level NN architectures in a GNN.
The training process runs epochs repeatedly until reaching
acceptable accuracy.

3 Design Overview
This section provides an overview of the Dorylus architecture.
The next three sections discuss technical details including
how to split training into fine-grained tasks and connect them
in a deep pipeline (§4), and how Dorylus bounds the degree
of asynchrony (§5), manages and autotunes Lambdas (§6).

Figure 2 depicts Dorylus’s architecture, which is comprised
of three major components: EC2 graph servers, Lambda
threads for tensor computation, and EC2 parameter servers.
An input graph is first partitioned using an edge-cut algo-
rithm [104] that takes care of load balancing across partitions.
Each partition is hosted by a graph server (GS).

GSes communicate with each other to execute graph com-
putations by sending/receiving data along cross-partition
edges. GSes also communicate with Lambda threads to exe-
cute tensor computations. Graph computation is done in a con-
ventional way, breaking a vertex program into vertex-parallel
(e.g., Gather) and edge-parallel stages (e.g., Scatter).

Each vertex carries a vector of float values and each edge
carries a value of a user-defined type specific to the model.
For example, for a GCN, edges do not carry values and
ApplyEdge is an identity function; for a GGNN, each edge
has an integer-represented type, with different weights for
different edge types. After partitioning, each GS hosts a
graph partition where vertex data are represented as a two-
dimension array and edge data are represented as a single
array. Edges are stored in the compressed sparse rows (CSR)

format; inverse edges are also maintained for the backpropa-
gation.

Each GS maintains a ghost buffer, storing data that are
scattered in from remote servers. Communication between
GSes is needed only during Scatter in both (1) forward pass
where activation values are propagated along cross-partition
edges and (2) backward pass where gradients are propagated
along the same edges in the reverse direction.

Tensor operations such as AV and AE, performed by Lamb-
das, interleave with graph operations. Once a graph operation
finishes, it passes data to a Lambda thread, which employs
a high-performance linear algebra kernel for tensor compu-
tation. Both the forward and backward passes use Lambdas,
which communicate frequently with parameter servers (PS)
— the forward-pass Lambdas retrieve weights from PSes to
compute layer outputs, while the backward-pass Lambdas
compute updated weights.

a	a	a	a	a	a	
b	b	b	b	b	b	
x	x	x	x	x	x	
y	y	y	y	y	y	

l	
l	
l	
l	

z	z	z	z	z	z	z	z	z	z	z	

…	
z	z	z	z	z	z	z	z	z	z	z	

c	c		c	c		c	c	
d	d	d	d	d	d	
e	e	e	e	e	e	
f		f		f		f		f		f		

…	 c	c	c	c			
d	d	d	d		

e	e	e	e		
f		f		f		f			

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

EC2	Graph		
Servers	

Lambda	
Threads	

EC2	Parameter	
Servers	

Graph	
Partition	1	

Graph		
Partition	2	

c	c		c	c		c	c	
d	d	d	d	d	d	

Features,	each	line	is		
a	vector	for	a	vertex	

w	w	w	
w	w	w	
w	w	w	

Weights	
z	z	z	z	z	z	z	z	z	z	z	

Ghost		
buffer	

Edge	cut	

l	
l	
l	
l	

l	
l	
l	
l	

	Edge		
values	

Linear		
Algebra	

l	
l	
l	

a	a	a	a		
b	b	b	b		

w	w	w	
w	w	w	
w	w	w	

l	
l	
l	

	x	x	x	x	
	y	y	y	y	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

l	
l	
l	

l	
l	
l	

Figure 2: Dorylus’s architecture.

4 Tasks and Pipelining
Fine-grained Tasks. As discussed in §1, the first challenge
in using Lambdas for training is to decompose the process
into a set of fine-grained tasks that can (1) overlap with each
other and (2) be processed by Lambdas’ weak compute. In
Dorylus, task decomposition is done based on both data type
and computation type. In general, computations that involve
the adjacency matrix of the input graph (i.e., any computation
that multiplies any form of the adjacency matrix A with other
matrices) are formulated as graph operations performed on
GSes, while computations that involve only tensor data can
benefit the most from massive parallelism and hence run in
Lambdas. Next, we discuss specific tasks over each training
epoch, which consists of a forward pass that computes the
output using current weights, followed by a backward pass
that uses a loss function to compute weight updates.

A forward pass can be naturally divided into four tasks,
as shown in Figure 1(a). Gather (GA) and Scatter (SC)
perform computation over the graph structure; they are thus
graph-parallel tasks for execution on GSes. ApplyVertex

(AV) and ApplyEdge (AE) multiply matrices involving only
features and weights and apply activation functions such as
ReLU . Hence, they are executed by Lambdas.

For AV, Lambda threads retrieve vertex data (HL in §2)
from GSes and weight data (WL) from PSes, compute their
product, apply ReLU , and send the result back to GSes as
the input for Scatter. When AV returns, SC sends data,
along cross-partition edges, to the machines that host their
destination vertices.

AE immediately follows SC. To execute AE on an edge,
each Lambda thread retrieves (1) vertex data from the source
and destination vertices of the edge (i.e., activations vectors),
and (2) edge data (such as edge weights) from GSes. It
computes a per-edge update by performing model-specific
tensor operations. These updates are streamed back to GSes
and become the inputs of the next layer’s GA task.

SC

▽SC ▽GA

WU WU

GA AV AE

▽AV ▽AE

…

…
Flow BackNext Epoch

Layer 1 forward

Layer 1 backward

Layer 2, …, N forward

…

Layer 2, …, N backward

…

Figure 3: Dorylus’s forward and backward dataflow with
nine tasks: Gather (GA) and Scatter (SC) and their cor-
responding backward tasks OGA and OSC; ApplyVertex
(AV), ApplyEdge (AE), and their backward tasks OAV and
OAE; the weight update task WeightUpdate (WU).

A backward pass involves GSes, Lambdas, and PSes that
coordinate to run a graph-augmented SGD algorithm, as spec-
ified by R2 in §2. For each task in the forward pass, there
is a corresponding backward task that either propagates in-
formation in the reverse direction of edges on the graph or
computes the gradients of its trainable weights with respect to
a given loss function. Additionally, a backward pass includes
WeightUpdate (WU), which aggregates the gradients across
PSes. Figure 3 shows their dataflow. OGA and OSC are the
same as GA and SC except that they propagate information in
the reverse direction. OAE and OAV are the backward tasks
for AE and AV, respectively. AE and AV apply weights to
compute the output of the edge and vertex NN. Conversely,
OAE and OAV compute weight updates for the NNs, which
are the inputs to WU.

OAE and OAV perform tensor-only computation and are
executed by Lambdas. Similar to the forward pass, GA and
SC in the backward pass are executed on GSes. WU performs
weights updates and is conducted by PSes.
Pipelining. In the beginning, vertex and weight data take
their initial values (i.e.,H0 andW0), which will change as the
training progresses. GSes kick off training by running parallel
graph tasks. To establish a full pipeline, Dorylus divides
vertices in each partition into intervals (i.e., minibatches).

For each interval, the amount of tensor computation (done
by a Lambda) depends on both the numbers of vertices (i.e.,
AV) and edges (i.e., AE) in the interval, while the amount
of graph computation (on a GS) depends primarily on the
number of edges (i.e., GA, and SC). To balance work across
intervals, our division uses a simple algorithm to ensure that
different intervals have the same numbers of vertices and
vertices in each interval have similar numbers of inter-interval
edges. These edges incur cross-minibatch dependencies that
our asynchronous pipeline needs to handle (see §5).

Each interval is processed by a task. When the pipeline is
saturated, different tasks will be executed on distinct intervals
of vertices. Each GS maintains a task queue and enqueues a
task once it is ready to execute (i.e., its input is available). To
fully utilize CPU resources, the GS uses a thread pool where
the number of threads equals the number of vCPUs. When
the pool has an available thread, the thread retrieves a task
from the task queue and executes it. The output of a GS task
is fed to a Lambda for tensor computation.

Backward Phase

PS
WU

Forward Phase

……
CPU Threads

Lambda

EC2

PS
WU

PS PS

31-40
▽AE

21-30
▽GA

11-20
▽AV

0-10
▽SC

71-80
GA

61-70
AV

51-60
SC

41-50
AE

Figure 4: A Dorylus pipeline for an epoch: the number range
(e.g., 71-80) in each box represents a particular vertex interval
(i.e., minibatch); different intervals are at different locations
of the pipeline and processed by different processing units:
GS, Lambda, or PS.

Figure 4 shows a typical training pipeline under Dorylus.
Initially, Dorylus enqueues a set of GA tasks, each processing
a vertex interval. Since the number of threads on each GS is
often much smaller than the number of tasks, some tasks finish
earlier than others and their results are pushed immediately
to Lambda threads for AV. Once they are done, their outputs
are sent back to the GS for Scatter. During a backward
phase, both OAE and OAV compute gradients and send them
to PSes for weight updates.

Through effective pipelining, Dorylus overlaps the graph-
parallel and tensor-parallel computations so as to hide Lamb-
das’ communication latency. Note that although pipelining is
not a new idea, enabling pipelining in GNN training requires
fine-grained tasks and the insight of computation separation,
which are our unique contributions.

5 Bounded Asynchrony
To unleash the full power of pipelining, Dorylus performs a
unique form of bounded asynchronous training so that work-

ers do not need to wait for updates to proceed in most cases.
This is paramount for the pipeline’s performance especially
because Lambdas run in an extremely dynamic environment
and stragglers almost always exist. On the other hand, a great
deal of evidence [13, 63, 99] shows that asynchrony slows
down convergence — fast-progressing minibatches may use
out-of-date weights, prolonging the training time.

