
AUTOMATED DISCOVERY OF MACHINE LEARNING OPTIMIZATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zhihao Jia

August 2020

c© Copyright by Zhihao Jia 2020

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Alex Aiken) Principal Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Matei Zaharia) Principal Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Kunle Olukuton)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

The increasing complexity of machine learning (ML) models and ML-specific hardware architectures

makes it increasingly challenging to build efficient and scalable ML systems. Today’s ML systems

heavily rely on human effort to optimize the deployment of ML models on modern hardware platforms,

which requires a tremendous amount of engineering effort but only provides suboptimal runtime

performance. Moreover, the rapid evolution of ML models and ML-specific hardware makes it

infeasible to manually optimize performance for all model and hardware combinations.

In this dissertation, we propose a search-based methodology to build performant ML systems

by automatically discovering performance optimizations for ML computations. Instead of only

considering the limited set of manually designed performance optimizations in current ML systems,

our approach introduces a significantly more comprehensive search space of possible strategies to

optimize the deployment of an ML model on a hardware platform. In addition, we design efficient

search algorithms to explore the search space and discover highly-optimized strategies. The search

is guided by a cost model for evaluating the performance of different strategies. We also propose a

number of techniques to accelerate the search procedure by leveraging the topology of the search

space.

This dissertation presents three ML systems that apply this methodology to optimize different tasks

in ML deployment. Compared to current ML systems relying on manually designed optimizations,

our ML systems enable better runtime performance by automatically discovering novel performance

optimizations that are missing in current ML systems. Moreover, the performance improvement is

achieved with less engineering effort, since the code needed for discovering these optimizations is

much less than manual implementation of these optimizations.

First, we developed TASO, the first ML graph optimizer that automatically generates graph

optimizations. TASO formally verifies the correctness of the generated graph optimizations using an

automated theorem prover, and uses cost-based backtracking search to discover how to apply the

verified optimizations. In addition to improving runtime performance and reducing engineering effort,

TASO also provides correctness guarantees using formal methods.

Second, to generalize and go beyond today’s manually designed parallelization strategies for

distributed ML computations, we introduce the SOAP search space, which contains a comprehensive

iv

set of possible strategies to parallelize ML computations by identifying parallelization opportunities

across different Samples, Operators, Attributes, and Parameters. We developed FlexFlow, a deep

learning engine that automatically searches over strategies in the SOAP search space. FlexFlow

includes a novel execution simulator to evaluate the runtime performance of different strategies, and

uses a Markov Chain Monte Carlo (MCMC) search algorithm to find performant strategies. FlexFlow

discovers strategies that significantly outperform existing strategies, while requiring no manual effort

during the search procedure.

Finally, we developed Roc, which automates data placement optimizations and minimizes data

transfers in the memory hierarchy for large-scale graph neural network (GNN) computations. Roc

formulates the task of optimizing data placement as a cost minimization problem and uses a dynamic

programming algorithm to discover a globally optimal data management plan that minimizes data

transfers between memories.

v

Acknowledgments

It is hard to believe that it finally comes to the end of my PhD study in the Computer Science

Department at Stanford University. I would like to take this opportunity to acknowledge the

many people whose help and support makes both this moment possible and this period of my life

transformative.

First and foremost, I would like to thank my PhD advisors, Alex Aiken and Matei Zaharia, for

their support and guidance over the years and for granting me the flexibility and space to work on the

problems that seem most interesting and attractive to me. I started my PhD journey working with

Alex on high-performance parallel computing and later on decided to switch my research direction to

building efficient and scalable systems for machine learning at the end of my third year. Designing

ML systems was a completely new research domain to both Alex and me at that time, but Alex had

been extremely encouraging and supportive along the way. Because of the support and guidance

from Alex, I experienced an incredibly smooth transition and quickly came up with new ideas that

constitute this dissertation.

I also owe a big thanks to Matei for guiding me on researching complex real-world systems. It is

always rewarding and a great pleasure to have individual meetings with Matei. By observing how he

thought about and approached research problems, it helped me to learn how to extract fundamental

research problems from sophisticated real-world systems.

Kunle Olukuton deserves mention too, but not just for reading the drafts of this dissertation

and providing thoughtful and invaluable feedback. Kunle encouraged me to think creatively and

actively look for ways to extend and generalize the techniques we invented in this dissertation to

other domains.

This dissertation would have been impossible without the Legion project, which sets the foundation

for the work presented in this dissertation. The fantastic Legion team members, Mike Bauer, Sean

Treichler, Elliott Slaughter, Wonchan Lee, Manolis Papadakis, Karthik Murthy, Todd Warszawski,

and the others, have always been available and willing to provide help when I need any assistance.

Without them crafting and perfecting the Legion programming system, I would have to take much

longer time to finish this dissertation and can only achieve much less. I am fortunate to be a part of

the Legion team and am glad that I was able to make contributions to Legion.

vi

During my undergraduate and graduate studies, I have done several unforgettable internships at

Microsoft Research Asia (MSRA), Microsoft Research Silicon Valley (MSRSCV), and Los Alamos

National Lab (LANL). First, I want to acknowledge Lidong Zhou, who hosted my undergraduate

internship at MSRA and guided my first research project on computer systems. Thank you to Lidong

for leading me into the palace of computer science research. Second, I want to thank Yuan Yu, who

mentored my first graduate internship at MSRSCV and provided me valuable guidance on discovering

research projects that solve real-world problems and bring real-world impacts. Finally, I would like

to thank Galen Shipman and Pat McCormick, who jointly mentored my summer internship at LANL

in the summer of 2016. It was an absolutely memorable experience and was also the start of my

journey on researching ML systems. A significant portion of this dissertation is motivated and based

on the work I did during this internship.

A special thanks to my undergraduate advisor, Andrew Chi-Chih Yao, for founding the Special

Pilot Computer Science Class at Tsinghua University, which hosted my undergraduate study. Thank

you to Andrew for sparking and sustaining my interests in computer science. I am fortunate to have

received tremendous help and guidance from other Yao class members in my undergraduate and

graduate studies. I hope that I will have the privilege to be helpful to future generations of the Yao

class students.

Saving the best for last, I would like to thank my family for keeping supporting and believing in

me throughout my PhD. Thank you to my parents, Shuze Geng and Leiming Jia, for installing in me

a love of math and science and for no setting any expectations on what I should be when I grow up.

Thank you for teaching me the art of cooking. Cooking good meals guided me through the ups and

downs in my graduate schools.

Finally, I would like to acknowledge my wife, Sina Lin, for her endless love and support. Thank

you for being my best friend, my partner, and my compass when I got lost along my PhD journey.

Thank you for laughing with me, cooking with me, staying with me, and even discussing new research

ideas with me. I am so lucky to live a life with you, and am looking forward to our future adventures

together.

To all my family, friends, mentors, colleagues, and collaborators: thank you for being a part of

my life!

vii

Publications

Portions of this thesis appeared in the following publications, in collaboration with Alex Aiken,

Mattan Erez, Mingyu Gao, Yongkee Kwon, Sina Lin, Pat McCormick, Oded Padon, Charles R. Qi,

Galen Shipman, James Thomas, Todd Warszawski, and Matei Zaharia.

1. Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the Accuracy,

Scalability, and Performance of Graph Neural Networks with Roc. In Proceedings of the

Conference on Machine Learning and Systems (MLSys), Austin, TX, March 2020.

2. Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.

TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substi-

tutions. In Proceedings of the Symposium on Operating Systems Principles (SOSP), Ontario,

Canada, October 2019.

3. Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism for Deep

Neural Networks. In Proceedings of the Conference on Systems and Machine Learning (SysML),

Palo Alto, CA, April 2019.

4. Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex Aiken.

Optimizing DNN Computation with Relaxed Graph Substitutions. In Proceedings of the

Conference on Systems and Machine Learning (SysML), Palo Alto, CA, April 2019.

5. Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. A

Distributed Multi-GPU System for Fast Graph Processing. In Proceedings of the International

Conference on Very Large Data Bases (VLDB), Rio, Brazil, August 2018.

6. Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring Hidden Dimensions in

Parallelizing Convolutional Neural Networks. In Proceedings of the International Conference

on Machine Learning (ICML), Stockholm, Sweden, July 2018.

viii

Contents

Abstract iv

Acknowledgments vi

Publications viii

1 Introduction 1

1.1 Machine Learning Systems . 2

1.2 Challenges of Building ML Systems . 3

1.3 Approach: Automated Discovery of ML Optimizations 4

1.4 Discussion . 6

1.5 Roadmap . 6

2 Automated Discovery of Graph Optimizations 7

2.1 Motivation . 7

2.2 The Approach . 9

2.3 Graph Substitution Generator . 10

2.3.1 Graph Substitution Definition . 11

2.3.2 Generation Algorithm . 12

2.4 Graph Substitution Verifier . 14

2.5 Pruning Redundant Substitutions . 18

2.6 Cost Model . 20

2.7 Joint Optimizer . 20

2.8 Implementation . 22

2.9 Evaluation . 23

2.9.1 Experimental Setup . 23

2.9.2 End-to-End Evaluation . 24

2.9.3 Substitution Case Study . 25

2.9.4 Analysis of Used Substitutions . 29

ix

2.9.5 Joint Optimization of Graph Substitutions and Data Layout 29

2.9.6 Graph Substitution Verifier . 30

2.10 Related Work . 31

2.11 Limitations . 32

2.12 Conclusion . 32

3 Automated Discovery of Parallelization Optimizations 33

3.1 Motivation . 33

3.2 The Approach . 35

3.3 The SOAP Search Space . 36

3.4 Execution Simulator . 38

3.4.1 Task Graph . 38

3.4.2 Full Simulation Algorithm . 41

3.4.3 Delta Simulation Algorithm . 41

3.5 Execution Optimizer . 41

3.5.1 MCMC Sampling . 42

3.5.2 Search Algorithm . 42

3.6 FlexFlow Runtime . 42

3.7 Evaluation . 43

3.7.1 Experimental Setup . 43

3.7.2 Parallelization Performance . 45

3.7.3 DLRM and Candle Uno . 49

3.7.4 Execution Simulator . 51

3.7.5 Search Algorithm . 53

3.7.6 Case Studies . 53

3.8 Related Work . 54

3.9 Limitations . 56

3.10 Conclusion . 56

4 Automated Discovery of Data Placement Optimizations 57

4.1 Motivation . 57

4.2 Background and Related Work . 60

4.2.1 Graph Neural Networks . 60

4.2.2 Related Work . 60

4.3 The approach . 62

4.4 Graph Partitioner . 63

4.4.1 Cost Model . 63

4.4.2 Partitioning Algorithm . 65

x

4.5 Memory Manager . 66

4.6 Implementation . 68

4.7 Evaluation . 68

4.7.1 Experimental Setup . 68

4.7.2 Single-GPU Results . 70

4.7.3 Multi-GPU Results . 70

4.7.4 Comparison with Graph Sampling . 71

4.7.5 Deeper and Larger GNN Architectures . 72

4.7.6 Graph Partitioning . 73

4.7.7 Memory Management . 75

4.8 Conclusion . 75

5 Conclusions 76

xi

List of Tables

1.1 A search-based methodology for automatically discovering ML optimizations. 4

2.1 Tensor operators and constant tensors included in TASO. Similar to existing DNN

frameworks [11, 70], pooling and convolution operators support different strides

and padding modes (i.e., Psame and Pvalid); convolution supports different activation

functions (i.e., Anone and Arelu). Section 2.8 provides more details on the usage of the

constants. 15

2.2 Operator properties used for verification. The operators are defined in Section 2.4,

and the properties are grouped by the operators they involve. Logical variables w, x, y,

and z are of type tensor, and variables a, c, k, p, and s are of type parameter. The

variable a is used for the axis of concatenation and split, c for the activation mode of

convolution, k for the kernel shape of pooling, p for the padding mode of convolution

and pooling, and s for the strides of convolution and pooling. 16

2.3 The number of remaining graph substitutions after applying the pruning techniques

in order. 20

3.1 Parallelizable dimensions for different operators. The sample and channel dimension

index different samples and neurons, respectively. For images, the length and the

combination of height and width dimensions specify a position in an image. 36

3.2 Properties for each task in the task graph. 40

3.3 Details of the DNNs and datasets used in evaluation. 43

3.4 The end-to-end search time with different simulation algorithms (seconds). 47

3.5 The parallelism dimensions used by different approaches. S, O, A, and P indicate

parallelism in the Sample, Operator, Attribute, and Parameter dimensions. Hybrid

parallelism indicates an approach supports parallelizing an operator in a combination

of the sample, attribute, and parameter dimensions (see Figure 3.2). 54

xii

4.1 The graph partitioning strategies used by different frameworks. Balanced train-

ing/inference indicates whether an approach can achieve balanced partitioning for

GNN training/inference. 61

4.2 The vertex features used in the current cost model. The semantics of the features are

described in Section 4.4.1. WS is the number of GPU threads in a warp, which is 32

for the V100 GPUs used in the experiments. 64

4.3 All the valid states and their activation tensors for the GNN architecture in Figure 4.3. 66

4.4 Graph datasets used in our evaluation. 69

xiii

List of Figures

1.1 An overview of ML system architecture. Existing ML systems rely on manually designed

optimizations, including rule-based graph rewrites for graph optimizations, data and

model parallelism for parallelization optimizations, and requiring users to manually

specify the data placement for intermediate tensors. This dissertation introduces a

search-based methodology to automatically discover performance optimizations for

ML computation. 2

1.2 Memory hierarchy of a typical GPU cluster. 3

2.1 Comparing computation graph optimization in existing DNN frameworks with TASO. 8

2.2 Graph substitution examples. 11

2.3 A graph substitution for fusing matrix multiplications with a shared input. The target

graph has a concat and a split operator, both of which are performed along the row

dimension of a matrix. The split tree of the row dimension for each tensor is shown in

a gray box. 12

2.4 Example redundant substitutions pruned by TASO. Matmul and Add refer to matrix

multiplication and element-wise addition, respectively. For each subgraph, A, B, and

C refer to its input tensors, while X refers to the output tensor. 19

2.5 A graph substitution using the transpose of matrix multiplication. matmul and

transpose indicate matrix multiplication and transpose, respectively. The parentheses

show the potential layouts for each tensor in the substitution, where C and R indicate

the column-major and row-major layouts of a tensor. 21

2.6 A graph substitution example that introduces a cycle into a computation graph, where

A,B are the inputs, and X is the output. The original graph computes A×relu(A×B),

and the new graph is the result of applying the substitution shown in Figure 2.2b that

fuses the two matrix multiplications using concatenation and split. The two graphs

of the substitution are shown in the dotted boxes. Both the original graph and the

substitution are acyclic. However, the resulting graph contains a cycle (highlighted in

red). 23

xiv

2.7 End-to-end inference performance comparison among existing DNN frameworks and

TASO. The experiments were performed using a single inference sample, and all

numbers were measured by averaging 1,000 runs on a NVIDIA V100 GPU. We

evaluated the TASO’s performance with both the cuDNN and TVM backends. For

each DNN architecture, the numbers above the TASO bars show the speedup over the

best existing approach with the same backend. 24

2.8 The NasNet-A architecture [95] and substitutions discovered by TASO to optimize

NasNet-A. Figure 2.8a shows the architecture, where avg, conv, and DWC refer to

average pooling, convolution, and depth-wise convolution, respectively. The weight

tensors are eliminated for simplicity. Figures 2.8b and 2.8c shows two sequences of

substitutions discovered by TASO that are used to optimize subgraphs marked in

the black and red boxes in Figure 2.8a. In Figures 2.8b and 2.8c, each arrow refers

to a substitution, and the subgraphs in the same color are the graph pair of the

substitution. Cpool(3× 3) in Figure 2.8b is a constant matrix whose entries are 1/9, as

defined in Section 2.4. The enlarge operator in Figure 2.8c increases a convolution’s

kernel size by padding the weight (i.e., W1) with extra 0’s. For inference, operators in

the gray areas in Figures 2.8b and 2.8c only depend on pre-trained weights (i.e., Wi),

and therefore can be pre-computed. 26

2.9 Different approaches to perform multi-batch convolutions in ResNeXt-50 and their

performance comparison. TensorFlow and TensorFlow XLA launch the 32 convo-

lutions separately (Figure 2.9a). TensorRT and MetaFlow launch a single grouped

convolution kernel that computes all 32 convolutions in parallel (Figure 2.9b). The

best graph discovered by TASO uses 4 grouped convolutions, each of which computes

8 convolutions (Figure 2.9c). 27

2.10 A heat map of how often the verified substitutions are used to optimize the five

DNN architectures. Only substitutions used in at least one DNN are listed. For each

architecture, the number indicates how many times a substitution is used by TASO to

obtain the optimized graph. 27

2.11 Performance comparison by using graph substitutions with different size limits. The

y-axis shows the relative speedups over the input computation graphs. 28

2.12 End-to-end inference performance comparison on BERT using different strategies to

optimize graph substitution and data layout. 30

3.1 FlexFlow overview. 35

3.2 Example parallelization configurations for 1D convolution. Dashed lines show parti-

tioning the tensor. 37

3.3 An example parallelization configuration for a matrix multiplication operator. 37

xv

3.4 Simulating an example parallelization strategy. The tasks’ exeTime and device are

shown on the top of each column. In Figure 3.4c and 3.4d, the letters “r” and “s”

indicate the readyTime and startTime of each task, respectively, and the dashed

edges indicate the nextTask. 39

3.5 Architectures of the GPU clusters used in the experiments. An arrow line indicates a

NVLink connection. A solid line is a PCI-e connection. Dashed lines are Infiniband

connections across different nodes. 44

3.6 Per-iteration training performance on six DNNs. Numbers in parendissertation are

the number of compute nodes used in the experiments. The dash lines show the ideal

training throughput. 45

3.7 Parallelization performance for NMT on 64 K80 GPUs (16 nodes). FlexFlow reduces

per-iteration execution time by 1.7-2.4× and data transfers by 2-5.5× compared

to other approaches. FlexFlow achieves similar overall task computation time as

expert-designed strategy, which is 20% fewer than data parallelism. 46

3.8 Training curves of Inception-v3 in different systems. The model is trained on 16 P100

GPUs (4 nodes). 47

3.9 Comparison among the parallelization strategies found by different automated frame-

works. 48

3.10 An overview of DLRM. 49

3.11 Training performance for DLRM and Candle Uno on the Summit supercomputer [82].

Each compute node is equipped with two IBM POWER9 CPUs and six V100 GPUs.

GPUs on the same node are connected by NVLink, and nodes are connected over

100Gb/s EDR Infiniband. 50

3.12 Comparison between the simulated and actual execution time for different DNNs and

device topologies. 52

3.13 Search performance with the full and delta simulation algorithms for the NMT model

on 16 P100 GPUs (4 nodes). 52

3.14 The best discovered strategy for parallelizing Inception-v3 on 4 P100 GPUs. For each

operator, the vertical and horizontal dimensions indicate parallelism in the sample

and parameter dimension, respectively. Each GPU is denoted by a color. 53

3.15 The best discovered strategy for parallelizing NMT on 4 P100 GPUs. For each operator,

the vertical and horizontal dimensions indicate parallelism in the sample and parameter

dimension, respectively. Each grey box denotes a layer, whose operators share the

same network parameters. Each GPU is denoted by a color. 53

4.1 Computation of one vertex (in red) in a GNN layer by first aggregating its neighbors’

activations (in blue), and then applying DNN operations. 58

4.2 Roc system overview. DPMM represents dynamic-programming-based memory manager. 62

xvi

4.3 The computation graph of a toy 1-layer GIN architecture [89]. A box represents an

operation, and a circle represents a tensor. Arrows indicate dependencies between

tensors and operations. The gather operation performs neighborhood aggregation.

The linear and the following ReLU are fused into a single operation as a common

optimization in existing frameworks. h0 and g denote the input features and neighbors

of all vertices, respectively. w1 and w2 are the weights of the two linear layers. . . . 65

4.4 End-to-end training throughput comparison between existing GNN frameworks and

Roc on a single P100 GPU (higher is better). 69

4.5 Training throughput comparison between NeuGraph and Roc using different numbers

of GPUs (higher is better). Numbers in parenthesis are the number of compute nodes

used in the experiments. 70

4.6 Time-to-accuracy comparison between state-of-the-art sampling techniques and Roc

on the Reddit dataset [37]. All experiments used the same GCN model. Roc performed

full-batch training on the entire graph, while GraphSAGE and FastGCN performed

mini-batch sampling. Each dot indicates one training epoch for GraphSAGE and

FastGCN, and five epochs for Roc. 71

4.7 Test accuracy on the Reddit dataset using deeper and larger GNN architectures. The

dotted lines show the best test accuracy achieved by GraphSAGE (95.4%), FastGCN

(93.7%), and the original GCN architecture (94.7%), respectively. 72

4.8 Training throughput comparison among different graph partitioning strategies on the

Reddit dataset (higher is better). Numbers in parentheses are the number of compute

nodes used. 73

4.9 End-to-end inference time for the test graphs in the PPI dataset (lower is better). The

numbers were measured by averaging the inference time of the four test graphs. . . 74

4.10 Performance comparison among different memory management strategies (lower is

better). All numbers are measured by training GCN on the Reddit dataset on a single

GPU. 74

xvii

Chapter 1

Introduction

Machine learning (ML) techniques, especially recent advances in deep neural network (DNN) ar-

chitectures, have surpassed human-level predictive performance in a variety of real-world tasks,

including image classification [51, 39], face recognition [53], language modeling [28, 87], and game

playing [74]. This success is enabled by the recent development of ML systems that provide high-level

programming interfaces for programmers to easily prototype different ML models on modern hardware

platforms. However, the rapid advance in ML models and ML-specific hardware architectures makes

it increasingly challenging to build efficient and scalable ML systems.

Today’s ML systems, especially deep learning frameworks such as TensorFlow [11], PyTorch [70],

MXNet [18], and Caffe2 [16], heavily rely on human effort to manually optimize the deployment of ML

models on specific hardware platforms, a common problem in building performant domain-specific

systems. However, unlike conventional application domains, ML deployment requires addressing

significantly higher complexity and diversity in both models and hardware architectures, making it

infeasible to manually optimize performance for all model and hardware combinations. Moreover,

these manually designed performance optimizations are very time-consuming to conceive, design,

and implement, but the rapid evolution of ML algorithms requires quick deployment of emerging ML

models.

Because of the increasing complexity of today’s ML models and hardware architectures, there

are many possible strategies to optimize the deployment of an ML model on a hardware platform,

and optimized strategies depend on both the models and the hardware. Instead of only considering

the limited set of manually designed performance optimizations in existing ML systems, in this

dissertation, we propose a search-based methodology that explores a significantly larger and more

comprehensive search space of possible strategies and automatically discovers highly optimized

solutions.

1

CHAPTER 1. INTRODUCTION 2

Device 1

Device N

Device 1

Device N

ML Model

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Hardware PlatformGraph
Optimization

Parallelization
Optimization

Data Placement
Optimization

ML System

Manually
Designed

Rule-based
Graph Rewrites

Data/Model
Parallelism

Manual
Specifications

Automated
Discovery

TASO
(Chapter 2)

FlexFlow
(Chapter 3)

Roc
(Chapter 4)

Figure 1.1: An overview of ML system architecture. Existing ML systems rely on manually designed
optimizations, including rule-based graph rewrites for graph optimizations, data and model parallelism
for parallelization optimizations, and requiring users to manually specify the data placement for
intermediate tensors. This dissertation introduces a search-based methodology to automatically
discover performance optimizations for ML computation.

