Domain-Specific Modeling:
No one-size-fits-all

6 October 2005

Dr. Juha-Pekka Tolvanen

MetaCase

|

Contingency theory and software
development

[ | D|ver5|ty due to
type of systems built
— organizations
- cultures
- technology (that keeps evolving)
tools, etc.
B Most general purpose modeling languages do not recognize
the diversity
® Contingency theory advocates for flexible languages (no
smgle language gives best result in all situations)
IFIP WG conferences (Olle et al. 1982, -83, -86, -88)
- Empirical studies show that companies prefer own methods
e 2/3 use internal, home-grown methods, Russo et al., Fitzgerald
- Laboratory studies show that developers understand and use
methods differently

* Extend, give new meanings, create own interpretations etc. for
modeling constructs (e.g. in studies by Wijers, Verhoef)

© 2005 Juha-Pekka Tolvanen / MetaCase 2




Fixed language challenge

B Fixed, general purpose, modeling languages have not
made models 1st class development artifacts

- IDEF, SSADM, Express, Merise, Euromethod, SDL, UML,
SDM, ER etc.
e With some exceptions in specific domains with SDL,
schema design, Labview, etc.
B Model-Driven Development sets new requirements for
languages

- To enable code generation, testing, configuration,
simulation, requirements validation, model reuse, etc.

- Current languages offer only modest possibilities

e It's hard to use general purpose solutions to
automate specific things

B To add value modeling should save time and
improve quality

© 2005 Juha-Pekka Tolvanen / MetaCase 3

How languages contribute to
productivity and quality?

B "The entire history of software an
engineering is that of the rise in
levels of abstraction" 3

Murmnker of new praduct featurzs

implerrented Inoa cren bims
ieroducldy prepoicnal 1o Aetemblen)

B New programming languages
have not increased productivity

B UML and visualization of code
have not increased productivity

m Abstraction of development can
be raised above current level...

® ... and still generate full
production code (and ignore it!)

Aszemie Fodan  Bosic Car Jawen Larae.
Speris

*Software Productivity Research & Capers Jones, 2002

© 2005 Juha-Pekka Tolvanen / MetaCase 4




Let’s see examples from different
domains...

Smartphone applications
Telecom service creation
eCommerce marketplace

Web applications

IP telephony services
Applications in microcontroller
Workflow applications

© 2005 Juha-Pekka Tolvanen / MetaCase

[
- Casel:
Enterprise apps in smartphones

B Symbian/Series 60 for enterprise application
development

m Platform provides basic services

B Modeling language to define application logic using
basic widgets and services

B Code generator produces 100% of implementation
B Complete chain from model to running app

© 2005 Juha-Pekka Tolvanen / MetaCase




Conference regjstration, May 26, 2004,

Graph Edit Yiew Iypes Help
EE ¥hiR - B Qs
OO H=8 =@ @ 5 | s fo

&
i Payment method
- Your name?

Conference i ) fibe | |

Registration

Welcome Credit card

Tew progranm
Cancel registration
12345675 Registration
+Pershlames+, +Payment
Cancel combo
registration
5 Registration made M
12345678 Cancel Cancel
o Program
\ on'Vieh

SMS cancellation o

= ¥
L]

< >
Active: None | Subgraph(s): None | rid: 1010 | Zoom: 100

© 2005 Juha-Pekka Tolvanen / MetaCase

Conference
registration

[995,- USD

O T2: Jackson
O T3: Holland
.| T4: Cohen
| T7: Dawson

(- Cancel

© 2005 Juha-Pekka Tolvanen / MetaCase




Case2: Configuration of services

B Telecom services and their configuration

B Users visually specify new configuration models

B Generate various configurations from single design
- One model
- Multiple outputs

B Reusable component library

B Code generators refers to external files

© 2005 Juha-Pekka Tolvanen / MetaCase

|

= LAMA_setup: Anduras, July 20, 2001, 12:12
Graph Edit View Types Help

|
EEENEREEEREEEEEEEEE= =R
o] ) o] 4] ] ] ] ]

\)E ﬂ 3]
30100 0 Y
Telfort

v ko
nnnnn T reLr

JreLrozT

soin

By o e
ron
sororon
30130 B2l check \i
[ o ‘ —¥ kxec
sois1 cheok/check.sh
30140
deninosir
ELd
L~ T I
‘‘‘‘‘ SMTP |
0150 smtp
p Follbok H‘ T

‘ a0

p CURNACO
o

30120

4 Donina

sssss

=] T =
Active: None Grid: 10@10 Zoom: 30%

© 2005 Juha-Pekka Tolvanen / MetaCase

10




This is a simple config file generated by MetaCase Reporting Tool
Actual LAMA components  Graph are:

typ : LAMA_setup; name:  AndurasMini
LAMAZ - STARTUP- Configuration
Config_name = LAMAmini.cfg
LAMA_root _dir = sopt/lamamini
global.subnet = minick.hamburg.minick.net
global.subnet_mask = 255.255.255.0
global MYSOL_USER = test
2lobal MYSOL_DATABASE = save_the_sms
2lobal.MySOL_UNX_SOCKET = NULL
¢lobal.DB_type = syhase
global.tcp_nodelay = 0
# End STARTUP

EEE T

# In Module :

# HModule I_SMTP_in iosmtp

smtp_in.main_queue = localhost 32000

smtp_in.server_port = 25

smitp_in.info_port = 34333

smtp_in.debug_port = 33333

# Maln Queue: sms

SMS_(UELE . gUELE_pOrt = 32000

=ms_gueue. info_port = 32001

M _ueLe. supported_properties = all
sms_gueue.secs_to_reset_falled_connections = 0