Bounded staleness [15, 65] is an effective technique for mit-
igating the convergence problem by employing lightweight
synchronization. However, Dorylus faces a unique challenge
that does not exist in any existing system, that is, there are
two synchronization points in a Dorylus pipeline: (1) weight
synchronization at each WU task and (2) synchronization of
(vertex) activations data from neighbors at each GA.

5.1 Bounded Asynchrony at Weight Updates

To bound the degree of asynchrony for weight updates, we
use weight stashing proposed in PipeDream [63]. A major
reason for slow convergence is that, under full asynchrony,
different vertex intervals are at their own training pace; some
intervals may use a particular version v0 of weights during
a forward pass to compute gradients while applying these
gradients on another version v1 of weights on their way back
in the backward pass. In this case, the weights on which gra-
dients are computed are not those on which they are applied,
leading to statistical inefficiency. Weight stashing is a simple
technique that allows any interval to use the latest version of
weights available in a forward pass and stashes (i.e., caches)
this version for use during the corresponding backward pass.

Although weight stashing is not new, applying it in Dorylus
poses unique challenges in the PS design. Weight stashing oc-
curs at PSes, which host weight matrices and perform updates.
To balance loads and bandwidth usage, Dorylus supports mul-
tiple PSes and always directs a Lambda to a PS that has the
lightest load. Since Lambdas can be in different stages of an
epoch (e.g., the forward and backward passes, and different
layers), Dorylus lets each PS host a replication of weight
matrices of all layers, making load balancing much easier to
do since any Lambda can use any PS in any stage. Note that
this design is different from that of traditional PSes [49], each
of which hosts parameters for a layer. Since a GNN often has
very few layers, replicating all weights would not take much
memory and is thus feasible to do at each PS. Clearly, this
approach does not work for regular DNNs with many layers.

However, weight stashing significantly complicates this de-
sign. A vertex interval can be processed by different Lambdas
when it flows to different tasks — e.g., its AV and AE are
executed by different Labmdas, which can retrieve weights
from different PSes. Hence, if we allow any Lambda to use
any PS, each PS has to maintain not only the latest weight
matrices but also their stashed versions for all intervals in the
graph; this is practically impossible due to its prohibitively
high memory requirement.

To overcome this challenge, we do not replicate all weight

stashes across PSes. Instead, each PS still contains a repli-
cation of all the latest weights but weight stashes only for a
subset of vertex intervals. For each interval in a given epoch,
the interval’s weight stashes are only maintained on the first
PS it interacts with in the epoch. In particular, once a Lambda
is launched for an AV task, which is the first task that uses
weights in the pipeline, its launching GS picks the PS with the
lightest load and notifies the Lambda of its address. Further-
more, the GS remembers this choice for the interval — when
this interval flows to subsequent tensor tasks (i.e., AE, OAV,
OAE, and WU), the GS assigns the same PS to their executing
Lambdas because the stashed version for this interval only
exists on that particular PS in this epoch.

PSes periodically broadcast their latest weight matrices.

5.2 Bounded Asynchrony at Gather

Asynchronous Gather allows vertex intervals to progress
independently using stale vertex values (i.e., activations vec-
tors) from their neighbors without waiting for their updates.
Although asynchrony has been used in a number of graph
systems [82, 15], these systems perform iterative process-
ing with the assumption that with more iterations they will
eventually reach convergence. Different from these systems,
the number of layers in a GNN is determined statically and
an n-layer GNN aims to propagate the impact of a vertex’s
n-hop neighborhood to the vertex. Since the number of layers
cannot change during training, an important question that
needs be answered is: can asynchrony change the semantics
of the GNN? This boils down to two sub-questions: (1) Can
vertices eventually receive the effect of their n-hop neighbor-
hood? (2) Is it possible for any vertex to receive the effect
of its m-hop neighbor where m > n after many epochs? We
provide informal correctness/convergence arguments in this
subsection and turn to a formal approach in §5.3.

The answer to the first question is yes. This is because the
GNN computation is driven by the accuracy of the computed
weights, which is, in turn, based on the effects of n-hop neigh-
borhoods. To illustrate, consider a simple 2-layer GNN and
a vertex v that moves faster in the pipeline than all its neigh-
bors. Assume that by the time v enters the GA of the second
layer, none of its neighbors have finished their first-layer SC
yet. In this case, the GA task of v uses stale values from its
neighbors (i.e., the same as what were used in the previous
epoch). This would clearly generate large errors at the end of
the epoch. However, in subsequent epochs, the slow-moving
neighbors update their values, which are gradually propagated
to v. Hence, the vertex eventually receives the effects of its
n-hop neighborhood (collectively) across different epochs
depending on its neighbors’ progress. After each vertex ob-
serves the required values from the n-hop neighborhood, the
target accuracy is reached.

The answer to the second question is no. This is because
the number of layers determines the farthest distance the im-
pact of a vertex can travel despite that training may execute

many epochs. When a vertex interval finishes an epoch, it
comes back to the initial state where their values are reset
to their initial feature vectors (i.e., the accumulative effect
is cleared). Hence, even though a vertex v progresses asyn-
chronously relative to its neighbors, the neighbors’ activation
vectors are scattered out in the previous SC and carry the
effects of their at most {n−1}-hop neighbors (after which the
next GA will cycle back to effects of 1-hop neighbors), which,
for vertex v, belong strictly in its n-hop neighborhood. This
means, it is impossible for any vertex to receive the impact of
any other vertex that is more than n-hops away.

We use bounded staleness at Gather — a fast-moving
vertex interval is allowed to be at most S epochs away from the
slowest-moving interval. This means vertices in a given epoch
are allowed to use stale vectors from their neighbors only if
these vectors are within S epochs away from the current
epoch. Bounded staleness allows fast-moving intervals to
make quick progress when recent updates are available (for
efficiency), but makes them wait when updates are too stale
(to avoid launching Lambdas for useless computation).

5.3 Convergence Guarantee
Asynchronous weight updates with bounded staleness has
been well studied, and its convergence has been proved
by [30]. The convergence of asynchronous Gather with
bounded staleness S is guaranteed by the following theorem:

Theorem 1. Suppose that (1) the activation σ(·) is ρ-
Lipschitz, (2) the gradient of the cost function ∇zf(y, z) is
ρ-Lipschitz and bounded, (3) the gradients for weight updates
‖gAS(W)‖∞, ‖g(W)‖∞, and ‖∇L(W)‖∞ are all bounded
by some constant G > 0 for all Â, X , and W , (4) the loss
L(W) is ρ-smooth3. Then given the local minimizer W ∗,
there exists a constant K > 0, s.t., ∀N > L× S where L is
the number of layers of the GNN model and S is the staleness
bound; if we train a GNN with asynchronous Gather under
a bounded staleness for R ≤ N iterations where R is chosen
uniformly from [1, N], we will have

ER ‖∇L (WR)‖2F ≤ 2
L (W1)− L (W ∗) +K + ρK√

N
,

for the updates Wi+1 = Wi − γgAS(Wi) and the step size

γ = min
{

1
ρ ,

1√
N

}
.

In particular, we have limN→∞ ER ‖∇L (WR)‖2 = 0, in-
dicating that asynchronous GNN training will eventually con-
verge to a local minimum. The full-blown proof can be found
in Dorylus’ arXiv version [77]. It mostly follows the conver-
gence proof of the variance reduction (VR) algorithm in [9].
However, our proof differs from [9] in two major aspects: (1)

3L is ρ-Lipschitz smooth if ∀W1,W2, |L(W2) − L(W1) −
〈∇L (W1) ,W2 −W1〉 | ≤ ρ

2
‖W2 −W1‖2F , where 〈A,B〉 =

tr(ATB) is the inner product of matrix A and matrix B, and ‖A‖F is
the Frobenius norm of matrix A.

Dorylus performs whole-graph training and updates weights
only once per layer per epoch, while VR samples the graph
and trains on mini-batches and thus it updates weights mul-
tiple times per layer per epoch; (2) Dorylus’s asynchronous
GNN training can use neighbor activations that are up to
S-epoch stale, while VR can take only 1-epoch-stale neigh-
bor activations. Since S is always bounded in Dorylus, the
convergence is guaranteed regardless of the value of S.

Note that compared to a sampling-based approach, our
asynchronous computation is guaranteed to converge. On the
contrary, although sampling-based training converges often
in practice, there is no guarantee for trivial sampling meth-
ods [9], not to mention that sampling incurs a per-epoch
overhead and reduces accuracy.

6 Lambda Management
Each GS runs a Lambda controller, which launches Lamb-
das, batches data to be sent to each Lambda, monitors each
Lambda’s health, and routes its result back to the GS.

Lambda threads are launched by the controller for a task
t at the time t’s previous task starts executing. For example,
Dorylus launches n Lambda threads, preparing them for AV
when n GA tasks start to run. Each Lambda runs with Open-
BLAS library [93] that is optimized to use AVX instructions
for efficient linear algebra operations. Lambdas communicate
with GSes and PSes using ZeroMQ [97].