1.1 Machine Learning Systems

An ML system deploys the mathematical computation defined in an ML model on a given hardware

platform, as shown in Figure 1.1. An ML model is defined as a computation graph, where a node is a

tensor algebra operator (e.g., matrix multiplication, convolution, etc.), and an edge is a tensor (i.e.,

an n-dimensional array).

To optimize ML computations, today’s ML systems generally perform a sequence of performance

optimizations shown in the yellow dotted box in Figure 1.1. First, for an input ML model described

as a computation graph, an ML system performs graph-level transformations to produce a mathe-

matically equivalent computation graph with improved runtime performance. Second, parallelization

optimizations improve the parallelization performance of an ML model on a distributed heterogeneous

hardware platform. Finally, for ML computations on each individual device, an ML system performs

data placement optimizations on intermediate tensors (shown as the red directed edges in Figure 1.1)

to improve data locality while minimizing data transfers in the memory hierarchy.

Today’s ML systems (e.g., TensorFlow and PyTorch) heavily rely on human effort to manually

design and implement performance optimizations for different tasks in ML deployment. For example,

current systems optimize a computation graph by applying graph transformations that are manually

designed by human experts. As another example, to parallelize ML training across multiple devices,

existing systems use manually designed strategies, such as data and model parallelism [51, 27]. To

optimize data placement on individual devices, these systems rely on programmers to manually

CHAPTER 1. INTRODUCTION 3

CPUs
DRAM

Network

Compute Node

���

���

GPU1
Shared
Memory

Zero-Copy Memory

GPUN

Device Memory

Shared
Memory

Device Memory

RDMA-able Memory

PCI-e Switch / NVLink

CPUs
DRAM

Compute Node

���

GPU1
Shared
Memory

Zero-Copy Memory

GPUN

Device Memory

Shared
Memory

Device Memory

RDMA-able Memory

PCI-e Switch / NVLink

Figure 1.2: Memory hierarchy of a typical GPU cluster.

specify the data placement for the input and output tensors of each operator. Section 1.2 lists the

main limitations of current ML system design and the key challenges of building efficient and scalable

ML systems.

1.2 Challenges of Building ML Systems

Massively parallelizable computation. Tensor algebra operators can be parallelized in many

dimensions. For example, Equation (1.1) shows the mathematical definition of convolution, where

input, output, and weight denote the input, output, and weight tensors, respectively.

∀n∀c∀h∀woutput(n, c, h, w) =
∑
k

∑
x

∑
y

input(n, k, h+ x,w + y) ∗ weight(c, k, x, y) (1.1)

The computation of a convolution can be parallelized in any combination of the four output dimensions

(i.e., n, c, h, w), since the computation of o(n, c, h, w) does not depend on any other elements in

the output tensor. Meanwhile, previous work [44] shows that using different combinations of these

dimensions to parallelize an operator may result in very different computation performance and

communication patterns. This example demonstrates the parallelizable dimensions for a single ML

operator. Moreover, the potential parallelization opportunities across multiple operators within an

ML model adds another level of expressivity and complexity.

Heterogeneous hardware. The emergence of heterogeneous hardware architectures also signifi-

cantly increases the complexity and difficulty of building ML systems. ML hardware is becoming more

diverse and specialized, ranging from traditional CPUs and GPUs to newly introduced AI-specific

hardware, such as TPUs [47]. These diverse processors are often combined into even more complex

parallel machines to provide additional performance speedups to meet the increasing computational

CHAPTER 1. INTRODUCTION 4

System Task Phase 1: Search Space Phase 2: Search Algorithm

TASO
Graph-level Automated generation Cost-based backtracking

optimizations of graph substitutions search

FlexFlow
Parallelization

The SOAP search space
Markov Chain Monte Carlo

optimizations (MCMC) search

Roc
Data placement Valid data placement

Dynamic programming
optimizations plans

Table 1.1: A search-based methodology for automatically discovering ML optimizations.

requirements of today’s ML algorithms.

Hardware accelerators introduce heterogeneity not only in kinds of processors but also in kinds

of memory. Figure 1.2 shows the memory hierarchy of typical multi-GPU nodes, each of which

consists of a host (CPUs) and several GPU devices connected by PCI-e or NVLink [10]. In addition

to the device memories attached to each processor (i.e., DRAM and GPU device/shared memory),

today’s heterogeneous machines also have a block of memory to facilitate direct access by hardware

for optimizing data movement. For example, zero-copy and RDMA-able memory is a part of DRAM

with direct GPU and network interface card (NIC) access, respectively.

Current ML systems require users to explicitly manage the assignment of operators to processors

and the placement of intermediate tensors in memory. It generally requires a tremendous amount of

time and effort to manually design performance optimizations for a given heterogeneous machine.

However, these optimizations cannot easily generalize to other machines, which requires additional

human effort to manually design machine-specific optimizations.

New ML operators. Today’s manually designed ML optimizations require significant engineering

effort. The engineering problem is aggravated by the fact that new operators are continuously

introduced; for example, recent work has proposed depth-wise, grouped, and transposed convolutions

for different image classification tasks [41, 88, 29]. While existing ML systems include a number of

optimizations for ordinary convolution (e.g., fusing a convolution with different types of operators),

supporting each new convolution variant still requires considerable human effort, as each has slightly

different semantics, which prevents current ML systems from directly applying optimizations designed

for ordinary convolution.

Moreover, manually designing and implementing performance optimizations for new operators is

error-prone, and a bug in an optimization can lead to reduced performance [2] or incorrect results [6].

1.3 Approach: Automated Discovery of ML Optimizations

Instead of only considering the limited set of manually designed performance optimizations in existing

ML systems, we propose a search-based methodology that explores a significantly larger and more

CHAPTER 1. INTRODUCTION 5

comprehensive search space of possible strategies and automatically discovers highly optimized

solutions. The search-based methodology includes two phases as shown in Table 1.1. First, we

define a search space of possible strategies for a given ML deployment task. The search space can be

manually defined by leveraging domain-specific knowledge (as we will show in FlexFlow and Roc)

or automatically generated (as we will show in TASO). Second, we design a search algorithm to

efficiently explore the search space and discover highly-optimized strategies. The search is guided by

a cost model for evaluating the runtime performance of different strategies in the search space. We

use different algorithms to accelerate the search procedure by leveraging the topology of the search

space.

This dissertation presents three ML systems that apply this methodology to optimize different

tasks in ML deployment.

TASO. Instead of relying on manually designed graph transformations for optimizing ML compu-

tation graphs, we propose TASO, the first ML graph optimizer that automatically generates graph

optimizations. For each hardware backend, TASO generates potential graph optimizations using the

supported operators as basic building blocks, and formally verifies the correctness of these graph

optimizations using an automated theorem prover. TASO uses a cost-based backtracking search

algorithm to discover how to apply the verified optimizations on an input computation graph to

obtain an optimized graph, resulting in less engineering effort, better runtime performance, and

stronger correctness guarantees.

FlexFlow. To generalize and go beyond today’s manually designed parallelization strategies (e.g.,

data and model parallelism) for distributed ML training, we introduce the SOAP search space, which

contains a comprehensive set of possible parallelization strategies. The SOAP search space identifies

four parallelizable dimensions and captures potential parallelization opportunities across different

Samples, Operators, Attributes, and Parameters. A key property of the SOAP search space is that

all strategies perform the same computation defined by the ML model and therefore maintain the

same model accuracy by design. FlexFlow is a deep learning engine that automatically searches over

parallelization strategies in the SOAP search space. FlexFlow includes a novel execution simulator

to evaluate the runtime performance of different strategies, and uses a Markov Chain Monte Carlo

(MCMC) search algorithm to discover high performance strategies Compared to existing manually

designed parallelization strategies, FlexFlow largely improves training throughput and scalability,

while requiring no manual effort during the search procedure.

Roc. To automate data placement optimizations and minimize data transfers in the memory

hierarchy, Roc formulates the task of optimizing data placement as a cost minimization problem

and discovers data placement plans that minimize data transfer cost. To optimize data placement for

a given hardware device (e.g., a GPU), Roc considers the search space of all valid data placement

CHAPTER 1. INTRODUCTION 6

plans that satisfy memory capacity requirements, and uses a dynamic programming algorithm to

explore the search space and discover a globally optimal data management plan that minimizes data

transfers in the memory hierarchy.

1.4 Discussion

This dissertation is partially motivated by a long-term trend in modern hardware architectures —

hardware is becoming more diverse and heterogeneous. This increasing diversity and heterogeneity

of hardware is not temporary but an essential shift driven by the need to address the increasing

computational requirement within a fixed power budget. The traditional approach to harness a new

hardware platform is to manually design monolithic optimizing compilers that perform end-to-end

optimizations from high-level programming languages to instruction set supported by the hardware

platform. This approach requires a tremendous amount of time and engineering effort to manually

design and implement performance optimizations, and cannot directly target heterogeneous parallel

machines with a mixture of diverse hardware devices. Therefore, it is becoming a necessity to

develop automated mechanisms to address the increasing diversity and heterogeneity of hardware

architectures.

Although the search-based methodology proposed in this dissertation was designed to automate

the discovery of ML optimizations, we believe many of these techniques can be generalized beyond

ML applications. To apply the search-based methodology to other application domains, one key

challenge is designing the right programming abstractions that allow domain-specific compilers

to generate a comprehensive search space of optimizations and quickly search over the space of

potential optimizations to discover performant programs. We believe our automated approach

provides a promising alternative for designing future compilers targeting new hardware backend and

heterogeneous machines.

1.5 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 presents TASO for automatically

discovering computation graph optimizations. Chapter 3 describes FlexFlow, which automatically

searches for fast parallelization strategies for distributed ML training. Chapter 4 introduces Roc,

which automates data placement optimizations. Finally, we conclude in Chapter 5.

Chapter 2

Automated Discovery of Graph

Optimizations

Existing ML systems optimize the computation graph of an ML model by applying graph transfor-

mations manually designed by human experts. This approach misses possible graph optimizations

and is difficult to scale, as new ML operators are introduced on a regular basis.

In this chapter, we present TASO, the first ML computation graph optimizer that automatically

generates graph substitutions. TASO takes as input a list of operator specifications and generates

candidate substitutions using the given operators as basic building blocks. All generated substitutions

are formally verified against the operator specifications using an automated theorem prover. To

optimize a given computation graph, TASO performs a cost-based backtracking search, applying the

substitutions to find an optimized graph, which can be directly used by existing ML systems.

Our evaluation on real-world ML architectures shows that TASO significantly outperforms existing

computation graph optimizers, while requiring much less human effort.

2.1 Motivation

Current ML systems optimize a computation graph by applying graph substitutions that are

manually designed by domain experts, as depicted in Figure 2.1a. For example, TensorFlow, PyTorch,

TensorRT, and TVM use a greedy rule-based optimization strategy and directly perform all applicable

substitutions (i.e., rules) on an input computation graph [11, 70, 80, 19]. Although manually designed

substitutions improve the performance of ML computations, they fall short in several respects.

Maintainability. Hand-written graph substitutions require significant engineering effort. For

example, TensorFlow r1.14 includes 155 substitutions implemented in approximately 53K lines of

7

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 8

Optimized Comp. Graph

Input
Comp. Graph

Manually Designed
Graph Substitutions

Graph Subst. Optimizer

Data Layout Optimizer

(a) Existing DNN frameworks.

Input Comp. Graph

Graph Subst. and
Data Layout

Joint Optimizer
(§5)

Graph Subst. Generator (§2)

Graph Subst. Verifier (§3)

Operator Specifications

Optimized Comp. Graph

Verified Graph Subst.

(b) TASO.

Figure 2.1: Comparing computation graph optimization in existing DNN frameworks with TASO.

C++ code. The maintenance problem is aggravated by the fact that new operators are continuously

introduced; for example, recent work has proposed depth-wise [41], grouped [88], and transposed

convolutions [29] for different image classification tasks. TensorFlow r1.14 currently includes 17

graph substitutions (written in 4K lines of code) to optimize ordinary convolution (e.g., fusing it

with different types of operators). With the existing approach, supporting each new convolution

variant would require a similar implementation effort, as each has slightly different semantics and

cannot be directly optimized using existing substitutions.

Data layout. Tensor data can be stored in memory in various layouts, and this choice has a high

impact on runtime performance. The best layout depends on both the operator and the hardware.

For example, on a P100 GPU, convolution performs best with row-major layout (i.e., the inner-most

dimension is contiguously stored), while matrix multiplication performs best with column-major

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 9

layout (i.e., the outer-most dimension is contiguously stored). On a Tesla V100 GPU with tensor

cores [7] supporting 4×4 matrix operations, optimal performance may require tiling tensors into

4×4 chunks. However, considering layout transformations together with graph substitutions adds

another level of complexity. For example, a graph substitution may only improve performance if it is

combined with a particular layout transformation (see Section 2.9.5). Current frameworks avoid this

complexity by treating data layout and graph substitution as separate optimization problems and

solve them sequentially [19, 62], as shown in Figure 2.1a, but this separation misses many possible

optimization opportunities.

Correctness. Hand-written graph substitutions are error-prone, and a bug in graph substitutions

can lead to incorrect computation graphs [6, 2]. The same issue arises in compiler optimization,

where an incorrect optimization leads to incorrect programs. In the compiler literature, significant

effort has been devoted to formally verifying optimizations [14, 69, 67, 54, 79, 73, 22, 25]. However, to

the best of our knowledge, such techniques have not been applied to graph substitution optimizations

performed by DNN frameworks.

2.2 The Approach

Figure 2.1b shows an overview of TASO (Tensor Algebra SuperOptimizer), which differs from existing

frameworks in three aspects. First, TASO only requires operator definitions and specifications,

and automatically generates graph substitutions, reducing manual effort. Second, TASO employs

formal verification to ensure correctness of the generated graph substitutions. Finally, TASO jointly

optimizes graph substitutions and data layout transformations, achieving significantly better runtime

performance.

Generating substitutions. TASO’s graph substitution generator enumerates all possible com-

putation graphs over a given set of DNN operators (e.g., the cuDNN kernels [21]) up to a fixed

size k (i.e., all computation graphs with at most k nodes), and executes them on a set of random

input tensors. Any pair of computation graphs that have identical results on the random inputs are

considered as a candidate substitution. To efficiently find all such pairs, TASO constructs a hash

table where computation graphs are stored based on the hash of their outputs for the random inputs.

Formal verification. TASO’s graph substitution verifier is used to ensure correctness of the

generated graph substitutions, relying on user provided operator properties. Operator properties

capture mathematical properties of operators, e.g., linearity of convolution. The full list of 43 operator

properties we used appears in Table 2.2. As our evaluation shows, a small set of properties for each

operator suffices to prove the correctness of complex substitutions.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 10

Formally, we model tensor operators using a symbolic representation based on first-order logic

that is agnostic to the size of the underlying tensors, and can succinctly express operator properties.

The verifier uses the specified properties to check the correctness of all generated graph substitutions

using an automated theorem prover.

We also present a methodology for developing operator properties, which assists the developer in

two ways: (1) discovery of required properties is guided by the graph substitution generator, and (2)

operator properties are subject to further validation using symbolic execution on tensors of small

sizes. During the development process, we found that the our verification methodology uncovered

several bugs, both in the operator specifications and in the implementation of the graph substitution

generator.

Joint optimization. TASO jointly optimizes graph substitutions and data layout transformations

by integrating them into a common representation. TASO explores the search space of potential

graph substitutions and layout transformations, and uses a cost-based backtracking search algorithm to

discover high-performance computation graphs. During the search, TASO measures the performance

of a proposed DNN operator with a specific proposed data layout on the hardware. These individual

measurements are used to predict the performance of an entire computation graph with specific data

layouts.

Evaluation. We evaluate TASO on five real-world DNN architectures. For widely used DNNs

optimized by existing frameworks, such as ResNet-50 [39], TASO matches the performance of these

frameworks with hand-written rules by using operator definitions and a total of 1,400 lines of operator

specifications.

For ResNeXt-50 [88], NasRNN [94], NasNet-A [95], and BERT [28], TASO produces computation

graphs up to 2.8× faster than state-of-the-art frameworks by automatically discovering novel graph

substitutions to optimize these architectures. Compared to separately optimizing graph substitutions

and data layout, we show that the joint optimization can further improve performance by 1.2×. In

all experiments, TASO discovered an optimized graph in less than ten minutes, making it feasible to

use when optimizing a DNN architecture before large-scale deployment.

2.3 Graph Substitution Generator

This section describes the TASO substitution generator that automatically generates potential

substitutions given a list of primitive operators. The generation algorithm finds all valid substitutions

up to a certain size.

To find all potential substitutions, a straightforward approach is to test all pairs of graphs for

equivalence, which requires a quadratic number of tests between graphs. We adopt an idea from

compiler superoptimization [14] and compute a fingerprint for each graph, which is a hash of the

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 11

matmul

A B C

matmul

matmul

matmul

A B C

X X

(A x B) x CA x (B x C)

(a) Associativity of matrix multiplication.

matmul

A B C

matmul
concat

matmul

A B C

X splitY

X Y

(b) Fusing two matrix multiplications using concatenation and split.

Figure 2.2: Graph substitution examples.

graph outputs on some specific inputs. Two graphs are certainly not equivalent if they have different

fingerprints, and so by only comparing graphs with the same fingerprint, TASO significantly reduces

the number of equivalence tests. In the experiments, we observe that all graphs with the same

fingerprint are verified equivalent by TASO.

2.3.1 Graph Substitution Definition

A graph substitution consists of three components: (1) a source graph that is matched to subgraphs

in a computation graph; (2) a target graph1 that defines a functionally equivalent new subgraph

to replace the matched subgraph; and (3) a mapping relation between input/output tensors in the

source and target graphs. Figure 2.2a shows an example graph substitution using the associativity of

matrix multiplication. Figure 2.2b fuses two matrix multiplications into one using concatenation and

split along the row dimension. A, B, C, X, and Y identify the mapping between input and output

tensors in the substitution.

A graph substitution is specified independently of the concrete tensor shapes. For example, the

substitutions of Figure 2.2 can be applied to tensors A,B, and C of any concrete shape. Some

1In some of the superoptimization literature, what we call the source is called the target, and what we call the
target is called the rewrite.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 12

concat

matmul split

A

B

C

X

Y

{	SA

SB

[0, SA)

[0, SB)

[0, SA+SB)

[0, SA) [SA, SA+SB)
matmul

matmul

A

B

C

X

Y

[0, SA)

[0, SB)

[0, SA)

[0, SB)
[0, SA)

[0, SB)

[0, SA+SB)

[0, SA) [SA, SA+SB)

Figure 2.3: A graph substitution for fusing matrix multiplications with a shared input. The target
graph has a concat and a split operator, both of which are performed along the row dimension of
a matrix. The split tree of the row dimension for each tensor is shown in a gray box.

operators also depend on configuration parameters to determine the behavior of the operator. For

example, the parameters of convolution determine the strides, padding, and activation (e.g., applying

the relu function [64] as part of convolution); and the parameters of split or concatenation determine

the axis along which to apply the operator.

Concatenation and split operators. Concatenation and split operators are commonly used in

fusing operators with shared inputs, as illustrated in Figure 2.2b. A split operator partitions a

tensor into two disjoint sub-tensors along a dimension determined by its parameter. This presents a

complication, as the split point cannot be inferred from the input tensors or the parameter. To solve

this problem, we observe that a split operator always partitions a tensor at previous concatenation

points to “undo” the most recent concatenation operator. We use this fact to define a suitable

semantics for the split operator.

Formally, we maintain a split tree for each dimension of a tensor to track the concatenation

history. Figure 2.3 shows the split trees of the row dimension for all tensors in Figure 2.2b. The split

trees allow the substitution to recover the split point without introducing any additional parameters.

Our approach also supports multi-way concatenation and split by nesting of concatenation and split

operators.

2.3.2 Generation Algorithm

For a given set of operator specifications, TASO generates potential graph substitutions in two steps,

as shown in Algorithm 1.

Step 1: Enumerating potential graphs and collecting their fingerprints. TASO first

enumerates all potential graphs up to a certain size for a given set of operators. To construct a graph,

TASO iteratively adds an operator in the current graph by enumerating the type of the operator

and the input tensors to the operator. The input tensors can be initial input tensors to the graph

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 13

Algorithm 1 Graph substitution generation algorithm.

1: Input: A set of operators P, and a set of input tensors I.
2: Output: Candidate graph substitutions S.
3:

4: // Step 1: enumerating potential graphs.
5: D = {} // D is a graph hash table indexed by their fingerprints.
6: Build(1, ∅, I)
7: function Build(n, G, I)
8: if G contains duplicated computation then
9: return

10: end if
11: D = D + (FingerPrint(G),G)
12: if n < threshold then
13: for op ∈ P do
14: for i ∈ I and i is a valid input to op do
15: Add operator op into graph G.
16: Add the output tensors of op into I.
17: Build(n+ 1, G, I)
18: Remove operator op from G.
19: Remove the output tensors of op from I.
20: end for
21: end for
22: end if
23: end function
24:

25: // Step 2: testing graphs with identical fingerprint.
26: S = {}
27: for G1,G2 ∈ D with the same FingerPrint(·) do
28: if G1 and G2 are equivalent for all test cases then
29: S = S + (G1,G2)
30: end if
31: end for
32: return S

(e.g., A, B, and C in Figure 2.2) or the output tensors of previous operators (e.g., the output of the

matmul and concat operators in Figure 2.2).

Algorithm 1 (line 7-23) shows a depth-first search algorithm for constructing all acyclic computation

graphs that do not contain duplicated computation. We say a graph contains duplicated computation

if it has two operators performing the same computation on the same input tensors. The generator

ignores such graphs as substitutions containing duplicated computation can be subsumed by more

general substitutions (see Section 2.5).

For each graph, we collect its fingerprint, which is a hash of the output tensors obtained by

evaluating the graph on some input tensors. TASO uses both randomly initialized tensors and a

number of constants as inputs to allow finding substitutions involving constant tensors, such as

the identity matrix (see examples in Section 2.9.3). To avoid floating-point errors in computing a

fingerprint, all tensors are represented with integers, following the method introduced in [86].

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 14

Since a graph can have an arbitrary number of output tensors, the hash function must ensure

the fingerprint is independent of any permutation of the output tensors. To guarantee this property,

TASO employs a two-step hash function to compute fingerprints as follows.

FingerPrint(G) = hash2 ({hash1(ti) | i ∈ Outputs(G)}) (2.1)

where ti are the output tensors of graph G; hash1 takes as arguments the states and content of an

output tensor, including the size, shape, and content of the tensor, and hash2 is a symmetric hash

function applied to an unordered set of hash values.

Step 2: Testing graphs with identical fingerprints. For graphs with the same fingerprint,

TASO further examines their equivalence on a set of test cases. Similar to collecting fingerprints,

each test case contains a set of randomized input tensors, and two graphs pass if they produce

equivalent output tensors for all test cases. Unlike the fingerprints, these tests use floating point

numbers ranging between −1 and 1, and classify two output tensors as equivalent if their outputs

differ by no more than a small threshold value, which is 10−5 in the evaluation. For this threshold,

we observed no differences from the integer tests. However, it is possible to use a smaller threshold

to filter out substitutions that are valid for real numbers but result in floating point errors.

Each pair of graphs passing the random testing becomes a candidate graph substitution, and

the mapping relation between the input/output tensors in the graph pair can be automatically

inferred from the test cases. All candidate graph substitutions are then sent to the substitution

verifier to check their correctness (Section 2.4), and later pruned to eliminate redundant substitutions

(Section 2.5).