# Dispatcher properties are stored in routing table file
# Routing table filename not set. Use Default Routing file : cfg/LAMA-routing.cfg
Dispatcher.routingtable = cfg/LAMA-routing.cfg

# UCP-out module @ D1

ucp_out_Dl.natlional_prefix =

ucp_out_Dl.windowsize = O

ucp_out_D1.TCF_NODELAY = 0

ucp_out_D1.logfile = logsDi.log

= ok
Auto-saving.. .done Ll

© 2005 Juha-Pekka Tolvanen / MetaCase 11

Case3:
Insurance products & eCommerce

m Developing portal for insurances and financial
products

B Need to specify several hundred financial products

B Insurance experts specify visually insurance
products and generate code to the portal

m Comparison to writing directly Java after first 30
products = DSM at least 3 times faster

© 2005 Juha-Pekka Tolvanen / MetaCase 12




ugust 20, 2003, 1
diew Iypes Help

PN R A
Am O B)os A BICICI 3 & 1) s oop et oo

Compreh
Coverage

Ca‘%r wner Takss

Theft

Animal

R S

nt

3rd Party

Damage 3rd
party

5

Car Driver Passenger 3rd Party
<
Active: None | subgraph(s): Nene o1 | Zoom: 100
© 2005 Juha-Pekka Tolvanen / MetaCase 13
ST
Vo wion e

public class Basis extends ProductRepository
<
public Basis(string name)
{
super (nane) ;
PRODUCT_NAHE - Basis;
HoFPackage productpackage - createProduct();

this. addHofPackage(productpackage) ;
¥

public Basis()
<

// name of namespace ProductRepository mot used
this(Basis);

¥

private HofPackage createProduct()
<

ey | moem | wscre | sooem] moeae mee |

productpackage_

new HofPackage(PRODUCT_NAHE) ;

/7 Global Instances, will be re-used by each section
Hofattribute attribute;

AssociationEnd end1;

Reference reference;

"
/7 Tags
/"

beitragssicht_ - new T
productpackage_

g(**Tari Fierung" ,HoFtode 1Constants. TAGID_TARIFI|
addContainedTag(beitragssicht_);

selektionssichtTrue_ - new Tag(“Selektion_true”,HoftodelConstants.TAG
selektionssichtTrue_.addValue(“True");

productpackage_.addContainedTag(selektionssichtTrue_);

angebotssicht_ = new Tag(Angebot”,HoflodelConstants. TAGID_ANGEBOT);
productpackage_.addContainedTag(angebotssicht_);

[2emiee
Hofssociation mofssociation; 3.Fac )
Constant constant;

trdungen
1124588 ()
AssociationEnd end2;

Hier kianen Sie bre Regstricrungadeten andern

i
/1 Exceptions

HoFException Exceptioni - new MoFException (“Exceptiont™)
parameter - new Parameter(“ExcepParami”, new DataType(Haftung"});
-addParaneter (paraneter)

parameter = new Parameter(“ExceptionParam2”, new DataType("string”));
-addParaneter (paraneter)

[70 [ WRJ[ [Rec Off No'wrap [DOS INS NUM |

“
Ln Col1

Nt

© 2005 Juha-Pekka Tolvanen / MetaCase

14




Case4: Web application

B Web application for e-commerce; product catalogs,
events, press releases, and discussion forums

B Core components and basic functionality available
for reuse and customization needs

B Each customer can specify own data content,
behavioral logic and user interface

B Code generators produce running Java applets,

stylesheets and xml files

B Generation of documents for both internal and

external use

© 2005 Juha-Pekka Tolvanen / MetaCase

15

[EEForm Model: Event Admin view, June 9, 2001, 10:15
Giaph Edit View Types Help

i Form Model: Event view, June 11, 2001, 14:02+
Graph Edt Yiew Types Help

_IEIElel | Ca\lluklaw-l\m:ll

=lolx]|

EENDRE R

Event Event
=3 Overvie: e
Hame
Date Dne (s
Ot (Enss)
iew
Print oK Delete Hew Updiste
Eventupdate Euent
into Detaledt Al elements
[ Pap— = | stown
o 0 the e,
Register
Errar
sam Registeration confirmed
User gats information about his
sonfimation.
Info
Gorimation about ‘
e Send by
e
kil |
4 |

Active: None Grid: 10@210 Zoom: 100%

Active: Mone Grid: 10@10 Zoom: 100%

© 2005 Juha-Pekka Tolvanen / MetaCase

16




=10l

“ Fie Edt Project XML DTDfSchema Schemadesign ¥SL Convert Tsble View Browser Scripting Window Help |

HD\D“&\Hﬁ‘Q‘;Qg‘mn‘ﬁ@ﬂb‘wwg ‘@‘W‘Hﬁ‘ﬁﬁ‘f‘ﬂ?ﬂ”‘-m‘n,_‘ﬁﬂuﬂ‘

e ol - O T Y Bespetwebseite ) =
« xsi:stylesheet - WEBSHOP! 3
=10 schsetn.
= » hittpe thaarw w3 orgf 3397 SLTransform
~ wsi:template ;
= match
« html
[“celect  Joode |
< 3
This file is wel-formed. Plaase note: vou can also validats an XML file against ts
@ document type dsfintion . -
Eni([onl||lrattektat|lved||valtal Bal|ral|ea
ML Spy w3.5NT Registered to Juha-Pekka Tolvanen (Metatase Consulting) (c)1998-2001 Altova GmbH & Alova, Inc. [ [ |wom | Vi
© 2005 Juha-Pekka Tolvanen / MetaCase 17

Case5: Call Processing Language

B Specify services than can run safely on Internet
telephony servers

B Designs can be considered valid and well-formed
already at the design stage

B Language use concepts familiar to the service
developer

— Switches, Locations and Signaling actions etc.
B Generate full service from the model

B There are also cases where the language has been
extended to cover also domain extensions and new
requirements e.g. for Java and VoiceXML.