All of our Lambdas are deployed inside the virtual private
cloud (VPC) rather than public networks to maximize Lamb-
das’ bandwidth when communicating with EC2 instances.
When a Lambda is launched, it is given the addresses of its
launching GS and a PS. Once initialized, the Lambda initiates
communication with the GS and the PS, pulling vertex, edge
and weight data from these servers. Since Lambda threads are
used throughout the training process, these Lambdas quickly
become “warm” (i.e., the AWS reuses a container that already
has our code deployed instead of cold-starting a new con-
tainer) and efficient. Our controller also times each Lambda
execution and relaunches it after timeout.
Lambda Optimizations. One significant challenge to over-
come is Lambdas’ limited network bandwidth [29, 42]. Al-
though AWS has considerably improved Lambdas’ network
performance [4], the per-Lambda bandwidth goes down as
the number of Lambdas increases. For example, for each GS,
when the number of Lambdas it launches reaches 100, the
per-Lambda bandwidth drops to ∼200Mbps, which is more
than 3× lower than the peak bandwidth we have observed
(∼800Mbps). We suspect that this is because many Lambdas
created by the same user get scheduled on the same machine
and share a network link.

Dorylus provides three optimizations for Lambdas:
The first optimization is task fusion. Since AV of the last

layer in a forward pass is connected directly to OAV of the
last layer in the next backward pass (see Figure 4), we merge
them into a single Lambda-based task, reducing invocations

of thousands of Lambdas for each epoch and saving a round-
trip communication between Lambdas and GSes.

The second optimization is tensor rematerialization [33,
41]. Existing frameworks cache intermediate results during
the forward pass as these results can be reused in the back-
ward pass. For GNN training, for instance, ÂHW is such a
computation whose result needs to be cached. Here tensor
computation is performed by Lambdas while caching has to
be done on GSes. Since a Lambda’s bandwidth is limited and
network communication is a bottleneck, it is more profitable
to rematerialize these intermediate tensors by launching more
Lambdas rather than retrieving them from GSes.

The third optimization is Lambda-internal streaming. In
particular, if a Lambda is created to process a data chunk, we
let the Lambda retrieve the first half of the data, with which
it proceeds to computation while simultaneously retrieving
the second half. This optimization overlaps computation with
communication from within each Lambda, leading to reduced
Lambda response time.
Autotuning Numbers of Lambdas. Due to inherent dy-
namism in Lambda executions, it is not feasible to statically
determine the number of Lambdas to be used. On the perfor-
mance side, the effectiveness of Lambdas depends on whether
the pipeline can be saturated. In particular, since certain graph
tasks (such as SC) rely on results from tensor tasks (such as
AV), too few Lambdas would not generate enough task in-
stances for the graph computation G to saturate CPU cores.
On the cost side, too many Lambdas overstaturate the pipeline
— they can generate too many CPU tasks for the GS to handle.
The optimal number of Lambdas is also related to the pace
of the graph computation, which, in turn, depends on the
graph structure (e.g., density) and partitioning that are hard
to predict before execution.

To solve the problem, we develop an autotuner that starts
the pipeline by using min(#intervals, 100) as the num-
ber of Lambdas where intervals represents the number
of vertex intervals on each GS. Our autotuner auto-adjusts
this number by periodically checking the size of the CPU’s
task queue — if the size of the queue constantly grows, this
indicates that CPU cores have too many tasks to process,
and hence we scale down the number of Lambdas; if the
queue quickly shrinks, we scale up the number of Lambdas.
The goal here is to stabilize the size of the queue so that the
number of Lambdas matches the pace of graph tasks.

7 Evaluation
We wrote a total of 11629 SLOC in C++ and CUDA. There
are 10877 of the lines of C++ code: 5393 for graph servers,
2840 for Lambda management (and communication), 1353
for parameter servers, and 1291 for common libraries and
utilities. There are 752 lines of CUDA code for GPU kernels
including common graph operations like GCN and mean-
aggregators with cuSPARSE [66]. Our CUDA code includes
deep learning operations such as dense layer and activation

layer with cuDNN [12]. Dorylus supports common stochastic
optimizations including Xavier initialization [22], He initial-
ization [27], a vanilla SGD optimizer [38], and an Adam
optimizer [39], which help training converge smoothly.

Graph Size (|V |, |E|) # features # labels Avg. degree

Reddit-small [25] (232.9K, 114.8M) 602 41 492.9
Reddit-large [25] (1.1M, 1.3B) 301 50 645.4
Amazon [60, 28] (9.2M, 313.9M) 300 25 35.1
Friendster [48] (65.6M, 3.6B) 32 50 27.5

Table 1: We use 4 graphs, 2 with billions of edges.

7.1 Experiment Setup
We experimented with four graphs, as shown in Table 1.
Reddit-small and Reddit-large are both generated
from the Reddit dataset [68]. Amazon is the largest graph in
RoC’s [34] evaluation. We added a larger 1.8 billion (undi-
rected) edge Friendster social network graph to our exper-
iments. For GNN training, we turned undirected edges into
two directed edges, effectively doubling the number of edges
(which is consistent with how edge numbers are reported in
prior GNN work [34, 55]). The first three graphs come with
features and labels while Friendster does not. For scala-
bility evaluation we generated random features and labels for
Friendster.

We implemented two GNN models on top of Dorylus:
graph convolutional network (GCN) [40] and graph attention
network (GAT) [96] with 279 and 324 lines of code. GCN is
a popular network that has AV but not AE, while GAT is a
recently-developed recurrent network with both AV and AE.
Their development is straightforward and other GNN models
can be easily implemented on Dorylus as well. Each model
has 2 layers, consistent with those used in prior work [34, 55].

Value is the major benefit Dorylus brings to training GNNs.
We define value as a system’s performance per dollar, com-
puted as V = 1/(T ×C) where T is the training time and C is
the monetary cost. For example: if system A trains a network
twice as fast as system B, and yet costs the same to train, we
say A has twice the value of B. If one has a time constraint,
the most inexpensive option to train a GNN is to pick the
system/configuration that meets the time requirement with
the best value. In particular, value is important for training
since users cannot take the cheapest option if it takes too
long to train; neither can they take the fastest option if it is
extremely expensive in practice. Throughout the evaluation,
we use both value and performance (runtime) as our metrics.

We evaluated several aspects of Dorylus. First, we com-
pared several different instance types to determine the con-
figurations that give us the optimal value for each backend.
Second, we compared several synchronous and asynchronous
variants of Dorylus. In later subsections, we use our best
variant (which is asynchronous with a staleness value of 0) in
comparisons with other existing systems. Third, we compared
the effects of Lambdas using Dorylus against more traditional
CPU- and GPU-only implementations in terms of value, per-

formance, and scalability. Next, we evaluate Dorylus against
existing systems. Finally, we break down our performance
and costs to illustrate our system’s benefits.

Backend Graph Instance Type Relative Value

CPU
Reddit-large

r5.2xlarge (4) 1
c5n.2xlarge (12) 4.46

Amazon
r5.xlarge (4) 1

c5n.2xlarge (8) 2.72

GPU Amazon
p2.xlarge (8) 1

p3.2xlarge (8) 4.93

Table 2: Comparison of the values provided by different
instance types. r5 and p2 instances provided significantly
lower values than the (c5 and p3) instances we chose.

7.2 Instance Selection
To choose the instance types for our evaluation, we ran a
set of experiments to determine the types that gave us the
best value for each backend. We compared across memory
optimized (r5) and compute optimized (c5) instances, as well
as the p2 and p3 GPU instances, which have K80 and V100
GPUs, respectively. As r5 offers high memory, we were able
to fit the graph in a smaller number of instances, lowering
costs in some cases. However, due to the smaller amount of
computational resources available, training on the r5 instances
typically took nearly 3× as long as computation on c5. There-
fore, as shown in Table 2 the average increases in value c5
instances provided relative to r5 instances are 4.46 and 2.72,
respectively, for Reddit-large and Amazon. We therefore
selected c5 as our choice for any CPU based computation.

Similarly, for GPU instances, training on Amazon with 8
K80s took 1578 seconds and had a total cost of $3.16. Using
8 V100s took 385 seconds and cost $2.62—it improves both
costs and performance, resulting in a value increase of 4.93×
compared to training on K80 GPUs. As value is the main
metric which we use to evaluate our system, we choose the
instance type which gives the best value to each different
backend to ensure a fair comparison.

Given these results, we selected the following instances
to run our evaluation: (1) c5, compute-optimized instances,
and (2) c5n, compute and network optimized instances. c5n
instances have more memory and faster networking, but their
CPUs have slightly lower frequency than those in c5. The
base c5 instance has 2 vCPU, 4 GB RAM, and 10 Gbps per-
instance network bandwidth costing $0.085/h4. The base c5n
instance has 2 vCPU, 5.25 GB RAM (33% more), and 25
Gbps per-instance network bandwidth, costing $0.108/h. We
used the base p3 instance, p3.2xlarge, with Telsa V100 GPUs.
Each p3 base instance has 1 GPU (with 16 GB memory), 8
vCPUs, and 61 GB memory, costing $3.06/h.

Each Lambda is a container with 0.11 vCPUs and 192
MB memory. Lambdas have a static cost of $0.20 per 1 M
requests, and a compute cost of $0.01125/h (billed per 100

4These prices are from the Northern Virginia region.

ms). This billing granularity enables serverless threads to
handle short bursts of massive parallelism much better than
CPU instances.

