On Fast and Accurate Detection of Unauthorized Wireless
Access Points Using Clock Skews -

Suman Jana
School of Computing
University of Utah

suman.jana@utah.edu

ABSTRACT

We explore the use of clock skew of a wireless local area
network access point (AP) as its fingerprint to detect unau-
thorized APs quickly and accurately. The main goal behind
using clock skews is to overcome one of the major limita-
tions of existing solutions - the inability to effectively de-
tect Medium Access Control (MAC) address spoofing. We
calculate the clock skew of an AP from the IEEE 802.11
Time Synchronization Function (TSF) timestamps sent out
in the beacon/probe response frames. We use two different
methods for this purpose - one based on linear program-
ming and the other based on least square fit. We supple-
ment these methods with a heuristic for differentiating orig-
inal packets from those sent by the fake APs. We collect
TSF timestamp data from several APs in two different res-
idential settings. Using our measurement data as well as
data obtained from a large conference setting, we find that
clock skews remain consistent over time for the same AP
but vary significantly across APs. Furthermore, we improve
the resolution of received timestamp of the frames and show
that with this enhancement our methodology can find clock
skews very quickly, using 50-100 packets in most of the cases.
We also discuss and quantify the impact of various external
factors including temperature variation, virtualization, and
NTP synchronization on clock skews. Our results indicate
that the use of clock skews appears to be an efficient and
robust method for detecting fake APs in wireless local area
networks.

Categoriesand Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Measurement, Security

*This research was supported in part by ONR/ARL MURI
grant W911NF-07-1-0318.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MobiCom' 08, September 14-19, 2008, San Francisco, California, USA.

Copyright 2008 ACM 978-1-60558-096-8/08/09 ...$5.00.

Sneha K. Kasera
School of Computing
University of Utah
kasera@cs.utah.edu

% I Internet

Fake AP Orlglnal AP
Userl ’
%" , WIDS Node
User2 % @

User3 User4d

Figure 1: A Fake AP attack scenario

Keywords

IEEE 802.11, Fingerprint, MAC address spoofing, Fake ac-
cess point, Timestamp

1. INTRODUCTION

With advances in micro-technology and wireless networks,
networked mobile systems are becoming increasingly preva-
lent. There is also an ever growing demand for ubiquitous
services. These two factors are fueling a wide scale deploy-
ment of wireless networks including the IEEE 802.11 wireless
local area networks. However, because of their importance
in providing ubiquitous services and their inherent vulnera-
bility due to broadcast nature of the wireless medium, the
wireless local area networks (WLANSs) are also becoming
targets of a variety of attacks. Ome of the ways in which
a WLAN can be attacked is by introducing one or more
unauthorized fake Access Points (APs) in the network [2, 3,
10, 15]. A fake AP can be set up by a malicious attacker
(Figure 1) to masquerade as an authorized AP by spoofing
the authorized AP’s medium access control (MAC) address.
This fake AP is used to fool a wireless node in the WLAN
into accessing the network through the fake AP instead of
the authorized one. The fake AP can then launch a variety
of attacks thereby compromising the security of the wireless
communication. Setting up fake APs is not hard. Pub-
lic domain programs including rglueap [7] sniff 802.11 probe
request frames to find out the default AP of the probing
wireless node and then impersonate the default AP. There-
fore, detecting unauthorized APs is a very important task
of WLAN intrusion detection systems (WIDS).

The new wireless security enhancement 802.11i RSNA (Ro-
bust Security Network Association) uses traditional crypto-
graphic methods (i.e., digital certificates) to provide strong

mutual authentication between wireless clients and the APs.
Although this solution, if implemented properly, will make
the fake AP attack less likely, the following practical issues
can still make wireless networks using 802.111 RSNA vulner-
able. First, management and verification of digital certifi-
cates across different domains is known to be cumbersome.
Second, as the current AP selection algorithms use signal
strength as the only criteria for AP selection, users can be
fooled to connect to the fake AP that has a higher signal
strength compared to the original one but does not support
any security measures such as RSNA.! Third, an attacker
can also set up fake APs having the same identifiers (MAC
address, basic service set identifier (BSSID) and service set
identifier (SSID)) as the original AP and evade detection
by using different physical channel characteristics (by us-
ing short/long preambles, operating in a different channel
etc.). These facts motivate us to find a viable non crypto-
graphic solution to the fake AP attack. We emphasize that
this solution is not meant to replace existing cryptographic
methods. Rather, it should be used in conjunction with the
cryptographic methods to achieve a higher level of security
in WLANSs. The current state-of-the art non-crypto meth-
ods for unauthorized AP detection [2, 8, 10, 14, 15] cannot
detect fake APs.

In this paper, we explore a passive online scheme that can
detect fake APs with high accuracy and minimum overhead.
This scheme, like the one proposed by Kohno et al. for
fingerprinting personal computers and servers [25], is based
on estimating clock skews of APs. An AP’s clock skew acts
as its fingerprint. Kohno [25, 28] has shown that the clock
skew of a device remains fairly consistent over time but the
clock skews vary significantly across devices thereby arguing
that the clock skew of a device can be used as its reliable
fingerprint. However, Kohno’s scheme focused on wide area
wired networks. Its application in a local area setting can
result in higher accuracy. Unlike Kohno’s scheme that uses
TCP/ICMP timestamps, in our scheme, we use the Time
Synchronization Function (TSF) timestamps in the IEEE
802.11 beacon/probe response messages sent by the AP, to
determine its clock skew. The use of beacons has several
advantages. First, beacons are sent all the time and at a
fast rate (typically 10 to 100 frames per second) independent
of any application. Second, the granularity of 802.11 TSF
timer is one microsecond which is much higher than that of
TCP timestamp clocks. Third, as the beacon timestamp is
the actual time when an AP sends a frame (i.e., the time
after the channel is sensed to be free) rather than the time
when it is scheduled to send the frame, we do not need to
consider any significant unpredictable delays incurred by the
network as in the case of TCP timestamps. Therefore our
scheme estimates more accurate clock skews and much faster
compared to the TCP/ICMP timestamp approach [25]. We
also improve upon the time taken for estimating the clock
skew by using high precision timers, at the fingerprinting
node, that have resolutions in the order of microseconds to
measure the arrival time of beacon frames.

We examine two different methods for estimating the clock
skew of an AP. Our first method is based on the linear pro-
gramming approach, first proposed by Moon et al. in [27]
and later used by Kohno in [25]. This method finds a line
that upperbounds all the time offsets calculated from the

!This security rollback/downgrade attack is possible in
802.11i RSNA networks [23].

timestamps in the AP beacons and the time of arrival of
those beacons at fingerprinting node. The slope of this line
is our clock skew estimate. Our second method is based on
finding a line that is at the least square distance from all
the time offsets. The slope of the line represents our esti-
mate of clock skew. As we show later in Section 5, both of
these methods perform their tasks fairly well. However, in
the special case when the frames transmitted by the fake AP
are interspersed with the frames transmitted from the the
authorized AP that is being faked, both of these methods
fail to determine clock skews accurately. These methods are
not even designed to handle this scenario. To achieve sepa-
ration of frames with the same identifiers but from different
APs, we develop a novel heuristic for differentiating frames
sent by the fake AP and the authorized one that is being
faked. Our heuristic exploits differences both in the beacon
timestamp values of different APs as well as the different
rate of increment of those values.