© 2005 Juha-Pekka Tolvanen / MetaCase 18




ample, August 20, 2002, 10:54
Graph Edit Wiew Types Help
B bhiox B s
Do mdEOooo O =00 |
e
Reference -
weathes
. A eh tb Subdomai o
ngn example.com siprjones@example fi
ost
oicemail Subaction
Bt S — Feferance
atherwise ———Jpp (SPjonss@cicsnEl ) —redirection CEMEE
example.con a Hedllo Wiorld
A
< | >
Active: None H Subgraph(s]: Nons H Grid: 10210 H Zoom; 100%

© 2005 Juha-Pekka Tolvanen / MetaCase

A C:\MetaEdit\MetaEdit- MWB \reports\Sample.xml - Microsoft Internet Explorer
File Edit Wiew Favorites Tools  Help
&3 Back @ M @ | P search P Favorites @ Meda £ (2 i B L) B
~
<tuml version="1.0" 7= B
«!-- DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dcd™ i
- <cpl»
- =subaction id="voicemail">
- <location url="sip:jones@voicemail.example.com">
<redirect /=
< locationz
=/subactions
- <incoming=
- zaddress-switch field="origin" subfield="host"=>
- zaddress subdomain-of="example.com"=
- <location url="sip:jones@example.fi' priority="3" clear="No"=»
- <progy timeout="10" recurse="No" ordering="Parallel"=
- <husy=
<sub ref="voicemail" /=
</busy>
- =failure=
<sub ref="voicemail" /=
=/failure=
- <NOanswers
<sub ref="voicemail" />
=/noanswers
< /progys
</lacations |
</address>
- =notherwise=
<sub ref="voicemail" />
<fotherwisas v
@Done 1) My Computer
© 2005 Juha-Pekka Tolvanen / MetaCase




Caseb6:
VoiceMenu for microcontroller

B Voice VoiceMenu for microcontroller based home
automation system

B Remote control for lights, heating, alarms, etc.

B VoiceMenus are programmed straight to the device
with assembler-like language (8bit)

B Modeling language to define overall menu structure
and individual voice prompts

B Code generator produces 100% of menu
implementation

B Development time for a feature from a week to a
day!

© 2005 Juha-Pekka Tolvanen / MetaCase 21

VoiceMenu: Sample VoiceMenu, February 6, 2002, 11:41
Graph Edit View Types Help

Fa ¥ Dbie o B Q=
= 0

Graph Edit View Types Help
8| ¥[DB oo B Q)
Ol wal ] ras 7| vor|

GetLioStylo
EE—| Speaks Liestyle

o — o ‘

[ sroe ! s [Speak number MemB

[Active: None [Subaraphis:None [Grig: 10@10_|[Zoom:100%_]

© 2005 Juha-Pekka Tolvanen / MetaCase 22




D Report Output: Sample VoiceMenu: VoiceMenu
File Edit Help

B8 o ¥[DbB

| Goto3_266

3_450
Speak 0
Speak 0

Speak 0x08 5
Speak 0x04 5
FillMemB 00

3_844

IFNot
Goto3_844

3_468
Speak 0x15 10 (W
Speak 0x16 12 (Pre
Clear Menu Buffer

© 2005 Juha-Pekka Tolvanen / MetaCase

23

Case?:

Business Process Modeling for XPDL

Defining business processes to be executed in a

workflow engine

Modeling language about business processes

- Contractors, Organizational units, Messages, Events,
various type of Processes, etc.

Generator to produce XPDL (XML Process

Definition Language from Workflow Management

Coalition (WfMQ))

XPDL executed in a workflow engine

* Jung, J.: Mapping of Business Process Models to Workflow Schemata 2004

© 2005 Juha-Pekka Tolvanen / MetaCase

24




Graph  Edit

view  Types

30. December 2004, 1
Help

BS &bt~ | Qs

V— s

Stert Oroer Chack

<Digiréwtion>
¥

<Digntatcn>
.

— - —
LD
2 5.
Orderiallabi

4. 2.
Walld Deta Entar Ordar

“<Digiringion>
¥

6
Fil Order.

-2-
Cnder
Proassing
Complate

owa
Frocessing .
Email
contrmatan
<Digbutcn
6 5
.3- -9-
sl Dot P
Regecion
Message
< | >
Active: None H Subgraph(s]: Nones H Grid: 10210 ” Zoom: 100%

© 2005 Juha-Pekka Tolvanen / MetaCase

25

© 2005 Juha-Pekka

= Edt

Options Template Execute Macro sfindow  Help

<bataType>
<BasicType Type="STRING"/>
</DataType>
<Initiallalue>absage</Initiallalue>
<Length>288</Length>
<ExtendedAttributes>
</Extendedfttributes>
</DataField>
</DataFields>
<Participants>
<Participant Id="mail" Hame="nail">
<ParticipantType Type="SYSTEW"/>
<ExtendedAttributes>
</Extendedfttributes>
</Participant>
<Participant Id-"Sales" Hame-"Sales">
<ParticipantType Type-"ORGANIZATIONAL UNIT"/>
<ExtendedAttributes>
</Extendedhttributes>
</Participant>
</Participants>
<applications>
<Application Id-"1">
<FormalParametersy