It is worth noting that prior work [14] reported false positives in using random testing to examine

code transformations in compiler superoptimization. They observed that a number of incorrect code

transformations passed a set of test cases. We have not observed any false positive cases in all the

experiments. We use a single test case to examine all graph pairs with the same fingerprint, and all

substitutions passing the test case are correct and verified by the substitution verifier. This is likely

due to the high arithmetic density of DNN operators and the lack of branching (if statements) in

computation graphs. As a reference, [36] shows that for programs with only linear operators, the

probability that two nonequivalent programs produce identical output on a random input is at most
1
d , where d is the number of possible values for a variable (i.e., d = 232 in TASO).

2.4 Graph Substitution Verifier

The key idea behind our approach to formally verifying substitutions is to use a small set of operator

properties expressed in first-order logic. These properties are manually written and reviewed, and

are further validated by symbolically executing operators on tensors of small sizes and confirming

that the operator properties are satisfied for these tensor sizes. In practice, the discovery of operator

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 15

Table 2.1: Tensor operators and constant tensors included in TASO. Similar to existing DNN
frameworks [11, 70], pooling and convolution operators support different strides and padding modes
(i.e., Psame and Pvalid); convolution supports different activation functions (i.e., Anone and Arelu).
Section 2.8 provides more details on the usage of the constants.

Name Description Parameters
Tensor Operators

ewadd Element-wise addition
ewmul Element-wise multiplication
smul Scalar multiplication
transpose Transpose
matmul Batch matrix multiplication#

conv Grouped convolution% stride, padding, activation
enlarge Pad conv. kernel with zeros† kernel size
relu Relu operator
poolavg Average pooling kernel size, stride, padding

poolmax Max pooling kernel size, stride, padding
concat Concatenation of two tensors concatenation axis
split{0,1} Split into two tensors split axis

Constant Tensors
Cpool Average pooling constant kernel size
Iconv Convolution id. kernel kernel size
Imatmul Matrix multiplication id.
Iewmul Tensor with 1 entries
Normal matrix multiplication is considered as batch size equals 1.
% Normal and depth-wise conv. are special cases of grouped conv.
† Increase the size of a conv. kernel, restricted to operate on input tensors.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 16

Table 2.2: Operator properties used for verification. The operators are defined in Section 2.4, and
the properties are grouped by the operators they involve. Logical variables w, x, y, and z are of type
tensor, and variables a, c, k, p, and s are of type parameter. The variable a is used for the axis of
concatenation and split, c for the activation mode of convolution, k for the kernel shape of pooling, p
for the padding mode of convolution and pooling, and s for the strides of convolution and pooling.

Operator Property Comment
∀x, y, z. ewadd(x, ewadd(y, z)) = ewadd(ewadd(x, y), z) ewadd is associative
∀x, y. ewadd(x, y) = ewadd(y, x) ewadd is commutative
∀x, y, z. ewmul(x, ewmul(y, z)) = ewmul(ewmul(x, y), z) ewmul is associative
∀x, y. ewmul(x, y) = ewmul(y, x) ewmul is commutative
∀x, y, z. ewmul(ewadd(x, y), z) = ewadd(ewmul(x, z), ewmul(y, z)) distributivity
∀x, y, w. smul(smul(x, y), w) = smul(x, smul(y, w)) smul is associative
∀x, y, w. smul(ewadd(x, y), w) = ewadd(smul(x,w), smul(y, w)) distributivity
∀x, y, w. smul(ewmul(x, y), w) = ewmul(x, smul(y, w)) operator commutativity
∀x. transpose(transpose(x)) = x transpose is its inverse
∀x, y. transpose(ewadd(x, y)) = ewadd(transpose(x), transpose(y)) operator commutativity
∀x, y. transpose(ewmul(x, y)) = ewmul(transpose(x), transpose(y)) operator commutativity
∀x,w. smul(transpose(x), w) = transpose(smul(x,w)) operator commutativity
∀x, y, z. matmul(x, matmul(y, z)) = matmul(matmul(x, y), z) matmul is associative
∀x, y, w. smul(matmul(x, y), w) = matmul(x, smul(y, w)) matmul is linear
∀x, y, z. matmul(x, ewadd(y, z)) = ewadd(matmul(x, y), matmul(x, z)) matmul is linear
∀x, y. transpose(matmul(x, y)) = matmul(transpose(y), transpose(x)) matmul and transpose

∀s, p, c, x, y, w. conv(s, p, c, smul(x,w), y) = conv(s, p, c, x, smul(y, w)) conv is bilinear
∀s, p, x, y, w. smul(conv(s, p, Anone, x, y), w) = conv(s, p, Anone, smul(x,w), y) conv is bilinear
∀s, p, x, y, z. conv(s, p, Anone, x, ewadd(y, z)) = ewadd(conv(s, p, Anone, x, y), conv(s, p, Anone, x, z)) conv is bilinear
∀s, p, x, y, z. conv(s, p, Anone, ewadd(x, y), z) = ewadd(conv(s, p, Anone, x, z), conv(s, p, Anone, y, z)) conv is bilinear
∀s, c, k, x, y. conv(s, Psame, c, x, y) = conv(s, Psame, c, x, enlarge(k, y)), enlarge convolution kernel
∀s, p, x, y. conv(s, p, Arelu, x, y) = relu(conv(s, p, Anone, x, y)) conv w/ Arelu applies relu

∀x. relu(transpose(x)) = transpose(relu(x)) operator commutativity
∀s, p, x, k. conv(s, p, Anone, x, Cpool(k)) = poolavg(k, s, p, x) pooling by conv. w/ Cpool
∀k, x. conv(1, Psame, Anone, x, Iconv(k)) = x identity kernel
∀x. matmul(x, Imatmul) = x identity matrix
∀x. ewmul(x, Iewmul) = x ewmul identity
∀a, x, y. split0(a, concat(a, x, y)) = x split definition
∀a, x, y. split1(a, concat(a, x, y)) = y split definition
∀x, y, z, w. concat(0, concat(1, x, y),concat(1, z, w)) =

concat(1, concat(0, x, z), concat(0, y, w))
geometry of concat

∀a, x, y, w. concat(a, smul(x,w), smul(y, w)) = smul(concat(a, x, y), w) operator commutativity
∀a, x, y, z, w. concat(a, ewadd(x, y), ewadd(z, w)) = ewadd(concat(a, x, z), concat(a, y, w)) operator commutativity
∀a, x, y, z, w. concat(a, ewmul(x, y), ewmul(z, w)) = ewmul(concat(a, x, z), concat(a, y, w)) operator commutativity
∀a, x, y. concat(a, relu(x), relu(y)) = relu(concat(a, x, y)) operator commutativity
∀x, y. concat(1, transpose(x), transpose(y)) = transpose(concat(0, x, y)) concat and transpose
∀x, y, z. concat(1, matmul(x, y), matmul(x, z)) = matmul(x, concat(1, y, z)) concat and matrix mul.
∀x, y, z, w. matmul(concat(1, x, z), concat(0, y, w)) = ewadd(matmul(x, y), matmul(z, w)) concat and matrix mul.
∀s, p, c, x, y, z. concat(0, conv(s, p, c, x, z), conv(s, p, c, y, z)) = conv(s, p, c, concat(0, x, y), z) concat and conv.
∀s, p, c, x, y, z. concat(1, conv(s, p, c, x, y), conv(s, p, c, x, z)) = conv(s, p, c, x, concat(0, y, z)) concat and conv.
∀s, p, x, y, z, w. conv(s, p, Anone,concat(1, x, z), concat(1, y, w)) =

ewadd(conv(s, p, Anone, x, y), conv(s, p, Anone, z, w))
concat and conv.

∀k, s, p, x, y. concat(1, poolavg(k, s, p, x), poolavg(k, s, p, y)) = poolavg(k, s, p, concat(1, x, y)) concat and pooling

∀k, s, p, x, y. concat(0, poolmax(k, s, p, x), poolmax(k, s, p, y)) = poolmax(k, s, p, concat(0, x, y)) concat and pooling
∀k, s, p, x, y. concat(1, poolmax(k, s, p, x), poolmax(k, s, p, y)) = poolmax(k, s, p, concat(1, x, y)) concat and pooling

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 17

properties is guided by the substitutions discovered by the substitution generator.

For purposes of verification, we model tensor operators using first-order logic, where operators

are represented using functions of both their parameters and their input tensors. For example

conv(s, p, c, x, y) represents the convolution operator applied to tensors x and y, where the parameter

s determines the stride, p determines padding mode, and c determines the activation mode, e.g.,

applying a relu activation function as part of the convolution operator kernel. For example, the fact

that convolution without activation (denoted by Anone) is linear in its first argument is captured by

the following operator property (where ewadd represents element-wise tensor addition):

∀s, p, x, y, z.conv(s, p, Anone, ewadd(x, y), z) = ewadd(conv(s, p, Anone, x, z), conv(s, p, Anone, y, z))

(2.2)

Section 2.4 lists all operators and tensor constants used in our evaluation, and Table 2.2 shows the

full list of operator properties used in our evaluation to verify graph substitutions.

Given the operator properties, we use a first-order theorem prover—our implementation uses

Z3 [26]—to verify all generated substitutions. This verification amounts to entailment checking in

first-order logic, checking that the operator properties entail functional equivalence of the two graphs

of each generated substitution.

Modeling the operators using first-order logic involves a degree of abstraction (e.g., the shapes

of tensors are not modeled). We found this level of abstraction to be suitable for verifying graph

substitutions. We also note that the data layout is abstracted for verification purposes—layout

does not affect operator semantics, and the optimizer (Section 2.7) ensures that layouts are used

consistently.

Methodology for developing operator properties. We developed operator properties as

needed to determine the correctness of generated graph substitutions using an iterative process.

During the development process, we ran the substitution generator and tried to verify all discovered

substitutions. If a substitution could not be verified and appeared correct, we added an appropriate

property (or properties). To safeguard against mistakes in operator properties, we used further

validation steps.

To validate operator properties, TASO verifies the operator properties themselves for all com-

binations of parameter values and tensor sizes up to a small bound—in our evaluation the bound

was 4×4×4×4. To implement this checking, TASO requires a basic symbolic implementation of each

tensor operator in Python. TASO symbolically executes this implementation for tensors of small

size, effectively elaborating the tensor operations into symbolic real arithmetic expressions, where

activation functions (e.g., relu) are modeled using uninterpreted functions. TASO then uses Z3, here

as an SMT solver for the theory of real arithmetic, to verify the operator properties. For example,

if a user would try to add the (wrong) property stating the convolution operator is linear for all

activation modes (including relu activation), then this check would show that this property is not

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 18

satisfied by the actual operators.

As an additional validation step that assists the development process, TASO checks that the set

of operator properties is consistent and does not contain redundancies (i.e., a property entailed by

other properties), which amounts to first-order entailment checks. These checks are also useful for

discovering erroneous properties, and are cheaper to perform than the verification for small tensor

sizes.

During our development process, the verification methodology revealed several subtle bugs. Some

bugs in the graph substitution generator were found when it generated substitutions that could not

be verified, and the validation steps described above revealed several bugs in candidate operator

properties. In our experience, a new operator can be supported with a small amount of effort, usually

a few hours of work by an expert. Typically a few properties must be written for each operator.

In our evaluation, we were able to verify all 743 generated graph substitutions using 43 operator

properties (see Table 2.2).

2.5 Pruning Redundant Substitutions

A graph substitution is redundant if it is subsumed by a more general valid substitution. This section

describes the pruning techniques used by TASO to eliminate redundant graph substitutions. All

pruning steps preserve all optimization opportunities: if graph G can be transformed into graph G′

using a sequence of substitutions, then G can always be transformed into G′ after pruning (possibly

using a different set of transformations).

Input tensor renaming. TASO eliminates graph substitutions identical to other substitutions

modulo input tensor renaming. For example, Figure 2.4a shows a redundant substitution equivalent

to Figure 2.2a by renaming input tensor C with A. For substitutions that are equivalent through

input tensor renaming, TASO prunes all but a single most general substitution.

Common subgraph. TASO also tries to eliminate substitutions whose graphs have a common

subgraph. TASO identifies two forms of common subgraphs that can lead to pruning.

The first form of common subgraph is illustrated in Figure 2.4b. Here, the two graphs of a

substitution both contain a common operator with the same input tensors (highlighted in gray boxes).

The common subgraph represents an input to other operators in both graphs of a substitution.

Therefore, we can obtain a more general substitution by replacing the common subgraph with a fresh

input tensor. If this more general substitution is indeed valid, then TASO prunes the less general

substitution.

The second form of common subgraph is demonstrated in Figure 2.4c. Here, the common subgraph

(highlighted in gray boxes) includes all the outputs in both graphs of a the substitution. In this case,

a more general substitution can be obtained by completely removing the common subgraph, making

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 19

matmul

A B

matmul

matmul

matmul

A B

A x (B x A) (A x B) x A

X X

(a) A redundant substitution that is equivalent to Figure 2.2a by renaming
input tensor C with A in Figure 2.2a.

matmul

A B C

add

matmul

add

B C A

A + (B x C) (B x C) + A

X X

(b) A redundant substitution with a common subgraph.

add

matmul

B A C

add

matmul

A B C

(A + B) x C (B + A) x C

X X

(c) A redundant substitution with a common subgraph.

Figure 2.4: Example redundant substitutions pruned by TASO. Matmul and Add refer to matrix
multiplication and element-wise addition, respectively. For each subgraph, A, B, and C refer to its
input tensors, while X refers to the output tensor.

its inputs new outputs of the two graphs. TASO prunes the less general substitution if the more

general one is valid.

Table 2.3 shows the effect of the TASO pruning techniques on the number of substitutions. We

observe that both pruning techniques play an important role in eliminating redundant substitutions

and their combination reduces the number of substitutions TASO must consider by 39×.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 20

Table 2.3: The number of remaining graph substitutions after applying the pruning techniques in
order.

Pruning Remaining Reduction
Techniques Substitutions v.s. Initial
Initial 28744 1×
Input tensor renaming 17346 1.7×
Common subgraph 43 39×

2.6 Cost Model

We introduce a cost model that incorporates multiple dimensions to evaluate the runtime performance

of a computation graph. The cost model computes metrics for each operator in a graph and combines

them appropriately to obtain a total cost. This includes both metrics that can be computed statically

(e.g., FLOPs, memory usage, and number of kernel launches) as well as dynamic metrics that usually

require measurements on specific hardware (e.g., execution time on a particular GPU or CPU). The

design of the cost model is motivated by the fact that most DNN operators perform dense linear

algebra with no branches, and therefore their performance on hardware is highly consistent and

predictable given the same data layouts and configuration parameters (e.g., the strides and padding

of a convolution). TASO measures the execution time of a DNN operator once for each configuration

and data layout, and estimates the performance of a graph by summing up the measured execution

time of its operators.

Our cost model can optimize a single cost dimension (e.g., minimizing overall FLOPs) as well as

incorporate multiple cost dimensions, such as minimizing execution time while maintaining a memory

usage limit (by returning an infinite cost if the memory usage limit is exceeded). We observe that

many graph substitutions result in a tradeoff among several cost dimensions instead of improving all

of them. Users can directly encode a desired tradeoff in the cost model, and TASO’s search algorithm

can automatically discovers optimized computation graphs that best satisfy these requirements.

2.7 Joint Optimizer

We now describe the TASO optimizer for jointly optimizing data layout and graph substitution. The

optimizer uses a cost-based backtracking search algorithm to search for an optimized computation graph

by applying verified substitutions. The search algorithm also considers possible layout optimization

opportunities when performing substitutions.

When applying a substitution on a matched subgraph, based on the data layouts of tensors in the

original graph and the layouts supported by the operators, TASO enumerates possible layouts for

tensors in the target graph. As a result, applying a substitution on a matched computation graph

may result in multiple graphs with identical graph structure but different data layouts.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 21

transpose

B A

(A x B)T (BT x AT)

matmul

A B

transpose

transpose

(C) (C)

(C)

(C) (C)

(C/R) (C/R)

(C)(C)
X X

matmul

Figure 2.5: A graph substitution using the transpose of matrix multiplication. matmul and transpose

indicate matrix multiplication and transpose, respectively. The parentheses show the potential layouts
for each tensor in the substitution, where C and R indicate the column-major and row-major layouts
of a tensor.

For example, Figure 2.5 shows the potential computation graphs that can be derived by applying

the transpose of matrix multiplication on an input graph with a default column-major layout (shown

as C). Both the matrix multiplication and transpose operators also support an alternative row-major

layout (shown as R). The data layouts for all mapped tensors in the new graph (i.e., A, B, and X) must

match the layouts in the original graph. The two intermediate tensors in the target graph can have

either a row-major or a column-major layout, therefore TASO considers four different computation

graphs (i.e., CC, CR, RC, and RR for the two intermediate tensors) when applying this substitution.

This allows TASO to capture potential layout transformation opportunities when performing graph

substitutions.

Algorithm 2 shows our cost-based backtracking search algorithm for jointly optimizing substitution

and data layout. To search for an optimized graph, all candidate graphs are maintained in a priority

queue P and are dequeued in increasing order of cost. For each dequeued graph G, TASO considers

each verified substitution and possible layouts applicable to the substitution, and applies them to

obtain functionally equivalent new graphs G′1, ...,G′n that are added to P.

A non-obvious property of graph substitutions is that applying them can introduce cycles into a

graph. Figure 2.6 shows one example where applying a valid substitution results in a cyclic graph.

Since computation graphs must be acyclic, TASO checks the acyclicity of G′ (line 12 of Algorithm 2)

before enqueuing it in P.

Finally, the best discovered graph Gopt is returned by the search algorithm. The search space is

pruned by a hyper parameter α, which eliminates all graphs whose cost is α times worse than the

best discovered graph. The parameter α trades off between the search time and the best discovered

graph. Setting α = 1 reduces the search to a simple greedy algorithm without backtracking, and a

high value for α makes the search explore more possible candidates and causes more backtracking.

We observe that α = 1.05 achieves good performance in our evaluation.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 22

Algorithm 2 Cost-Based Backtracking Search

1: Input: an input graph Gin, verified substitutions S, a cost model Cost(·), and a hyper parameter α.
2: Output: an optimized graph.
3:

4: P = {Gin} // P is a priority queue sorted by Cost.
5: while P 6= {} do
6: G = P.dequeue()
7: for substitution s ∈ S do
8: // Layout(G, s) returns possible layouts applying s on G.
9: for layout l ∈ Layout(G, s) do

10: // Apply(G, s, l) applies s on G with layout l.
11: G′ = Apply(G, s, l)
12: if G′ is valid then
13: if Cost(G′) < Cost(Gopt) then

14: Gopt = G′
15: end if
16: if Cost(G′) < α× Cost(Gopt) then

17: P.enqueue(G′)
18: end if
19: end if
20: end for
21: end for
22: end while
23: return Gopt

2.8 Implementation

TASO is designed and implemented as a generic and extensible computation graph optimizer for

tensor computations, such that new tensor operators can be easily added. Section 2.4 lists the

tensor operators included in the current implementation of TASO. Some operators also depend on

additional parameters to determine the behavior of the operator, such as the strides, padding, and

activation of a convolution. In addition to operators, TASO also includes four types of constant

tensors that are useful in substitutions. In particular, Iewmul, Imatmul, and Iconv are identity tensors

for element-wise multiplication, matrix multiplication, and convolution, respectively. Cpool is used to

convert an average pooling operator to a depth-wise convolution (see examples in Section 2.9.3).

As explained in Section 2.4, TASO uses operator properties specified by the user to verify the

generated graph substitutions. Table 2.2 lists the 43 properties used to verify all substitutions in our

evaluation.

TASO can easily be extended to include new tensor operators. For each operator, TASO requires

two forms of input: (1) reference implementations for the operator, and (2) specifications of operator

properties. (1) consists of a concrete implementation (in C++) used by the substitution generator

and a symbolic implementation (in Python) used to validate the operator specifications. In our

experience, adding a new operator requires a few hours of work by an expert.

For a new operator whose specifications are currently missing, TASO treats it as an opaque

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 23

matmul

A B

matmul
concat

matmul

A B

splitX

X

(a) before substitution (b) after substitution

relu

relu

Figure 2.6: A graph substitution example that introduces a cycle into a computation graph, where
A,B are the inputs, and X is the output. The original graph computes A× relu(A×B), and the
new graph is the result of applying the substitution shown in Figure 2.2b that fuses the two matrix
multiplications using concatenation and split. The two graphs of the substitution are shown in the
dotted boxes. Both the original graph and the substitution are acyclic. However, the resulting graph
contains a cycle (highlighted in red).

operator and can still optimize the rest of the graph using verified substitutions.

Overall, our implementation of TASO contains around 8,000 lines of code for the core components

(i.e., the substitution generator, verifier, and optimizer), and 1,400 lines of code for the operator

reference implementations, including the 43 operator properties.

TASO is framework-agnostic and can be plugged in to existing DNN frameworks such as TensorRT

and TVM by simply emitting the optimized graph in the target framework’s input format. In the

evaluation, we demonstrate this portability on TensorRT and TVM, and show that they can directly

use TASO’s optimizations to improve performance.

2.9 Evaluation

In this section we aim to evaluate the following points:

• Can TASO automatically generate and verify graph substitutions in acceptable run time?

• Can TASO improve the end-to-end performance of real-world DNN architectures, especially for

emerging architectures with recently introduced operators?

• Can TASO’s joint optimization of computation graphs and data layouts achieve better perfor-

mance than separate optimizations?

2.9.1 Experimental Setup

DNNs. We use five real-world DNN architectures to evaluate TASO. ResNet-50 [39] is a widely used

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 24

A B C D E F G
ResNet-50

0.0

0.5

1.0

1.5

2.0

2.5

1.0x
1.1x

A B C D E F G
NasNet-A

0

2

4

6

8

10

1.3x
1.3x

A B C D E F G
ResNeXt-50

0

5

10

15

20

25

30

2.8x 1.8x

A B C D E F G
NasRNN

0

2

4

6

8

10

12

1.4x
1.3x

A B C D E F G
BERT

0.0

0.5

1.0

1.5

2.0

1.4x
1.1x

In
fe

re
nc

e
Ti

m
e

(m
s)

(A) TensorFlow
(B) TensorFlow XLA

(C) TensorRT
(D) MetaFlow

(E) TASO w/ cuDNN (F) TVM (G) TASO w/ TVM

Figure 2.7: End-to-end inference performance comparison among existing DNN frameworks and
TASO. The experiments were performed using a single inference sample, and all numbers were
measured by averaging 1,000 runs on a NVIDIA V100 GPU. We evaluated the TASO’s performance
with both the cuDNN and TVM backends. For each DNN architecture, the numbers above the
TASO bars show the speedup over the best existing approach with the same backend.

convolutional neural network for image classification and achieved the best classification performance

in the ILSVRC [71] competition. ResNeXt-50 [88] improves the model accuracy and runtime

efficiency of ResNet-50 by introducing a new grouped convolution operator. NasNet-A [95] and

NasRNN [94] are two DNN architectures automatically discovered by machines through neural

architecture search. NasNet-A and NasRNN exceed the best human-designed DNN architectures

for image classification and language modeling tasks, respectively. Finally, BERT [28] is a language

representation architecture that obtained the state-of-the-art model accuracy on a spectrum of

language tasks.

All experiments were performed on an Amazon p3.2xlarge instance [1] with an 8-core Intel E5-2600

CPU, 64 GB DRAM, and one NVIDIA Tesla V100 GPU.

To generate candidate graph substitutions, TASO enumerates all potential graphs with up to

four operators by using all DNN operators listed in Section 2.4. TASO generated 43 candidate

substitutions in around 5 minutes.

In the cost-based backtracking search for optimized DNN graphs, we set the hyperparameter α to

be 1.05. In all experiments, the end-to-end search time to discover an optimized computation graph

is less than ten minutes.