For our experimentation and evaluation, we implement
our methodology on laptops running Linux and measure the
clock skews of a wide range of APs from different manu-
facturers in two different residential settings. We also use
WLAN traces from the 2004 ACM Sigcomm conference to
compute the clock skews of the APs used at the conference
venue. From our experiments, we find that an AP’s clock
skew remains consistent over time but the clock skew varies
across APs. Therefore an AP’s clock skew can be used as its
fingerprint. In our WLAN setting with predictable beacon
delays and high resolution timestamps, we can find clock
skews very quickly, using 50 - 100 packets in most cases.
We also discuss and quantify the impact of various external
factors including temperature variation, virtualization, and
NTP synchronization, on clock skew. Very importantly, we
also explore the possibility of engineering clock skews to al-
low a fake AP to generate the clock skew of the original one.
Our exploration results indicate that the use of clock skews
appears to be an efficient and robust method for detecting
fake APs in WLANS.

In a real deployment, we expect our methodology to be
implemented on the WIDS nodes. In order to verify whether
or not an AP is genuine, a WIDS node can compute the clock
skew of the AP and compare with the pre-computed clock
skew of the AP with the same identity (e.g., MAC address).

The rest of this paper is organized as follows. Section 2
describes the threat model that we address in this paper. We
describe our clock skew estimation methodology in Section 3.
Section 4 contains a description of our implementation and
Section 5 contains our experimental results. Fabrication of
clock skews is discussed in Section 6. We survey the exist-
ing work on detecting unauthorized APs in Section 7. We
conclude the paper in Section 8 by summarizing our work
and indicating directions for future work.

2. THREAT MODEL

An adversary can set up an unauthorized AP to masquer-
ade as an authorized one.
There are two scenarios in which a fake AP can operate:

e The fake AP and the authorized AP that is being faked
are both active at the same time. As the current AP
selection mechanisms use signal strength as the only
selection criteria, the user will select the fake AP if he

measures the fake AP’s signal strength to be higher
than the original AP.

e Only the fake AP is active and the authorized AP be-
ing faked is inactive. This can happen when the au-
thorized AP has failed on its own or due to a Denial-
of-Service attack from the adversary, or when the user
moves to a location where only the fake AP is reach-
able. The adversary can facilitate this by tracking and
following the user.

In our threat model, the adversary is powerful enough to
modify any of the MAC address, BSSID and SSID fields of
any frame he wants. The adversary can also capture, col-
lect and analyze any amount of data without being detected
even before actually trying to break into the network. If
the packets are sent across the network in encrypted form
the adversary can gather enough packets needed to launch
password guessing attacks. It can also decrypt the packets
once it succeeds in guessing the password.

Our methodology will address the detection of unautho-
rized APs in all these cases. As our method is based on a
physical characteristics of the AP (i.e., the clock skew), it
can detect MAC, BSSID and SSID spoofing, whether the
authorized AP is active or not. We expect the clock skew
based methodology to be deployed in the WIDS nodes for
detecting unauthorized APs in WLANs. We assume that
the adversary cannot break into WIDS nodes. We also as-
sume that the attacker does not have access to any custom
hardware that can generate fake timestamps at a very fine
granularity. We discuss this issue in more detail in Section 6.

3. METHODOLOGY

In an IEEE 802.11 infrastructure wireless local area net-
work (WLAN), there are two methods that a client station
(STA) may use to find an AP in the WLAN [1].

e Active Scanning: The STA sends a probe request
frame to determine which APs are within range. The
APs in the vicinity then reply back with probe re-
sponse frames.

e Passive Scanning: The STA learns about the APs in
the WLAN by listening to the beacon frames broadcast
by the APs.

The probe response and the beacon frames both have an
8 byte timestamp as shown in Figure 2. The timestamp
field contains the value of Timer Synchronization Function
(TSF) timer of the AP when it sends the frame. The bea-
cons are scheduled to be sent at periodic intervals by the
APs. The timestamps in the beacon frames do not get af-
fected by the random medium access delays of the wireless
medium as drivers set the timestamp value just before ac-
tual transmission. The TSF timer is a 64 bit timer which is
initialized at the time of starting the AP and incremented
once every microsecond.

Our solution uses TSF timestamps in beacon/probe re-
sponse fra-
mes to estimate the clock skew of an AP and uses the clock
skew as the AP’s fingerprint.

Let us assume that a fingerprinter node (a WIDS node),
has received n beacon frames from a particular AP. Let the
timestamp in the i*" beacon frame be Tj and let t; be the
time in microsecond when the fingerprinter receives the i

0 8 10 12

Beacon Capability

Timestamp
Interval Info

Figure 2: Structure of Fixed fields in Beacon/Probe
Response Frame

beacon frame. Let S; be the size of the i** beacon frame
and let R; be the data rate at which " beacon frame is
sent. Therefore, the time, according to the AP’s clock, when
the fingerprinter receives the packet is T; + S;/R;. Let our
estimated offset for the it frame be denoted o; and the time
difference between the first received frame and the i frame
according to the fingerprinter’s clock be z; . Then,

Tr; = ti — t1 (1)

0, =((Ti + Si/R:) — (T1 + S1/R1)) — (ti — t1) (2)

In most of the cases the beacon frames are sent at a fixed
data rate and the size of the beacon frames remain fixed as
well [1]. So we can assume that S;/R; = S1/R;. This yields,

0, =(T; —Th) — (t; — t1) (3)

Now, if the clock skew of a particular device remains con-
stant and if we plot (z;,0;), we will get an approximately
linear pattern. The clock skew can be estimated as the
slope of this linear pattern. Let us call the set of points
(z1,01),. .., (%n,0n) the clock offset-set of the AP.

We evaluate two different methods for estimating the clock
skew from the offset-set - a linear programming based method
(LPM) that was proposed in [27] and later used by [25] and
a least square fit (LSF) method.

3.1 Linear programming method (L PM)

LPM finds a line dx 4+ ¢, where § is the slope of the line
and ¢ is the y-axis intercept, that upper bounds the points
in the clock offset-set of the AP and outputs the slope of
the line, §, as the clock skew estimate. So, our clock skew
estimation, 4, is such that, Vi =1...n,

0.x; + ¢ > 04, (4)

and the following function is minimized:

n
I/nZ(d:cZ +¢—o04) (5)
i=1

This problem can be solved using linear programming
methods for 2 variables.

The LPM method minimizes the effect of any unpredictable
delays as it has higher tolerance towards outliers. The clock
skew estimate remains stable even if there are significant
number of outliers. However, in our case the number of
outliers are very less because no significant random delay
is involved in the communication path and the TSF clocks
have a higher precision than TCP timestamp clocks.

Interestingly, LPM’s nature to tolerate the outliers may
cause a serious security problem in our context. If an ad-
versary is able to mix small number of beacons from a fake
AP with the beacons of the authorized one it is faking and
if the clock skew of the fake AP is close to the clock skew
of authorized one, then this method might consider the fake

AP frames as outliers and estimate the clock skew of the
authorized AP as the clock skew of the set. In this case,
it will be difficult to detect the fake AP by comparing the
clock skews.