<DataType>
<BasicType Type="STRING"/>
</DataType>
</FormalParameter>
<FormalParameter Id-"text" Index-
<DataType>
<BasicType Type="STRING"/>
</DataType>
</FormalParameter>
<FormalParaneter 1
<DataType>
<BasicType Type-"BOOLEAN"/>
</DataType>
</FormalParaneter>
</FormalParameters>

* Hode="IN">

isSent” Index:

&)

<FormalParaneter Id="receiver" Index="8" Hode="IN">

Ln 66 Col 1 128 % WR

Rec Off NoWiap DOS [INS

Tolvanen / MetaCase

26




<

Why these are possible (now)?

B Need to fit only one company’s requirements!
B Modeling is Domain-Specific
- Works for one application domain, framework, product
family etc.
- Language has concepts people already are familiar with
- Models used to solve the problem, not to visualize code
B Generator is Domain-Specific
- Generate just the code needed from models
o Efficient full code
* No manual coding afterwards
¢ No reason for round-tripping

- Generator links to existing
primitives/components/platform services etc.

- Can produce Assembler, 3GL, object-oriented, XML, etc.

© 2005 Juha-Pekka Tolvanen / MetaCase 27

<

Modeling domain vs. modeling code
)] - =
£ Map to code, implement Finished
g o Ass:ambler ----- Product
c
‘©
5 M d [ ’
ap to code, implement :
E == Code
E Generate,
3 Add bodies
& Map to UML
v UML Model
©
)
Noneed . Domain _Generatescode . Domain,
to mapl Framewor!
© 2005 Juha-Pekka Tolvanen / MetaCase 28




o

Domain-Specific Modeling

® Captures domain knowledge (as opposed to
code)
- Raise abstraction from implementation world
- Uses domain abstractions
- Applies domain concepts and rules as modeling constructs
— model correctness, error prevention and optimization
- Narrow down the design space
— often focus on single range of products
B Lets developers design products using domain
terms
= Apply familiar terminology
=> Solve the RIGHT problems
= Solve problems only ONCE!
— directly in models, not again by writing code, round-trip etc.

© 2005 Juha-Pekka Tolvanen / MetaCase 29

[y
Let’'s look industry experiences:
Some reported cases

Nokia; Mobile Phone product line

Bell Labs / AT&T / Lucent; 5ESS
telecommunications switch,

Honeywell; embedded software architectures
ORGA; SIM toolkit & JavaCard

Pecunet; B2B E-Business: insurance

LexiFi; mlFi, financial contracts

DuPont; Activity Modeling

NASA; Architecture Definition Language
NASA ASE group; Amphion

NASA JPL; embedded measurement systems
USAF; Message Transformation and Validation

Taken from www.DSMForum.org

© 2005 Juha-Pekka Tolvanen / MetaCase 30




DSM Case Study: Nokia

B DSM and related code generators for mobile phone*

B Order of magnitude productivity gains (10x)
- "A module that was expected to take 2 weeks... took
1 day from the start of the design to the finished
product”
B Focus on designs rather than code

- Domain-oriented method allows developers to
concentrate on the required functionality

B Training time was reduced significantly
- “Earlier it took 6 months for a new worker to become
productive. Now it takes 2 weeks”

* MetaCase, Nokia case study

© 2005 Juha-Pekka Tolvanen / MetaCase 31

o

DSM Case Study: Lucent

B 5ESS Phone Switch and several DSMs *

B Reported productivity improvements of about 3-10
times
- From several cases
- From several DSM languages
B Shorter intervals between product releases
B Improved consistency across product variants
- “DSM should always be used if there are >3 variants”

* D. Weiss et al, Software Product-Line Engineering, Addison-Wesley

© 2005 Juha-Pekka Tolvanen / MetaCase 32




DSM case study: USAF

B Development of message translation and validation
system (MTV)*

B Declarative domain-specific language

B + code generators and customization of components

Compared DSM against component-based development:
B DSM is 3 times faster than code components
B DSM leads to fewer errors: about 50% less

B DSM gives “superior flexibility in handling a greater
range of specifications” than components

* Kieburtz et al., A Software Engineering Experiment in Software
Component Generation, ICSE
© 2005 Juha-Pekka Tolvanen / MetaCase 33

o

Where DSM makes most sense?

B Repetitive development tasks

- Large portion of the work similar to earlier products
(or several products made in parallel)

B Domain expertise needed
- Non-programmers can participate

B These normally include:

- Product Family
Platform-based development
Configuration
Business rule definitions
Embedded devices

© 2005 Juha-Pekka Tolvanen / MetaCase 34




How to implement DSM

Done a few times before!