Model Graph CPU cluster GPU cluster

GCN

Reddit-small c5.2xlarge (2) p3.2xlarge (2)
Reddit-large c5n.2xlarge (12) p3.2xlarge (12)

Amazon c5n.2xlarge (8) p3.2xlarge (8)
Friendster c5n.4xlarge (32) p3.2xlarge (32)

GAT
Reddit-small c5.2xlarge (10) p3.2xlarge (10)

Amazon c5n.2xlarge (12) p3.2xlarge (12)
Table 3: We used (mostly) c5n instances for CPU clusters,
and equivalent numbers of p3 instances for GPU clusters.

Table 3 shows our CPU and GPU clusters for each pair of
model and graph we evaluated. For each graph, we picked the
number of servers such that they have just enough memory to
hold the graph data and their tensors. For example, Amazon
needs 8 c5n.2xlarge servers (with 16 GB memory) provide
enough memory. For Friendster we need 32 c5n.4xlarge
instances (with a total of 1344 GB memory). Our goal is to
train a model with the minimum amount of resources. Of
course, using more servers will lead to better performance and
higher costs (discussed in §7.4). For all experiments (except
Reddit-small), c5n instances offered the best value.

TPU has become an important type of computation acceler-
ator for machine learning. This paper focuses on AWS and its
serverless platform, and hence we did not implement Dorylus
on TPUs. Although we did not compare directly with TPUs,
we note several important features of GNNs that make the lim-
itations of TPUs comparable to GPUs. First, GNNs are unlike
conventional DNNs in that they require large amounts of data
movement for neighborhood aggregation. As a result, GNN
performance is mainly bottlenecked by memory constraints
and the resulting communication overheads (e.g., between
GPUs or TPUs), not computation efficiency [34]. Second,
GNN training involves computation on large sparse tensors
that incur irregular data accesses, resulting in sub-optimal
performance on TPUs which are optimized for dense matrix
operations over regularly structured data.

7.3 Asynchrony
We compare three versions of Dorylus: a synchronous version
with full intra-layer pipelining (pipe), and two asynchronous
versions using s = 0 and s = 1 as the staleness values over
all four graphs. Pipe synchronizes at each Gather — a vertex
cannot go into the next layer until all its neighbors have their
latest values scattered. As a result, all vertex intervals have to
be in the same layer in the same epoch. However, inside each
layer, pipelining is enabled, and hence different tasks are fully
overlapped. Async enables both pipelining and asynchrony
(i.e., stashing weights and using stale values at GA). When
the staleness value is s = 0, Dorylus allows a vertex to use a
stale value from a neighbor as long as the neighbor is in the
same epoch (e.g., can be in a previous layer). In other words,
Async (s=0) enables fully pipelining across different layers

0 20 40 60 80 100 120
Epochs

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

0 25 50 75 100 125 150
Epochs

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

(a) Reddit-small (b) Amazon (c) Reddit-large
R[s=0]:1.00, R[s=1]:1.07, Accuracy:94.96% R[s=0]:1.09, R[s=1]:1.57, Accuracy:64.08% R[s=0]:1.14, R[s=1]:1.58, Accuracy:60.07%

Figure 5: Asynchronous progress for GCN: All three versions of Dorylus achieve the final accuracy i.e., 94.96%, 64.08%,
60.07% for the three graphs). Friendster is not included because it does not come with meaningful features and labels.

Reddit-sm
all

Reddit-la
rge

Amazon
Friendster

0

1

0.63

0.72

Ti
m

e
(r

el
at

iv
e)

Async (s=0) Async (s=1) Pipe

Figure 6: Per-epoch GCN time for async (s=0) and async
(s=1) normalized to that of pipe.

in the same epoch, but pipelining tasks in different epochs
are not allowed and synchronization is needed every epoch.
Similarly, async (s=1) enables a deeper pipeline across two
consecutive epochs.
Training Progress. Due to the use of asynchrony, it may
take the asynchronous version of Dorylus more epochs to
reach the same accuracy as pipe. To enable a fair compar-
ison, we first ran Dorylus-pipe until convergence (i.e., the
difference of the model accuracy between consecutive epochs
is within 0.001, unless otherwise stated) and then used this
accuracy as the target accuracy to run async when collect-
ing training time. However, this approach does not work
for Friendster, because it uses randomly generated fea-
tures/labels and hence accuracy is not a meaningful target. To
solve this problem, we computed an average ratio, across the
other three graphs, between the numbers of epochs needed
for async and pipe, and used this ratio to estimate the training
time for Friendster. For example, this ratio is 1.08 for s=0
and 1.41 for s=1. As such, we let async (s=0) run N×1.08
epochs and async (s=1) run N×1.41 epochs when measur-
ing performance for Friendster where N is the number of
epochs pipe runs.

Figure 5 reports the GCN training progress for each variant,
that is, how many epochs it took for a version to reach the
target accuracy. Annotated with each figure are two ratios:

R[s=0] and R[s=1], representing the ratio between the num-
ber of epochs needed by async (s=0/1) and that by Dorylus-
pipe to reach the same target accuracy. On average, async
(s=0/1) increases the number of epochs by 8%/41%.

Figure 6 compares the per-epoch running time for each
version of Dorylus, normalized to that of pipe. As expected,
async has lower per-epoch time; in fact, async (s=0) achieves
almost the same reduction (∼15%) in per-epoch time as s=1.
This indicates that choosing a large staleness value has little
usefulness — it cannot further reduce per-epoch time and yet
the number of epochs grows significantly.

To conclude, asynchrony can provide overall performance
benefits in general but too large a staleness value leads to slow
convergence and poor performance, although the per-epoch
time reduces. This explains why async (s=0) outperforms
async (s=1) by a large margin. Overall, async (s=0) is 1.234×
faster than pipe and 1.233× than async (s=1). It also provides
1.288× and 1.494× higher value than pipe and async (s=1)
respectively. Thus we choose it as the default Lambda vari-
ant in our following experiments unless otherwise specified.
From this point on, Dorylus refers to this particular version.

7.4 Effects of Lambdas

We developed two traditional variants of Dorylus to isolate
the effects of serverless computing using Lambdas, one using
CPU-only servers for computations, and the other using GPU-
only servers (both without Lambdas). These variants perform
all tensor and graph computations directly on the graph server.
They both use Dorylus’ (tensor and graph) computation sepa-
ration for scalability. Note that without computation separa-
tion, no existing GPU-based training system has been shown
to scale to a billion-edge graph.

Since Lambdas have weak compute that we cannot find
in regular EC2 instances, it is not possible for us to trans-
late Lambda resources directly into equivalent EC2 resources,
keeping the total amount of compute constant when selecting
the number of servers for each variant. To address this con-

cern, we compared the value of different systems in addition
to their absolute times and costs.

Model Graph Mode Time (s) Cost ($)

GCN

Reddit-small
Dorylus 860.6 0.20

CPU only 1005.4 0.19
GPU only 162.9 0.28

Reddit-large
Dorylus (pipe) 1020.1 1.69

CPU only 1290.5 1.85
GPU only 324.9 3.31

Amazon
Dorylus 512.7 0.79

CPU only 710.2 0.68
GPU only 385.3 2.62

Friendster
Dorylus 1133.3 13.8

CPU only 1990.8 15.3
GPU only 1490.4 40.5

GAT

Reddit-small
Dorylus 496.3 1.15

CPU only 1270.4 1.20
GPU only 130.9 1.11

Amazon
Dorylus 853.4 2.67

CPU only 2092.7 3.01
GPU only 1039.2 10.60

Table 4: We ran Dorylus in 3 different modes: “Dorylus”, our
best Lambda variant using async(s=0) (except in one case),
the “CPU only” variant, and the “GPU only” variant. For
each mode we used multiple combinations of models and
graphs. For each run we report the total end-to-end running
time and the total cost.

We ran GCN and GAT on our graphs (Table 4). We only ran
the GAT model on one small and large graph because it was
simply too monetarily expensive (even for our system!). GAT
has an intensive AE computation, which adds cost. Note that
this is not a limitation of our system—our system can scale
GAT to graphs larger than Amazon if cost is not a concern.

Performance and cost by themselves do not properly illus-
trate the value of Dorylus. For example, training GAT on
Amazon with Dorylus is both more efficient and cheaper than
the CPU- and GPU-only variants. Hence, we report the value
results as well. Recall that to compute the value, we take the
reciprocal of the total runtime (i.e., the performance or rate
of completion) and divide it by the cost. In this case Dorylus
with Lambdas provides a 2.75× higher value than CPU-only
(i.e., 1/(853.4× 2.67) compared to 1/(2092.7× 3.01)). Fig-
ure 7 shows the value results for all our runs, normalized to
GPU-only servers.

Dorylus adds value for large, sparse graphs (i.e., Amazon
and Friendster) for both GCN and GAT, compared to
CPU- and GPU-only variants. Sparsity of each graph can
be seen from the average vertex degree reported in Table 1.
As shown, Amazon and Friendster are much more sparse
than Reddit-small and Reddit-large. For these graphs,
the GPU-only variant has the lowest value, even compared to
the CPU-only variant. In most cases, the CPU-only variant
provides twice as much value (i.e., performance per dollar)

Reddit-sm
all

Reddit-la
rge

Amazon
Friendster

Reddit-sm
all
Amazon

0

1

2

3

4 3.86
4.83

1.98 1.75

V
al

ue
(r

el
at

iv
e)

Dorylus CPU only GPU only
GCN GAT

Figure 7: Dorylus, with Lambdas, provides up to 2.75×
performance-per-dollar than using the CPU-only variant.

than the GPU-only variant. Dorylus adds another leap in
value over the CPU-only variant.