3.2 Least SquareFitting (L SF)

We can also use LSF to estimate the clock skew of an AP
from its clock offset-set. Given an offset-set (z1,01),...,
(zn,0n), LSF finds a line dz + ¢, where § is the slope of the
line and ¢ is the y-axis intercept, such that,

> (0i = (8. + ¢)*) (6)
i=1
remains minimum. The slope of the line, ¢§ is estimated as
the clock skew of the clock offset-set.

One of the major differences of LSF from LPM is its lack
of tolerance towards outliers. Even if there are only a very
few outliers, the clock skew estimated by LSF will vary sig-
nificantly from the clock skew determined by the majority of
the points. This can cause problems while estimating clock
skew from noisy data. Kohno [25] decided not to use LSF
for estimation of TCP clock skew because TCP segments
can undergo random delays in the network which can affect
the accuracy of the clock skew estimate. However, as men-
tioned earlier, in our case, the absence of any unpredictable
delays make the number of outliers insignificant. Therefore,
we can use the LSF to estimate clock skews effectively. LSF
has an advantage over LPM in the scenario where an adver-
sary tries to avoid detection by interspersing frames from
a fake AP with the frames from the authorized one as de-
scribed above. LSF’s sensitivity to the presence of even a
small number of outliers will help determining the fake AP
in the above scenario more effectively than LPM. So, it will
be difficult for the adversary to masquerade frames from the
fake AP as outlying data when LSF is used to estimate the
clock skew.

We measure and compare the effectiveness of these two
methods in estimating clock skews in Section 5.

3.3 Differentiating Frames of Fake APs

Separation of the clock offset-sets of the fake AP(s) and
the authorized AP (if present) helps us to gain insight about
the fake APs. For example, if the attacker using multiple
fake APs to fake one authorized AP, we can detect it by
separating the clock offset-sets.

The general problem of fitting multiple lines to a data set
is not new. In the domain of computer vision and image
processing, Generalized Hough Transform (GHT) [24, 19] is
a well known technique that can be used for this purpose.
However, the main drawback of GHT is that it is compu-
tationally intensive and requires a large amount of storage.
Even though techniques like Randomized Hough Transform
(RHT) [32] try to minimize these effects, the time required
by these techniques is still quite high. The use of GHT is
justified in the domain of image processing and computer
graphics because images normally contain large number of
edges and GHT can detect all of them together. However,
in our case we expect to have very few lines.

Another approach to solve the problem of fitting multiple
lines to a data set is to model the data as a mixture model
and apply the well known statistical method of expectation
maximization (EM) to separate the data [21]. However, the
EM algorithm requires the initial parameters to be guessed

and the accuracy of the results depend on the values of those
initial parameters. Furthermore, EM requires multiple iter-
ations to converge.

We note that the complexities and the computation inten-
siveness of these algorithms arise from their attempt to solve
a general problem without any domain specific assumptions.
In our problem domain, we have some specific characteris-
tics of the data that help us to create a less complex and
lightweight solution. We know the following facts about the
clock offset-sets.

e The thickness of the lines in the clock offset-set plot
(i.e., the variance of the points in the set) remains
mostly constant across the APs.

e The amount of noise in the data is negligible.

Keeping these facts in mind and borrowing ideas from both
of the above mentioned methods, we design a lightweight
heuristic that solves our problem efficiently.

Our heuristic relies on the fact that if a clock offset-set
is calculated from the beacons received from different APs,
then the clock offset-set will contain certain jumps (i.e., sud-
den big changes in the value) at the boundary where one
packet is from one AP and the successive packet is from
another AP. Our heuristic identifies these jumps and differ-
entiates the data based on it.

We exploit this fact to differentiate packets from different
APs. Let A;; be the relative skew between two samples in
the clock offset-set, (x;,y:;) and (x;,y;). Ay is defined as
follows:

Aij = lyi — yil/|zi — 5] (7)

where |z| is the absolute value of z.

We introduce a tunable parameter called threshold to dif-
ferentiate between jump and consistent increment. Thus,
two consecutive points (x;,y;) and (z;,y;) in the clock offset-
set are considered to be a jump if and only if A;; > threshold.
Using this definition of jump we can segregate the clock
offset-set data into separate groups based on the jumps taken.

In Algorithm 1, threshold is the only parameter that can
be and must be tuned. A limit can also be imposed on the
count field to filter out small number of outliers that are not
part of any data set. However, we do not expect the WLAN
samples to contain outliers that are not part of any sample
and hence we do not set any limit on or tune the count field.
The value of threshold can be estimated empirically from
the clock offset-set of a single AP. Algorithm 2 describes the
algorithm for finding the threshold value from the test data.

We estimate the threshold using the above algorithm from
different test data sets. We find that the threshold esti-
mated from a very small amount of data (i.e., 50-100 packets
depending on the received timestamp resolution) is enough
to separate a wide variety of datasets. Our results show that
the value of threshold estimated by the test data depends
on the method we use to generate the receiver’s timestamps.
For example, if we use our modified MadWifi driver, de-
scribed later in Section 4, then the threshold is estimated
as 0.003, whereas if we use jiffies® to estimate the timestamp
then the value of threshold becomes 0.05.

2jiffies is a variable maintained and incremented once in
every 4 ms by the linux kernel.

Algorithm 1 Separate clock offset-set points based on orig-
inating AP

accumulator|0].dataset < [(x1,y1)]
accumulator|[0].current_point < (z1,y1)
accumulator|0].count < 1
for i =2 ton do
for each entry j in accumulator do
(tempxr, tempyr) < accumulator|k].current_point
if A;x < threshold then
add (x;,y:) to data set of accumulator entry j
accumulator(j].count <= accumulator(j].count + 1
accumulator([j].current_point < (z;,y;)
end if
end for
if none of the entry in accumulator satisfies (A;rx <
threshold) then
add a new accumulator entry p
p.dataset < [(zi,ys)]
p.count <= 1
p.current_point < (x;,y;)
end if
end for
output number of entries in accumulator as number of
different data sets
output the data sets of accumulator entries as different
data sets from the APs

Algorithm 2 Calculate threshold from test clock offset-set

finalthreshold < 0
for each test data set do
threshold <= A2
for i=3 to n do
if Aji—1) > threshold then
threshold <= A;(;_1)
end if
end for
if threshold > finalthreshold then
finalthreshold < threshold
end if
end for
output finalthreshold as final calculated threshold

Once the datasets are separated using the above heuristic,
we can use either LPM or LSF based methods to estimate
the exact clock skew of different fake APs.

4. IMPLEMENTATION

We implement our methodology for capturing beacon frames,

recording timestamps, and computing clock skews of APs;
presented in the last section, on two laptops - an Acer Travel-
Mate 2303 NLC running Ubuntu Linux 7.4, and an Acer As-
pire running SUSE Linux 10.1. We use two wireless cards - a
Linksys WPC 55AG, and a Intel PRO/Wireless 3945ABG.
The Linksys card uses an Atheros chipset that works with
the MadWifi driver. We chose these cards because they both
support the monitor mode and also because their drivers’
source code is available. The availability of the source code
allows us to modify the drivers to measure the arrival time
of beacon frames with higher resolution as described below.
As the success of our methodology is closely tied to how
precisely we can measure time, most of our implementation
effort targets obtaining high precision time measurements
and we will focus on this very aspect of our implementation
in the rest of this section.