Finished
Product

Language Code Framework
spec generation code
Domain Generates code Domain
Model Framework
© 2005 Juha-Pekka Tolvanen / MetaCase 35

(-
How to implement DSM

B Expert developer defines the DSM, others apply it

- Expert defines the domain always better than less-
exprerienced developers

- Always better to define the concepts and mappings once,
rather than let everyone do it all the time

B Delegate the job between the language, generator and
domain framework
B Separation of concerns

- Your experienced developers knowyour domain and code
(not the tool vendor)

B DSM is agile: as much or as little as you want

B DSM implementation process is iterative and
incremental

© 2005 Juha-Pekka Tolvanen / MetaCase 36




Defining modeling languages

B The most important asset of a DSM

environment e
— application engineers use it N
- generator and platform largely
invisible

B Often includes elements of familiar e ——
modeling paradigms SPECIFIC
- state machine GENERATOR
- flow model |
- data structure, etc. l

B Language specified as a metamodel

© 2005 Juha-Pekka Tolvanen / MetaCase

Requirements for modeling
languages

effectivity (effectiveness)
efficiency
completeness
consistency

accuracy
well-defined products
determinism
relevance
formalizability
communicable
reducing complexity
stepwise

integrated

© 2005 Juha-Pekka Tolvanen / MetaCase




Problem domain Solution domain/ generation target Approach
Telecom services Configuration scripts
Insurance products J2EE
Business processes Rule engine language
Industrial automation 3GL
Platform installation XML
Medical device configuration XML
Machine control 3GL 1,2
Call processing CPL 2,(1)
Geographic Information System 3 GL, propriety rule language, data structures | 2
SIM card profiles Configuration scripts and parameters 2
Phone switch services CPL, Voice XML, 3GL 2,(3)
eCommerce marketplaces J2EE, XML 2,(3)
SIM card applications 3GL
Applications in microcontroller 8-bit assembler
Household appliance features 3GL
Smartphone Ul applications Scripting language
ERP configuration 3GL 3,4
ERP configuration 3GL 3,4
Handheld device applications 3GL 3,4
Phone Ul applications C 4,(3)
Phone Ul applications C++ 4.3
Phone Ul applications C 4,(3)
Phone Ul applications C++ 4.3

© 2005 : ¥ Approaches used to defining DSM languages, SPLC, 2005

39

|

Identifying DSM constructs

- already known and used

- established semantics exist

- natural to operate with

- easy to understand and remember

- requirements already expressed using them

- architecture often operates on domain concepts

- use parameters of variation space

keep the language simple
try to minimize the need for modeling
do not visualize product code!

* better to “forget” your current code

point

© 2005 Juha-Pekka Tolvanen / MetaCase

B Use domain concepts directly as modeling constructs

B Focus on expressing design space with the language

m Apply suitable computational model(s) as a starting

40




o

Identifying DSM constructs, 2

B Enrich chosen computational models with domain-
specific concepts and rules
- look at the type of design languages already used
B Investigate various alternatives for describing domain
with the chosen models, e.g.
- model element(s)
- element properties
- certain collection of elements
- relationships between elements
- model organization structures
B Specify as a metamodel in some format
- draft samples with pen & paper
- document early as a metamodel
- implement in some metamodel-based tool
- test it with real models

© 2005 Juha-Pekka Tolvanen / MetaCase 41

o

Levels of meta

B Common in linguistics abstractions (Lyons 1977)
B Tool developers implemented these levels already at 70’s
- We need four levels, but operate at two at a time

B Became ISO’s standard in IRDS reference framework
(and later again with OMG)

IRD schema level

IRD definition
level

IRD level H H
Application
level .

© 2005 Juha-Pekka Tolvanen / MetaCase 42




IRDS reference framework

The IRD Definition Schema L evel:

*A metametamodel according to which the IRD Defaitievel objects can be described.
«e.g. ‘concept’ (Wijers 1991) or OPRR’s ‘Object’ mfae (Smolander 1992).

IRD Definition level:

*Schemata and application programs specs

*Metaclass level of languages such as Smalltalk.

*Metamodels

e.g. specification of UML n
ThelRD level: IRD schema level

*DB schemata and app. programs

+Class level of class-based languages gp gefinition

*Models level

«e.g. Customer entity .
The application level IRD level

*Application data and execution.

eInstances of class-based languages. o

«Instances Application

level
*e.g. Customer “Juha-Pekka”

© 2005 Juha-Pekka Tolvanen / MetaCase 43

Implementing metamodels

B Metamodels support implementation of domain-specific
development tools (modeling, interfaces, transformations)

Metamodel of ERD ERD Modeling (based on the metamodel)

Relationship

© 2005 Juha-Pekka Tolvanen / MetaCase 44




Example metamodel: Booch

Uses

© 2005 Juha-Pekka Tolvanen / MetaCase 45

Booch in use
= Draw¥/indow: Gardening System [OODA Class Diagram] nn
Picture Edit Model BReports View Grid Zoom Refresh! Help
1)
ST
Ervirenmental Confroller
: 1
\\
Chrtroller Utitjes T Lkt
. \ ;
U heater | cooler
h " ;
F s
L Actuater
+
« [
© 2005 Juha-Pekka Tolvanen / MetaCase 46




o

Metamodeling languages

B Metamodeling is based on languages too!

B These vary from purpose
- illustrating vs. formalizing methods
- build tool support
- integrate tools
- exchange models

B What kind of representation for metamodels
- graphical (ER, NIAM, OPRR, GOPRR, MOF, MOF+OCL,
MS-DSL tool)
« matrix (O/A Matrix),
. text (ObjectZ, MDL, MEL, MOF/OCL), or
« template based (GOPRR)

© 2005 Juha-Pekka Tolvanen / MetaCase 47

[y
A short review to modeling power
of metamodeling languages

B Example from object-oriented design method:

- the life-cycle of class instances must be specified with
one or more state models.

- A state model contains states and transitions between
two states.

- A state must be specified by a name and a class may
have only one state with a given name.