2.9.2 End-to-End Evaluation

We first compare the end-to-end inference performance between TASO and existing DNN graph opti-

mizers, including TensorFlow [11], TensorFlow XLA [3], TensorRT [80], TVM [19], and MetaFlow [45],

which is an earlier version of TASO (see Section 2.10). Figure 2.7 shows the results. TensorFlow,

TensorFlow XLA, TensorRT, and MetaFlow use the highly-engineered cuDNN and cuBLAS li-

braries [21, 24] to perform DNN operators on GPUs, while TVM generates customized GPU kernels

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 25

for the DNN operators. To eliminate the impact of different operator libraries, we evaluate the

performance of TASO on both backends.

To generate GPU kernels in TVM, we allow the auto tuner [20] to run 2000 trials and use the

best discovered configuration for each DNN operator. It takes 2 hours on average to tune a GPU

kernel for each DNN operator. The TASO graph optimizer needs to query the execution time of

hundreds of DNN operators for its cost model, therefore, for the TVM backend, we reuse the best

discovered computation graph for the cuDNN backend, assuming the cost of an operator in cuDNN

is a reasonable estimate for its cost in TVM.

Among the five DNN architectures, ResNet-50 has been commonly used and heavily optimized

by existing DNN frameworks. TASO achieves on-par performance for ResNet-50 with existing

frameworks, showing that TASO is able to automatically discover graph substitutions manually

designed by domain experts. For the remaining four DNN architectures with new operators and

graph structures, TASO outperforms existing DNN frameworks with speedups ranging from 1.3×
to 2.8× on the cuDNN backend and 1.1× to 1.8× on the TVM backend. The speedup is achieved

by (1) automatically discovering optimizing substitutions for the new operators and (2) jointly

optimizing graph substitution and data layout. We analyze the substitutions discovered by TASO

in Sections 2.9.3 and 2.9.4, and the joint optimization of substitution and data layout in Section 2.9.5.

2.9.3 Substitution Case Study

To understand how the substitutions generated and verified by TASO improve runtime performance,

we study a few graph substitution examples in detail.

NasNet-A is the best discovered CNN architecture for the CIFAR-10 dataset, obtained by neural

architecture search. Figure 2.8a shows a convolutional cell in NasNet-A. Unlike human-designed

architectures, NasNet-A contains unconventional graph structures, making it hard to optimize with

manual substitutions designed for more standard DNN architectures. To illustrate how TASO

optimizes this architecture, we show two example substitutions discovered by TASO; neither is

present in any existing DNN framework.

Figure 2.8b shows graph substitutions that transform two average pooling operators followed by

element-wise addition to a single depth-wise convolution, by using a constant tensor Cpool defined

in Section 2.4. The mathematical definition of average pooling is:

output(n, c, x, y) =
1

KX ×KY

∑
kx

∑
ky

input(n, c, x+ kx, y + ky)

where input and output denote the input and output tensors of an average pooling, respectively, and

KX and KY are the height and width of the pooling filter. Similarly, the formula for depth-wise

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 26

DWC
3x3

Input1

add

conv
1x1

conv
1x1

add

avg
3x3

avg
3x3

avg
3x3

concat

add add add

DWC
5x5

DWC
3x3

conv
1x1

conv
1x1

DWC
5x5

DWC
3x3

conv
1x1

Input2

(a) NasNet-A Architecture.

X

add

avg
3x3

avg
3x3

DWC
3x3

Y Y

add

DWC
3x3

DWC
3x3

Y

X

add

XCp(3x3) Cp(3x3)

(b) Example substitutions discovered by TASO.

add

DWC
3x3

conv
1x1

conv
1x1

DWC
5x5

X2X1

W1

W3

W2

W4

conv
1x1

concat

DWC
5x5

concat

concat

X2X1

W3 W4

W2

DWC
3x3

DWC
5x5

X2X1

W1 W2

concat

W3 W4

concat

conv
1x1

DWC
5x5

DWC
5x5

X2
X1 W1

W2

concat

W3 W4

concat

conv
1x1

enlarge
5x5

W1

enlarge
5x5

Y Y

YY

(c) A sequence of substitutions discovered by TASO.

Figure 2.8: The NasNet-A architecture [95] and substitutions discovered by TASO to optimize
NasNet-A. Figure 2.8a shows the architecture, where avg, conv, and DWC refer to average pooling,
convolution, and depth-wise convolution, respectively. The weight tensors are eliminated for simplicity.
Figures 2.8b and 2.8c shows two sequences of substitutions discovered by TASO that are used to
optimize subgraphs marked in the black and red boxes in Figure 2.8a. In Figures 2.8b and 2.8c,
each arrow refers to a substitution, and the subgraphs in the same color are the graph pair of the
substitution. Cpool(3 × 3) in Figure 2.8b is a constant matrix whose entries are 1/9, as defined
in Section 2.4. The enlarge operator in Figure 2.8c increases a convolution’s kernel size by padding
the weight (i.e., W1) with extra 0’s. For inference, operators in the gray areas in Figures 2.8b and 2.8c
only depend on pre-trained weights (i.e., Wi), and therefore can be pre-computed.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 27

Input

concat

split

conv3x3 conv3x3
total

32 convs
......

Output

(a) Multi-branch
convolution.

Input

conv3x3
group=32

Output

(b) Grouped
convolution.

conv3x3
group=8

Input

concat

split

conv3x3
group=8

total 4
grouped
convs

Output

(c) Multi-branch grouped
convolution.

1 2 4 8 16 32
Number of Convolutions Per Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TensorFlow
TensorFlow XLA

TensorRT
MetaFlow

TASO

(d) Performance comparison.

Figure 2.9: Different approaches to perform multi-batch convolutions in ResNeXt-50 and their
performance comparison. TensorFlow and TensorFlow XLA launch the 32 convolutions separately
(Figure 2.9a). TensorRT and MetaFlow launch a single grouped convolution kernel that computes
all 32 convolutions in parallel (Figure 2.9b). The best graph discovered by TASO uses 4 grouped
convolutions, each of which computes 8 convolutions (Figure 2.9c).

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27

ResNet50

NasNet-A

ResNeXt-50

NasRNN

BERT

29 6 29 6 1 5 5

3 41 41 14 32 3 15 19 19 9 10

25 5 25 1 23 3 7 5 7

10 40 20 20 10

24 24 12 36

0

10

20

30

40

Figure 2.10: A heat map of how often the verified substitutions are used to optimize the five DNN
architectures. Only substitutions used in at least one DNN are listed. For each architecture, the
number indicates how many times a substitution is used by TASO to obtain the optimized graph.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 28

0 1 2 3 4
Maxmum Graph Substitution Size

1

1.5

2

2.5

3

Re
la

ti
ve

 S
pe

ed
up

NasNet-A
ResNeXt-50
BERT

Figure 2.11: Performance comparison by using graph substitutions with different size limits. The
y-axis shows the relative speedups over the input computation graphs.

convolution is:

output(n, c, x, y) =
∑
kx

∑
ky

input(n, c, x+ kx, y + ky)× weight(c, kx, ky)

which produces a mathematically equivalent result as an average pooling if we have weight(c, kx, ky) =

1/(KX × KY). In addition, TASO also fuses the two depth-wise convolutions into one using its

linearity.

A second new sequence of substitutions for NasNet-A is shown in Figure 2.8c, which fuses two

depth-wise convolutions and two convolutions followed by addition to a depth-wise convolution

followed by a standard convolution. This substitution increases the operator granularity and reduces

the operator launch overhead by using larger operators.

For inference workloads, the weights in DNN architectures (e.g., Wi and Cpool in Figure 2.8) are

fixed and independent of the inputs. TASO preprocesses operators whose inputs are all pre-trained

weights (e.g., the gray areas in Figure 2.8) to further reduce the inference time.

ResNeXt-50 replaces large convolutions in ResNet-50 with multiple branches of much smaller

convolutions to improve both model accuracy and runtime efficiency, as shown in Figure 2.9a.

However, directly launching these small convolutions incurs high kernel launch overhead. The cuDNN

library has recently introduced grouped convolution kernels that perform multiple convolutions in

parallel using a single CUDA kernel [21]. TensorFlow and TensorFlow XLA (r1.14 as of August 2019)

currently do not support grouped convolution, so the fastest available ResNeXt-50 implementation

in TensorFlow launches convolutions in multiple branches separately with the resulting high kernel

launch overhead. TensorRT and MetaFlow use a single grouped convolution kernel that computes

a group of 32 convolutions in parallel. While grouped convolution enables additional parallelism

and reduces kernel launch overhead, it also requires a larger cache to save intermediate states for

all convolutions, which results in decreased runtime performance when too many convolutions are

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 29

aggregated in a single kernel. Figure 2.9d gives the time to run all 32 convolutions using different

group sizes (i.e., the number of convolutions in a group), showing that neither launching individual

convolutions nor grouping all 32 convolutions is the best option.

Existing frameworks either launch 32 individual convolutions or a single grouped convolution,

both of which result in suboptimal performance. For ResNeXt-50, TASO uses a mixture of previous

approaches and launches multiple grouped convolutions, as shown in Figure 2.9c. TASO discovered

this mixture automatically, resulting in a speedup of 2.8× compared to the best existing approach.

2.9.4 Analysis of Used Substitutions

We now present a detailed analysis of how the graph substitutions discovered by TASO impact the

performance of the optimized graphs. Figure 2.10 shows a heat map of the substitutions used to

optimize each of the five DNN architectures. Each DNN uses 4-10 different substitutions to achieve

optimized performance, and different DNNs require different sets of substitutions. This shows the

difficulty of manually designing a few core substitutions to optimize today’s DNN architectures with

increasingly high diversity. TASO is better positioned for optimizing new DNNs by automatically

discovering performance critical substitutions.

Additionally, we evaluate the scalability of TASO by considering substitutions with different size

limitations, and measuring the runtime performance of the optimized graphs. Figure 2.11 shows the

results. For all three DNN architectures, performance improvement is consistently achieved by using

larger substitutions up to size 3. ResNeXt-50 and BERT do not obtain additional speedups by using

substitutions with 4 operators, while NasNet-A achieves 1.2× by considering larger substitutions. Our

current implementation of TASO does not scale to generate all substitutions with 5 or more operators,

since the generator is limited by the memory needed to hold the fingerprints of all potential graphs,

which scales exponentially with graph size. A distributed fingerprint generator could potentially

handle graphs of size 5 and even more, which we leave as future work.

2.9.5 Joint Optimization of Graph Substitutions and Data Layout

To evaluate the performance of the joint optimization in TASO, we compare the joint optimization

with three baseline strategies: (1) performing only graph substitution optimizations; (2) performing

only data layout optimizations; and (3) performing the two optimizations sequentially.

Figure 2.12 shows the comparison results among the four strategies on BERT. TASO outperforms

the three baseline strategies by 1.2-1.3×. We observe that the speedup is achieved by using graph

substitutions that transform both graph structure and data layout. One example is depicted in

Figure 2.5. The most time consuming operation in BERT is matrix multiplication A×B, where A is

64 by 1024 and B is 1024 by 4096. In cuBLAS, the transposed version of this matrix multiplication

(i.e., (BT ×AT)T) achieves 1.5× speedup when BT and AT are in the column-major and row-major

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Execution Time (ms)

Graph Opt.

Layout Opt.

Sequential

Joint Opt.
(TASO) 2.77

3.15

3.27

3.67

Figure 2.12: End-to-end inference performance comparison on BERT using different strategies to
optimize graph substitution and data layout.

layout, respectively. This graph optimization can only be captured when graph substitution and

data layout are jointly considered.

2.9.6 Graph Substitution Verifier

We evaluate the performance of the graph substitution verifier on its two key tasks: verifying

generated substitutions against operator specifications and validating the operator specifications

themselves to aid in the development process (Section 2.4). Our implementation uses Z3 [26] to

automatically discharge all proof obligations, and our experiments were performed with Z3 version

4.8.5.

Generating the 743 graph substitutions takes around 5 minutes, and verifying them against the

43 specified operator properties takes less than 10 minutes. When checking the specification for

redundancies we use Z3 to search for a proof of an invalid formula (stating that a specified property is

entailed by the rest of the specification). This search can continue indefinitely, and in our evaluation

we used a timeout of 10 seconds per query, resulting in a run time of less than 10 minutes (for 43

axioms). During the development process, when we had some redundant specifications they were

discovered in a few seconds.

The validation check that verifies the operator specification for all combinations of parameter

values and tensor sizes up to 4×4×4×4 is more computationally expensive, with roughly one million

proof obligations. We parallelized it using 128 CPU cores, which resulted in a run time of roughly

one hour. During the development process, we also found it useful to verify the operators for more

restricted combinations. For example, verifying the specification for tensors of size exactly 4×4×4×4

(rather than all tensors up to that size) takes under 10 minutes using a single CPU core.

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 31

2.10 Related Work

Manually designed graph substitutions are used in existing DNN frameworks to optimize DNN

architectures. For example, TensorFlow, TensorRT, and TVM use a greedy rule-based strategy and

directly perform all applicable substitutions on an input graph [11, 80, 19].

MetaFlow [45] is an earlier version of this work. It differs from previous graph optimizers in that

it allows substitutions that may either increase or decrease performance to enable a larger search

space of equivalent computation graphs and uses back-tracking search to explore this space, but it

still requires manually specified substitutions.

The key difference between TASO and these frameworks is that TASO can automatically generate

candidate substitutions, and also provides semi-automatic support for verifying their correctness. In

the evaluation, we also show that existing frameworks can directly use TASO’s optimized graphs to

improve performance.

Automated DNN code generation. Recent work has proposed various approaches to generate

hardware-specific code for DNN operators. For example, TVM [19, 20] uses a learning-based approach

and automatically generates low-level optimized code for a diverse set of hardware backends. Astra [75]

optimizes DNN computation by exploring the optimization space of multi-version complication during

training. Compared to these approaches, TASO aims at optimizing DNN computation at a higher

graph level, and therefore TASO’s optimizations are orthogonal and can be combined with code

generation techniques. It still remains an open problem of how to jointly optimize DNN computation

at both graph-level and operator-level.

Automated DNN parallelization. ColocRL [61] uses reinforcement learning to automatically dis-

cover an efficient device placement for parallelizing DNN training across multiple GPUs. FlexFlow [46,

44] introduces a comprehensive search space of parallelization strategies for DNN training, and uses

a randomized search algorithm to find efficient strategies in the search space. These frameworks

optimize distributed DNN training assuming a fixed computation graph. We believe it is possible to

combine TASO’s graph optimizations with training parallelization techniques.

Superoptimization is a compiler optimization technique that was originally designed to find the

optimal code for a sequence of instructions [60]. TASO’s approach to identifying potential substitutions

via enumeration of graphs and fingerprinting is similar to work in automatically generating peephole

optimizers using superoptimization techniques [14]. TASO’s approach to verification, however, is

significantly different. Verification in superoptimization typically relies on “bit blasting”, that is,

modeling every bit in a computation explicitly in a logical formula (e.g., as a boolean variable). This

approach is possible only when all aspects of a program transformation, including the computation

and the data, can be expressed using a known number of bits. For TASO, where the input tensor sizes

CHAPTER 2. AUTOMATED DISCOVERY OF GRAPH OPTIMIZATIONS 32

for graph substitutions are unknown, we must take a different approach. While not fully automatic

like verification via bit blasting, our methodology based on writing operator specifications is much

more flexible in being able to model future operators with almost arbitrary semantics, in addition to

smoothly handling the issue of unknown tensor dimensions and split points.

Data layout optimizations. Existing DNN frameworks that support data layout optimizations

treat data layouts and graph transformations as separate optimization problems [19, 56, 62]. TASO

formulates the problem of performing graph substitutions and deciding the data layout of each

DNN operator as a joint optimization problem and considers layout conversions as a part of graph

substitutions. As a result, TASO can automatically generate graph substitutions that optimize both

graph structures and data layouts, and our evaluation shows that jointly optimizing the two tasks

can significantly improve the end-to-end performance, compared to optimizing the them separately.

2.11 Limitations

One limitation of TASO is the reliance on user provided operator properties. While our experience

has been that the required effort is manageable, it would be better to eliminate it altogether. One

possible approach is to automatically verify substitutions directly against the implementations of the

operators, e.g., cuDNN kernels.

Another limitation of TASO is the scalability of the generator, which requires saving the fingerprints

of all computation graphs up to a fixed and is exponential in the size of the graphs. To scale beyond

size 4, a distributed generator (or a very large memory machine) would be needed. A second

possibility is to replace the brute-force enumeration with more memory-efficient algorithms.

An additional avenue for future research is combining graph-level and operator-level optimizations.

This joint optimization is challenging as both problems involve large and complex search spaces, and

optimizations at one level affect the search space of the other.

2.12 Conclusion

TASO is a ML computation graph optimizer that automatically generates graph substitutions. TASO

formally verifies the substitutions, and considers graph substitutions and layout transformations

together as a joint optimization problem, exploiting more optimization opportunities. TASO matches

the performance of existing frameworks on DNNs for which these frameworks have been heavily

optimized such as ResNet-50, and outperforms existing frameworks by up to 2.8× on other DNNs,

finding novel optimizations not present in the hundreds of optimization rules in existing frameworks.

TASO achieves these results with dramatically less human effort than existing frameworks, and

provides a higher level of correctness guarantees.

Chapter 3

Automated Discovery of

Parallelization Optimizations

Existing deep learning systems commonly parallelize deep neural network (DNN) training using data

or model parallelism, but it turns out that these strategies do not capture all of the possible ways

to parallelize a DNN. In this chapter, we introduce SOAP, a more comprehensive search space of

parallelization strategies for distributed DNN training that includes strategies to parallelize a DNN in

the Sample, Operator, Attribute, and Parameter dimensions. We present FlexFlow, a deep learning

engine that uses guided randomized search of the SOAP space to find a fast parallelization strategy

for a specific parallel machine. To accelerate this search, FlexFlow introduces a novel execution

simulator that can accurately predict a parallelization strategy’s performance and is three orders of

magnitude faster than prior approaches that execute each strategy. Our evaluation on real-world DNN

benchmarks shows that FlexFlow can automatically discover strategies that significantly outperform

existing manually designed parallelization strategies and improve scalability.

3.1 Motivation

It is now standard practice to parallelize ML training across distributed heterogeneous clusters [27, 11].

Although ML models and the clusters used to parallelize them are increasingly complex, the strategies

used by today’s ML systems to parallelize training remain simple, and often suboptimal.

The most common parallelization strategy is data parallelism [51], which places a replica of the

entire neural network on each device, so that each device processes a subset of the training data,

and synchronizes network parameters across replicas at the end of an iteration. Data parallelism

is efficient for compute-intensive operators with a few trainable parameters (e.g., convolution) but

achieves suboptimal parallelization performance for operators with a large number of parameters

33

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 34

(e.g., embedding layers).

Another common parallelization strategy is model parallelism [27], which assigns disjoint subsets

of a neural network each to a dedicated device. This approach eliminates parameter synchronization

between devices but requires data transfers between operators. ColocRL [61] uses reinforcement

learning to learn efficient operator assignments for model parallelism but only explores parallelism in

the operator dimension.

We introduce a more comprehensive SOAP (Sample-Operator-Attribute-Parameter) search space

of parallelization strategies for DNNs that generalizes and goes beyond previous approaches. The

operator dimension describes how different operators in a DNN are parallelized. For a single operator,

the sample and parameter dimensions indicate how training samples and model parameters are

distributed across devices. Finally, the attribute dimension defines how different attributes within a

sample are partitioned (e.g., the height and width dimensions of an image).

We use SOAP in FlexFlow, a deep learning engine that automatically finds fast parallelization

strategies in the SOAP search space for arbitrary DNNs. Existing approaches only consider one or a

subset of SOAP dimensions. FlexFlow considers parallelizing any DNN (linear or non-linear) in all

SOAP dimensions and explores a more comprehensive search space that includes existing approaches

as special cases. As a result, FlexFlow is able to find parallelization strategies that significantly

outperform existing approaches.

The key challenge FlexFlow must address is how to efficiently explore the SOAP search space,

which is much larger than those considered in previous systems and includes more sophisticated

parallelization strategies. To this end, FlexFlow uses two main components: a fast, incremental

execution simulator to evaluate different parallelization strategies, and a Markov Chain Monte Carlo

(MCMC) search algorithm that takes advantage of the incremental simulator to rapidly explore the

large search space.

FlexFlow’s execution simulator can accurately predict the performance of a parallelization strategy

in the SOAP search space for arbitrary DNNs and is three orders of magnitude faster than profiling

real executions. We borrow the idea from Chapter 2 of measuring the performance of an operator

once for each configuration and feed these measurements into a task graph that models both the

architecture of a DNN model and the network topology of a cluster. The execution simulator estimates

the performance of a parallelization strategy by simulating the execution on the task graph. In

addition, we introduce a delta simulation algorithm that simulates a new strategy using incremental

updates to previous simulations and further improves performance over naive simulations by up to

6.9×.

The execution simulator achieves high accuracy for predicting parallelization performance. We

evaluate the simulator with six real-world DNNs on two different GPU clusters and show that, for all

the measured executions, the relative difference between the real and simulated execution time is less

than 30%. Most importantly for the search, we test different strategies for a given DNN and show

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 35

MCMC
Search Alg.

Distributed Runtime

Best Found Strategy

Candidate
Strategy

Simulated
Performance

Computation Graph Device Topology
Network

GPU GPU

CPU

Conv Conv

Concat

MatMul

GPU GPU

CPU

Pool

Execution
Simulator

Execution Optimizer

Figure 3.1: FlexFlow overview.

that their simulated execution time preserves real execution time ordering.

Using the execution simulator as an oracle, the FlexFlow execution optimizer uses a MCMC

search algorithm to explore the SOAP search space and iteratively propose candidate strategies

based on the simulated performance of previous candidates. The execution simulator can also work

with other search strategies, such as learning-based search algorithms. When the search procedure is

finished, the execution optimizer returns the best strategy it has discovered.

We evaluate FlexFlow on six real-world DNN benchmarks including AlexNet [51], ResNet-50 [39],

Inception-v3 [78], RNN Text Classification [48], RNN Language Modeling [92] and Neural Machine

Translation [87]. Compared to data/model parallelism and strategies manually designed by domain

experts [50, 87], FlexFlow increases training throughput by up to 3.3×, reduces communication

costs by up to 5×, and achieves significantly better scaling. In addition, we also evaluate FlexFlow

on two large DNN models (DLRM [66] and Candle Uno [9]) that cannot scale under existing

manually designed parallelization strategies. By automatically discovering more efficient strategies,

FlexFlow improves the overall training throughput of DLRM and Candle Uno by up to 10× and

7.8×, respectively.

3.2 The Approach

This section describes FlexFlow for automatically discovering fast parallelization strategies for

distributed ML training.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 36

Table 3.1: Parallelizable dimensions for different operators. The sample and channel dimension index
different samples and neurons, respectively. For images, the length and the combination of height
and width dimensions specify a position in an image.

Operator
Parallelizable Dimensions

(S)ample (A)ttribute (P)arameter
1D pooling sample length, channel
1D convolution sample length channel
2D convolution sample height, width channel
Matrix multiplication sample channel

In addition to taking the computation graph of an ML model as an input, FlexFlow also

takes a device topology graph D = (DN ,DE) describing all available hardware devices and their

interconnections, as shown in Figure 3.1. Each node di ∈ DN represents a device (e.g., a CPU

or a GPU), and each edge (di, dj) ∈ DE is a hardware connection (e.g., a NVLink, a PCI-e, or a

network link) between device di and dj . The edges are labeled with the bandwidth and latency of

the connection.