However, for small dense graphs (i.e., Reddit-small and
Reddit-large), both Dorylus and the CPU-only variant
have a value lower that that of the GPU-only variant (i.e.,
below 1 in Figure 7). Dorylus always provides more value
than the CPU-only variant. These results suggest that GPUs
may be better suited to process small, dense graphs rather
than large, sparse graphs.

4 8 16
0

1

2

3 2.97

Servers

Pe
rf

or
m

an
ce

(r
el

at
iv

e)

Dorylus CPU only
GPU only

4 8 16
0

1

2

3 2.68

Servers

V
al

ue
(r

el
at

iv
e)

Dorylus CPU only
GPU only

Figure 8: Normalized GCN training performance and value
over Amazon with varying numbers of graph servers.

Scaling Out. Dorylus can gain even more value by scaling
out to more servers, due to the burst parallelism provided
by Lambdas and deep pipelining. To understand the impact
of the number of servers on performance/costs, we varied
the number of GSes when training a GCN over Amazon. In
particular, we ran Dorylus and the CPU-only variant with
4, 8, and 16 c5n.4xlarge servers, and the GPU-only variant
with the same numbers of p3.xlarge servers. Figure 8 reports
their performance and values, normalized to those of Dorylus
under 4 servers.

In general, Dorylus scales well in terms of both perfor-
mance and value. Dorylus gains a 2.82× speedup with only
5% more cost when the number of servers increases from
4 to 16, leading to a 2.68× gain in its value. As shown in
Figure 8(b), Dorylus’s value curve is always above that of the

CPU-only variant. Furthermore, Dorylus can roughly provide
the same value as the CPU-only variant with only half of
the number of servers. For example, Dorylus with 4 servers
provides a comparable value to the CPU-only variant with 8
servers; Dorylus with 8 servers provides more value to the
CPU-only variant with 16 servers. These results suggest that
as more servers are added, the value provided by Dorylus
increases, at a rate much higher than the value increase of the
CPU-only variant. As such, Dorylus is always a better choice
than the CPU-only variant under the same monetary budget.

Other Observations. In addition to the results discussed
above, we make three other observations on performance.

Our first observation is that the more sparse the graph, the
more useful Dorylus is. For Amazon and Friendster, Dory-
lus even outperforms the GPU-only version for two reasons:

First, for all the three variants, the fraction of
time on Scatter is significantly larger when training
over Friendster and Amazon than Reddit-small and
Reddit-large. This is, at first sight, counter-intuitive be-
cause one would naturally expect less efforts on inter-partition
communications for sparse graphs than dense graphs. A thor-
ough inspection discovered that the Scatter time actually
depends on a combination of the number of ghost vertices
and inter-partition edges. For the two Reddit graphs, they
have many inter-partition edges, but very few ghost vertices,
because (1) their |V | is small and (2) many inter-partition
edges come from/go to the same ghost vertices due to their
high vertex degrees.

Second, Scatter takes much longer time in GPU clus-
ters. Moving ghost data between GPU memories on different
nodes is much slower than data transferring between CPU
memories. As a result, the poor performance of the GPU-only
variant is due to a combinatorial effect of these two factors:
Dorylus scatters significantly more data for Friendster and
Amazon, which amplifies the negative impact of poor scat-
ter performance in a GPU cluster. Note that p3 also offers
multi-GPU servers, which may potentially reduce scatter time.
We have also experimented with these servers, but we still
observed long scatter time due to extensive communication
between between servers and GPUs. Reducing such com-
munication costs requires fundamentally different techniques
such as those proposed by NeuGraph [55]. We leave the
incorporation of such techniques to future work.

Our second observation is that Lambda threads are more
effective in boosting performance for GAT than GCN. This
is because GAT includes an additional AE task, which per-
forms intensive per-edge tensor computation and thus benefits
significantly from a high degree of parallelism.

Our third observation is that Dorylus achieves comparable
performance with the CPU-only variant that uses twice as
many servers. For example, the training time of Dorylus
under 4 servers is only 1.1× longer than that of the CPU only
variant with 8 servers. Similarly, Dorylus under 8 servers is

only 1.05× slower than the CPU only variant with 16 servers.
These results demonstrate our efficient use of Lambdas.

7.5 Comparisons with Existing Systems
Our goal was to compare Dorylus with all existing GNN tools.
However, NeuGraph [55] and AGL [98] are not publicly
available; neither did their authors respond to our requests.
Roc [34] is available but we could not run it in our environ-
ment due to various CUDA errors; we were not able to resolve
these errors after multiple email exchanges with the authors.
Roc was not built for scalability because each server needs to
load the entire graph into its memory during processing. This
is not possible when processing billion-edge graphs. This
subsection focuses on the comparison of Dorylus, DGL [17],
which is a popular GNN library with support for sampling, as
well as AliGraph [94], which is also a sampling-based system
that trains GNNs only with CPU servers. All experiments
use the cluster configuration specified above for each graph
unless otherwise stated.

DGL represents an input graph as a (sparse) matrix; both
graph and tensor computations are executed by PyTorch or
MXNet as matrix multiplications. We experimented with two
versions of DGL, one with sampling and one without. DGL-
non-sampling does full-graph training on a single machine.
DGL-sampling partitions the graph and distributes partitions
to different machines. Each machine performs sampling on
its partition and trains a GNN on sampled subgraphs.

AliGraph runs in a distributed setting with a server that
stores the graph information. A set of clients query the server
to obtain graph samples and use them as minibatches for
training. Similar to DGL, AliGraph uses a traditional ML
framework as a backend and performs all of its computation
as tensor operations.

0 200 400 600
Time (Sec)

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

Dorylus
Dorylus (GPU only)
AliGraph
DGL (sampling)
DGL (non-sampling)

0 500 1000 1500
Time (Sec)

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

Dorylus
Dorylus (GPU only)
AliGraph
DGL (sampling)

(a)Reddit-small (b) Amazon

Figure 9: Accuracy comparisons between Dorylus, Dorylus
(GPU only), AliGraph, DGL (sampling), and DGL (non-
sampling). DGL (non-sampling) uses a single V100 GPU and
could not scale to Amazon. Each dot indicates five epochs for
Dorylus and DGL (non-sampling), and one epoch for DGL
(sampling) and AliGraph.

Accuracy Comparison with Sampling. Figure 9 reports the
accuracy-time curve for five configurations: Dorylus, Do-
rylus (GPU-only), DGL (sampling), DGL (non-sampling),

Graph System Time (s) Cost ($)

Reddit-small

Dorylus 165.77 0.045
Dorylus (GPU only) 28.06 0.052

DGL (sampling) 566.33 0.480
DGL (non-sampling) 33.64 0.028

AliGraph – –

Amazon

Dorylus 415.23 0.654
Dorylus (GPU only) 308.27 2.096

DGL (sampling) 842.49 5.728
DGL (non-sampling) – –

AliGraph 1560.66 1.498
Table 5: Evaluation of end-to-end performance and costs of
Dorylus and other GNN training systems. Each time reported
is the time to reach the target accuracy.

and AliGraph, over Reddit-small and Amazon. When run
enough epochs to fully converge, Dorylus can reach an accu-
racy of 95.44% and 67.01%, respectively, for the two graphs.
DGL (non-sampling) can run only on the Reddit-small

graph, reaching 94.01% as the highest accuracy. DGL (sam-
pling) is able to scale to both graphs, and its accuracy reaches
93.90% and 65.78%, respectively, for Reddit-small and
Amazon. AliGraph is able to scale to both Reddit-small

and Amazon. On Reddit-small it reaches a maximum ac-
curacy of 91.12% and 65.23% on Amazon.
Performance. To enable meaningful performance compar-
isons and make training finish in a reasonable amount of time,
we set 93.90% and 63.00% as our target accuracy for the two
graphs. As shown in Figure 9(a), Dorylus (GPU only) has the
best performance, followed by DGL (non-sampling). Since
Reddit-small is a small graph that fits into the memory of a
single (V100) GPU, DGL (non-sampling) performs much bet-
ter than DGL (sampling), which incurs per-epoch sampling
overheads. To reach the same accuracy (93.90%), Dorylus
is 3.25× faster than DGL (sampling), but 5.9× slower than
Dorylus (GPU only). AliGraph is unable to reach our target
accuracy after many epochs.

For the Amazon graph, DGL cannot scale without sam-
pling. As shown in Figure 9(b), to reach the same target
accuracy, Dorylus is 1.99× faster than DGL (sampling), and
1.37× slower than Dorylus (GPU only). AliGraph is able to
reach the target accuracy for Amazon. However, Dorylus is
significantly faster. As these results show, graph sampling
improves scalability at the cost of increased overheads and
reduced accuracy.

The times reported for Dorylus and its GPU-only variant
in Table 5 are smaller than those reported in Table 4. This is
due to the lower target accuracy we set for these experiments.
Value Comparison. To demonstrate the promise of Dory-
lus, we compared these systems using the value metric. As
expected, given the small size of the Reddit-small graph,
the GPU-based systems perform quite well. In fact, in this
case the normalized value of DGL (non-sampling) is 1.48,

providing a higher value than Dorylus (GPU only). However,
as mentioned earlier, DGL cannot scale without sampling;
hence, this benefit is limited only to small graphs. As we
process Amazon, the value of Dorylus quickly improves as is
consistent with our findings earlier (on large, sparse graphs).
With this dataset, Dorylus provides a higher performance-per-
dollar rate than all the other systems—17.7× the value of
DGL (sampling) and 8.6× the value of AliGraph.