- Each transition must be specified with an action which
is executed when a transition occurs.

- An action is specified as an operation of a class.

© 2005 Juha-Pekka Tolvanen / MetaCase 48




Metamodeling languages: ER

B What is missing from the metamodel:

- Different modeling languages? (mapping of action)
Transitions should be always connected to states?
Mandatory state name?

Unigue names?

- .2 @e name> g name>

Includes State
1
1

@jllun
(Gss rame
@nbules

Transition

\

oD

o/

Operations

N\

© 2005 Juha-Pekka Tolvanen / MetaCase 49

Metamodeling languages: OPRR

B What is missing from the metamodel:
- Different modeling languages?
e mapping of action to an operation of a class
e mapping of state (model) to class
- Mandatory state names?

- Unique names?
- .2

State

Transition from Trafisitioh to

Transition

© 2005 Juha-Pekka Tolvanen / MetaCase 50




Metamodeling languages: CoCoA

B What is missing from the metamodel:
- Dependency of operations to actions
- Mandatory attributes

— Unlq ue states ﬁi Specifies (1,1) ‘ 1
— ? State model Class mode|

wen § | Is specified (0,M|
Specify

Class @

:ﬁ

Source (0,M) Destination (0,M| —_— P ——
Transition (1,1) Transition (1,1) Attribute ‘ Operation
From To
Name > Name
"Action®
Transition
© 2005 Juha-Pekka Tolvanen / MetaCase 51

|

Metamodeling languages: NIAM

B What is missing from the metamodel:
- Transition and state mapping to (notation) different types

- Integrated
methods?

e Linkage / C“mg'?“\ N 1 ppson / ST et ot
between \

action . "7{@' /’*\/ﬁ\/f
and B (s )] ©® @ [ 1o
B ?operatlon \ w
I o Masouptmouputol
o

\ / \\
((Returntype) | [ (Operation |
| || hame )

. )

© 2005 Juha-Pekka Tolvanen / MetaCase 52




Metamodeling languages: GOPRR

B What is missing from the metamodel:

How many state models a class can have?
Uniqueness of states (for one class)?
Mandatory values?

Class diagram State model

Stat Name Stat
. { . ate - ate name
. id Class g » id String
Unique
Class namey Name
String
Operations

Action

id
. Name .
R Operation - Qperation nam)
id Strin

© 2005 Juha-Pekka Tolvanen / MetaCase 53

Metamodeling languages:
MOF/UML

B What is missing from the metamodel:

- How many state models a class can have?
mapping of action to an operation of a class
Uniqueness of states (namespace, for one class)?
Mandatory values?

i State model
Class diagram
State To
Belongs to frState name:string 0.
Class
prClass name: String o
fAttributes: Coll From
trOperstions: Coll Haz Transition
#+Operation rame: String

© 2005 Juha-Pekka Tolvanen / MetaCase 54




o

' DSM definition must include also other
than pure language concepts

B Initial:
- Metamodel: concepts and rules of the language
- Notation: symbols and their behavior
- Tool: editors, dialogs, icons, browsers etc.
- Generators: for code, checking, inspection, docs etc.
- Language help
- Connectivity with other tools
B Continuously:
DSM language (and tool) sharing
Language updates (of metamodel, notation)
Generator updates
Model updates based on changed language
...often in multi developer settings

© 2005 Juha-Pekka Tolvanen / MetaCase 55

o

Tools support is essential

B Building DSM must be fast, cheap and easy
B A variety of tools available

- Lex & Yacc
Customizable IDE

- Metamodel-based tools
® 5 ways to get the tools
Write own tool from scratch
Write own tool based on frameworks
Metamodel, generate tool skeleton, add code
Metamodel, generate full tool
Integrated modeling and metamodeling environment

u b~ W N =

© 2005 Juha-Pekka Tolvanen / MetaCase 56




What about tools?

B Tools for textual languages (late 70's ->)

- SEM (Teichroew and Yamato)

- Others include Plexsys, Metaplex, Quickspec, PSL/PSA
B Tools for graphical languages (mid 80’'s)

- Swedish Ramatic: set theoretical constructs to specify
graphical notations/languages

- British Eclipse: directed graphs
B Tools for graphical metamodeling (late 80’s)
- Finnish Metamodeling Editor MetaEdit: extended ER
B + tens of others in the past available: MetaView,
Kogge, Virtual Software Factory, Customizer in
Excelerator, Paradigm+ SDK, ConceptBase, IPSYS
toolbuilder, Dome, GME etc.
- Most of the tools focus on initial language specification

and editor construction
© 2005 Juha-Pekka Tolvanen / MetaCase

57

MetaEdit+: metamodel as data
# Symbol Edor

Symbol £t Alon view

$hd aQa TOSONMO %

g [ ]

=
- State name
- )
= ptowstsets T )
e Bl DisplayFn
~ & )V
coor (M v i [ v] s - o wene [ 1 v

v Active: None Grid: 1010 | Zoom: 275%

Generators

Ican
a Start [Watch]

stractWatchApplication

© 2005 Juha-Pekka Tolvanen / MetaCase

58




=

Generator

DSM environment
B Generator translates the

i i i DOMAIN-
computational model into a required s
output MODELING

LANGUAGE

1. crawls through the models
- navigation according to metamodel

2. extract required information
- access data in models DOMAIN-

3. translates it as the code spgngFElc
- translation semantics and rules

GENERATOR

4. using some output format

- possibility to define output format

B There are different generator

approaches

"Out-of-box” generators
- Customizable generators
- Domain-Specific generators

© 2005 Juha-Pekka Tolvanen / MetaCase 59

=

Implementing code generators

B Keep generator (and generation process) as simple as
possible

- Raise variation handling into the modeling language (as
data)