The main components of FlexFlow are shown in Figure 3.1. The execution optimizer uses a

MCMC search algorithm to explore the space of possible parallelization strategies and iteratively

proposes candidate strategies that are evaluated by an execution simulator. The execution simulator

uses a delta simulation algorithm that simulates a new strategy using incremental updates to previous

simulations. The simulated execution time guides the search in generating future candidates. When

the search time budget is exhausted, the execution optimizer sends the best discovered strategy to a

distributed runtime for parallelizing the actual executions.

3.3 The SOAP Search Space

This section introduces the SOAP search space of parallelization strategies for DNNs. To parallelize

a DNN operator across devices, we require each device to compute a disjoint subset of the operator’s

output tensors. Therefore, we model the parallelization of an operator oi by defining how the output

tensor of oi is partitioned.

For an operator oi, we define its parallelizable dimensions Pi as the set of all divisible dimensions

in its output tensor. Pi always includes a sample dimension. For all other dimensions in Pi, we call

it a parameter dimension if partitioning over that dimension requires splitting the model parameters

and call it an attribute dimension otherwise. Table 3.1 shows the parallelizable dimensions of some

example operators. Finally, we also consider parallelism across different operators in the operator

dimension.

A parallelization configuration ci of an operator oi defines how the operator is parallelized across

multiple devices. Figure 3.2 shows some example configurations for parallelizing a 1D convolution

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 37

Sample	 Sample	Sample	 Sample	Le
ng
th	Ch

an
ne

l	

Ch
an
ne

l	

Le
ng
th	Ch

an
ne

l	

Le
ng
th	 Ch

an
ne

l	

Le
ng
th	

Data	Parallelism	
(S)	

Model	Parallelism	
(P)	

Hybrid	Parallelism	
(S,	P)	

Hybrid	Parallelism	
(S,	A,	P)	

Figure 3.2: Example parallelization configurations for 1D convolution. Dashed lines show partitioning
the tensor.

Sa
m

pl
e

(S
)

Channelout (P)
V (input) W (input)

Channelin (P)

C
ha

nn
el

in
(P

)

Sa
m

pl
e

(S
)

U (output)
Channelout (P)

Degree(Sample) = 2, Degree(Channelout) = 2
Devices = {GPU1, GPU2, GPU3, GPU4}

=

= xGPU1 = xGPU2

= xGPU3 = xGPU4

x

Configuration

Figure 3.3: An example parallelization configuration for a matrix multiplication operator.

operator in a single dimension as well as combinations of multiple dimensions.

For each parallelizable dimension in Pi, ci includes a positive integer that is the degree of

parallelism in that dimension. |ci| is the product of the parallelism degrees for all parallelizable

dimensions of ci. We use equal size partitions in each dimension to balance workload distributions.

A parallelization configuration ci partitions the operator oi into |ci| independent tasks, denoted as

ti:1, ..., ti:|ci|, meanwhile ci also includes the device assignment for each task ti:k (1 ≤ k ≤ |ci|). Given

the output tensor of a task and its operator type, we can infer the necessary input tensors to execute

each task.

Figure 3.3 shows an example parallelization configuration for a matrix multiplication operator

(i.e., U = VW). The operator is partitioned into four independent tasks assigned to different GPU

devices. The input and output tensors of the tasks are shown in the figure.

A parallelization strategy S describes one possible parallelization of an application. S includes

a parallelization configuration ci for each operator oi, and each oi’s configuration can be chosen

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 38

independently from among all possible configurations for oi. Note that all strategies in the SOAP

search space perform the same computation defined by the DNN and therefore maintain the same

model accuracy by design.

3.4 Execution Simulator

In this section, we describe the execution simulator, which takes a computation graph G, a device

topology D, and a parallelization strategy S as inputs and predicts the execution time to run G on D
using strategy S.

The simulator depends on the following assumptions:

A1. The execution time of each task is predictable with low variance and is independent of the

contents of input tensors.

A2. For each connection (di, dj) between device di and dj with bandwidth b, transferring a tensor

of size s from di to dj takes s/b time (i.e., the communication bandwidth can be fully utilized).

A3. Each device processes the assigned tasks with a FIFO (first-in-first-out) scheduling policy. This

is the policy used by modern devices such as GPUs.

A4. The runtime has negligible overhead. A device begins processing a task as soon as its input

tensors are available and the device has finished previous tasks.

To simulate an execution, we reuse the idea from Section 2.6 to measure the execution time of

each distinct operator once for each configuration and include these measurements in a task graph,

which includes all tasks derived from operators and dependencies between tasks. The simulator can

generate an execution timeline by running a simulation algorithm on the task graph.

3.4.1 Task Graph

A task graph models dependencies between individual tasks derived from operators. To unify the

abstraction, we model each hardware connection between devices as a communication device that can

only perform communication tasks (i.e., data transfers). Note that devices and hardware connections

are modeled as separate devices, which allows computation (i.e., normal tasks) and communication

(i.e., communication tasks) to be overlapped if possible.

Given a computation graph G, a device topology D, and a parallelization strategy S, we use

the following steps to construct a task graph T = (TN , TE), where each node t ∈ TN is a task (i.e.,

a normal task or a communication task) and each edge (ti, tj) ∈ TE is a dependency that task tj

cannot start until task ti is completed. Note that the edges in the task graph are simply ordering

constraints—the edges do not indicate data flow, as all data flow is included in the task graph as

communication tasks.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 39

o1

o2

o3

o4

o5

o6

Embedding
Layer

Recurrent
Layer

Linear
Layer

Config c1, c2:
batch = 2
channel = 1
ti:k = GPU1

Config c3, c4:
batch = 2
channel = 1
ti:k = GPU2

Config c5, c6:
batch = 1
channel = 1
ti:k = GPU3

(a) An example parallelization strategy.

t1:1 t3:1 t5:1tc tc

GPU1
exe: 2

GPU2
exe: 1

GPU3
exe: 3

Xfer
exe: 1

Xfer
exe: 1

t1:2 t3:2tc tc

t2:1 t4:1 t6:1tc tc

t2:2 t4:2tc tc

(b) The corresponding task graph.

r: 0
s: 0

r: 3
s: 3

r: 7
s: 7

r: 2
s: 2

r: 4
s: 4

GPU1
exe: 2

GPU2
exe: 1

GPU3
exe: 3

Xfer
exe: 1

Xfer
exe: 1

r: 0
s: 2

r: 5
s: 5

r: 4
s: 4

r: 6
s: 6

r: 0
s: 4

r: 7
s: 7

r: 6
s: 6

r: 8
s: 8

r: 0
s: 6

r: 9
s: 9

r: 8
s: 8

r: 10
s: 10

r: 11
s: 11

(c) The task graph after full simulation.

r: 0
s: 0

r: 5
s: 5

r: 9
s: 9

r: 2
s: 2

r: 7
s: 7

GPU1
exe: 2

GPU2
exe: 2

GPU3
exe: 3

Xfer
exe: 1

Xfer
exe: 2

r: 0
s: 2

r: 4
s: 4

r: 0
s: 4

r: 7
s: 7

r: 6
s: 6

r: 8
s: 9

r: 0
s: 6

r: 9
s: 9

r: 8
s: 8

r: 10
s: 10

r: 11
s: 12

(d) The task graph after delta simulation.

Figure 3.4: Simulating an example parallelization strategy. The tasks’ exeTime and device are
shown on the top of each column. In Figure 3.4c and 3.4d, the letters “r” and “s” indicate the
readyTime and startTime of each task, respectively, and the dashed edges indicate the nextTask.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 40

Table 3.2: Properties for each task in the task graph.

Property Description
Properties set in graph construction

exeTime The elapsed time to execute the task.
device The assigned device of the task.
I(t) {tin|(tin, t) ∈ TE}
O(t) {tout|(t, tout) ∈ TE}

Properties set in simulation
readyTime The time when the task is ready to run.
startTime The time when the task starts to run.
endTime The time when the task is completed.
preTask The previous task performed on device.
nextTask The next task performed on device.
Internal properties used by the full simulation algorithm

state
Current state of the task, which is one of
NOTREADY, READY, and COMPLETE.

1. For each operator oi ∈ G with parallelization configuration ci, we add tasks ti:1, ..., ti:|ci| to TN .

2. For each tensor (oi, oj) ∈ G, which is an output of operator oi and an input of oj , we compute

the output sub-tensors written by tasks ti:ki
(1 ≤ ki ≤ |ci|) and the input sub-tensors read by

tasks tj:kj (1 ≤ kj ≤ |cj |). For every task pair ti:ki and tj:kj with shared tensors, if two tasks

are assigned to the same device, we add an edge (ti:ki , tj:kj) into TE , indicating a dependency

between the two tasks, and no communication task is needed. If ti:ki
and tj:kj

with shared

tensors are assigned to different devices, we add a communication task tc to TN and two edges

(ti:ki , t
c) and (tc, tj:kj) to TE . The new task tc is assigned to the communication device between

the devices that perform ti:ki and tj:kj .

Figure 3.4a shows an example parallelization strategy for a standard 3-layer RNN consisting of an

embedding layer, a recurrent layer, and a linear layer. It represents commonly used model parallelism

that assigns operators in each layer to a dedicated GPU. Figure 3.4b shows the corresponding task

graph. Each square and hexagon indicate a normal and a communication task, respectively, and each

directed edge represents a dependency between tasks.

Table 3.2 lists the properties for each task in the task graph. For a normal task derived from an

operator, its exeTime is the time to execute the task on the given device and is estimated by running

the task multiple times on the device and measuring the average execution time (assumption A1). A

task’s exeTime is cached, and all future tasks with the same operator type and input/output tensor

shapes will use the cached value without rerunning the task. For a communication task, its exeTime

is the time to transfer a tensor (of size s) between devices with bandwidth b and is estimated as s/b

(assumption A2).

In addition to exeTime, FlexFlow also sets device, I(t), and O(t) (defined in Table 3.2) during

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 41

graph construction. Other properties in Table 3.2 remain unset and must be filled in by the simulation.

3.4.2 Full Simulation Algorithm

We now describe a full simulation algorithm that we use as a baseline for comparisons with our

delta simulation algorithm. The full simulation algorithm first builds a task graph using the method

described in Section 3.4.1 and then sets the properties for each task using a variant of Dijkstra’s

shortest-path algorithm [23]. Tasks are enqueued into a global priority queue when ready (i.e., all

predecessor tasks are completed) and are dequeued in increasing order by their readyTime. Therefore,

when a task t is dequeued, all tasks with an earlier readyTime have been scheduled, and we can set

the properties for task t while maintaining the FIFO scheduling order (assumption A3). Figure 3.4c

shows the execution timeline of the example parallelization strategy.

3.4.3 Delta Simulation Algorithm

FlexFlow uses a MCMC search algorithm (see Section 3.5) that proposes a new parallelization

strategy by changing the parallelization configuration of a single operator in the previous strategy

(see Section 3.5.2). As a result, in the common case, most of the execution timeline does not change

from one simulated strategy to the next. Based on this observation, we introduce a delta simulation

algorithm that starts from a previous task graph and only re-simulates tasks involved in the portion

of the execution timeline that changes, an optimization that dramatically speeds up the simulator,

especially for strategies for large distributed machines.

To simulate a new strategy, the delta simulation algorithm first updates tasks and dependencies

from an existing task graph and enqueues all modified tasks into a global priority queue. Similar to

the Bellman-Ford shortest-path algorithm [23], the delta simulation algorithm iteratively dequeues

updated tasks and propagates the updates to subsequent tasks.

For the example in Figure 3.4, consider a new parallelization strategy derived from the original

strategy (Figure 3.4a) by only reducing the parallelism of operator o3 to 1 (i.e., |c3| = 1). Figure 3.4d

shows the task graph for the new parallelization strategy, which can be generated from the original

task graph (in Figure 3.4c) by updating the simulation properties of tasks in the grey area.

3.5 Execution Optimizer

The execution optimizer takes a computation graph and a device topology as inputs and automatically

finds an efficient parallelization strategy. Using the simulator as an oracle, FlexFlow transforms

the parallelization optimization problem into a cost minimization problem, namely minimizing the

predicted execution time.

Finding the optimal parallelization strategy is NP-hard, by an easy reduction from minimum

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 42

makespan [52]. In addition, the number of possible strategies is exponential in the number of operators

of a computation graph (see Section 3.3), which makes it intractable to exhaustively enumerate the

search space. To find a low-cost strategy, FlexFlow uses a cost minimization search to heuristically

explore the space and returns the best strategy discovered.

3.5.1 MCMC Sampling

This section briefly introduces the Metropolis-Hastings algorithm [38] we use for MCMC sampling in

the execution optimizer. The algorithm maintains a current strategy S and randomly proposes a new

strategy S∗. S∗ is accepted and becomes the new current strategy with the following probability:

α(S∗|S) = min
(

1, exp
(
β · (cost(S)− cost(S∗)

))
(3.1)

This acceptance criteria has several important properties. If S∗ has a lower cost than S, then S∗ is

always accepted. If S∗ has a higher cost than S, then S∗ may still be accepted with a probability

that decreases as a function of the difference between cost(S) and cost(S∗). Intuitively, MCMC tends

to behave as a greedy search algorithm, preferring to move towards lower cost whenever that is

readily available, but can also escape local minima.

3.5.2 Search Algorithm

Our method for generating proposals is simple: an operator in the current parallelization strategy is

selected at random, and its parallelization configuration is replaced by a random configuration. We

use the predicted execution time from the simulator as the cost function in Equation 3.1 and use

existing strategies (e.g., data parallelism, expert-designed strategies) as well as randomly generated

strategies as the initial candidates for the search algorithm. For each initial strategy, the search

algorithm iteratively proposes new candidates until one of the following two criteria is satisfied: (1)

the search time budget for current initial strategy is exhausted; or (2) the search procedure cannot

further improve the best discovered strategy for half of the search time.

3.6 FlexFlow Runtime

We found that existing deep learning systems (e.g., TensorFlow, PyTorch, Caffe2, and MXNet)

only support parallelizing an operator in the sample dimension through data parallelism, and it is

non-trivial to parallelize an operator in other dimensions or combinations of several SOAP dimensions

in these systems.

To support parallelizing DNN models using any strategy in the SOAP search space, we implemented

the FlexFlow distributed runtime in Legion [15], a high-performance parallel runtime for distributed

heterogeneous architectures, and use cuDNN [21] and cuBLAS [24] as the underlying libraries for

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 43

Table 3.3: Details of the DNNs and datasets used in evaluation.

DNN Description Dataset
Report Our
Acc. Acc.

Convolutional Neural Networks (CNNs)
AlexNet A 12-layer CNN Synthetic data - -
Inception-v3 A 102-layer CNN with Inception modules [77] ImageNet 78.0%a 78.0%a

ResNet-101 A 101-layer residual CNN with shortcuts ImageNet 76.4%a 76.5%a

Recurrent Neural Networks (RNNs)
RNNTC 4 recurrent layers followed by a softmax layer Movie Reviews [63] 79.8% 80.3%
RNNLM 2 recurrent layers followed by a softmax layer Penn Treebank [59] 78.4b 76.1b

NMT 4 recurrent layers followed by an attention WMT [85] 19.67c 19.85c

a top-1 accuracy for single crop on the validation dataset (higher is better).
b word-level test perplexities on the Peen Treebank dataset (lower is better).
c BLEU scores [68] on the test dataset (higher is better).

processing DNN operators. We use the Legion high-dimensional partitioning interface [81] to support

parallelizing an operator in any combination of the parallelizable dimensions.

3.7 Evaluation

In this section, we aim to evaluate the following points.

1. Can FlexFlow improve the end-to-end training performance of real-world DNN benchmarks,

especially for DNNs that do not scale under existing manually designed parallelization strategies?

2. Can FlexFlow’s execution simulator predict the execution times of different parallelization

strategies with reasonable accuracy?

3. Can FlexFlow’s execution optimizer discover strategies outperforming the strategies manually

designed by domain experts?

3.7.1 Experimental Setup

Table 3.3 summarizes the DNN benchmarks used in our experiments.

AlexNet, Inception-v3, and ResNet-101 are three CNNs that achieved the best accuracy in the

ILSVRC competitions [71]. For AlexNet, the per-iteration training time is smaller than the time

to load training data from disk. We follow the suggestions in TensorFlow Benchmarks 1 and use

synthetic data to benchmark the performance of AlexNet. For all other experiments, the training

data is loaded from disk in the training procedure.

RNNTC, RNNLM and NMT are sequence-to-sequence RNN models for text classification, language

modeling, and neural machine translation, respectively. RNNTC uses four LSTM layers with a

hidden size of 1024. RNNLM uses two LSTM layers with a hidden size of 2048. Both RNN models

1https://www.tensorflow.org/performance/benchmarks

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 44

P100

P100

P100

P100

CPUs

Network

P100

P100

P100

P100

CPUs

100 Gb/s

(a) The P100 Cluster (4 nodes).

K80

K80

K80

K80

CPUs

Network

K80

K80

K80

K80

CPUs

56 Gb/s

(b) The K80 Cluster (16 nodes).

Figure 3.5: Architectures of the GPU clusters used in the experiments. An arrow line indicates a
NVLink connection. A solid line is a PCI-e connection. Dashed lines are Infiniband connections
across different nodes.

include a softmax linear after the last LSTM layer. NMT includes an encoder and a decoder, both of

which consist of 2 LSTM layers with a hidden size of 1024. To improve model accuracy, we also use

an attention layer on top of the last decoder LSTM layer [13]. Figure 3.15 illustrates the structure of

the NMT model. For all three RNN models, we set the number of unrolling steps for each recurrent

layer to 40.

We follow prior work [51, 78, 39, 48, 92, 87] to construct computation graphs and set hyperpa-

rameters (e.g., learning rates, weight decays). We use synchronous training and a per-GPU batch

size of 64 for all DNN benchmarks, except for AlexNet, which has a much smaller model and uses a

per-GPU batch size of 256.

To evaluate the performance of FlexFlow with different device topologies, we performed the

experiments on two GPU clusters, as shown in Figure 3.5. The first cluster contains 4 compute

nodes, each of which is equipped with two Intel 10-core E5-2600 CPUs, 256GB main memory, and

four NVIDIA Tesla P100 GPUs. GPUs on the same node are connected by NVLink, and nodes are

connected over 100Gb/s EDR Infiniband. The second cluster consists of 16 nodes, each of which is

equipped with two Intel 10-core E5-2680 GPUs, 256GB main memory, and four NVIDIA Tesla K80

GPUs. Adjacent GPUs are connected by a separate PCI-e switch, and all GPUs are connected to

CPUs through a shared PCI-e switch. Compute nodes in the cluster are connected over 56 Gb/s

EDR Infiniband.

Unless otherwise stated, we set 30 minutes as the time budget for the execution optimizer and

use data parallelism and a randomly generated strategy as the initial candidates for the search. As

shown in Table 3.4, the search terminates in a few minutes in most cases.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 45

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

500

1000

1500

2000

2500
AlexNet (batch size = 256)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200
Inception_v3 (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200
ResNet-101 (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

100

200

300

400

500

600
RNNTC (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200

250

300

350

400
RNNLM (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200

250

300

350

400
NMT (batch size = 64)

N
u

m
.

S
a
m

p
le

s
/s

e
c
o
n

d
/G

P
U

Num. Devices

Data Parallelism (P100)

Expert-designed Strategy (P100)

FlexFlow (P100)

Data Parallelism (K80)

Expert-designed Strategy (K80)

FlexFlow (K80)

Figure 3.6: Per-iteration training performance on six DNNs. Numbers in parendissertation are the
number of compute nodes used in the experiments. The dash lines show the ideal training throughput.

3.7.2 Parallelization Performance

Per-iteration Performance

We compare the per-iteration training performance of FlexFlow with the following baselines. Data

parallelism is commonly used in existing deep learning systems. To control for implementation differ-

ences, we ran data parallelism experiments in TensorFlow r1.7, PyTorch v0.3, and our implementation

and compared the performance numbers. Compared to TensorFlow and PyTorch, FlexFlow achieves

the same or better performance numbers on all six DNN benchmarks, and therefore we report the

data parallelism performance achieved by FlexFlow in the experiments.

Expert-designed strategies optimize parallelization based on domain experts’ knowledge and

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 46

Data
Parallel

Expert
Designed

FlexFlow
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
r-

it
e
ra

ti
o
n
 E

x
e
cu

ti
o
n

T
im

e
 (

se
co

n
d
s)

1.9

2.6

1.1

(a) Per-iteration run time.

Data
Parallel

Expert
Designed

FlexFlow
0

10

20

30

40

50

60

70

T
o
ta

l
D

a
ta

 T
ra

n
sf

e
rs

P
e
r

It
e
ra

ti
o
n
 (

G
B

) 65.8

24.2

12.1

(b) Total transfers per iteration.

Data
Parallel

Expert
Designed

FlexFlow
0

5

10

15

20

25

30

35

40

T
o
ta

l
T
a
sk

 C
o
m

p
u
ta

ti
o
n

T
im

e
 P

e
r

It
e
ra

ti
o
n
 (

s)

35.7

28.2 28.7

(c) Total task run time per iteration.

Figure 3.7: Parallelization performance for NMT on 64 K80 GPUs (16 nodes). FlexFlow reduces
per-iteration execution time by 1.7-2.4× and data transfers by 2-5.5× compared to other approaches.
FlexFlow achieves similar overall task computation time as expert-designed strategy, which is 20%
fewer than data parallelism.

experience. For CNNs, [50] uses data parallelism for parallelizing convolutional and pooling layers and

switches to model parallelism for densely-connected layers. For RNNs, [87] uses data parallelism that

replicates the entire computation graph on each compute node and uses model parallelism that assign

operators with the same depth to the same GPU on each node. These expert-designed strategies are

used as a baseline in our experiments. Model parallelism only exposes limited parallelism by itself,

and we compare against model parallelism as a part of these expert-designed strategies.

Figure 3.6 shows the per-iteration training performance on all six DNN benchmarks. For ResNet-

101, FlexFlow finds strategies similar to data parallelism (except using model parallelism on a single

node for the last fully-connected layer) and therefore achieves similar parallelization performance.

For other DNN benchmarks, FlexFlow finds more efficient strategies than the baselines and achieves

1.3-3.3× speedup. Note that FlexFlow performs the same operators as data parallelism and expert-

designed strategies, and the performance improvement is achieved by using faster parallelization

strategies. We found that the parallelization strategies discovered by FlexFlow have two advantages

over data parallelism and expert-designed strategies.

Reducing overall communication costs. Similar to existing deep learning systems, the FlexFlow

distributed runtime supports overlapping data transfers with computation to hide communication

overheads. However, as we scale the number of devices, the communication overheads increase, but

the computation time used to hide communication remains constant. Therefore, reducing overall

communication costs is beneficial for large-scale distributed training. Figure 3.7b shows that, to

parallelize the NMT model on 64 K80 GPUs (16 nodes), FlexFlow reduces the per-iteration data

transfers by 2-5.5× compared to other parallelization approaches.

Reducing overall task computation time. Data parallelism always parallelizes an operator

in the sample dimension. However, as reported in [44], parallelizing an operator through different

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 47

Table 3.4: The end-to-end search time with different simulation algorithms (seconds).