7.6 Breakdown of Performance and Costs

Dorylus-
no-pipe

CPU GPU0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ta
sk

 T
im

e
(S

ec
)

GA
AV
SC
▿GA
▿AV
▿SC

Dorylus-
pipe

s=0 s=1 CPU GPU0.0

0.5

1.0

1.5

2.0

2.5

Co
st

 (
$)

Server
Lambda

(a) Task time breakdown (b) Cost breakdown

Figure 10: Time and cost breakdown for the Amazon graph.

Figure 10 shows a breakdown in task time (a) and costs (b)
for training a GCN over the Amazon graph. In Figure 10(a), to
understand the time each task spends, we disabled pipelining
and asynchrony in Dorylus, producing a version referred to as
no-pipe, in which different tasks never overlap. This makes
it possible for us to collect each task’s running time. Note
that no-pipe represents a version that uses Lambdas naı̈vely
to train a DNN. Without pipelining and overlapping Lambdas
with CPU-based tasks, we saw a 1.9× degradation, making
no-pipe lose to both CPU and GPU in training time.

As shown, the tasks GA, AV, and OAV take the major-
ity of the time. Another observation is that to execute the
tensor computation AV, GPU is the most efficient backend
and Lambda is the least efficient one. This is expected —
Lambdas have less powerful compute (much less than CPUs
in the c5 family) and high communication overheads. Nev-
ertheless, these results also demonstrate that when CPUs on
graph servers are fully saturated with the graph computation,
large gains can be obtained by running tensor computation
in Lambdas that fully overlap with CPU tasks!

To compute the cost breakdown in Figure 10(b), we simply
calculated the total amounts of time for Lambdas and GSes
for each of the five Dorylus variants and used these times to
compute the costs of Lambdas and servers. Due to Dorylus’
effective use of Lambdas, we were able to run a large number
of Lambdas for the forward and backward pass. As such, the
cost of Lambdas is about the same as the cost of CPU servers.

8 Related Work
Dorylus is the first system that successfully uses tiny Lambda
threads to train a GNN by exploiting various graph-related
optimizations. There are three categories of techniques in par-

allelization (§8.1), GNN training (§8.2), and graph systems
(§8.3).

8.1 Parallel Computation for Model Training

How to exploit parallelism in model training is a topic that has
been extensively studied. There are two major dimensions in
how to effectively parallelize the training work: (1) what to
partition and (2) how to synchronize between workers.
What to Partition. The most straightforward parallelism
model is data parallelism [8, 14, 16, 24, 72, 73, 76, 99], where
inputs are partitioned and processed by individual workers.
Each worker learns parameters (weights) from its own portion
of inputs and periodically shares its parameters with other
workers to obtain a global view. Both share-memory sys-
tems [8, 73, 24] and distributed systems [49, 99, 13] have
been developed for data-parallel training. Another paralleliza-
tion strategy is to partition the work, often referred to as
model parallelism [61] where the operators in a model are
partitioned and each worker evaluates and updates only a
subset of parameters w.r.t. its model partition for all inputs.

A recent line of work develops techniques for hybrid paral-
lelism [63, 31, 36, 44]. PipeDream [63] adds pipelining into
model parallelism to fully utilize compute without introduc-
ing significant stalls. Although Dorylus also uses pipelining,
tasks on a Dorylus pipeline are much finer-grained. For ex-
ample, instead of splitting a model into layers, we construct
graph and tensor tasks in such a way that graph tasks can be
parallelized on graph servers, while each tensor task is small
enough to fit into a Lambda’s resource profile. Dorylus uses
pipelining to overlap graph and tensor computations specifi-
cally to mitigate Lambdas’ network latency. FlexFlow [36]
automatically splits an iteration along four dimensions.
How Workers Synchronize. When workers work on differ-
ent portions of inputs (i.e., data parallelism), they need to
share their learned parameters with other workers. Parame-
ter updating requires synchronization between workers. For
share-memory systems, they often rely on primitives such
as all reduce [8] that broadcasts each worker’s parameters
to all other workers. Distributed systems including Dorylus
use parameter servers [49, 99, 13], which periodically com-
municate with workers for updating parameters. The most
commonly-used approach for synchronization is the bulk syn-
chronous parallel (BSP) model, which poses a barrier at the
end of each epoch. All workers need to wait for gradients
from other workers at the barrier. Wait-free backpropaga-
tion [99] is an optimization of the BSP model.

Since synchronous training often introduces computation
stalls, asynchronous training [8, 16] has been proposed to re-
duce such stalls — each worker proceeds with the next input
minibatch before receiving the gradients from the previous
epoch. An asynchronous approach reduces time needed for
each epoch at the cost of increased epochs to reach particu-
lar target accuracy. This is because allowing workers to use
parameters learned in epoch m to perform forward compu-

tations in epoch n (n 6= m) leads to statistical inefficiency.
This problem can be mitigated with a hybrid approach such
as bounded staleness [63, 15, 82, 65].

8.2 GNN Training and Graph Systems

As the GNN family keeps growing [91, 96, 18, 47, 95, 103,
51, 35, 94, 98], developing efficient and scalable GNN train-
ing systems becomes popular. GraphSage [25] uses graph
sampling, NeuGraph [55] extends GNN training to multi-
ple GPUs, and RoC [34] uses dynamic graph partitioning
to achieve efficiency. Other systems that can scale to large
graphs are all based on sampling [94, 98].

Programming frameworks such as DGL [17] have been
proposed to create a graph-parallel interface (i.e., GAS) for
developers to easily mix graph operations with NNs. How-
ever, such frameworks still represent the graph as a matrix
and push it to an underlying training framework such as Ten-
sorFlow for training. We solve this fundamental scalability
problem with a ground-up system redesign that separates the
graph computation from the tensor computation.

8.3 Graph-Parallel Systems

There exists a body of work on scalable and efficient
graph systems of many kinds: single-machine share-memory
systems [75, 64, 21, 59, 58], disk-based out-of-core sys-
tems [46, 70, 105, 87, 52, 102, 86, 26, 84, 56, 79, 1, 88],
and distributed systems [57, 54, 23, 10, 69, 11, 104, 101, 74,
81, 62, 90, 7, 80, 83]. These systems were built on top of a
graph-parallel computation model, whether it is vertex-centric
or edge-centric. Inspired by these systems, Dorylus formu-
lates operations involving the graph structure as graph-parallel
computation and runs it on CPU servers for scalability.

9 Conclusion
Dorylus is a distributed GNN training system that scales to
large billion-edge graphs with low-cost cloud resources. We
found that CPU servers, in general, offer more performance
per dollar than GPU servers for large sparse graphs. Adding
Lambdas added 2.75× more performance-per-dollar than
CPU only servers, and 4.83× more than GPU only servers.
Compared to existing sampling-based systems Dorylus is up
to 3.8× faster and 10.7× cheaper. Based on the trends we
observed Dorylus can scale to even larger graphs than we
evaluated, offering even higher values.

Acknowledgments
We thank the anonymous reviewers for their comments. We
are grateful to our shepherd Amar Phanishayee for his feed-
back. This work is supported by NSF grants CCF-1629126,
CNS-1703598, CCF-1723773, CNS-1763172, CCF-1764077,
CNS-1907352, CNS-1901510, CNS-1943621, CHS-
1956322, CNS-2007737, CNS-2006437, CNS-2106838,
ONR grants N00014-16-1-2913 and N00014-18-1-2037, as
well as a Sloan Fellowship.

A Artifact Appendix

A.1 Artifact Summary

Dorylus is a distributed GNN training system that
scales to large billion-edge graphs using cheap cloud re-
sources—specifically CPU servers and serverless threads.
It launches a set of graph servers which are used for pro-
cessing graph data and doing operations such as gather and
scatter. In addition, parameter servers hold the weights for
the model. It can be configured to run with multiple different
backends, such as a pure CPU backend and a GPU backend.
By separating the graph and tensor components of a graph
neural network Dorylus is able to effectively utilize serverless
threads by providing a deep asynchronous-parallel pipeline
in which tensor and graph operations are overlapped. By
doing this Dorylus significantly improves the performance-
per-dollar of serverless training over both the CPU and GPU
backends.