- Push low-level implementation issues down to the
framework

B Try to generate as little code as possible
- Glue code only

- Change the target platform or make domain framework if
you can

B Use as many prebuilt building blocks (from the
platform) as possible
- Generated code can call components

- Generator knows how to do it, developer doesn’t need to
know

© 2005 Juha-Pekka Tolvanen / MetaCase 60




Domain framework

DSM environment
B Provides an interface for the target

. DOMAIN-
platform and programming language SPECIFIC
. . MODELLING
B Raise the level of abstraction on the LANGUAGE

platform side
B Achieved by atomic implementations

of commonalities and variabilities DOMAIN-
- especially for behavior S eobe
- implementation as templates and CENERATOR
components
B Include interface for the code to be
generated DOMAIN

FRAMEWORK

- often the only needed part for static
variation (e.g. for XML schema)

© 2005 Juha-Pekka Tolvanen / MetaCase 61

Implementing code generators, 2

B Move to the generator
- Language syntax variation
- Output format
B Keep generator modular to reflect changes
B Target 100% generation output
- Never modify the generated code
e think about changing assembler after compiling
- Correct the generator or framework instead
e No round-trip-related problems
B Template vs. programmable generator?
- templates simpler and easier to use, but also more
restricted by capabilities
- Programmable generator better for more complex needs
o external generators from the modeling tool perspective

© 2005 Juha-Pekka Tolvanen / MetaCase 62




Generator degrees of freedom

Sequential
Function calls

subclass

- Other generated code

- Domain framework components

- Platform functions

Different generation options for different runs
- Different top-level generators

Switch-case structure
Transition tables, etc.
Different levels of code that generated code can call or

Different levels of generators: modular / tree structure
1. Generator per file to be generated

2. Generator per section in a file

3. Generator per metamodel element
Different Model of Computation implementations

- Top-level graph for generation options

© 2005 Juha-Pekka Tolvanen / MetaCase

63

Code generator structure

B Modular implementation to manage complexity

Autobuild

_create make for" | | _JavaCompone;
Report ‘Autobuild’ ‘

I* Create compilation script, HTML files etc. */
subreport; '_create make for *;
:Generation target platform; run;

I* Create static shared Java components */
subreport; '_JavaComponents’; run;

/* Create Java code for Watch models */
subreport; '_Models'; run;

/* Compile and execute */

filename; subreport; *_default directory’; run;
‘alldone.txt’; write; close;

subreport; '_compile and execute for ';
:Generation target platform; run;

endreport

Report'_Roll

‘get’; do ~Set.() {id;}; '0)."
'rol(METime."; :Time unit; ', ';
if :.Up?; =T

then ‘true’;

else 'false’;
endif;
', displayTime());’;

© 2005 Juha-Pekka Tolvanen / MetaCase

64




Transition tables - Watch/Java

® Java from the extended state machine; Watch

clockTime clockOffset
EditHours
Gener at or ouput li clockOffset
public SimpleTime(Master master) {
super(master);

addTransition ("Start [Watch]
addTransition ("Show", "Mode", 0, "EditHours");

addTransition ("EditHours", "Set", a22_2926, "EditH ours");
addTransition ("EditHours", "Mode", 0, "EditMinutes ")
addTransition ("EditMinutes", "Set", a22_1405, "Edi tMinutes");
addTransition ("EditMinutes", "Mode", 0, "Show"); ¢ ¢
addsStateDisplay("Show", -1, METime.MINUTE, d22_977) ; ‘ ~Variables ‘ ‘,
addStateDisplay("EditHours", METime.HOUR_OF_DAY, ME Time.MINUTE,
d22_977);
addStateDisplay("EditMinutes", METime. MINUTE, METim e MINUTE,
d22_977); ‘ ‘ [
: _getSet _StateDisplayDataContent _lcon

© 2005 Juha-Pekka Tolvanen / MetaCase

|

Transition tables - Watch/Java

® Java from the extended state machine; Watch

PP clockTime A < TelackOfset

- [ B

¥

1
7 clockOffset

Gener at or ouput

public SimpleTime(Master master) {
super(master); ‘

addTransition ("Start [Watch] 0, "Show");

addTransition ("Show", "Mode", 0, "EditHours");

addTransition ("EditHours", "Set", a22_2926, "EditH ours");
addTransition ("EditHours' ode”, 0, "EditMinutes ")
addTransition ("EditMinutes", "Set", a22_1405, "Edi tMinutes");

addTransition ("EditMinutes", "Mode", 0,7“Sh0w");

addStateDisplay("Show", -1, METime.MINUTE, d22_977) B
addStateDisplay("EditHours", METime.HOUR_OF_DAY, ME Time.MINUTE,

d22_977);
addStateDisplay("EditMinutes", METime.MINUTE, METim e MINUTE, £
d22_977);
¥ _getSet _StateDisplayDataContent _lcon

© 2005 Juha-Pekka Tolvanen / MetaCase




Code generator example (cont.)

B Generating watch applications

St | clockofiset

EditHours

i

o | clackOffs

v v

‘ _Actions

splayData | |_Decompositions _DisplayFns

wyDataContent _lcon ’ _Roll

_calcValue

© 2005 Juha-Pekka Tolvanen / MetaCase

| Generat or out put '—

public Object perform(i

switch (methodld)

Casa 5
getclockOffset().roll(!