In order to accurately estimate the clock skew of an AP
we need to precisely measure the time when a beacon frame
reaches the wireless LAN card of the fingerprinter. We will
now describe and discuss three different mechanisms that
we explore for the purpose of accurately measuring the ar-
rival time of a beacon frame at the fingerprinter. We first
explore the use of sniffers such as tepdump [16], to find the
arrival time of a frame. Even though this mechanism does
not require any changes in the system, we note that the
timestamp generated by tcpdump includes variable process-
ing time of Operating System, interrupt latency. Therefore,
use of tcpdump timestamp is not suitable for our purpose.

Next, we explore using the Prism monitoring headers in
the MadWifi driver [5] and the Intel 3945ABG driver [4].
These drivers allow additional Prism monitoring headers to
be added to frames arriving at the wireless card which has a
4 byte timestamp field. The drivers use it to report the time
when the packet is received by the wireless cards. However,
we find that the precision of the time reported by MadWifi is
not accurate enough to detect the clock skew quickly and ac-
curately. In Linux, MadWifi driver puts the current value of
the jiffies variable in the timestamp field. jiffies is a counter
incremented at regular intervals by the Linux kernel through
timer interrupts. By default, it is incremented once every
4 ms in recent Linux kernels (newer than 2.6.13). This in-
terval is a configurable parameter that can also be set to 1
ms or 10 ms [13]. Therefore, the highest resolution available
for incrementing jiffies in Linux is 1 ms. Making the jiffies
counter arbitrarily small is not desirable because the num-
ber of timer interrupts being invoked per second depends on
this value and will increase significantly. High timer inter-
rupt overhead can lead to unstable system behavior. Now,
as noted before in Section 3, the TSF counter in the AP is
incremented once every microsecond. Therefore, the clock
skew of an AP cannot be estimated quickly and accurately
with a 1 ms precision clock at fingerprinter’s end.

The 1 ms resolution limitation of jiffies leads us to explore
a third mechanism. Here, our goal is to use a microsec-
ond precision timestamp. However, a microsecond precision
timestamp will quickly overflow a 4 byte field that the Prism
header allows and has room for. To deal with this problem,

we use another header called the Radiotap header that has
an 8 byte timestamp field. Normally, when the MadWifi
or the IPW 3945 ABG drivers receive a frame, the current
value of the TSF timer of the fingerprinter is stored in the
timestamp field of the Radiotap header [5, 4]. Both these
drivers maintain a microsecond resolution TSF timer. How-
ever, this TSF timer is synchronized to the timestamps of
the received beacon frames. Therefore, it cannot be used
for an accurate measurement of the clock skew. We modify
both the drivers to call do_gettimeofday, which supports mi-
crosecond resolution, each time a frame is received and store
the timestamp in the 8 byte timestamp field of the Radiotap
header. We show in Section 5 that using this improvement
clock skews can be estimated accurately by examining 50-
100 packets in most of the cases. We end this section by
analyzing the overheads caused by our monitoring scheme.

The use of do_gettimeofday in our scheme does not add
any significant performance overhead because timestamps
are recorded only when a wireless card is in the monitor
mode and the Radiotap headers are enabled. Moreover, we
also introduce an ioctl system call to turn this feature on
or off allowing us to turn off this feature when we are not
measuring clock skews. As the packet capture for measuring
skew only takes small amount of time (2-3 minutes), the
overhead due to enabling this feature only for that duration
is not significant.

5. EXPERIMENTAL RESULTS

We use experimental traces from two very different set-
tings to test our methodology for detecting unauthorized
APs. Our first set of traces are from data collected dur-
ing the ACM Sigcomm 2004 conference [30]. The Sigcomm
conference network comprised 5 different APs. Five PCs,
each with three Netgear WAG 311 wireless adapters, were
used for wireless sniffing. The details of the data collection
settings can be found in [30]. As the Sigcomm dataset rep-
resents a heavily used 802.11 wireless network, we use it to
estimate the number of frames needed to estimate the clock
skew accurately in a loaded network. Kohno [25] performed
extensive measurements to show that clock skews of net-
worked devices remained consistent over a long time. Our
main goal here is to verify that this observation holds in case
of APs as well, and estimate how quickly and accurately we
can estimate the clock skew of APs.

We obtain our second set of traces by collecting wireless
data in two different residential settings each with multiple
APs operating simultaneously. One residential setting (resi-
dential setting A) has 8 APs and another (residential setting
B) has 21 APs from different manufacturers. We use two
laptops that implement our wireless drivers, as described in
the last section, to collect the packet traces. We collect the
packet traces on multiple days in same residential settings
to verify the consistency of AP clock skews over time.

We use the measure parts per million, essentially us/s,
denoted ppm, to quantify clock skew. We describe the results
of our experiments with the Sigcomm and the residential
traces in the following subsections.

5.1 Resultsfrom the Sigcomm Trace

Each packet in the Sigcomm traces has a prism header
which contains receive timestamp of that packet. As stated
in Section 4, the timestamps in Prism headers are in terms of
jiffies. We also note in Section 4 that the resolution obtained

Table 1: Skew estimates for samples (collected by
chihuahua) with different sample sizes. The samples
contain beacon frames sent by sigcomm-nat.

Packets examined | skew(using LPM) | skew(using LSF)
100 49.36 ppm 42.73 ppm
200 50.69 ppm 46.14 ppm
300 51.21 ppm 47.98 ppm
400 51.21 ppm 48.42 ppm
500 51.21 ppm 49.06 ppm
600 51.21 ppm 49.32 ppm

with jiffies is in milliseconds®. Therefore, the Sigcomm data
does not contain very precise time measurements in com-
parison to the data we collect with microsecond resolution.
However, the Sigcomm data can still be used for estimating
clock skews, albeit using more samples.

First to check the consistency of the AP clock skew over
time, we create 20 equal sized sample data sets by selecting
blocks of packets starting from random offset from the trace
collected by the machine chihuahua and measure the clock
skew of a particular AP, with SSID sigcomm-nat, for each
data set. We find that the clock skew estimate remains
around 51.25 ppm (using LPM) and between 51.09-51.37
ppm (using LSF) for each of the sets. This reaffirms that the
clock skew of an AP remains consistent over time. Next, we
try to figure out the speed of convergence of our procedure,
i.e., what is the minimum number of packets that we need
to examine to get a close skew estimate. We start with the
skew estimates for the first 100 packets and then increment
the number of packets by 100 and measure the clock skew
in each of the cases. The skew estimate results are shown in
Table 1.

As we can see in Table 1, the minimum number of packets
needed to converge to a clock skew is 300 (using LPM). How-
ever, when we use LSF, even 600 packets are not enough to
converge to a small range of clock skews. In fact 900 pack-
ets (not shown in the table) are required to converge to the
51.09-51.37 range. Later, we will show in Section 5.2 that
LSF can also estimate clock skews accurately using the same
number of packets as LPM if we use the higher resolution re-
ceiver timestamps. To verify if the clock skew estimated by
monitoring 300 packets using LPM remains consistent over
time, we take 32 random samples, each of size 300 packets,
from the trace and we estimate the clock skew for each sam-
ple. Figure 3 shows the estimated clock skew as a function
of the experiment number. We find that all the estimates
remain very close to 51.25 ppm which is the actual estimate
of the skew made over all the packets (shown by the dashed
line in Figure 3).