Num. AlexNet ResNet Inception
GPUs Full Delta Speedup Full Delta Speedup Full Delta Speedup

4 0.11 0.04 2.9× 1.4 0.4 3.2× 14 4.1 3.4×
8 0.40 0.13 3.0× 4.5 1.4 3.2× 66 17 3.9×

16 1.4 0.48 2.9× 22 7.3 3.1× 388 77 5.0×
32 5.3 1.8 3.0× 107 33 3.2× 1746 298 5.9×
64 18 5.9 3.0× 515 158 3.3× 8817 1278 6.9×

Num. RNNTC RNNLM NMT
GPUs Full Delta Speedup Full Delta Speedup Full Delta Speedup

4 16 7.5 2.2× 21 9.2 2.3× 40 16 2.5×
8 91 39 2.3× 76 31 2.5× 178 65 2.7×

16 404 170 2.4× 327 121 2.7× 998 328 3.0×
32 1358 516 2.6× 1102 342 3.2× 2698 701 3.8×
64 4404 1489 3.0× 3406 969 3.6× 8982 2190 4.1×

0 5 10 15 20

Training Time (hours)

0

2

4

6

8

10

A
v
e
ra

g
e
 T

ra
in

in
g
 L

o
ss TensorFlow

FlexFlow

Figure 3.8: Training curves of Inception-v3 in different systems. The model is trained on 16 P100
GPUs (4 nodes).

dimensions can result in different task computation time. For the matrix multiplication operator in

the NMT model, parallelizing it in the channel dimension reduces the operator’s overall computation

time by 38% compared to parallelizing the operator in the sample dimension. Figure 3.7c shows that

FlexFlow reduces the overall task computation time by 20% compared to data parallelism for the

NMT model. The expert-designed strategy achieves slightly better total task computation time than

FlexFlow. However, this is achieved by using model parallelism on each node, which disables any

parallelism within each operator and results in imbalanced workloads. FlexFlow reduces the task

computation time while enabling parallelism within an operator and maintaining load balance.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 48

Inception_v3 NMT
0

50

100

150

200

250

300

350

400

T
ra

in
in

g
 T

h
ro

u
g
h
p
u
t

(s
a
m

p
le

s
p
e
r

se
co

n
d
)

45

107

152

377
ColocRL

FlexFlow

Figure 3.9: Comparison among the parallelization strategies found by different automated frameworks.

End-to-end Performance

FlexFlow performs the same computation as other deep learning systems for a DNN model and

therefore achieves the same model accuracy. Table 3.3 verifies that FlexFlow achieves the state-of-

the-art accuracies on the DNN benchmarks used in the experiments.

In this experiment, we compare the end-to-end training performance between FlexFlow and

TensorFlow on Inception-v3. We train Inception-v3 on the ImageNet dataset until the model reaches

the single-crop top-1 accuracy of 72% on the validation set. The training processes in both frameworks

use stochastic gradient decent (SGD) with a learning rate of 0.045 and a weight decay of 0.0001.

Figure 3.8 illustrates the training curves of the two systems and show that FlexFlow reduces the

training time by 38% compared to TensorFlow.

Automated Frameworks

We compare against ColorRL [61], an automated framework that find parallelization strategies in

a limited search space. ColocRL uses reinforcement learning to learn device placement for model

parallelism. We are not aware of any publicly available implementation of ColocRL, so we compare

against the learned device placement for Inception-v3 and NMT, as reported in the ColocRL paper,

and performed the experiments on the same machine.

Figure 3.9 compares the training throughput of the strategies found by FlexFlow and ColocRL

for four K80 GPUs on a single node. The parallelization strategies found by FlexFlow achieve 3.4 -

3.8× speedup compared to ColocRL. We attribute the performance improvement to the larger search

space explored by FlexFlow.

Besides improving training performance, FlexFlow has two additional advantages over ColocRL.

First, ColocRL requires executing each strategy in the hardware environment to get reward signals

and takes 12-27 hours to find the best placement, while FlexFlow finds efficient parallelization

strategies for these executions in 14-40 seconds. Second, ColocRL uses up to 160 compute nodes

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 49

Top Neural
Networks

Feature Interaction

Embedding
Lookups

Embedding
Lookups

Bottom Neural
Networks

Dense
Features

Sparse
Features

Sparse
Features

Input Features

…

Compute
Dominated

Communication
Dominated

Compute &
Communication

Balanced

…

Figure 3.10: An overview of DLRM.

(with 4 GPUs on each node) to find the placement in time, while FlexFlow uses a single compute

node to run the execution optimizer.

3.7.3 DLRM and Candle Uno

In addition to the six DNN benchmarks shown in Table 3.3, we also evaluate FlexFlow on two large

DNN models that cannot scale to large numbers of GPUs using data or model parallelism.

DLRM

DLRM [66] is a deep learning recommendation model for personalization and ads recommendation,

shown in Figure 3.10. The model uses embedding layers to process sparse input features representing

categorical data, and uses the bottom neural network to process dense input features. DLRM has a

feature interaction operator that combines the representations learnt from both the dense and sparse

features (e.g., concatenating the representations). The output of the feature interaction operator is

then sent to the top neural network for downstream prediction tasks.

It is challenging to parallelize the training of DLRM, as the model involves a mixture of compute

and communication intensive workloads, as depicted in Figure 3.10. In particular, the embedding

layers include larger numbers of trainable parameters, which introduce significant communication

overhead when parallelizing DLRM using data parallelism. On the other hand, the top/bottom neural

networks and the feature interaction layer have sequential dependencies, making model parallelism

not scalable for DLRM.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 50

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 6 12 24 48 96

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(#
sa

m
pl

es
 /

se
co

nd
)

Number of GPUs

Data Parallelism Model Parallelism FlexFlow

(a) DLRM

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 6 12 24 48 96 192 384 768

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(#
sa

m
pl

es
 /

se
co

nd
)

Number of GPUs

Data Parallelism Model Parallelism FlexFlow

(b) Candle Uno

Figure 3.11: Training performance for DLRM and Candle Uno on the Summit supercomputer [82].
Each compute node is equipped with two IBM POWER9 CPUs and six V100 GPUs. GPUs on the
same node are connected by NVLink, and nodes are connected over 100Gb/s EDR Infiniband.

Model configuration. We follow prior work [66] to construct the computation graph of DLRM

and set hyperparameters for training. The bottom neural network is a multi-layer perceptron (MLP)

consisting of 3 linear layers with output dimensions of 512, 512, and 64, respectively. The top neural

network contains 4 linear layers with output dimensions of 1024, 1024, 1024, and 1. Note that the

output of the top neural network has a dimension of 1 (i.e., a scalar), which indicates the probability

that a given user clicks the recommended ads in a training sample. We use an individual embedding

table for each categorical sparse feature. All embedding tables have output dimensions of 64.

Dataset. We use the Criteo Ad Kaggle dataset [8] in our evaluation, which consists of click logs for

ad CTR prediction and involves 26 categorical sparse features. The vocabulary sizes of the embedding

tables range from 3 to 1.7 million. The dataset contains approximately 45 million samples over 7

days. We use the first 6 days as the training set and equally split the 7th day into the validation and

test set.

Result. Figure 3.11a shows the performance of training DLRM on the Criteo Ad Kaggle dataset

using different parallelization strategies on the Summit supercomputer [82]. Using data and model

parallelism, DRLM simply fails to scale beyond a very small number GPUs. On the other hand,

by automatically discovering more efficient parallelization strategies that combine parallelization

opportunities across different dimensions, FlexFlow scales DLRM training to 96 GPUs and improves

the overall training throughput by up to 10× compared to data and model parallelism.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 51

Candle Uno

Candle [4] is a set of deep neural network architectures that address cancer-related learning tasks at

different biological scales. We evaluate FlexFlow on the Candle Uno model [9], which takes as inputs

the RNA sequence of human body cells and the dense features of drugs, and predicts their reactions

on a scale between 0 and 1. The Candle Uno model uses multi-layer perceptrons (MLPs) to process

both cell and drug features, which are concatenated as a single high-dimensional representation and

sent to another MLP to predict an reaction score of the cell and drug pair.

Model configuration. We follow prior work [9] to construct the model and set hyperparameters

for training. The bottom MLPs for processing cell and drug features each contains 3 linear layers

with an output dimension of 1000 in each layer. The top MLP for predicting an reaction score

includes 4 linear layers with out dimensions of 1000, 1000, 1000, and 1, respectively. Similar to the

DLRM model, the output of the top MLP has a dimension of 1 indicating the reaction score between

the input cell and drug pair.

Dataset. We use a combination of six datasets (namely CCLE, CTRP, gCSI, GDSC, NCI60, and

ALMANAC) in the Candle benchmark in our evaluation. The combined dataset contains 20 million

samples for training and 5 million samples for validation and testing. Each sample includes two drug

features with dimensions of 5270 and 2048, respectively. The cell feature describes the RNA sequence

of a human body cell with a dimension of 942.

Result. Figure 3.11b shows the performance of training Candle Uno using different strategies on

Summit. Both data and model parallelism cannot scale beyond a single compute node with 6 GPUs

because the large numbers of trainable parameters in multiple MLPs involve significant communication

overhead when using data parallelism, and the lack of inter-operator parallelization opportunities

prevents model parallelism from scaling. For the Candle Uno model, FlexFlow automatically discovers

faster parallelization strategies and improves the overall training throughput by up to 7.8× compared

to data and model parallelism.

3.7.4 Execution Simulator

We evaluate the performance of the simulator using two metrics: simulator accuracy and simulator

execution time.

Simulator accuracy. We first compare the estimated execution time predicted by the execution

simulator with the real execution time measured by actual executions. Figure 3.12 shows the results

for different DNNs and different available devices. The dashed lines indicate a relative difference of

0% and 30%, respectively, which encompasses the variance between actual and predicted execution

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 52

0.4 1 2 4 8
Simulated Execution Time (s)

0.4

1

2

4

8

R
e
a
l
E
x
e
cu

ti
o
n
 T

im
e
 (

s)

4 x P100 (1 node)

16 x P100 (4 nodes)

4 x K80 (1 node)

16 x K80 (4 nodes)

(a) Inception-v3

0.1 0.2 0.5 1 2 4
Simulated Execution Time (s)

0.1

0.2

0.5

1

2

4

R
e
a
l
E
x
e
cu

ti
o
n
 T

im
e
 (

s)

4 x P100 (1 node)

16 x P100 (4 nodes)

4 x K80 (1 node)

16 x K80 (4 nodes)

(b) NMT

Figure 3.12: Comparison between the simulated and actual execution time for different DNNs and
device topologies.

0 5 10 15

Elapsed Time (minutes)
100

150

200

250

300

E
x
p
e
ct

e
d
 R

u
n
 T

im
e
 o

f
B

e
st

 F
o
u
n
d
 S

tr
a
te

g
y
 (

m
s)

Full Simulation

Delta Simulation

Figure 3.13: Search performance with the full and delta simulation algorithms for the NMT model
on 16 P100 GPUs (4 nodes).

time. In addition, for different parallelization strategies with the same computation graph and device

topology (i.e., points of the same shape in the figure), their simulated execution time preserves actual

execution time ordering, which shows that simulated execution time is an appropriate metric to

evaluate the performance of different strategies.

Simulator execution time. Figure 3.13 shows the search performance with different simulation

algorithms for finding a strategy for the NMT model on 16 P100 GPUs on 4 nodes. The full and

delta simulation algorithms terminate in 16 and 6 minutes, respectively. If the allowed time budget is

less than 8 minutes, the full simulation algorithm will find a worse strategy than the delta simulation

algorithm.

We compare the end-to-end search time of the execution optimizer with different simulation

algorithms. For a given DNN model and device topology, we measure the average execution time

of the optimizer using 10 random initial strategies. The results are shown in Table 3.4. The delta

simulation algorithm is 2.2-6.9× faster than the full simulation algorithm. Moreover, the speedup

over the full simulation algorithm increases as we scale the number of devices.

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 53

Figure 3.14: The best discovered strategy for parallelizing Inception-v3 on 4 P100 GPUs. For each
operator, the vertical and horizontal dimensions indicate parallelism in the sample and parameter
dimension, respectively. Each GPU is denoted by a color.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Softmax

Attention

Decoder LSTM2

Decoder LSTM1

Decoder Embed

Encoder LSTM2

Encoder LSTM1

Encoder Embed

Figure 3.15: The best discovered strategy for parallelizing NMT on 4 P100 GPUs. For each operator,
the vertical and horizontal dimensions indicate parallelism in the sample and parameter dimension,
respectively. Each grey box denotes a layer, whose operators share the same network parameters.
Each GPU is denoted by a color.

3.7.5 Search Algorithm

We compare the best discovered strategies with the global optimal strategies for small executions.

To obtain a search space of reasonable size, we limit the number of devices to 4 and consider the

following two DNNs. LeNet [55] is a 6-layer CNN. The second DNN is a variant of RNNLM where

the number of unrolling steps for each recurrent layer is restricted to 2. We use depth-first search

to explore the space and use A∗ [23] to prune the search. Finding the optimal strategies for LeNet

and RNNLM took 0.8 and 18 hours, respectively. For both DNNs, FlexFlow finds the same global

optimal strategy in less than 1 second.

3.7.6 Case Studies

We discuss the best strategies discovered by FlexFlow and how they improve parallelization perfor-

mance.

Inception-v3. Figure 3.14 shows the best discovered strategy for parallelizing Inception-v3 on four

P100 GPUs, which exploits intra-operator parallelism for operators on the critical path and uses a

combination of intra- and inter-operator parallelism for operators on different branches. This results

in a well-balanced workload and reduces data transfers for parameter synchronization. Compared

to data parallelism, this strategy reduces the parameter synchronization costs by 75% and the

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 54

Table 3.5: The parallelism dimensions used by different approaches. S, O, A, and P indicate
parallelism in the Sample, Operator, Attribute, and Parameter dimensions. Hybrid parallelism
indicates an approach supports parallelizing an operator in a combination of the sample, attribute,
and parameter dimensions (see Figure 3.2).

Parallelization Parallelism Hybrid Supported
Approach Dimensions Parallelism DNNs

Data Parallelism S partial**

Model Parallelism O, P all
[50] S, P CNNs**

[87] S, O RNNs#

ColocRL O partial#

OptCNN* S, A, P X linear%

FlexFlow S, O, A, P X all
* OptCNN is an earlier version of FlexFlow.
** Does not work for DNNs whose entire model cannot fit on a single device.
Does not work for DNNs with large operators that cannot fit on a single

device.
% Only works for DNNs with linear computation graphs.

per-iteration execution time by 12%.

For parallelizing the same Inception-v3 model on four K80 GPUs with asymmetric connections

between GPUs (see Figure 3.5b), we observe that the best discovered strategy tends to parallelize

operators on adjacent GPUs with a direct connection to reduce the communication costs.

NMT. Figure 3.15 shows the best discovered strategy for parallelizing NMT on four P100 GPUs.

First, for a layer with a large number of network parameters and little computation (e.g., embed

layers), it performs the computation on a single GPU to eliminate parameter synchronization. Second,

for a layer with a large number of parameters and heavy computation (e.g., softmax layers), FlexFlow

uses parallelism in the parameter dimension and assigns the computation for a subset of parameters

to each task. This reduces parameter synchronization costs while maintaining load balance. Third,

for multiple recurrent layers (e.g., LSTM and attention layers), FlexFlow uses concurrency among

different layers as well as parallelism within each operator to reduce parameter synchronization costs

while balancing load.

3.8 Related Work

Data and model parallelism. Existing ML systems use data and model parallelism as the default

strategies for distributed ML training. Data parallelism [51] is inefficient for operators with a large

number of parameters (e.g., densely-connected layers) and becomes a scalability bottleneck in large

scale distributed training. Model parallelism [27] splits a DNN into disjoint subsets and trains

each subset on a dedicated device, which reduces communication costs for synchronizing network

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 55

parameters but exposes limited parallelism.

Expert-designed parallelization strategies. Recent work optimizes parallelization for specific

DNNs by using experts’ domain knowledge and experience. For example, [50] introduces “one

weird trick” that uses data parallelism for convolutional and pooling layers and switches to model

parallelism for densely-connected layers to accelerate CNNs. To parallelize RNNs, [87] uses data

parallelism that replicates the entire RNN on each node and switches to model parallelism for

intra-node parallelization. Although these expert-designed strategies improve performance over data

and model parallelism, they are suboptimal. We use these expert-designed strategies as baselines in

our experiments and show that FlexFlow can further improve training throughput by up to 2.3×.

Automated frameworks have been proposed for finding efficient parallelization strategies in a

limited search space. ColocRL [61] uses reinforcement learning to find efficient device placement for

model parallelism. [31, 32] exploited hybrid parallelization on tiled domain-specific hardware and

proposed various dataflow optimizations for both intra-layer and inter-layer data communication.

In an earlier approach, we proposed OptCNN [44], which also uses layer-wise parallelism for

parallelizing CNNs with linear computation graphs. OptCNN uses dynamic programming instead of

MCMC to jointly optimize how to parallelize each operator. The major difference with the results

reported in this chapter is that OptCNN’s dynamic programming approach does not apply to many

DNNs used for language modeling, machine translation, and recommendations, which tend to be

RNNs or other non-linear networks.

Table 3.5 summarizes the parallelism dimensions explored by existing approaches. Data parallelism

uses the sample dimension to parallelize training, while model parallelism exploits the parameter

and operator dimensions. Expert-designed strategies exploit parallelism in the sample or parameter

dimension to parallelize an operator but do not support hybrid parallelism that uses a combination

of the sample, attribute, and parameter dimensions to parallelize an operator (see Figure 3.2).

Compared to these manually designed strategies, FlexFlow considers more sophisticated, and often

more efficient, strategies to parallelize a single operator. In addition, compared to existing automated

frameworks (e.g., ColocRL and OptCNN), FlexFlow supports more generic DNNs and finds strategies

that are up to 3.8× faster by exploring a significantly larger search space.

Graph-based cluster schedulers. Previous work has proposed cluster schedulers that schedule

cluster-wide tasks by using graph-based algorithms. For example, Quincy [42] maps task scheduling

to a flow network and uses a min-cost max-flow (MCMF) algorithm to find efficient task placement.

Firmament [33] generalizes Quincy by employing multiple MCMF optimization algorithms to reduce

task placement latencies. Existing graph-based schedulers optimize task placement by assuming a

fixed task graph. However, FlexFlow solves a different problem that requires jointly optimizing how

CHAPTER 3. AUTOMATED DISCOVERY OF PARALLELIZATION OPTIMIZATIONS 56

to partition an operator into tasks by exploiting parallelism in the SOAP dimensions and how to

assign tasks to devices.

3.9 Limitations

One limitation of FlexFlow is that the SOAP search space it explores only considers parallelization

opportunities within a single training batch but does not support pipeline parallelism [65], which

explores inter-batch parallelization opportunities by pipelining the forward processing and back

propagation across different training iterations. In pipeline parallelism each training iteration uses a

staled version of the model parameters in order to enable inter-batch pipelines, which changes the

training semantics and may affect the model’s final accuracy. Combining pipeline parallelism and the

SOAP dimensions will result in a search space orders of magnitude larger than the original SOAP

search space, and it remains an open research problem how to effectively explore the new search

space and discover efficient solutions.

3.10 Conclusion

FlexFlow is a deep learning engine that automatically finds efficient parallelization strategies in the

SOAP search space for distributed DNN training. FlexFlow uses a guided randomized search procedure

to explore the space and includes an execution simulator that is an efficient and accurate predictor

of DNN performance. We evaluate FlexFlow with six real-world DNN benchmarks on two GPU

clusters and show FlexFlow significantly outperforms state-of-the-art parallelization approaches.

Chapter 4

Automated Discovery of Data

Placement Optimizations

4.1 Motivation

Graphs provide a natural way to represent real-world data with relational structures, such as social

networks, molecular networks, and webpage graphs. Recent work has extended deep neural networks to

extract high-level features from data sets structured as graphs, and the resulting architectures, known

as graph neural networks (GNNs), have recently achieved state-of-the-art prediction performance

across a number of graph-related tasks, including vertex classification, graph classification, and link

prediction [49, 37, 89].

GNNs combine DNN operations (e.g., convolution and matrix multiplication) with iterative graph

propagation: In each GNN layer, the activations of each vertex are computed with a set of DNN

operations, using the activations of its neighbors from the previous GNN layer as inputs. Figure 4.1

illustrates the computation of one vertex (in red) in a GNN layer, which aggregates the activations

from its neighbors (in blue), and then applies DNN operations to compute new activations of the

vertex.

Existing deep learning frameworks do not easily support GNN training and inference at scale.

TensorFlow, PyTorch, and Caffe2 were originally designed to handle situations where the model and

data collection can be large, but each sample of the collection is relatively small (e.g., a single image).

These systems typically leverage data and/or model parallelism by partitioning the batch of input

samples or the DNN models across multiple devices, such as GPUs, while each input sample is still

stored on a single GPU and not partitioned. However, GNNs typically use small DNN models (a

couple of layers) on very large and irregular input samples — graphs. These large graphs do not

fit in a single device and so must be partitioned and processed in a distributed manner. Recent

57

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 58

Aggr

Neighbor Aggregation DNN Operations

Figure 4.1: Computation of one vertex (in red) in a GNN layer by first aggregating its neighbors’
activations (in blue), and then applying DNN operations.

GNN frameworks such as DGL [5] and PyG [30] are implemented on top of PyTorch, and have the

same scalability limitation. NeuGraph [57] stores intermediate GNN data in the host CPU DRAM

to support multi-GPU training, but it is still limited to the compute resources of a single machine.

AliGraph [90] is a distributed GNN framework on CPU platforms, which does not exploit GPUs for

performance acceleration.

The current lack of system support has limited the potential application of GNN algorithms on

large-scale graphs, and has also prevented the exploration of larger and more sophisticated GNN

architectures. To alleviate these limitations, various sampling techniques [37, 91] were introduced

to first down-sample the original graphs before applying the GNN models, so that the data fit in a

single device. Sampling allows existing frameworks to train larger graphs at the cost of potential

model accuracy loss [37].

We propose Roc, a distributed multi-GPU framework for fast GNN training and inference on

large-scale graphs. Roc leverages the compute resources of multiple GPUs on multiple compute

nodes to train large GNN models on the full real-world graphs, achieving up to 4× performance over

existing GNN frameworks. Despite its use of full graphs, Roc also achieves better time-to-accuracy

performance compared to existing sampling techniques. Moreover, the better scalability allows Roc

to easily support larger and more sophisticated GNNs than those possible in existing frameworks. To

demonstrate Roc’s scalability and improved accuracy, we design a class of deep GNN architectures

by stacking multiple GCN layers [49]. By using significantly larger and deeper GNN architectures, we

improve the classification accuracy over state-of-the-art sampling techniques by 1.5% on the widely

used Reddit dataset [37].

To achieve these results, Roc tackles two significant system challenges for distributed GNN

computation.

Graph partitioning. Real-world graphs can have arbitrary sizes and variable per-vertex

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 59

computation loads, which are challenging to partition in a balanced way [35, 93]. GNNs mix compute-

intensive DNN operations with data-intensive graph propagation, making it hard to statically compute

a good load-balancing partitioning. Furthermore, GNN inference requires partitioning new input

graphs that only run for a few iterations, such as predicting the properties of newly discovered

proteins [37], in which case existing dynamic repartitioning approaches do not work well [84]. Roc

uses an online linear regression model to optimize graph partitioning. During the training phase of a

GNN architecture, Roc learns a cost model for predicting the execution time of performing a GNN

operation on an input (sub)graph. To capture the runtime performance of a GNN operation, the cost

model includes both graph-related features such as the number of vertices and edges in the graph,

and hardware-related features such as the number of GPU memory accesses to perform the operation.

During each training iteration of a GNN architecture, Roc computes a graph partitioning using the

run time predictions from the cost model, and uses the graph partitioning to parallelize training.

At the end of each training iteration, the actual run time of the subgraphs is sent back to the Roc

graph partitioner, which updates the cost model by minimizing the difference between the actual

and predicted run times. We show that this linear regression-based graph partitioner outperforms

existing static and dynamic graph partitioning strategies by up to 1.4×.