CIPPTTYCT,
case a22_1405:
getclockOffset().roll(METime.MINUTE, true,
displayTime());
return null;
case d22_977:
return getclockTime();

}
return null;

67

Switch-case — Watch/C

B C from the extended state machine; Watch

Generat or ouput

void handleEvent()

, EditHours, Edit Show,
eledtio

Stop } States;

s ¢ wing b uttonless transitidhs */
{ _C_Enums
void rupiéateititHours:
_ switch (button)
while (gtate != Stop)
case Set: _C_Rurvyatch
handleEvegigfe = Edimﬂlys;
button = geRasiten(); /* waits for and returns next button ress */ C state
} case Mode: LEd
} icon (Off editHours);
X HEAIHO " C_lgon
icon (On,editMinutes); -
state = EditMinutes;
break;
default:
break; s

}
© 2005 Juha-Pekka Tolvanen / MetaCase

68




Function calls - S60/Python
@

Corference
registration

Credit card

Your name?

3 Abc 2913345678

Conference_registration
+Perzoname+, +Payment

Cancel ragigation

o program feml

[Generator defi nition]

Generste
Python sorict
[N
—
s
/
>

Reafstration

AN 7FEETS
Cancel_registration

cancelled m

¥
>‘Reg\5|ratmn <] Registration madeﬂ‘

>

_next auery
element

_Return variable

_next elemert

_nternal name

© 2005 Juha-Pekka Tolvanen / MetaCase

Cancel

% I

Gener at or out put

def Note3 2227 ()
Registragjon made "' conf’)
Stop3_983

appuifw.note(u"
return

def Note3 6109 ():
appuifw.note(u"
return  Stop3_983

Registration cancelled info )

def Note3 2543 ():

appuifw.note(u" Conference registration: Welcome info )
return  Popup_menu3_2520

def Stop3 983 ():
return  appuifw.app.set_exit

|

Other-than-code generators

B Power of having single source for multiple targets!
- Checking completeness and uniformity

- Configuration

- Testing and analysis
- Automated build - automating compile and execution

- Help text
- User guides

- Documentation and review

© 2005 Juha-Pekka Tolvanen / MetaCase

70




Challenges and research issues

B Reuse

- Model and model elements, upgrading the language
(at metamodel level)

Debugging with models

- internal vs. external languages
Versioning

- Model level, with domain concepts
Scaling

- What if everything is MDD-based (millions of model
elements)

Testing the DSM created
- especially in the beginning (evolutionary easier)

© 2005 Juha-Pekka Tolvanen / MetaCase

71

Summary

B Productivity and quality can be improved by raising the

abstraction beyond coding
B Modeling languages can be applied effectively if both
metamodel and generators can be customized
B Often everything can’t be in a model
- Divide the work with generators and frameworks
B DSM has big organizational impact
- Experts make the DSM environment
— Other developers do model-driven development
B A variety of tools available
B Building DSM is great fun for experts

© 2005 Juha-Pekka Tolvanen / MetaCase

72




Thank you!

Question and comments?

Juha-Pekka Tolvanen, jpt@metacase.com
www.metacase.com

USA: International:
MetaCase MetaCase
5605 North MacArthur Blvd. Ylistonmaentie 31
11th Floor, Irving, Texas 75038 FI-40500 Jyvaskyla, Finland
Phone (972) 819-2039 Phone +358 14 4451 400
Fax (480) 247-5501 Fax +358 14 4451 405
© 2005 Juha-Pekka Tolvanen / MetaCase 73

Literature and further links

DSM Forum, www.dsmforum.org

Brinkkemper, S., Lyytinen, K., Welke, R., Method En%ineering -
Fl’rgiggiples of method construction and tool support, Chapman & Hall,

Czarnecki, K., Eisenecker, U., Generative Programming, Methods,

Tools, and Applications, Addison-Wesley, 2000.

Gray, J., Rossi, M., Tolvanen, J-P, (eds.) Special issue of Journal of

Visual Languages and Computing on Domain-Specific Modeling with

Visual Languages, Vol 15 (3-4), 2004

Jung, J.: Mapping of Business Process Models to Workflow Schemata -

An Example Using MEMO-OrgML and XPDL, Arbeitsberichte des Instituts

flr Wirtschaftsinformatik, Nr. 47, Koblenz 2004

Kieburtz, R. et al., A Software Engineering Experiment in Software

Component Generation, Proceedings of 18th International Conference

on Software Engineering, Berlin, IEEE Computer Society Press, March,
996.

Pohjonen, R., Kelly, S., Domain-Specific Modeling, Dr. Dobb's, 8, 2002
Tolvanen, J.-P., Pohjonen, R., Automated Production of Family
Members: Lessons Learned. Proceedings of International workshop of
Product Line Engineering, Technical Report at Fraunhofer IESE (eds. K.
Schmid, B. Geppert) 2002.

Weiss, D., Lai, C. T. R., Software Product-line Engineering, Addison
Wesley Longman, 1999.

© 2005 Juha-Pekka Tolvanen / MetaCase 74




DSM related events

B Workshops on Domain-Specific Modeling (5th at OOPSLA
2005)

B IEEE Symposium on Visual Languages and Formal
Methods (VLFM '03)

B Engineering Methods to Support Information Systems
Evolution’ (EMSISE'03)

B International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT '02)

® International Workshop on Model Engineering, ECOOP'00

© 2005 Juha-Pekka Tolvanen / MetaCase 75