Thus, we can see that even using lower resolution times-
tamps (i.e., jiffies) we can estimate clock skews fairly accu-
rately. However we require 300 or more packets. In Section

3As the Sigcomm trace was collected in 2004 (when 2.4
Linux kernels were latest ones), we assume that the reso-
lution of jiffies is 10 ms. However, this assumption does not
have any effect on the consistency of an AP clock skew or
on the comparison between the clock skews of different APs.
It only helps us in estimating absolute values of the skews
which are easier to comprehend than comparing them using
their ratio.

52.0

51.8

51.6 -

51.4 -

Estimated Clock Skew

510t e

,,,,,,,,,,,, e
* e +
B R

51.0 L
o 5

Experiment No

I I
10 15 20 25

30 35

Figure 3: Skew estimates of samples containing 300
packets taken at different times by chihuahua. The
samples contain beacon frames sent by sigcomm-nat.

Table 2: Skew estimates from Chihuahua. sigcomm-
nat has 20,000 packets and sigcomm-public-2 has

7,500 packets.

AP

skew(using LPM)

skew(using LSF)

sigcomm-nat

51.25 ppm

51.20 ppm

sigcomm-public-2

48.82 ppm

48.90 ppm

Table 3: Skew estimates from Kalahari. sigcomm-
nat-foyer has 30,000 packets, sigcomm-public-2 has
20,000 packets and sigcomm-public-1 has 1,200

packets.

AP skew(using LPM) | skew(using LSF)
sigcomm-nat-foyer 44.91 ppm 45.00 ppm
sigcomm-public-2 42.69 ppm 42.98 ppm
sigcomm-public-1 49.94 ppm 49.34 ppm

Table 4: Skew estimates from Sonoran. Both APs
have around 10,000 packets.

AP skew(using LPM) | skew(using LSF')
sigcomm-nat-foyer 34.99 ppm 35.29 ppm
sigcomm-public-2 32.59 ppm 32.62 ppm

Table 5: Skew estimates from Mojave.

have around 10,000 packets.

Both APs

AP

skew(using LPM)

skew (using LSF)

sigcomm-nat-foyer

40.30 ppm

40.39 ppm

sigcomm-public-1

48.16 ppm

48.21 ppm

(o]

—5 %103

—1.0x10*

—1.5x10*

—2.0 x10%

Clock offset in microseconds

—2.5x10% - -

—3.0x10* . . . I
o 1x10® 2x10® 3x10%® 4x10% 5x10°
Time from beginning of experiment(in microsec)

Figure 4: TSF clock offset-sets for two different
Linksys APs. Clock skew estimations are -64.23 ppm
and -45.69 ppm

5.2 we show that using higher resolution timestamp we can
estimate skews much faster.

We also examine the skew estimates for different APs
based on the time measurement data collected at different
machines. The skew estimate results based on data from
four different machines are shown in Tables 2, 3, 4 and 5.
We note that the clock skew estimates differ across differ-
ent measurement nodes. This observation suggests that we
must compare clock skews only from the same measuring
node.

5.2 Resultsfrom the Residential Traces

In this section, we will refer to the Acer TravelMate 2303
NLC laptop as laptopl and Acer Aspire laptop as laptop2.
We use the monitor mode supported by the wireless cards
in both the laptops for capturing beacon frames and also
enable the Radiotap headers in the packets (as described in
Section 4) that we capture.

First, we measure the clock skew of two different Linksys
APs (Linksysl and Linksys2). The packets for this trace are
collected using laptop2. Figure 4 plots the offset-sets for the
APs. Next, in order to study the consistency of the clock
skews of different APs over time we collect offset-sets from
8 different APs (including Linksysl and Linksys2) in resi-
dential setting A on two different days while keeping all the
other parameters (i.e., the time-span of capture etc) same?.
Table 6 shows the skew estimates of all APs in residential
setting A on two different days using LPM and LSF. As we
did not have control over all the APs, manufacturer name
is predicted based on the manufacturer specific first 3 bytes
of the MAC address. The clock skew estimates measured in
residential setting B are shown in Table 7.

In both Table 6 and 7, we were able to estimate the clock
skews accurately by analyzing 50-100 packets in most of the
cases. Therefore, we find that microseconds resolution re-
ceiver timestamps, that we use in our methodology, results
in a big improvement over millisecond resolution receiver
timestamps that needed about 300 packets (or more for LSF)
for accurate estimation of the clock skew (as shown in Sec-
tion 5.1). This provides almost 20 times improvement over
Kohno’s results [25] where on an average, 1000-2000 packets
were needed for a correct skew estimation. If we consider
average time taken to estimate the skew, using higher preci-
sion timestamps in a more predictable WLAN setting takes

4We do not have any control over the amount of wireless
traffic generated in these experiments. However, the traffic
variation does not affect our results.

Table 6: Clock Skew estimates in residential setting A as measured from laptop2

AP 1st Measurement(LPM) | 1st Measurement(LSF) | 2nd Measurement(LPM) | 2nd Measurement(LSF)
Linksys1 -64.23 ppm -64.10 ppm -64.90 ppm -64.77 ppm
Linksys2 -45.69 ppm -45.96ppm -46.94 ppm -46.71 ppm
Linksys3 -62.05 ppm -61.84 ppm -62.77 ppm -62.64 ppm
Belkinl -56.37 ppm -56.57 ppm -56.71 ppm -56.85 ppm
Belkin2 -1105.50 ppm -1105.69 ppm -1106.29 ppm -1106.06 ppm
Netgearl -58.08 ppm -57.78 ppm -58.86 ppm -59.25 ppm
Dlink1 -47.27 ppm -47.17 ppm -47.80 ppm -48.14 ppm

Unknownl -40.91 ppm -40.99 ppm -41.61 ppm -41.47 ppm

Table 7: Clock Skew estimates (Using LPM) in residential setting B as measured from laptop1

AP Clock Skew AP Clock Skew
Linksys1 22.53 ppm MeruNetworks1 28.14 ppm
Linksys2 17.51 ppm MeruNetworks2 32.53 ppm
Unknown | 31.66 ppm || Trapeze Networksl | 23.66 ppm
Linksys3 20.67 ppm || Trapeze Networks2 | 11.50 ppm
Linksys4 24.95 ppm Dlink2 30.50 ppm
Linksysb 23.54 ppm Linksys6 23.21 ppm
Unknownl | 42.33 ppm Trendwar 34.28 ppm
Unknown2 | 36.22 ppm Dlink3 12.84 ppm
Unknown3 | 39.28 ppm Unknownb 35.5 ppm

DLink1 30.85 ppm Linksys7 27.70 ppm
Unknown4 | 33.26 ppm

only 2-3 minutes whereas Kohno’s clock skew estimates per-
formed in a wide area setting with coarser timestamps [25]
take about 30 minutes-1 hour to converge. This makes our
use of clock skew in the WLAN settings 15-20 times faster.
We also make other important observations from these ta-
bles. First, clock skews are different for different APs. Sec-
ond, the clock skew for a given AP is consistent over the
two measurements. Third, clock skews obtained using LPM
closely match those obtained using LSF.

