
Behavioral Simulations in MapReduce

Guozhang Wang, Marcos Vaz Salles, 

Benjamin Sowell, Xun Wang, Tuan Cao, Alan Demers,

Johannes Gehrke, Walker White

Cornell University

1



What are Behavioral Simulations?

• Simulations of individuals that interact to 
create emerging behavior in complex systems

• Application Areas 

– Traffic networks

– Ecology systems

– Sociology systems

– etc

2



Why Behavioral Simulations?

• Traffic

– Congestion cost $87.2 billion 
in the U.S. in 2007

– More people killed by air 
pollution than accidents

– Detailed models: micro-
simulators not scale to NYC!

• Ecology

– Hard to scale to large fish 
schools or locust swarms 3



Challenges of Behavioral Simulations

• Easy to program  not scalable

– Examples: Swarm, Mason

– Typically one thread per agent, lots of contention

• Scalable  hard to program

– Examples: TRANSIMS, DynaMIT (traffic), GPU 
implementation of fish simulation (ecology)

– Hard-coded models, compromise level of detail

4



Challenges of Behavioral Simulations

• Easy to program  not scalable

– Examples: Swarm, Mason

– Typically one thread per agent, lots of contention

• Scalable  hard to program

– Examples: TRANSIMS, DynaMIT (traffic), GPU 
implementation of fish simulation (ecology)

– Hard-coded models, compromise level of detail

5

Can we do better?



Our Contribution

• A new simulation platform that combines:

– Ease of programming

• Program simulations in State-Effect pattern

• BRASIL: Scripting language for domain scientists

– Scalability

• Execute simulations in the MapReduce model

• BRACE: Special-purpose MapReduce engine

6



Talk Outline

• Motivation

• Ease of Programming
– Program Simulations in State-Effect Pattern

– BRASIL

• Scalability
– Execute Simulations in MapReduce Model

– BRACE

• Experiments

• Conclusion
7



A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

8

• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish



A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

9

• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish



A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

10

α

• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish



A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

11

α

• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish



A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

12

α

ρ

• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish



A Running Example: Fish Schools

• Concurrency: agents are 
concurrent within a tick

• Interactions: agents 
continuously interact

• Spatial Locality: agents 
have limited visibility

13

• Time-stepping: agents proceed in ticks

α

ρ



Classic Solutions for Concurrency

14

• Preempt conflicts  locking

• Rollback in case of conflicts  optimistic 
concurrency control

• Problems:

– Strong iterations many conflicts

• Either lots of lock contention

• Or lots of rollbacks

– Does not scale well



State-Effect Pattern

• Programming pattern to deal with 
concurrency

• Follows time-stepped model

• Core Idea: Make all actions inside of a tick 
order-independent

15



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

16

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

17

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

18

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

19

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

20

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector

21

• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



Two Phases of a Tick

• Query: capture agent interaction

– Read states  write effects

– Each effect set is associated with 
combinator function

– Effect writes are order-independent

• Update: refresh world for next tick

– Read effects  write states

– Reads and writes are totally local

– State writes are order-independent

Tick

Update

Query

22



A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 23

α

ρ



A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 24

α

ρ



A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 25

α

ρ



A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 26

α

ρ



Fish in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 27

α

ρ



BRASIL (Big Red Agent SImulation Language)

28

• High-level language for domain scientists

• Object-oriented style

• Programs specify behavior logic of 
individual agents



Fish in BRASIL

29

class Fish {  

// The fish location & velocity (x)

public state float x  : x + vx; #range[-1,1];

public state float vx : vx + rand() + avoidx / count * vx;

// Used to update our velocity (x)

private effect float avoidx : sum;

private effect int count  : sum;  

/** The query-phase for this fish. */

public void run() {

// Use "forces" to repel fish too close

foreach(Fish p : Extent<Fish>) {

p.avoidx <- 1 / abs(x - p.x);

...

p.count <- 1;

}}}



Fish in BRASIL

30

public void run() {

// Use "forces" to repel fish too close

foreach(Fish p : Extent<Fish>) {

p.avoidx <- 1 / abs(x - p.x);

...

p.count <- 1;

}}}

• Syntax enforces state-effect pattern

• Translates to Monad Algebra

– Can reuse classic DB optimization techniques



Fish in BRASIL

31

• Syntax enforces state-effect pattern

• Translates to Monad Algebra

– Can reuse classic DB optimization techniques

• Details of translation in our VLDB 2010 paper

P = <1:𝛱1 𝛰 𝛱p,2:𝛱2>𝛰 PAIRWITH2 𝛰 𝜎 𝛱1= 𝛱2 𝛰 𝛱key
𝛰 GET 𝛰 𝛱x

E1 = <1:𝛱1 𝛰 𝛱p,2:𝜌(avoidx),3:1 / (𝛱1 𝛰 𝛱x –P)>

E2 = <1:𝛱1 𝛰 𝛱p,2:𝜌(count),3:1>

B = <1:𝛱1,2:𝛱2,3:𝛱2 ⊕ (E1 𝛰 SNG) ⊕ (E2 𝛰 SNG)>

F = <1:𝛱1,2:𝛱2,3:<1:𝛱1𝛰 𝑥p(𝛱2) 𝛰 PAIRWITHp, 2:𝛱2, 3:𝛱3> 𝛰 FLATMAP(B 𝛰 𝛱3)>



Talk Outline

32

• Motivation

• Ease of Programming

–Program Simulations in State-Effect Pattern

–BRASIL

• Scalability
– Execute Simulations in MapReduce Model

– BRACE

• Experiments

• Conclusion



How to Scale to Millions of Fish?