A.2 Artifact Check-list

• Hardware: AWS cloud account
• Public link: https://github.com/uclasystem/
dorylus

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 Dorylus’s Codebase

Dorylus contains the following three components:

• The Graph Server which performs graph operations and
manages Lambda threads (which can also use CPU and
GPU backends)

• The Weight Server which holds the model parameters and
sends them to the workers

• The Lambda functions which can be uploaded to AWS to
be used during training

A.3.2 Deploying Dorylus

To build Dorylus, the first step is to make sure you have the
following dependencies installed on your local machine:

• awscli

• python3-venv

Make sure to run aws configure and set up your creden-
tials to allow you to have access to AWS services. Once these
are installed, we need to download the code and setup the
environment:

git clone

git@github.com:uclasystem/dorylus.git

cd dorylus/

git checkout v1.0 # artifact tag

python3 -m venv venv

source venv/bin/activate

pip install -U pip

pip install -r requirements.txt

Set Up the Cluster. We now discuss how to setup the cluster
with all different roles. To do this, we use the ec2man python
module. To start, setup the profile in the following way:

$ vim ec2man/profile

default # Profile from /̃.aws/credentials

ubuntu # Cluster username

${HOME}/.ssh/id rsa # Path to SSH key

us-east-2 # AWS region

As mentioned previously, we work with two types of work-
ers which we call ’contexts’, specifically graph and weight
servers. To add machines to these two contexts, we use one
of the following commands:

python -m ec2man allocate --ami [AMI]

--type [ec2 type] --cnt [#servers]

--sg [security group]

--ctx [weight|graph]

python -m ec2man add [graph|weight]

[list of ec2 ids]

Run the first command with an AMI ID that presents a fresh
install of Ubuntu, ideally with about 36 GB of storage. Al-
ternatively if you have created instances already, say 4 graph
servers you can add them to the module using the add com-
mand with a list of their IDs. Finally, run the command
python -m ec2man setup to get the data about the in-
stances so they can be managed by the module. To make sure
everything is setup correctly, try SSHing into graph server 0
using python -m ec2man graph 0 ssh.
Building Dorylus. The next step is to make sure all depen-
dencies are installed to build Dorylus on the cluster machines.
To do this, run the following commands:

local$./gnnman/send-source [--force]

’--force’ removes existing code

local$./gnnman/install-dep

This will sync the source code with the nodes on the cluster.
Then, it will install all dependencies required to build Dorylus.

https://github.com/uclasystem/dorylus
https://github.com/uclasystem/dorylus

If this fails for some reason you may need to ssh into each
node, move into the dorylus/gnnman/helpers directory,
and run:

remote$./graphserver.install

remote$./weightserver.install

Parameter Files. There are a number of parameter files
relating to things such as the ports used during training. Most
of these will be fine as they are and should only be changed
if there is a conflict.
Compiling the Code. To build and synchronize the code on
all nodes in the cluster run:

local$./gnnman/setup-cluster

local$./gnnman/build-system

[graph|weight] [cpu|gpu]

The first command sets up each node of the cluster to be aware
of each other. This is important as we only build the code on
node 0 and distribute it to other nodes. The second command
runs CMake to build the actual system. Not specifying a
context builds for all contexts. Not specifying either cpu or
gpu as the backend builds the serverless version.
Setting up Lambda Functions. To install the Lambda func-
tions, you can SSH into one of the weight or graph servers.
Once there, run the following commands:

Install the Lambda dependencies
remote$./funcs/manage-funcs.install

Build and upload the function to the cloud
remote$ cd src/funcs

remote$./<function-name>/upload-func

A.3.3 Preparing the Data
There are 4 main inputs to Dorylus:
• The graph structure
• Graph partition info
• Input features
• Training labels

Graph Input. To prepare an input graph for Dorylus, the
format should be a binary edge list with vertices numbered
from 0 to |V | with no breaks using 4 byte values. The file
should be named graph.bsnap.
Partition Info. Dorylus uses edge-cut partitioning. While
we do limit partitioning to edge-cuts, we allow flexibility in
how the edge cut is implemented by partitioning at runtime.
Provide a text file that lists partition assignments line by line,
where each line number corresponds to the vertex ID and the
number is the partition to which it is assigned. The file should
be called graph.bsnap.parts.
Input Features. The input features take the form of a tensor
of size |V | × d where d is the number of input features. The
file should be binary and take the format of:

[numFeats][v0 feats][v1 feats][v2 feats]...

The file should be called features.bsnap.
Training Labels. The labels file should be binary and take
the form:

[numLabels][label0][label1]...

This file should be called labels.bsnap.
Preparing the NFS Server. On an NFS server setup the
dataset in the following format under a directory called
/mnt/filepool/. If the dataset we are preparing is called
amazon, the directory structure would look like this:

amazon

|-- features.bsnap

|-- graph.bsnap

|-- labels.bsnap

|-- parts <#partitions>/

|-- graph.bsnap.edges

|-- graph.bsnap.parts

where graph.bsnap.edges is a symlink to
../graph.bsnap. Use the add command from above to
add the NFS server to a special context called nfs so that
ec2man knows where to look for it. Finally, run

local$./gnnman/mount-nfs-server

A.3.4 Running Dorylus.
Once the cluster has been setup, the code compiled, the
Lambda functions installed, and the datasets prepared, we can
run Dorylus. To run it use the following command from the
dorylus/ directory on your local machine:

<dataset>: the dataset you prepared
--l: the #lambdas/server
--p: enable asynchronous pipelining
--s: degree of staleness
[cpu|gpu]: backend to use (blank means lambda)

./run/run-dorylus <dataset>

[--l=#lambdas] [--lr=learning rate]

[--p] [--s=staleness] [cpu|gpu]

You will see the output of the Graph Servers, but can
see the output of both the Graph and Weight Servers
in graphserver-out.txt and weightserver-out.txt.
More details of Dorylus’s installation and deployment can be
found in Dorylus’s code repository.

References
[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and

W. Zheng. Squeezing out all the value of loaded data:
An out-of-core graph processing system with reduced
disk i/o. In USENIX ATC, pages 125–137, 2017.

[2] M. Allamanis, M. Brockschmidt, and M. Khademi.
Learning to represent programs with graphs. In ICLR,
2018.

[3] Amazon. AWS Lambda Pricing.
https://aws.amazon.com/lambda/pricing/, 2020.

[4] A. AWS. Announcing improved vpc
networking for aws lambda functions.
https://aws.amazon.com/blogs/compute/announcing-
improved-vpc-networking-for-aws-lambda-
functions/, 2019.

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin,
and D. Tarlow. Deepcoder: Learning to write programs.
In ICLR, 2017.

[6] X. Bresson and T. Laurent. Residual gated graph con-
vnets. CoRR, abs/1711.07553, 2017.

[7] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie.
Pregelix: Big(ger) graph analytics on a dataflow engine.
Proc. VLDB Endow., 8(2):161–172, Oct. 2014.

[8] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous sgd. In ICLR Work-
shop Track, 2016.

[9] J. Chen, J. Zhu, and L. Song. Stochastic training of
graph convolutional networks with variance reduction.
In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 942–950, Stockholmsmässan, Stockholm Swe-
den, 10–15 Jul 2018. PMLR.

[10] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and
H. Guan. Computation and communication efficient
graph processing with distributed immutable view. In
HPDC, pages 215–226, 2014.

[11] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, pages 1:1–1:15, 2015.

[12] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN:
Efficient primitives for deep learning, 2014.

[13] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, pages 571–
582, 2014.

[14] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao,
J. Zhang, P. Bailis, K. Olukotun, C. Ré, and M. Zaharia.
Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. SIGOPS Oper. Syst.
Rev., 53(1):14–25, 2019.

[15] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar,
J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing. Exploiting bounded staleness
to speed up big data analytics. In USENIX ATC, pages
37–48, June 2014.

[16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and
E. P. Xing. GeePS: Scalable deep learning on dis-
tributed GPUs with a gpu-specialized parameter server.
In EuroSys, 2016.

[17] DeepGraphLibrary. Why DGL?
https://www.dgl.ai/pages/about.html, 2018.

[18] M. Defferrard, X. Bresson, and P. Vandergheynst. Con-
volutional neural networks on graphs with fast local-
ized spectral filtering. In NIPS, pages 3844––3852,
Red Hook, NY, USA, 2016.

[19] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre,
R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NIPS, pages
2224–2232, 2015.

[20] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Bala-
subramaniam, W. Zeng, R. Bhalerao, A. Sivaraman,
G. Porter, and K. Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny
threads. In NSDI, pages 363–376, 2017.

[21] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
overview of the system software of A parallel rela-
tional database machine GRACE. In VLDB, pages
209–219, 1986.

[22] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. AIS-
TATS, pages 249–256, 2010.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[24] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch SGD: training Ima-
geNet in 1 hour. CoRR, abs/1706.02677, 2017.

[25] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In NIPS, pages
1024–1034, 2017.

[26] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. TurboGraph: A fast parallel graph
engine handling billion-scale graphs in a single PC. In
KDD, pages 77–85, 2013.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In ICCV, pages 1026–1034,
2015.

[28] R. He and J. McAuley. Ups and downs: Modeling
the visual evolution of fashion trends with one-class
collaborative filtering. In WWW, pages 507–517, 2016.

[29] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-
Smith, V. Sreekanti, A. Tumanov, and C. Wu. Server-
less computing: One step forward, two steps back. In
CIDR, 2019.

[30] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gib-
bons, G. A. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ml via a stale synchronous
parallel parameter server. In NIPS, pages 1223–1231,
Red Hook, NY, USA, 2013.

[31] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V.
Le, and Z. Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. CoRR,
abs/1811.06965, 2018.

[32] C. Huyen. Key trends from NeurIPS 2019.
https://huyenchip.com/2019/12/18/key-trends-
neurips-2019.html, 2019.

[33] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel,
J. Gonzalez, K. Keutzer, and I. Stoica. Checkmate:
Breaking the memory wall with optimal tensor remate-
rialization. In MLSys, pages 497–511, 2020.

[34] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken.
Improving the accuracy, scalability, and performance
of graph neural networks with Roc. In MLSys, 2020.

[35] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and
A. Aiken. Redundancy-free computation for graph
neural networks. In KDD, pages 997–1005, 2020.

[36] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and
model parallelism for deep neural networks. In MLSys,
2019.

[37] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and
B. Recht. Occupy the cloud: Distributed computing
for the 99%. In SoCC, pages 445–451, 2017.

[38] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. Annals of Mathe-
matical Statistics, 23:462–466, 1952.

[39] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization, 2014.

[40] T. N. Kipf and M. Welling. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR,
2017.

[41] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan,
M. He, J. Roesch, T. Chen, and Z. Tatlock. Dynamic
tensor rematerialization. In ICLR, 2021.