5.3 Differentiating Frames of Fake APs

To simulate the attack scenarios where a fake AP and an
authorized AP are active at the same time, we construct
synthetic data sets by mixing beacon packets collected in
real packet captures from multiple APs. While creating this
data sets, we preserve the order in which the packets were
received by the fingerprinter. As the fake AP and the au-
thorized AP, both have the same MAC address, the finger-
printer has no way of separating the packets. We analyze
the effect of this intermingling on our estimation methods.
We also test the efficiency of our algorithm for separating
the packets using these synthetic data sets.

Table 8 shows that in some cases (e.g., case 1, 2 and 4), the
skew estimated using LPM is same as the skew of one of the
APs whose packets are intermingled. These results suggest
that when we use LPM, we might miss a fake AP operat-
ing at the same time as the authorized AP. This points to a
serious problem in using LPM. On the contrary, the skews
estimated by LSF are exceptionally large than the actual
clock skews of each of the contributing AP. So, by just ob-
serving the skew value, we can conclude that some fake APs
are active. Therefore, when using higher resolution receive
timestamps LSF alone can be used to detect fake APs. How-
ever, if the receive timestamps are of low resolution, both
LPM and LSF should be used. This is because LPM uses

100

90

80

70

60

Mean correct packet separation rate(in %)

50

.
(o] 20 40 60 80 100 120 140 160
Number of packets examined to estimate threshold

Figure 5: Mean correct packet separation rate ver-
sus number of packets examined to estimate thresh-
old.

fewer packets than LSF to estimate the clock skew accu-
rately. On the other hand, LSF detects the mixing of pack-
ets from different sources with a higher success rate than
LPM.

We apply our packet separation algorithm (Algorithm 1),
as described in Section 3, to all the five synthetic data sets
that we use for Table 8 as well as to 10 other synthetic data
sets created from traces collected by laptopl. Recall that
Algorithm 1 requires a threshold that is used to differenti-
ate between the jumps and the consistent increments of the
clock offsets. We calculate this threshold using Algorithm 2
for each data set. Once this threshold has been determined,
we use Algorithm 1 to separate out the beacon packets of
the fake APs from the ones sent by the authentic ones. We
find that, for all data sets, our algorithm accurately predicts
the number of APs generating the data and correctly sepa-
rates the offset-set corresponding to each AP. Algorithm 1
can also be used to separate packets in real-time. Figure 5

shows how the accuracy of separation increases with increase
in the number of packets used to estimate the threshold. We
observe that 75 packets are needed to estimate a threshold
that achieves 99% accurate packet separation on average
(over the five synthetic traces used in Table 8). These sep-
arated packets from the fake APs must be ignored by the
wireless users. These packets can also be used to fingerprint
the fake APs and determine their locations.

5.4 Impact of external factorson clock skews

We now discuss the impact of external factors on clock
skews.

5.4.1 Effect of Virtual APson Clock Skew

Virtual APs use single wireless hardware to simulate mul-

tiple APs with different MAC Addresses, SSIDs, and BSSIDs.

In this aspect, virtual APs are not much different from vir-
tual machines where multiple machines are simulated on the
same hardware. However, from our experiments we find that
unlike the virtual machine clocks which normally have higher
skew than real machines, as shown by Kohno [25], all vir-
tual APs being emulated on a particular hardware have the
same clock skew, and that the clock skew is in the same
range as the real AP clock skews. This happens because
while sending the timestamp, all virtual APs read from the
same hardware timer and send the value unaltered. Vir-
tual APs do not maintain separate virtual clocks. There-
fore, all virtual APs using the real hardware clock will have
the same clock skew as the real hardware clock. We test
with 5 different APs (3 Trapeze networks APs running their
default firmware and 2 Linksys WRT54G APs running the
DD-WRT firmware [11]). We simulate 4 virtual APs on each
of the 5 real APs. Our results, shown in Table 9, confirm
the above argument. This implies that our methodology can
also be used to distinguish virtual APs from real APs.

5.4.2 Effect of Temperature on Clock Skew

It has been shown in existing work [25, 28] that under nor-
mal PC operating temperatures the clock skew of a device
remains constant within +1 ppm. It has also been noted [28]
that this temperature change can also occur due to varying
processor load. However, Pasztor et al [29] have shown that
for small time periods (less than 1000 seconds) the clock
skew variance remains less than +0.1 ppm. The results pre-
sented in another existing work [28] also supports this ob-
servation as the change of clock skew due to temperature
variance in their results occurs gradually. Therefore, in or-
der to be able to track any changes in the clock skew of
genuine APs and for detecting fake ones in the presence of
clock skew variation with temperature, we propose using a
“rolling signature” scheme described in Algorithm 3. We
propose that an AP’s clock skew must be updated to a new
value if the difference between the new measured value and
the old value is within a threshold. The nodes that mea-
sure clock skews (e.g., WIDS nodes) should collect packets
from different APs and executes Algorithm 3 over each 50-
100 beacon frame block. Since collection of 50-100 beacon
frames typically takes much less than 1000s, we can assume
that the clock skew variance due to temperature will cause
the consecutive clock skew estimates to differ only by ap-
proximately +0.1 ppm rather than +1 ppm. This method
thus enables our scheme to compare measured clock skews

o

—1x10* -

—2x10% 4

—3x104[4

Clock offset in microseconds

-4 %104 [-

—5x10" I I . .
[e] 5x107 1.0x=10°1.5%10°%2.0=x10% 2.5 =102
Time from beginning of experiment(in microsec)

Figure 6: TSF clock offset-sets for the original AP.
Clock skew estimation for this AP is -178.83 ppm
(using LPM)

with a higher precision in comparison to the one used by
Kohno [25].

Algorithm 3 Fake AP detection algorithm

Calculate newskew

if (newskew - currentskew) < maz skew variance then
currentskew < newskew
AP is original

else
Fake AP detected.

end if

As, we measure relative skew between two physical clocks,
extrapolating the findings of [29], we can set maz skew vari-
ance to £0.2 ppm. In our high precision residential traces,
all but one pair of access points (Linksys5 and Trapeze Net-
works 1 in Table 7) differ by more than 0.2 ppm.

5.4.3 Effect of NTP Synchronization of Fingerprinter’s
Clock on Skew Estimate

Unlike the approach used by Kohno [25], we do not syn-
chronize the fingerprinter’s clock using the Network Time
Protocol (NTP) or any other clock synchronization mech-
anism. Rather, we measure clock skew of an AP relative
to the fingerprinter. Our measurement times are expected
to be small (2-3 minutes) and the timestamps are measured
in microseconds. NTPv4 is accurate within 10 milliseconds
over the wide-area Internet and within 200 microseconds
over a LAN. The default minimum polling interval for NTP
is 64 seconds [12]. However in our case, as the timestamps
are measured in microseconds and the estimates of the clock
skews are in the range of 100 ppm, enabling NTPv4 will not
provide enough accuracy to make the clock skew estimates
independent of the fingerprinter’s own clock skew. However,
in our problem definition, the fingerprinter (a WIDS node
in a WLAN environment) remains the same. So this de-
pendence on the fingerprinter’s clock is not an issue in our
scheme.