33

• Use multiple nodes in a cluster of 
machines for large simulation scenarios

• Need to efficiently parallelize 
computations of state-effect pattern



State-Effect Revisited

34

• Agent partitioning with 
replications across nodes

• Communicate new states 
before next tick’s query 
phase

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



State-Effect Revisited

35

• Agent partitioning with 
replications across nodes

• Communicate new states 
before next tick’s query 
phase

• Communicate effect 
assignments before 
update phase

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



From State-Effect to Map-Reduce

36

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



From State-Effect to Map-Reduce

Map1 t
…
Distribute data

37

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



From State-Effect to Map-Reduce

Map1 t

Reduce1 t Assign
effects (partial)

…
Distribute data

…

38

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



From State-Effect to Map-Reduce

Map1 t

Reduce1 t

Map2 t

Reduce2 t

Assign
effects (partial)

…
Distribute data

…

39

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects

Forward data

Aggregate 
effects



From State-Effect to Map-Reduce

Map1 t

Reduce1 t

Map2 t

Reduce2 t

Map1 t+1

…

Assign
effects (partial)

Forward data

Aggregate 
effects

Update 
Redistribute data

…
Distribute data

…

40

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



BRACE (Big Red Agent Computation Engine)

41

• Special-purpose MapReduce engine for 
behavioral simulations

• Basic Optimizations

– Keep data in main memory

– Do Not checkpoint every iteration

• Optimizations based on Spatial Properties:

– Collocate tasks

– Minimize communication overhead



Spatial Partitioning

• Partition simulation space into regions, each 
handled by a separate node

42



Communication Between Partitions

• Owned Region: agents in it are owned by the 
node

43Owned



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

44Owned Visible



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

45Owned Visible

State Communication



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

46Owned Visible

State Communication



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

47Owned Visible

Query



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

48Owned Visible

Effect communication



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

49Owned Visible

Update



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

50Owned Visible

• Only need to com-
municate with 
neighbors to

– refresh states

– forward assigned 
effects 



Effect Inversion

• In case of local effects only, can save one 
round of communication in each tick

Map1 t

Reduce1 t

51

…
Distribute data

Assign
effects (partial)

Map2 t

Reduce2 t

Forward data

Aggregate 
effects



Effect Inversion

• In case of local effects only, can save one 
round of communication in each tick

Map1 t

Reduce1 t

Do not have non-local effects

52

…
Distribute data

Assign and 
Aggregate effects



Effect Inversion Is Always Possible

• Theorem: Every behavioral simulation written 
in BRASIL that uses non-local effects can be 
rewritten to an equivalent simulation that 
uses local effects only

– Proof in the VLDB 2010 paper



Intuition of Effect Inversion Theorem

Non-local
Effect Writes

α



Intuition of Effect Inversion Theorem

Non-local
Effect Writes

Non-local
State Reads

α 2α



Intuition of Effect Inversion Theorem

Non-local
Effect Writes

Non-local
State Reads

α 2α

Local
Effect Writes

+



Talk Outline

57

• Motivation

• Ease of Programming

– Program Simulations in Time-stepped Pattern

– BRASIL

• Scalability

– Execute Simulations in Dataflow Model

– BRACE

• Experiments

• Conclusion



Experimental Setup

• BRACE prototype

– Grid partitioning

– KD-Tree spatial indexing, rebuild every tick

– Basic load balancing

– No checkpointing

• Hardware: Cornell WebLab Cluster (60 nodes, 
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB 
RAM)

58



Implemented Simulations

• Traffic Simulation

– Best-effort reimplementation of MITSIM lane 
changing and car following

– Large segment of highway

• Bacteria Simulation

– Simple artificial society simulation

• Fish School Simulation

– Model of collective animal motion by Couzin et al., 
Nature, 2005

59



Scalability: Traffic

• Scale up the size of the highway with the number of 
the nodes

• Notch consequence of multi-switch architecture
60



Optimization: Bacteria

• 16-node with indexing and effect inversion

• 10,000 epochs of bacteria simulation

61



Load Balancing: Fish

• 16-node with load balancing turned on

• Fish simulation of two independent schools that swim 
in opposite directions

62



Conclusions

• Behavioral Simulations can have huge impact, 
but need to be run at large-scale

• New programming environment  for 
behavioral simulations 

– Easy to program: Simulations in the state-effect 
pattern  BRASIL

– Scalable: State-effect pattern in special-purpose 
MapReduce Engine  BRACE

• We are moving to simulate NYC ! 

Thank you!

63