Memory management. In GNNs, the computation for even a single vertex requires accessing

a potentially large number of neighbor vertices that may span multiple GPUs and compute nodes.

These data transfers can have a significant impact on overall performance. The framework thus must

carefully decide in which device memory (CPU or GPU) to store each intermediate tensor, in order to

minimize data transfer costs. The memory management is hard to optimize manually as the optimal

strategy depends on the input graph size and topology as well as the device constraints such as

memory capacity and communication bandwidth. We formulate the task of optimizing data transfers

as a cost minimization problem, and introduce a dynamic programming algorithm to quickly find

a globally optimal strategy that minimizes data transfers between CPU and GPU memories. We

compare the Roc memory management algorithm with existing heuristic approaches [57], and show

that Roc reduces data transfer costs between CPU and GPU by 2×.

Overall, compared to NeuGraph, Roc improves the runtime performance by up to 4× for multi-

GPU training on a single compute node. Beyond improved partitioning and memory management,

Roc sees other smaller performance improvements from a more efficient distributed runtime [46] and

the highly optimized kernels adopted from Lux for fast graph propagation on GPUs [43].

Besides performance acceleration, Roc also enables exact GNN computation on full original

graphs without using sampling techniques, as well as the exploration of more sophisticated GNN

architectures beyond the commonly used two-layer models. For large real-world graphs, we show

that performing exact GNN computation on the original graphs and using larger and deeper GNN

architectures can increase the model accuracy by up to 1.5% on the widely used Reddit dataset

compared to existing sampling techniques.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 60

This chapter describes the contributions of Roc in both systems and machine learning:

• On the systems side, Roc enables fast GNN training and inference on large-scale graphs. Roc

uses a novel online linear regression model to achieve efficient graph partitioning, and introduces

a dynamic programming algorithm to minimize data transfer cost.

• On the machine learning side, Roc removes the necessity of using sampling techniques for

GNN training on large graphs, and also enables the exploration of more sophisticated GNN

architectures. We demonstrate this potential by achieving new state-of-the-art classification

accuracy on the Reddit dataset.

4.2 Background and Related Work

4.2.1 Graph Neural Networks

A GNN takes graph-structured data as input, and learns a representation vector for each vertex in

the graph. The learned representation can be used for down-stream tasks such as vertex classification,

graph classification, and link prediction [49, 37, 89].

As shown in Figure 4.1, each GNN layer gathers the activations of the neighbor vertices from the

previous GNN layer, and then updates the activations of the vertex, using DNN operations such as

convolution or matrix multiplication. Formally, the computation in a GNN layer is:

a(k)v = Aggregate(k)
(
{h(k−1)u |u ∈ N (v)}

)
(4.1)

h(k)v = Update(k)(a(k)v , h(k−1)v) (4.2)

where h
(k)
v is the learned activation of vertex v at the k-th layer, h

(0)
v is the input features of v.

N (v) denotes v’s neighbors in the graph. For each vertex, Aggregate gathers the activations of its

neighbors using an accumulation function such as average or summation. For each vertex v, Update

computes its new activations h
(k)
v by combining its previous activations h

(k−1)
v and the neighborhood

aggregation a
(k)
v . The activations of the last layer h

(K)
v capture the structural information for all

neighbors within K hops of v, and can be used as the input for down-stream prediction tasks.

4.2.2 Related Work

Distributed DNN training. One of the key differences between GNNs and conventional DNNs

is that partitioning in the attribute dimension (recall the SOAP search space in Chapter 3) is

necessary for supporting GNN training on large samples (e.g., graphs). The lack of system support

for parallelizing in the attribute dimension prevents most existing DNN frameworks from training

GNNs on large graphs.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 61

Table 4.1: The graph partitioning strategies used by different frameworks. Balanced training/inference
indicates whether an approach can achieve balanced partitioning for GNN training/inference.

Frameworks Partitioning Balanced Balanced
Strategies Training Inference

TensorFlow, NeuGraph Equal
GraphX, Gemini Static
Presto, Lux Dynamic X
Roc Online learning X X

GNN frameworks. Most of the existing GNN frameworks (e.g., DGL [5] and PyG [30]) do

not support graphs where the data cannot fit in a single device. NeuGraph [57] supports GNN

computation on multiple GPUs in a single machine. AliGraph [90] is a distributed GNN framework

but only uses CPUs rather than GPUs.

Sampling in GNNs. As discussed in Section 4.2.1, due to the highly connected nature of real-

world graphs, computing h
(k)
v may require accessing more data than the GPU memory capacity. A

number of sampling techniques have been proposed to support GNN training on large graphs, by

down-sampling the neighbors of each vertex [37, 91, 17]. The sampling techniques can be formalized

as follows.

a(k)v = Aggregate(k)
(
{h(k−1)u |u ∈ N̂ (v)}

)
(4.3)

where N̂ (v) is the sampled subset of N (v) with a size limit. For example, GraphSAGE [37] samples

at most 25 neighbors for each vertex (i.e., |N̂ (v)| ≤ 25), while a vertex may actually have thousands

of neighbors.

Our evaluation shows that existing sampling techniques come with potential model accuracy loss

for large real-world graphs. This observation is consistent with previous work [37]. Roc provides an

orthogonal approach to support GNN training on large graphs. Any existing sampling technique can

be additionally applied in Roc to further accelerate large-scale GNN training.

Graph frameworks and graph partitioning. A number of distributed graph processing frame-

works [58, 35, 43] have been proposed to accelerate data-intensive graph applications. These systems

generally adopt the Gather-Apply-Scatter (GAS) [34] vertex-centric programming model. GAS can

naturally express the data propagation in GNNs, but cannot support many neural network operations.

For example, computing the attention scores [83] between vertices not directly connected cannot be

easily expressed in the GAS model.

Table 4.1 summarizes the graph partitioning strategies used in existing deep learning and graph

processing frameworks. Deep learning frameworks [11, 57] typically partition data (e.g., tensors)

equally across GPUs. On the other hand, graph processing frameworks use more complicated

strategies to achieve load balance. For example, GraphX [35] and Gemini [93] statically partition

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 62

Input GraphGNN Architecture

Learning-based Graph Partitioner

Partitioned Subgraphs

CPU DRAM

Compute Node

GPU GPU

…
…

Performance Measurements

DPMM DPMM

CPU DRAM

Compute Node

GPU GPU

…
DPMM DPMM

Figure 4.2: Roc system overview. DPMM represents dynamic-programming-based memory manager.

input graphs by minimizing a heuristic objective function, such as the number of edges spanning

different partitions. These simple objective functions can achieve good performance for data-intensive

graph processing, but they do not work well for compute-intensive GNNs due to the highly varying

per-vertex computation loads. Dynamic repartitioning [84, 43] exploits the iterative nature of many

graph applications and rebalances the workload in each iteration based on the measured performance

of previous iterations. This approach converges to a balanced workload distribution for GNN training,

but is much less effective for inference which computes the GNN model only once for each new graph.

Roc uses an online-linear-regression-based algorithm to achieve balanced partitioning for both GNN

training and inference, through jointly learning a cost model to predict the execution time of the

GNN model on arbitrary graphs.

4.3 The approach

Figure 4.2 shows an overview of Roc, which takes a GNN model and a graph as inputs, and

distributes the GNN computations across multiple GPUs (potentially on different compute nodes) by

partitioning the input graph into multiple subgraphs. Each GPU worker performs the computation of

the GNN model on a subgraph, and communicates with CPU DRAM to obtain input tensors and save

intermediate results. The communication is optimized by a per-GPU dynamic-programming-based

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 63

memory manager (DPMM) to minimize data transfers between CPU and GPU memories.

Roc uses an online-linear-regression-based graph partitioner to address the unique load imbalance

challenge of distributed GNN inference, where a trained GNN model is used to perform inference

on previously unseen graphs (Section 4.4). This problem exists today in real-world GNN inference

services [37], and our partitioning technique improves the inference performance by up to 1.4×
compared to existing graph partitioning strategies. The graph partitioner is trained jointly with the

training phase of the GNN architecture, and is also used to partition inference workloads on new

input graphs that are not in the training dataset.

After graph partitioning, all subgraphs are sent to different GPUs to perform GNN computations

in parallel. Instead of requiring all the intermediate results related to each subgraph to fit in GPU

device memory, Roc uses the much larger CPU DRAM on the host machines to hold all the data,

and treats the GPU memories as caches. Such a design allows us to support much larger GNN

architectures and input graphs. However, transferring tensors between a GPU and the host DRAM

has a major impact on runtime performance. Roc introduces a dynamic programming algorithm to

discover a memory management plan that minimizes these data transfers (see Section 4.5).

4.4 Graph Partitioner

The goal of the Roc graph partitioner is discovering balanced partitioning for GNN training and

inference on arbitrary input graphs, which is especially challenging for distributed inference on new

graphs where no existing performance measurements are available. We introduce an online-linear-

regression-based graph partitioner that takes the runtime performance measurements of previously

processed graphs as training samples for a cost model, which is then used to predict performance on

arbitrary new graphs and enable efficient partitioning.

We formulate graph partitioning for GNNs as an online learning task. The performance measure-

ments on partitioned graphs are training samples. Each training iteration produces new data points,

and the graph partitioner computes a balanced graph partitioning based on all existing data points.

4.4.1 Cost Model

The key component of the Roc graph partitioner is a cost model that predicts the execution time of

computing a GNN layer on an arbitrary graph, which could be the whole or any subset of an input

graph. Note that the cost model learns to predict the execution time of a GNN layer instead of an

entire GNN architecture for two reasons. First, Roc exploits the composability of neural network

architectures and the learned cost model can be directly applied to a variety of GNN architectures.

Second, this approach allows Roc to gather much more training data in each training iteration. For

a GNN architecture with N layers and P partitions, Roc collects (N × P) training data points,

while modeling the entire GNN architecture only provides P data points.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 64

Table 4.2: The vertex features used in the current cost model. The semantics of the features are
described in Section 4.4.1. WS is the number of GPU threads in a warp, which is 32 for the V100
GPUs used in the experiments.

Definition Description
x1 1 the vertex itself
x2 |N (v)| number of neighbors
x3 |C(v)| continuity of neighbors

x4
∑

i d
ci(v)
WS
e # mem. accesses to load neighbors

x5
∑

i d
ci(v)×din

WS
e

mem. accesses to load the
activations of all neighbors

As collecting new training data points is expensive, requiring measuring GNN computations

on GPU devices, we employ a simple linear regression model to minimize the number of trainable

parameters. Our model assumes that the cost to perform a DNN operation on a vertex is linear in a

collection of vertex features, such as number of neighbors, and the cost to run an arbitrary graph is

the summation of the cost of all its vertices.

We formalize the cost for running a GNN layer l on an input graph G as follows.

t(l, v) =
∑
i

wi(l)xi(v) (4.4)

t(l,G) =
∑
v∈G

t(l, v) =
∑
v∈G

∑
i

wi(l)xi(v) (4.5)

=
∑
i

wi(l)
∑
v∈G

xi(v) =
∑
i

wi(l)xi(G) (4.6)

where v denotes a vertex in the input graph G, wi(l) is a trainable parameter for layer l, xi(v) is the

i-th feature of v, and xi(G) sums up the i-th feature of all vertices in G.

Our model minimizes the mean square error over all available data points.

Loss(l) =
1

N

N∑
i=1

(
t(l,Gi)− y(l,Gi)

)2
(4.7)

where N is the total number of available data points for the GNN layer l, and y(l,Gi) is the

performance measurement for the i-th data point.

Table 4.2 lists the vertex features used in the cost model; x1(v) and x2(v) capture the computation

workload associated with vertex v and its edges, respectively. The remaining features estimate the

required memory accesses to GPU device memory. Recall that when multiple threads in a GPU warp

issue memory references to consecutive memory addresses, the GPU automatically coalesces these

references to a single memory access that is handled more efficiently. To describe continuity of a

vertex’s neighbors, we partition all neighbors of v as C(v) = {c1(v), ..., c|C|(v)}, where each ci(v) is a

range of consecutively numbered vertices. For example, for vertex v1 with neighbors {v3, v4, v6, v8},

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 65

softmax𝒉𝟎
Gather
Forward

𝒂

𝒘𝟏

Linear
Forward

𝜵𝑳 𝒂 Linear+ReLU
Backward

Linear
Backward

Back Propagation

Forward Processing

𝒈

① ③ ④

⑤⑥

Linear+ReLU
Forward

𝜵𝑳 𝒉𝟎 Gather
Backward⑦

②
𝒃

𝜵𝑳 𝒃

𝒉𝟏

𝜵𝑳 𝒉𝟏

𝒘𝟐

Figure 4.3: The computation graph of a toy 1-layer GIN architecture [89]. A box represents
an operation, and a circle represents a tensor. Arrows indicate dependencies between tensors and
operations. The gather operation performs neighborhood aggregation. The linear and the following
ReLU are fused into a single operation as a common optimization in existing frameworks. h0 and g
denote the input features and neighbors of all vertices, respectively. w1 and w2 are the weights of
the two linear layers.

we have c1(v1) = {v3, v4}, c2(v) = {v6}, and c3(v) = {v8}. The feature x3(v) is the number of

consecutive blocks in v’s neighbors, which is 3 in the example. In addition, x4(v) and x5(v) estimate

the number of GPU memory accesses to load all neighbors and their input activations.

The cost model can be easily extended to include new features to capture additional model- and

hardware-specific information if needed.

4.4.2 Partitioning Algorithm

Using the learned cost model, the Roc graph partitioner computes a graph partitioning that achieves

balanced workload distribution under the cost model.

Roc uses the graph partitioning strategy we developed in Lux [43] to maximize coalesced accesses

to GPU device memory, which is critical to achieve optimized GPU performance. Each vertex in a

graph is assigned a unique number between 0 and V − 1, where V is the number of vertices in the

graph. In Roc, each partition holds consecutively numbered vertices, which allows us to use N − 1

numbers {p0, p1, ..., pN−1} to partition the graph into N subgraphs where the i-th subgraph contains

all vertices ranging from pi−1 to pi − 1 and their in-edges.

Roc preprocesses an input graph by computing the partial sums of each vertex feature, which

allows Roc to estimate the runtime performance of a subgraph in O(1) time. In addition, Roc uses

binary search to find a splitting point pi in O(log V), and therefore computing balanced partitioning

only takes O(N log V) time, where N and V are the number of partitions and input vertices,

respectively.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 66

Table 4.3: All the valid states and their activation tensors for the GNN architecture in Figure 4.3.

Valid State S Activation Tensors A(S)
{¬} {g, a}
{¬, ­} {g, a, b, w1}
{¬, ­, ®} {g, a, b, h1, w1, w2}
{¬, ­, ®, ¯} {g, a, b, w1, w2,OL(h1)}
{¬, ­, ®, ¯, °} {g, a, b, w1,OL(b)}
{¬, ­, ®, ¯, °, ±} {g, a,OL(a)}
{¬, ­, ®, ¯, °, ±, ²} {}

4.5 Memory Manager

As discussed in Section 4.3, Roc performs all GNN computations on GPUs to optimize runtime

performance, but only requires all the GNN data to fit in the host CPU DRAM to support large GNN

architectures and input graphs. The device memory of each GPU therefore only needs to cache a

subset of intermediate tensors, whose corresponding data transfers between CPU and GPU memories

can be saved to reduce communication cost. How to select this subset of tensors to minimize the data

transfers within the limited GPU memory is a critical memory management problem. The optimal

strategy depends not only on the GPU device memory capacity and the sizes of the input graph and

GNN tensors, but also on the topology of the GNN architecture, which determines the reuse distance

for each tensor.

The page replacement algorithms for memory management in operating systems [12] assume

pages are all the same size and that pages are accessed sequentially. Neither assumption holds for

GNN computations since tensors generally have different sizes, and an operator may access multiple

tensors simultaneously. More fundamentally, page replacement algorithms are history-based and

assume no knowledge of future accesses, whereas in the case of a GNN we have access to the program

and can statically determine at any point which tensors will be accessed in the future.

Roc formulates GPU memory management as a cost minimization problem: given an input graph,

a GNN architecture, and a GPU device, find the subset of tensors to cache in the GPU memory

that minimizes data transfers between the CPU and GPU. Roc introduces a dynamic programming

algorithm to quickly find a globally optimal solution.

The key insight of the dynamic programming algorithm is that, at each stage of the computation,

we only need to consider caching tensors that will be reused by future operations. For a GNN

architecture G, we define a state S to be the set of operations that have already been performed in G.

A state is valid only if the operations it contains preserve all the data dependencies in G, i.e., for any

operation in S, all its predecessor operations in G must be also in S. Such a definition allows the

valid states to capture all possible execution orderings of the operators in G. For each state S, we

define its live tensors A(S) to be the set of tensors that were produced by the operations in S and

will be consumed as inputs by the operations outside of S. Intuitively, A(S) captures all the tensors

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 67

we can cache in the GPU to eliminate future data transfers at the stage S.

Figure 4.3 shows the computation graph of a toy 1-layer Graph Isomorphism Network [89], whose

computation can be formalized as following.

h(1)v = W2 ×ReLU(W1 ×
∑

u∈N (v)

h(0)u) (4.8)

For this GNN architecture, all the valid states and their live tensors are listed in Table 4.3.

Algorithm 3 A recursive dynamic programming algorithm for computing minimum data transfers.
In(oi) and Out(oi) return the input and output tensors of the operation oi, respectively, and size(T)
returns the memory space required to save all tensors in T .

1: Input: An input graph g, a GNN architecture G, and the GPU device memory capacity cap.
2: Output: Minimum data transfers required to compute G on g within capacity cap.
3: . D is a database storing all computed Cost functions.
4:

5: function Cost(S, T)
6: if (S, T) ∈ D then
7: return D(S, T)
8: end if
9: if S is ∅ then

10: return size(T)
11: end if
12: cost←∞
13: for oi ∈ S do
14: if (S \ oi) is a valid state then
15: S ′ ← S \ oi
16: T ′ ←

(
T \Out(oi)

)
∩ A(S ′)

17: xfer← size
(
In(oi) \ T ′)

18: if size
(
T ∪ In(oi) ∪Out(oi)

)
≤ cap then

19: cost = min{cost,Cost(S ′, T ′) + xfer}
20: end if
21: end if
22: end for
23: D(S, T)← cost
24: return D(S, T)
25: end function

Since the valid states represent all the possible execution orderings of the GNN, we can use

dynamic programming to compute the optimal memory management strategy associated with each

execution state. Algorithm 3 shows the pseudocode. Cost(S, T) computes the minimum data

transfers required to compute all the operations in a state S, with T being the set of tensors cached

in the GPU memory; T should be a subset of A(S). We reduce the task of computing Cost(S, T) to

smaller tasks by enumerating the last operation to perform in S (line 13). The cost is the specific data

transfers to perform this last operation (xfer in line 17) adding the cost of the corresponding previous

state (S ′, T ′). To improve performance, we leverage memoization to only evaluate Cost(S, T) once

for each (S, T) pair.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 68

Time and space complexity. Overall, the time and space complexity of Algorithm 3 are

O(S2T) and O(ST), respectively, where S is the number of possible execution states for a GNN

architecture, and T is the maximum number of available tensor sets for a state. We observed that S

and T are at most 16 and 4096 for all GNN architectures in our experiments, making it practical to

use the dynamic programming algorithm to minimize data transfer cost.

4.6 Implementation

Roc is implemented on top of FlexFlow (see Chapter 3), and extends FlexFlow in the following

aspects to support efficient GNN computations. First, we have replaced the equal partitioning

strategy in FlexFlow with a fine-grained partitioning interface that supports splitting tensors at

arbitrary points. This extension is critical to efficient partitioning for GNN computations. Second,

we have added a graph propagation engine to support neighborhood aggregation operations in GNNs,

such as the gather operation in Figure 4.3. To achieve performant graph propagation on GPUs,

we have reused the highly optimized CUDA kernels in Lux [43], which is a multi-GPU system we

developed for graph analytics. This adoption allows Roc to directly benefit from all kernel-level

optimizations in Lux.

4.7 Evaluation

In this section, we aim to evaluate the following points:

• Can Roc achieve comparable runtime performance compared to state-of-the-art GNN frame-

works on a single GPU?

• Can Roc improve the end-to-end performance of distributed GNN training and inference?

• Can we improve the model accuracy on existing datasets by using larger and more sophisticated

GNNs?

4.7.1 Experimental Setup

GNN architectures. We use three real-world GNN architectures to evaluate Roc. GCN is a

widely used graph convolutional network for semi-supervised learning on graph-structured data [49].

GIN is provably the most expressive GNN architecture for the Weisfeiler-Lehman graph isomorphism

test [89]. CommNet consists of multiple cooperating agents that learn to communicate amongst

themselves before taking actions [76].

Datasets. We use four real-world graph datasets in our evaluation, listed in Table 4.4. Pubmed is

a citation network dataset [72], containing sparse bag-of-words feature vectors for each document (i.e.,

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 69

Table 4.4: Graph datasets used in our evaluation.

Dataset Vertex Edge Feature Label
Pubmed 19,717 108,365 500 3
PPI 56,944 1,612,348 700 121
Reddit 232,965 114,848,857 602 41
Amazon 9,430,088 231,594,310 300 24

GCN GIN CommNet
Pubmed

0

50

100

150

200

250

GCN GIN CommNet
Reddit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s) TensorFlow DGL PyG Roc

Figure 4.4: End-to-end training throughput comparison between existing GNN frameworks and Roc
on a single P100 GPU (higher is better).

vertex), and citation links between documents (i.e., edges). PPI contains a number of protein-protein

interaction graphs, each of which represents a human tissue [37]. Reddit is a dataset for online

discussion forum, with each node being a post, and each edge being a comment between posts [37].

Amazon is the product dataset from Amazon [40]. Each node is a product, and each edge represents

also-viewed information between products. The task is to categorize a product using its description

and also-viewed relations.

All experiments were performed on a GPU cluster with 4 compute nodes, each of which contains

two Intel 10-core E5-2600 CPUs, 256GB DRAM, and four NVIDIA Tesla P100 GPUs. GPUs on the

same node are connected with NVLink, and nodes are connected with 100Gb/s EDR Infiniband.

For each training experiment, the Roc graph partitioner learned a new cost model by only using

performance measurements obtained during the single experiment. For each inference experiment,

the graph partitioner used the learned cost model from the training phase on the same dataset.

Unless otherwise stated, all experiments use the same training/validation/test splits as prior

work [37, 49, 40]. All training throughput and inference latency were measured by averaging 1,000

iterations.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 70

1(1) 2(1) 4(1) 8(2) 16(4)
Reddit

0

2

4

6

8

1(1) 2(1) 4(1) 8(2) 16(4)
Amazon

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s)

Number of GPU devices

NeuGraph Roc

Figure 4.5: Training throughput comparison between NeuGraph and Roc using different numbers
of GPUs (higher is better). Numbers in parenthesis are the number of compute nodes used in the
experiments.

4.7.2 Single-GPU Results

First, we compare the end-to-end training performance of Roc with existing GNN frameworks on

a single GPU. Due to the small device memory on a single GPU, we limited these experiments to

graphs that can fit in a single GPU.

Figure 4.4 shows the results among TensorFlow [11], DGL [5], PyG [30], and Roc. We expected

that Roc would be slightly slower than the other frameworks on a single GPU, since it writes

the output tensors of each operator back to CPU DRAM for distributed computation, while other

frameworks keep all tensors in a single GPU, and do not involve such data transfers. However, for

these graphs, Roc reuses cached tensors on the GPU to minimize data transfers from DRAM to GPU,

and overlaps the data transfers back to DRAM with subsequent GNN computations. As a result,

Roc achieves on-par or even better performance compared to the other GNN frameworks on a single

GPU. The performance improvement over existing frameworks is likely due to the highly-optimized

CUDA kernels adopted from Lux for fast graph propagation on GPUs, while the other frameworks

such as TensorFlow and DGL perform sparse matrix multiplications on GPUs for graph propagation.