6. FABRICATION OF CLOCK SKEWS

Our approach to detect a malicious AP is based on the
clock skew of the AP. As an AP broadcasts beacon packets,
an attacker can also listen to those packets and then cal-
culate the relative clock skew of the AP with respect to its
own clock skew. Using this clock skew estimate, an attacker
can try to masquerade as the original AP by generating fake

Table 8: Measure of skew from the synthetic data set. All skews are absolute values. Please note that the
skews estimated by LSF is extremely large because of the mixing which helps us to detect the presence of

fake APs much faster than LPM.
Case | Data Sets mixed | original skews skew(using LPM) | skew(using LSF) | Data sets estimated
1 2 62.05,62.47 62.47 4614750000 2
2 2 40.91,48.60 40.91 363843000 2
3 2 60.03,45.69 0 406340000 2
4 2 60.61,1106.31 1106.31 4729570 2
5 3 55.14,60.61,1106.31 | O 4256390000 3
Table 9: Skew of virtual APs
AP | Virtual AP1 | Virtual AP2 | Virtual AP3 | Virtual AP4
1 | 23.66 23.66 23.66 23.66
2 | 17.53 17.54 17.17 17.34
3 | 28.55 28.56 28.56 28.55
4 | 3245 32.46 32.45 32.45
5 | 21.24 21.28 21.27 21.24
ot AP was active. In order to test how accurately the attacker
a o can fabricate timestamps, we examine systems that use the
g i open source MadWifi and Intel 3945ABG drivers. In these
8 _1x10f] systems, channel sensing is done by the wireless hardware
= for performance reasons. Furthermore, the timestamp in
g —2aot] the beacon packets is set by the hardware when it actually
% transmits the packet. None of the wireless hardware sup-
S Tt B ported by these drivers allow the timestamp to be set by
Cax10t ‘ ‘ ‘ ‘ software. However, these drivers support a mode called the
o 5x107 1.0%10°1.5x10°%2.0x10°% 2.5 =x10°

Time from beginning of experiment(in microsec)

Figure 7: TSF clock offset-sets for the attacker with
forged timestamps. Clock skew estimation is -35
ppm (using LPM)

timestamps by adding proper offsets (those calculated from
the measured skew) to its own timestamp. Let S denote
the relative skew of the original AP as calculated by the at-
tacker. Now the attacker can read its own timestamp 7; and
try to generate fake sequence of timestamps T'F; using the
following equation.

There can be two scenarios where an attacker can try to
fake an original AP based on whether the original AP is ac-
tive at the time of attack or not. If the attacker, and the
original AP are both active at the same time, the attacker’s
beacon frames will get mixed with the beacons sent by the
original AP. As the attacker cannot control the time when
the original AP sends its beacons, some of the beacons from
the attacker might reach the receiver earlier than the bea-
cons from the original one and some might reach later. As
a result the calculated skew will differ from the skew of the
original AP (as shown in Table 8) and the attacker can be
detected®.

Now, consider the scenario where only the attacker is ac-
tive and it is fabricating timestamps by using the relative
skew of the original AP that it calculated when the original

5 Additionally, the sequence number of the received beacons
will not increase monotonically as it should if only one AP
is active as shown by [18].

raw packet injection mode, where the drivers can transmit
any byte stream as a link layer frame without any modifica-
tion. Thus an attacker can send beacon frames with forged
timestamps using this mode. Even with this capability, an
attacker cannot fabricate the original APs clocks skew as we
explain below.

In an IEEE 802.11 wireless network medium access con-
trol, before sending any frame, the sender is required to
sense the channel for any other ongoing communication. If
the sender finds the channel to be idle for the Distributed
Inter-Frame Sequence (DIFS) duration, the sender delays its
transmission by a number of random time slots. The length
of each time slot is chosen from the interval [0,CW] (where
CW is the contention window size). If the channel is still
idle after the random delay, depending on configuration, ei-
ther the sender does the Request to Send (RTS) / Clear to
Send (CTS) handshake and then sends the data, or directly
sends the data bypassing RT'S/CTS handshake. These two
random delays, waiting time for the medium to be free and
random back off time before actual transmission, make the
exact time between when a wireless frame is handed over
to the driver and when it is actually sent unpredictable.
Therefore, the forged timestamp used by the attacker will
not reflect the actual time of transmission and thus will not
result in the same clock skew as that of the original AP.

To test the effectiveness of clock skew fabrication quanti-
tatively, we first measure the clock skew of an AP from an
attacker PC. The RTS/CTS mechanism is disabled (as we
expect the attacker to do so because enabling it will cause
even more random delays). We also modify the rfakeap pro-
gram [6] to send beacon packets with forged timestamps cre-
ated by offsetting the attacker’s timestamp with the skew of
the original AP measured by the attacker. We shut down

the original AP and run this modified rfakeap program on
the attacker PC. We calculate the clock skew of the attacker
PC based on the timestamps in the rfkeap beacons. We
show the results of our clock skew calculations in Figure 6
and 7. As expected, we see that the attacker’s clock skew
using forged timestamps differs significantly from the skew
of the original AP.

One might be able to design a wireless card in the future
that allows beacon timestamps to be directly set by soft-
ware. We now argue that even when armed with such a
wireless card it will be hard for an attacker fabricating the
clock skews to go undetected. In an IEEE 802.11 network
an AP schedules transmission of a beacon frame every bea-
con interval. The time instant at which an AP schedules
transmission of a beacon is called the Target Beacon Trans-
mission Time (TBTT). IEEE 802.11 defines time zero as a
TBTT. The subsequent TBTT values are multiples of the
beacon interval. Now, even though each beacon is scheduled
to be sent at a TBTT, the actual time at which a beacon
is transmitted depends on the time to process the beacon
and the time to acquire the shared medium. The actual
time at which the beacon is transmitted is included in the
beacon. Therefore, based on the beacon number and the
beacon interval and the actual time of beacon transmission,
a receiver (e.g., a WIDS node) can determine the delay be-
tween scheduling a beacon and the actual transmission of
the beacon. Let T denote this delay. Let Tz be the beacon
processing delay and T¢ be the contention delay in acquiring
the wireless medium. Then, T'= T 4+ T¢. Note that in sys-
tems running the MadWifi and the Intel 3945ABG drivers,
the beacon frames are prioritized over data frames. The
beacon frames and the data frames have separate hardware
queues. Thus, the number of data frames in the data queue
has no impact on the actual beacon transmission time.

A WIDS node that observes a large number of beacon
frames can find the minimum values of 7. This minimum
value corresponds to the situation where the medium con-
tention time, T¢, is minimum. Now, when an attacker
armed with the capability to directly set beacon timestamps
wishes to fake the clock skew of an AP, it must calculate
the actual offset by performing a floating point multiplica-
tion and an addition/substraction operation (as shown in 8).
These operations must be performed by the embedded pro-
cessor in the wireless card which will increase the T value
thereby increasing the minimum value of 7. For the typical
150-250 MHz processors [9], Ts will increase at least by a
few microseconds. This increase in the minimum value of
T can be detected at the WIDS node. Currently, a special
wireless card that allows beacons timestamps to be directly
set by software does not exist. Hence, we cannot verify our
argument in a real implementation.