[42] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfef-
ferle, and A. Trivedi. Understanding ephemeral storage
for serverless analytics. In USENIX ATC, pages 789–
794, 2018.

[43] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfef-
ferle, and C. Kozyrakis. Pocket: Elastic ephemeral
storage for serverless analytics. In OSDI, pages 427–
444, 2018.

[44] A. Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. CoRR, abs/1404.5997, 2014.

[45] M. Kustosz and B. Osinski. Trends and fads in
machine learning – topics on the rise and in decline in
ICLR submissions. https://deepsense.ai/key-findings-
from-the-international-conference-on-learning-
representations-iclr/, 2020.

[46] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC. In OSDI,
pages 31–46, 2012.

[47] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and
A. Rao. Graph convolutional networks with motif-
based attention. In CIKM, pages 499–508, 2019.

[48] J. Leskovec. Stanford network analysis project.
https://snap.stanford.edu/, 2020.

[49] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, pages 583–598, 2014.

[50] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.
Gated graph sequence neural networks. In ICLR, 2016.

[51] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel.
Gated graph sequence neural networks. In Y. Bengio
and Y. LeCun, editors, ICLR, 2016.

[52] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee,
, and U. Kang. MMap: Fast billion-scale graph com-
putation on a pc via memory mapping. In BigData,
pages 159–164, 2014.

[53] Q. Liu, M. Nickel, and D. Kiela. Hyperbolic graph
neural networks. In NIPS, pages 8230–8241. Curran
Associates, Inc., 2019.

[54] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
framework for parallel machine learning. In UAI, pages
340–349, 2010.

[55] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,
and Y. Dai. NeuGraph: Parallel deep neural network
computation on large graphs. In USENIX ATC, pages
443–457, 2019.

[56] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar,
and T. Kim. Mosaic: Processing a trillion-edge graph
on a single machine. In EuroSys, pages 527–543, 2017.

[57] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[58] M. Mariappan, J. Che, and K. Vora. DZiG: Sparsity-
Aware Incremental Processing of Streaming Graphs.
In EuroSys, page 83–98, 2021.

[59] M. Mariappan and K. Vora. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs.
In EuroSys, page 25:1–25:16, 2019.

[60] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel.
Image-based recommendations on styles and substi-
tutes. In SIGIR, pages 43–52, 2015.

[61] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner,
R. Larsen, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio,
and J. Dean. Device placement optimization with re-
inforcement learning. In ICML, pages 2430—-2439,
2017.

[62] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In SOSP, pages 439–455, 2013.

[63] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria. PipeDream: Generalized pipeline parallelism
for DNN training. In SOSP, page 1–15, 2019.

[64] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In SOSP, pages 456–
471, 2013.

[65] F. Niu, B. Recht, C. Re, and S. J. Wright. HOGWILD!
a lock-free approach to parallelizing stochastic gradi-
ent descent. In NIPS, pages 693—-701, 2011.

[66] NVIDIA. The cuSPARSE CUDA toolkit.
https://docs.nvidia.com/cuda/cusparse/index.html,
2020.

[67] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W. Yih.
Cross-sentence n-ary relation extraction with graph
LSTMs. TACL, 5:101–115, 2017.

[68] Reddit. The reddit datasets.
https://www.reddit.com/r/datasets/, 2020.

[69] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: Scale-out graph processing
from secondary storage. In SOSP, pages 410–424,
2015.

[70] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric graph processing using streaming parti-
tions. In SOSP, pages 472–488, 2013.

[71] F. Scarselli and et al. The graph neural network model.
IEEE Trans. Neur. Netw., 20(1):61–80, Jan. 2009.

[72] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit
stochastic gradient descent and application to data-
parallel distributed training of speech dnns. In Inter-
speech 2014, September 2014.

[73] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On par-
allelizability of stochastic gradient descent for speech
dnns. In ICASSP, pages 235–239, 2014.

[74] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and
concurrent RDF queries with rdma-based distributed
graph exploration. In USENIX ATC, pages 317–332,
2016.

[75] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In PPoPP,
pages 135–146, 2013.

[76] R. Thakur, R. Rabenseifner, and W. Gropp. Optimiza-
tion of collective communication operations in mpich.
Int. J. High Perform. Comput. Appl., 19(1):49—-66,
2005.

[77] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia,
J. Wei, K. Vora, R. Netravali, M. Kim, and G. H. Xu.
Dorylus: affordable, scalable, and accurate GNN train-
ing with distributed CPU servers and serverless threads.
https://arxiv.org/abs/2105.11118, 2021.

[78] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph attention networks. In
ICLR, 2018.

[79] K. Vora. LUMOS: Dependency-driven disk-based
graph processing. In USENIX ATC, pages 429–442,
2019.

[80] K. Vora, R. Gupta, and G. Xu. Synergistic analysis
of evolving graphs. ACM Trans. Archit. Code Optim.,
13(4):32:1–32:27, 2016.

[81] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and ac-
curate computations on streaming graphs via trimmed
approximations. In ASPLOS, pages 237–251, 2017.

[82] K. Vora, S. C. Koduru, and R. Gupta. ASPIRE: Exploit-
ing asynchronous parallelism in iterative algorithms
using a relaxed consistency based dsm. In OOPSLA,
pages 861–878, 2014.

[83] K. Vora, C. Tian, R. Gupta, and Z. Hu. CoRAL: Con-
fined Recovery in Distributed Asynchronous Graph
Processing. In ASPLOS, page 223–236, 2017.

[84] K. Vora, G. Xu, and R. Gupta. Load the edges you
need: A generic I/O optimization for disk-based graph
processing. In USENIX ATC, pages 507–522, 2016.

[85] A. D. Vose, J. Balma, D. Farnsworth, K. Anderson,
and Y. K. Peterson. PharML.Bind: Pharmacologic
machine learning for protein-ligand interactions, 2019.

[86] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. A. Sani.
Graspan: A single-machine disk-based graph system
for interprocedural static analyses of large-scale sys-
tems code. In ASPLOS, pages 389–404, 2017.

[87] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ:
Graph query processing with abstraction refine-
ment—programmable and budget-aware analytical
queries over very large graphs on a single PC. In
USENIX ATC, pages 387–401, 2015.

[88] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H.
Xu. Rstream: Marrying relational algebra with stream-
ing for efficient graph mining on a single machine. In
OSDI, pages 763–782, 2018.

[89] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye,
M. Li, J. Zhou, Q. Huang, C. Ma, Z. Huang, Q. Guo,
H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola,
and Z. Zhang. Deep graph library: Towards effi-
cient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019.

[90] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. GraM: Scaling graph
computation to the trillions. In SoCC, pages 408–421,
2015.

[91] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan.
Session-based recommendation with graph neural net-
works. AAAI, 33:346–353, Jul 2019.

[92] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu. A comprehensive survey on graph neural networks.
CoRR, abs/1901.00596, 2019.

[93] Z. Xianyi and M. Kroeker. OpenBLAS.
https://www.openblas.net, 2019.

[94] H. Yang. Aligraph: A comprehensive graph neural
network platform. In KDD, pages 3165–3166, 2019.

[95] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec. Graph convolutional neu-
ral networks for web-scale recommender systems. In
KDD, pages 974–983, 2018.

[96] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim.
Graph transformer networks. In Annual Conference on
Neural Information Processing Systems 2019, pages
11960–11970, 2019.

[97] ZeroMQ. ZeroMQ networking library for C++.
https://zeromq.org/, 2020.

[98] D. Zhang, X. Huang, Z. Liu, J. Zhou, Z. Hu, X. Song,
Z. Ge, L. Wang, Z. Zhang, and Y. Qi. AGL: A scalable
system for industrial-purpose graph machine learning.
Proc. VLDB Endow., 13(12):3125–3137, 2020.

[99] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing. Poseidon: An
efficient communication architecture for distributed
deep learning on GPU clusters. In USENIX ATC, pages
181—-193, 2017.

[100] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Ye-
ung. GaAN: Gated attention networks for learning on
large and spatiotemporal graphs. In A. Globerson and
R. Silva, editors, UAI, pages 339–349, 2018.

[101] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and
W. Zheng. Exploring the hidden dimension in graph
processing. In OSDI, pages 285–300, 2016.

[102] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. FlashGraph: processing
billion-node graphs on an array of commodity ssds. In
FAST, pages 45–58, 2015.

[103] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun.
Graph neural networks: A review of methods and ap-
plications. CoRR, abs/1812.08434, 2018.

[104] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini:
A computation-centric distributed graph processing
system. In OSDI, pages 301–316, 2016.

[105] X. Zhu, W. Han, and W. Chen. GridGraph: Large
scale graph processing on a single machine using 2-
level hierarchical partitioning. In USENIX ATC, pages
375–386, 2015.

	Introduction
	Background
	Design Overview
	Tasks and Pipelining
	Bounded Asynchrony
	Bounded Asynchrony at Weight Updates
	Bounded Asynchrony at Gather
	Convergence Guarantee

	Lambda Management
	Evaluation
	Experiment Setup
	Instance Selection
	Asynchrony
	Effects of Lambdas
	Comparisons with Existing Systems
	Breakdown of Performance and Costs

	Related Work
	Parallel Computation for Model Training
	GNN Training and Graph Systems
	Graph-Parallel Systems

	Conclusion
	Artifact Appendix
	Artifact Summary
	Artifact Check-list
	Description
	Dorylus's Codebase
	Deploying Dorylus
	Preparing the Data
	Running Dorylus.