TensorFlow, DGL, and PyG were not able to run the Reddit dataset due to out-of-device-memory

errors. Roc can still train Reddit on a single GPU, by using DRAM to save some of the intermediate

tensors.

4.7.3 Multi-GPU Results

Second, we compare the end-to-end training performance of Roc with NeuGraph. NeuGraph supports

GNN training across multiple GPUs on a single compute node.

A NeuGraph implementation is not yet available publicly, so we run Roc using the same GPU

version and software library versions cited in [57] and directly compare with the performance numbers

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 71

0 60 120 180
Time (second)

0.75

0.8

0.85

0.9

0.95

Te
st

 A
cc

ur
ac

y
Roc
GraphSAGE
FastGCN

Figure 4.6: Time-to-accuracy comparison between state-of-the-art sampling techniques and Roc
on the Reddit dataset [37]. All experiments used the same GCN model. Roc performed full-batch
training on the entire graph, while GraphSAGE and FastGCN performed mini-batch sampling. Each
dot indicates one training epoch for GraphSAGE and FastGCN, and five epochs for Roc.

reported in the NeuGraph paper. We also disabled NVLink for this experiment to rule out the

effect of NVLink, which was not used in [57]. We do not claim that these comparisons control for

all possible differences as well as directly executing both systems on the same machine, but that

preferred approach was simply not available to us.

Figure 4.5 shows the results. For experiments on a single compute node, Roc outperforms

NeuGraph by up to 4×. The speedup is mainly because of the graph partitioning and memory

management optimizations that are not available in NeuGraph. First, NeuGraph uses the equal

vertex partitioning strategy that equally distributes the vertices across multiple GPUs. Section 4.7.6

shows that the linear regression-based graph partitioner in Roc improves training throughput by

up to 1.4× compared to the equal vertex partitioning strategy. Second, NeuGraph uses a stream

processing approach that partitions each GNN operation into multiple chunks, and sequentially

streams each chunk along with its input data to GPUs. Therefore, it does not consider the memory

management optimization used in Roc, and Section 4.7.7 shows that the Roc memory manager

improves training throughput by up to 2×.

The remaining performance improvement is likely due to other aspects of Roc, such as the use of

the highly optimized CUDA kernels in Lux for fast graph propagation, and the performance of the

underlying Legion runtime [15]. However, we were not able to further investigate the performance

difference due the absence of a publicly available implementation of NeuGraph.

4.7.4 Comparison with Graph Sampling

We compare the training performance of Roc with state-of-the-art graph sampling approaches on

the Reddit dataset. All frameworks use the same GCN model [49]. Roc performs full-batch training

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 72

16 32 64 128 256 512
Number of Activations Per Layer

93

94

95

96

97

Te
st

 A
cc

ur
ac

y
on

 R
ed

di
t

(%
)

GraphSAGE

FastGCN

Original GCN

96.9

2 GCN Layers
3 GCN Layers
4 GCN Layers

Figure 4.7: Test accuracy on the Reddit dataset using deeper and larger GNN architectures. The
dotted lines show the best test accuracy achieved by GraphSAGE (95.4%), FastGCN (93.7%), and
the original GCN architecture (94.7%), respectively.

on the entire graph as in [49], while GraphSAGE and FastGCN uses mini-batch sampling with a

batch-size of 512.

Figure 4.6 shows the time-to-accuracy comparison on a single P100 GPU, where the x-axis shows

the end-to-end training time for each epoch, and the y-axis shows the test accuracy of the current

model at the end of each epoch. For GraphSAGE and FastGCN, each dot indicates one training

epoch, while for Roc each dot represents five training epochs for simplicity. Note that GraphSAGE

and FastGCN can achieve relatively high accuracy within a few training epochs. For example,

GraphSAGE achieves 93.4% test accuracy in two epochs. However, Roc requires around 20 epochs

to achieve the same test accuracy because Roc uses full-batch training (following [49]), and only

updates parameters once per epoch, while existing sampling approaches generally perform mini-batch

training and have more frequent parameter updates. Even though Roc uses more epochs, it is still

as fast or faster than GraphSAGE and FastGCN to any given level of accuracy.

4.7.5 Deeper and Larger GNN Architectures

Roc enables the exploration of larger and more sophisticated GNN architectures than those possible

in existing frameworks. As a demonstration, we consider a class of deep GNN architectures formed

by stacking multiple GCN layers [49]. We add residual connections [39] between subsequent GCN

layers to facilitate training of deeper GNN architectures by allowing preservation of information

learned from previous layers.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 73

1(1) 2(1) 4(1) 8(2) 16(4)
Number of GPUs

0

1

2

3

4

5

6

7

8 Equal Edge Partition
Equal Node Partition
Roc

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s)

Figure 4.8: Training throughput comparison among different graph partitioning strategies on the
Reddit dataset (higher is better). Numbers in parentheses are the number of compute nodes used.

Formally, each layer of our GNN is defined as follows.

H(k+1) =

GCN(H(k)) +H(k) d(H(k+1)) = d(H(k))

GCN(H(k)) +WH(k) d(H(k+1)) 6= d(H(k))

where GCN is the original GCN layer [49], and d(·) is the number of activations in the input tensor.

When H(k) and H(k+1) have the same number of activations, we directly insert a residual connection

between the two layers. When H(k) and H(k+1) have different numbers of activations, we use a linear

layer to transform H(k) to the desired shape. This design allows us to add residual connections for

all GCN layers.

We increase the depth (i.e., number of GCN layers) and width (i.e., number of activations per

layer) to obtain larger and deeper GNN architectures beyond the commonly used 2-layer GNNs.

Figure 4.7 shows the accuracy achieved by our GNN architectures on the Reddit dataset. The

figure shows that improved accuracy can be obtained by increasing the depth and width of a GNN

architecture. As a result, our GNN architectures achieve up to 96.9% test accuracy on the Reddit

dataset, outperforming state-of-the-art sampling techniques by 1.5%.

4.7.6 Graph Partitioning

To evaluate the linear regression-based graph partitioner in Roc, we compare the performance of the

graph partitioning achieved by Roc with (1) equal vertex partitioning and (2) equal edge partitioning;

(1) is used in NeuGraph to parallelize GNN training, and (2) has been widely used in previous graph

processing systems. Figure 4.8 shows the training throughput comparison on different sets of GPUs.

Neither of these baseline strategies perform as well as the Roc linear regression-based partitioner.

To evaluate the distributed inference performance on new graphs not used during training, we

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 74

1(1) 2(1) 4(1) 8(2) 16(4)
Number of GPUs

0

50

100

150

200

250

300 Equal Edge Partition
Equal Node Partition
Roc

En
d-

to
-e

nd
 In

fe
re

nc
e

Ti
m

e
(m

s)

Figure 4.9: End-to-end inference time for the test graphs in the PPI dataset (lower is better). The
numbers were measured by averaging the inference time of the four test graphs.

No
Cache

LRU Roc
0

1

2

3

4

5

6

7

Pe
r-e

po
ch

 D
at

a
Tr

an
sf

er
s (

GB
)

7.29

2.15
1.45

(a) Data transfers.

No
Cache

LRU Roc
0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-e

po
ch

 R
un

 T
im

e
(s

) 1.01

0.63
0.55

(b) Training time.

Figure 4.10: Performance comparison among different memory management strategies (lower is
better). All numbers are measured by training GCN on the Reddit dataset on a single GPU.

CHAPTER 4. AUTOMATED DISCOVERY OF DATA PLACEMENT OPTIMIZATIONS 75

used the PPI dataset containing 24 protein graphs. Following prior work [37], we trained the GIN

architecture on 20 graphs and measured the inference latency on the remaining four graphs by using

the graph partitioner learned during training. Figure 4.9 shows that the the learned cost model

enables the graph partitioner to discover efficient partitioning on new graphs for inference services,

by reducing the inference latency by up to 1.2×. For the PPI graphs, the distributed inference across

multiple compute nodes achieves worse performance than the inference on a single node, which is

due to the small sizes of the inference graphs.

4.7.7 Memory Management

We evaluate the performance of the Roc memory manager by comparing it with (1) the streaming

processing approach in NeuGraph that streams input data along with computation (i.e., no caching

optimization) and (2) the least-recently-used (LRU) cache replacement policy.

Figure 4.10 shows the comparison results for training GCN on the Reddit dataset on a single GPU.

The dynamic programming-based memory manager reduces the data transfers between GPU and

DRAM by 1.4–5× and reduces the per-epoch training time by 1.2–2× compared with the baseline

memory management strategies.

4.8 Conclusion

To conclude, this chapter presents Roc, a distributed multi-GPU framework for high-performance

and large-scale GNN training and inference. Roc partitions an input graph onto multiple GPUs on

multiple compute nodes using an online-linear-regression-based strategy to achieve load balance, and

coordinates optimized data transfers between GPU devices and host CPU memories with a dynamic

programming algorithm. Roc increases the performance by up to 4× over existing GNN frameworks,

and offers better scalability. The ability to process larger graphs and GNN architectures additionally

enables model accuracy improvements. We achieve new state-of-the-art classification accuracy on the

Reddit dataset by using significantly deeper and larger GNN architectures.

Chapter 5

Conclusions

We presented a search-based methodology to build efficient and scalable machine learning systems by

automatically discovering potential ML optimizations. Compared to current ML systems relying on

manually designed ML optimizations, our methodology provides better runtime performance, less

engineering effort, and, for the work in Chapter 2, stronger correctness guarantees.

The search-based methodology proposed in this dissertation has two primary limitations.

First, our approach requires a search procedure to discover optimized solutions by exploring

many (up to millions) of possible candidates. As a result, these automated techniques only apply to

static ML models without data-dependent behaviors and optimize the models in an offline manner.

One future research direction is designing automated techniques for optimizing dynamic ML models,

which requires different methods to quickly discover performant strategies in a large and evolving

search space. Reinforcement learning and other learning-based methods seem to provide a promising

way to optimize dynamic ML models.

Second, the systems presented in this dissertation are designed for optimizing individual tasks of

ML deployment (e.g., TASO for computation graphs, FlexFlow for parallelization, and Roc for data

placement). However, joint optimization opportunities across multiple tasks of ML deployment are

currently missing. Coordinating among multiple optimizations tasks requires combining the search

spaces of individual tasks into a joint search space orders of magnitude larger than the individual

ones. It remains an open research problem how to cooperatively design the search space, cost model,

and search algorithm to discover joint and even end-to-end ML optimizations.

We have demonstrated the applicability of our approach using three ML systems that automatically

discovers performance optimizations for different tasks in ML deployment.

All source code for the three systems is publicly available:

• TASO: https://github.com/jiazhihao/TASO

• FlexFlow: https://github.com/FlexFlow/flexflow

76

https://github.com/jiazhihao/TASO
https://github.com/FlexFlow/flexflow

CHAPTER 5. CONCLUSIONS 77

• Roc: https://github.com/jiazhihao/Roc

FlexFlow and Roc are both developed on top of the Legion distributed runtime, and Roc is also

built on top of the Lux graph analytics system. Both Legion and Lux are also publicly available:

• Legion: https://legion.stanford.edu

• Lux: https://github.com/LuxGraph/Lux

https://github.com/jiazhihao/Roc
https://legion.stanford.edu
https://github.com/LuxGraph/Lux

Bibliography

[1] Amazon EC2 P3 Instances. https://aws.amazon.com/ec2/instance-types/p3/, 2017.

[2] Tensorflow graph transform creates corrupted graph. https://github.com/tensorflow/

tensorflow/issues/7523, 2017.

[3] XLA: Optimizing Compiler for TensorFlow. https://www.tensorflow.org/xla, 2017.

[4] CANDLE Benchmarks. https://github.com/ECP-CANDLE/Benchmarks, 2018.

[5] Deep Graph Library: towards efficient and scalable deep learning on graphs. https://www.dgl.

ai/, 2018.

[6] Graph transform: fold constant with invalid graph. https://github.com/tensorflow/

tensorflow/issues/16545, 2018.

[7] Tensor Cores in NVIDIA Volta Architecture. https://www.nvidia.com/en-us/data-center/

tensorcore/, 2018.

[8] The Criteo Ad Kaggle dataset. https://www.kaggle.com/c/criteo-display-ad-challenge,

2018.

[9] Uno: Predicting tumor dose response across multiple data sources. https://github.com/

ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno, 2018.

[10] NVLink and NVSwitch: Advanced Multi-GPU Systems. https://www.nvidia.com/en-us/

data-center/nvlink/, 2019.

[11] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,

Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for

Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation, OSDI, 2016.

78

https://aws.amazon.com/ec2/instance-types/p3/
https://github.com/tensorflow/tensorflow/issues/7523
https://github.com/tensorflow/tensorflow/issues/7523
https://www.tensorflow.org/xla
https://github.com/ECP-CANDLE/Benchmarks
https://www.dgl.ai/
https://www.dgl.ai/
https://github.com/tensorflow/tensorflow/issues/16545
https://github.com/tensorflow/tensorflow/issues/16545
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.kaggle.com/c/criteo-display-ad-challenge
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

BIBLIOGRAPHY 79

[12] Alfred V Aho, Peter J Denning, and Jeffrey D Ullman. Principles of optimal page replacement.

Journal of the ACM (JACM), 18(1):80–93, 1971.

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. CoRR, abs/1409.0473, 2014.

[14] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In Proceedings

of the 12th International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS, 2006.

[15] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality

and independence with logical regions. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC, 2012.

[16] A New Lightweight, Modular, and Scalable Deep Learning Framework. https://caffe2.ai,

2016.

[17] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional

networks via importance sampling. In Proceedings of the International Conference on Learning

Representations, ICLR, 2018.

[18] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,

Chiyuan Zhang, and Zheng Zhang. MXNet: A flexible and efficient machine learning library for

heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

[19] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan

Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM:

An automated end-to-end optimizing compiler for deep learning. In Proceedings of the 13th

USENIX Symposium on Operating Systems Design and Implementation, OSDI, Carlsbad, CA,

2018.

[20] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos

Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In Proceedings of

the 31st International Conference on Neural Information Processing Systems, NeurIPS. 2018.

[21] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan

Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning. CoRR,

abs/1410.0759, 2014.

[22] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. Semantic program alignment

for equivalence checking. In Proceedings of the 2019 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, 2019.

https://caffe2.ai

BIBLIOGRAPHY 80

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[24] Dense Linear Algebra on GPUs. https://developer.nvidia.com/cublas, 2016.

[25] Manjeet Dahiya and Sorav Bansal. Black-box equivalence checking across compiler optimizations.

In Asian Symposium on Programming Languages and Systems, pages 127–147. Springer, 2017.

[26] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS/ETAPS, 2008.

[27] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.

Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large

scale distributed deep networks. In Proceedings of the 25th International Conference on Neural

Information Processing Systems, NIPS, 2012.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[29] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.

CoRR, abs/1603.07285, 2016.

[30] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[31] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris: Scalable

and efficient neural network acceleration with 3d memory. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS, 2017.

[32] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. Tangram: Optimized

coarse-grained dataflow for scalable nn accelerators. In Proceedings of the 24th International Con-

ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS,

2019.

[33] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven Hand. Firma-

ment: Fast, centralized cluster scheduling at scale. In 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI, Savannah, GA, 2016.

[34] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:

Distributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation, OSDI, 2012.

https://developer.nvidia.com/cublas

BIBLIOGRAPHY 81

[35] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and

Ion Stoica. GraphX: Graph processing in a distributed dataflow framework. In Proceedings of

the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI, 2014.

[36] Sumit Gulwani and George C. Necula. Discovering affine equalities using random interpretation.

In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL, 2003.

[37] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large

graphs. In Proceedings of the 30th International Conference on Neural Information Processing

Systems, NIPS. 2017.

[38] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2016.

[40] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering. In Proceedings of the 25th International Conference

on World Wide Web, WWW, 2016.

[41] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[42] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew

Goldberg. Quincy: Fair scheduling for distributed computing clusters. In Proceedings of the

ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP, 2009.

[43] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken.

A Distributed multi-GPU System for Fast Graph Processing. Proc. VLDB Endow., 11(3),

November 2017.

[44] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring hidden dimensions in accelerating

convolutional neural networks. In Proceedings of the 35th International Conference on Machine

Learning, Proceedings of Machine Learning Research, 2018.

[45] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu Gao, Matei Zaharia, and Alex Aiken.

Optimizing dnn computation with relaxed graph substitutions. In Proceedings of the 2nd

Conference on Systems and Machine Learning, SysML, 2019.

BIBLIOGRAPHY 82

[46] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural

networks. In Proceedings of the 2nd Conference on Systems and Machine Learning, SysML,

2019.

[47] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance

analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, ISCA, 2017.

[48] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,

2014.

[49] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In Proceedings of the International Conference on Learning Representations, ICLR,

2017.

[50] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR,

abs/1404.5997, 2014.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep

convolutional neural networks. In Proceedings of the 25th International Conference on Neural

Information Processing Systems, NIPS, 2012.

[52] Shui Lam and Ravi Sethi. Worst case analysis of two scheduling algorithms. SIAM Journal on

Computing, 6, 1977.

[53] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition: A

convolutional neural-network approach. IEEE transactions on neural networks, 1997.

[54] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo

inputs. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI, 2014.

[55] Yann LeCun. LeNet-5, convolutional neural networks. http://yann.lecun.com/exdb/lenet,

2015.

[56] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. Optimizing memory

efficiency for deep convolutional neural networks on gpus. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2016.

[57] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai.

NeuGraph: Parallel Deep Neural Network Computation on Large Graphs. In Proceedings of the

2019 USENIX Annual Technical Conference, ATC, 2019.

http://yann. lecun. com/exdb/lenet

BIBLIOGRAPHY 83

[58] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,

SIGMOD, 2010.

[59] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated

corpus of english: The penn treebank. Comput. Linguist., 19.

[60] Henry Massalin. Superoptimizer: a look at the smallest program. In ACM SIGARCH Computer

Architecture News, volume 15, 1987.

[61] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen

Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization

with reinforcement learning. In Proceedings of the 34th International Conference on Machine

Learning, ICML, 2017.

[62] Intel Math Kernel Library for Deep Neural Networks. https://01.org/mkl-dnn, 2016.

[63] Movie review data. https://www.cs.cornell.edu/people/pabo/movie-review-data/, 2005.

[64] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.

In Proceedings of the 27th International Conference on International Conference on Machine

Learning, ICML, USA, 2010.

[65] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,

Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline

parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP, 2019.

[66] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sun-

daraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini,

et al. Deep learning recommendation model for personalization and recommendation systems.

arXiv preprint arXiv:1906.00091, 2019.

[67] George C. Necula. Translation validation for an optimizing compiler. In Proceedings of the

2000 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI,

2000.

[68] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic

evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association

for Computational Linguistics, ACL, 2002.

https://01.org/mkl-dnn
https://www.cs.cornell.edu/people/pabo/movie-review-data/

BIBLIOGRAPHY 84

[69] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Tools and Algorithms

for Construction and Analysis of Systems, 4th International Conference, Held as Part of the

European Joint Conferences on the Theory and Practice of Software, TACAS, 1998.

[70] Tensors and Dynamic neural networks in Python with strong GPU acceleration. https://

pytorch.org, 2017.

[71] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision

(IJCV), 115(3):211–252, 2015.

[72] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[73] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Data-driven equivalence

checking. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH

2013, Indianapolis, IN, USA, October 26-31, 2013, pages 391–406, 2013.

[74] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

[75] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong Zhou. Astra: Exploiting

predictability to optimize deep learning. In Proceedings of the Twenty-Fourth International Con-

ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS,

New York, NY, USA, 2019. ACM.

[76] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning multiagent communication with

backpropagation. In Proceedings of the 29th International Conference on Neural Information

Processing Systems, NIPS, 2016.

[77] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

CoRR, abs/1409.4842, 2014.

[78] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016.

https://pytorch.org
https://pytorch.org

BIBLIOGRAPHY 85

[79] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: A new

approach to optimization. Logical Methods in Computer Science, 7(1), 2011.

[80] NVIDIA TensorRT: Programmable inference accelerator. https://developer.nvidia.com/

tensorrt, 2017.

[81] Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken. Dependent

partitioning. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA. ACM, 2016.

[82] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland, Al Geist, James Sexton, Jim

Kahle, Christopher J Zimmer, Scott Atchley, Sarp Oral, Don E Maxwell, et al. The design,

deployment, and evaluation of the coral pre-exascale systems. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, SC. IEEE,

2018.

[83] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua

Bengio. Graph attention networks. Proceedings of the International Conference on Learning

Representations, 2018.

[84] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber.

Presto: Distributed machine learning and graph processing with sparse matrices. In Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys, 2013.

[85] Acl 2016 first conference on machine translation. http://www.statmt.org/wmt16, 2016.

[86] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep

neural networks. In Proceedings of the International Conference on Learning Representations,

ICLR, 2018.

[87] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,

Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin

Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto

Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith,

Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.

Google’s neural machine translation system: Bridging the gap between human and machine

translation. CoRR, abs/1609.08144, 2016.

[88] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual

transformations for deep neural networks. CoRR, abs/1611.05431, 2016.

[89] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural

networks? In Proceedings of the International Conference on Learning Representations, ICLR,

2019.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
http://www.statmt.org/wmt16

BIBLIOGRAPHY 86

[90] Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD.

ACM, 2019.

[91] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, KDD, New York, NY, USA, 2018. ACM.

[92] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.

CoRR, abs/1409.2329, 2014.

[93] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-centric

distributed graph processing system. In 12th USENIX Symposium on Operating Systems Design

and Implementation, OSDI. USENIX Association, 2016.

[94] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. CoRR,

abs/1611.01578, 2016.

[95] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable

architectures for scalable image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, CVPR, 2018.

	Abstract
	Acknowledgments
	Publications
	Introduction
	Machine Learning Systems
	Challenges of Building ML Systems
	Approach: Automated Discovery of ML Optimizations
	Discussion
	Roadmap

	Automated Discovery of Graph Optimizations
	Motivation
	The Approach
	Graph Substitution Generator
	Graph Substitution Definition
	Generation Algorithm

	Graph Substitution Verifier
	Pruning Redundant Substitutions
	Cost Model
	Joint Optimizer
	Implementation
	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Substitution Case Study
	Analysis of Used Substitutions
	Joint Optimization of Graph Substitutions and Data Layout
	Graph Substitution Verifier

	Related Work
	Limitations
	Conclusion

	Automated Discovery of Parallelization Optimizations
	Motivation
	The Approach
	The SOAP Search Space
	Execution Simulator
	Task Graph
	Full Simulation Algorithm
	Delta Simulation Algorithm

	Execution Optimizer
	MCMC Sampling
	Search Algorithm

	FlexFlow Runtime
	Evaluation
	Experimental Setup
	Parallelization Performance
	DLRM and Candle Uno
	Execution Simulator
	Search Algorithm
	Case Studies

	Related Work
	Limitations
	Conclusion

	Automated Discovery of Data Placement Optimizations
	Motivation
	Background and Related Work
	Graph Neural Networks
	Related Work

	The approach
	Graph Partitioner
	Cost Model
	Partitioning Algorithm

	Memory Manager
	Implementation
	Evaluation
	Experimental Setup
	Single-GPU Results
	Multi-GPU Results
	Comparison with Graph Sampling
	Deeper and Larger GNN Architectures
	Graph Partitioning
	Memory Management

	Conclusion

	Conclusions