7. RELATED WORK

For understanding the related work on detecting unautho-
rized APs, we first distinguish between rogue APs and fake
APs. A rogue AP is set up by some naive user for conve-
nience and higher productivity [2, 3, 10, 15]. If this AP’s
security is not carefully managed, this seemingly innocu-
ous practice opens up the network to unauthorized wireless
hosts, who can now become part of the network and launch
different types of attacks. In contrast, a fake AP, is set up
by a malicious attacker to masquerade as an authorized AP.
In this paper, we focus on fake APs. Currently there are two

main methods for detecting rogue APs - one that monitors
wireless networks either manually or in an automated fash-
ion by sniffing wireless frames to detect rogue APs based on
MAC address, BSSID, and SSID based filtering [2, 8, 10, 14,
15, 17], and the other that monitors IP traffic to differentiate
wireless network access from wired access using inter-packet
delay patterns [20, 26, 31]. However, these approaches are
ineffective in detecting fake APs mainly because all of the
identity fields (e.g., MAC address) can be easily spoofed.

Bahl et al. [18] proposed a method to detect fake APs by
monitoring the anomaly in the monotonicity of the ‘sequence
number’ field of beacon frames sent by the authorized AP
and the fake AP which is masquerading as the authorized
one. However, this method can only detect the presence of a
fake access point, on the contrary our scheme can detect and
separate out packets from fake AP. Another serious draw-
back of this method is that it will only work if both the
authorized AP and the fake AP are active at the same time.
Bahl [18] also suggested the use of a location detection algo-
rithm to detect the fake AP if the authorized AP is inactive
at the time of detection. The accuracy of this method de-
pends on the accuracy of the location detection algorithm.
If the fake AP operates at a location that is very close to the
authorized AP’s working location then this location detec-
tion method will be ineffective. Our solution removes these
constraints and detects unauthorized APs in realistic sce-
narios. Yin et al. proposed a method for detecting rogue
APs that also act as layer 3 routers. However, this work is
also vulnerable to MAC spoofing. Franklin et al. [22] in-
troduced a technique to fingerprint wireless device drivers.
However, an attacker can also use fake APs with the same
wireless device drivers by choosing the same model and the
same manufacturer as the original one to evade detection.

Our use of clock skew to fingerprint a remote device is not
new. Kohno et al. [25] have already shown that clock skew
can be used as a reliable fingerprint for a device. However,
our contribution is significant because we apply the clock
skew based fingerprinting to a scenario where the detections
are much faster, accurate and less vulnerable to spoofing at-
tacks compared to Kohno’s original scenario that uses TCP
timestamps.

8. CONCLUSIONSAND FUTURE WORK

In this paper, we explored the use of clock skews to detect
unauthorized access points in wireless local area networks.
We developed a methodology that benefits from higher pre-
cision timestamps and higher predictability in a local area
setting. We evaluated this methodology using traces from
the ACM Sigcomm 2004 conference and two different resi-
dence areas. We showed that our high precision skew estima-
tion is an order of magnitude faster and uses an order of mag-
nitude less packets compared to the existing TCP/ICMP
based techniques [25]. We also discussed and quantified
the impact of various external factors including tempera-
ture variation, virtualization, and NTP synchronization, on
clock skew. We also explored the possibility of engineering
clock skews to allow a fake AP to generate the clock skew
of the original one. Our exploration results indicate that
the use of clock skews appears to be an efficient and robust
method for detecting fake APs in WLANs. Our solution
addresses the problem of detecting fake APs effectively, but
the general problem of finding a non-crypto method to de-

tect MAC address spoofing by any wireless host still remains

an interesting open problem.

9.
1]

REFERENCES

IEEE Standard 802.11 - wireless LAN medium access
control (MAC) and physical layer (PHY)
specifications. The Institute of Electrical and
Electronics Engineers, Inc., 1999.

AirDefense, wireless lan security, http://airdefense.net.

AirWave management platform, http://airwave.com.
Intel PRO/Wireless 3945ABG Driver for Linux,
http://ipw3945.sourceforge.net /.

MadWifi- multiband atheros driver for WiFi,
http://madwifi.org/.

Raw Fake AP, http://rfakeap.tuxfamily.org/.

Raw Glue AP, http://rfakeap.tuxfamily.org/.
AirMagnet, http://www.airmagnet.com.

Broadcom Product Brief BCM-5354,
http://www.broadcom.com/collateral /pb/5354-PB01-
R.pdf.

Cisco wireless LAN solution engine(WLSE),
http://www.cisco.com.

DD-WRT, http://www.dd-wrt.com.

Network Time Protocol version 4 reference and
implementation guide,

http://www.eecis.udel.edu/ emills/database
/reports/ntp4 /ntp4.pdf.

Linux kernel source code, http://www.kernel.org/.
NetStumbler, http://www.netstumbler.com.

Rogue access point detection: Automatically detect
and manage wireless threats to your network,
http://www.proxim.com.

tepdump, http://www.tcpdump.org)/.

A. Adya, P. Bahl, and R. C. et al. Architecture and
techniques for diagnosing faults in IEEE 802.11
infrastructure networks. In MobiCom ’04, pages
30-44, 2004.

P. Bahl, R. Chandra, and J. P. et al. Enhancing the
security of corporate Wi-Fi networks using DAIR. In
MobiSys 06, pages 1-14, 2006.

D. H. Ballard. Generalizing the hough transform to
detect arbitrary shapes. Readings in computer vision:
issues, problems, principles, and paradigms, pages
714-725, 1987.

R. Beyah, S. Kangude, and G. Y. et al. Rogue access
point detection using temporal traffic characteristics.

In Proceedings of IEEFE GLOBECOM, December 2004.

(21]

22]

29]

(30]

(31]

A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1977.

J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V.
Randwyk, and D. Sicker. Passive data link layer
802.11 wireless device driver fingerprinting. In
USENIX-S55°06: Proceedings of the 15th conference on
USENIX Security Symposium, pages 12—12, Berkeley,
CA, USA, 2006. USENIX Association.

C. He and J. C. Mitchell. Security analysis and
improvements for IEEE 802.11i. In NDSS, 2005.

P. Hough. Method and means for recognizing complex
patterns. U.S. Patent 3069654, 1962.

T. Kohno, A. Broido, and K. C. Claffy. Remote
physical device fingerprinting. IEEE Trans.
Dependable Secur. Comput., 2(2):93-108, 2005.

C. Mano, A. Blaich, and Q. L. et al. Ripps: Rogue
identifying packet payload slicer detecting
unauthorized wireless hosts through network traffic
conditioning. ACM Transactions on Information and
System Security, 2007.

S. B. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay
measurements. Technical report, Amherst, MA, USA,
1998.

S. J. Murdoch. Hot or not: revealing hidden services
by their clock skew. In CCS 06, pages 27-36, New
York, NY, USA, 2006. ACM.

A. Pésztor and D. Veitch. PC based precision timing
without GPS. SIGMETRICS Perform. Eval. Rev.,
30(1):1-10, 2002.

M. Rodrig, C. Reis, and R. M. et al. CRAWDAD data
set uw/sigcomm?2004 (v. 2006-10-17).
http://crawdad.cs.dartmouth.edu/uw/sigcomm?2004,
Oct. 2006.

W. Wei, K. Suh, and B. W. et al. Passive online rogue
access point detection using sequential hypothesis
testing with TCP ACK-pairs. In IMC, pages 93—108,
2007.

L. Xu and E. Oja. Randomized Hough transform
(RHT): basic mechanisms, algorithms, and
computational complexities. CVGIP: Image Underst.,
57(2):131-154, 1993.

