
Asynchronous Large-Scale Graph
Processing Made Easy

Guozhang Wang, Wenlei Xie,

Al Demers, Johannes Gehrke

Cornell University

1

Graphs are ubiquitous..

2

3

Social Networks Web

Retail Advertising

Computer Vision

DNA Analysis

Physical Simulations

4

• Capture complex dependencies and
interactions

• Become essential in knowledge discovery and
scientific studies

Existing Graph Processing Frameworks

PrIter

Naiad

Existing Graph Processing Frameworks

PrIter

• Either follow BSP to compute synchronously

– Data is updated simultaneously and iteratively

– Easy to program

Existing Graph Processing Frameworks

• Either follow BSP to compute synchronously

– Data is updated simultaneously and iteratively

– Easy to program

Existing Graph Processing Frameworks

• Or compute asynchronously

– Data updates are (carefully) ordered

– Data is updated using whatever available
dependent state

– Fast convergence

Naiad

Existing Graph Processing Frameworks

• Or compute asynchronously

– Data updates are (carefully) ordered

– Data is updated using latest available dependent
state

– Fast convergence

Existing Graph Processing Frameworks

• Or compute asynchronously

– Data updates are (carefully) ordered

– Data is updated using latest available dependent
state

– Fast convergence

Research Goal:

A new graph computation framework that
allows:

11

• Sync. implementation for easy programming

• Async. execution for better performance

• Without reimplementing everything

Running Example: Belief Propagation

• Core procedure for many inference tasks in
graphical models

– Example: MRF for Image Restoration

12

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚𝑣→𝑢 (𝑥𝑢)

𝑢

𝑏𝑢 𝑥𝑢 ∝ ϕ𝑢(𝑥𝑢) 𝑚𝑤→𝑢(𝑥𝑢)

𝑒𝑤,𝑢∈𝐸

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

14

𝑣

𝑢

𝑏𝑢 𝑥𝑢 ∝ 𝜙𝑢(𝑥𝑢) 𝑚𝑤→𝑢(𝑥𝑢)

𝑒𝑤,𝑢∈𝐸

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

15

𝑣

𝑚𝑢→𝑣 (𝑥𝑣)

𝑢

𝑏𝑢 𝑥𝑢 ∝ 𝜙𝑢(𝑥𝑢) 𝑚𝑤→𝑢(𝑥𝑢)

𝑒𝑤,𝑢∈𝐸

𝑚𝑢→𝑣(𝑥𝑣) ∝ 𝜙𝑢,𝑣(𝑥𝑢, 𝑥𝑣) ∙

𝑥𝑢∈Ω

𝑏𝑢(𝑥𝑢)

𝑚𝑣→𝑢(𝑥𝑢)

(1)

(2)

Original BP Implementation

16

E

A C

I

D

B

G H

F

Original BP Implementation

17

E

A C

I

D

B

G H

F

Original BP Implementation

18

E

A C

I

D

B

G H

F

19

E

A C

I

D

B

G H

F

Scheduler

Residual BP Implementation

20

E

A C

I

D

B

G H

F

Scheduler

Residual BP Implementation

21

E

A C

I

D

B

G H

F

Scheduler

Residual BP Implementation

22

E

A C

I

D

B

G H

F

Scheduler

B

D

Residual BP Implementation

23

E

A C

I

D

B

G H

F

Scheduler

D

Residual BP Implementation

24

E

A C

I

D

B

G H

F

Scheduler

B

D C

E G

F

B

B A

D

B

E

Residual BP Implementation

Comparing Original and Residual BPs

• Computation logic is actually identical: Eq 1 and 2

• Only differs in when/how to apply this logic
25

GRACE:

26

• Separate vertex-centric computation from
execution policies

• Customizable BSP-style runtime that enables
asynchronous execution features

Vertex-Centric Programming Model

• Update vertex data
value based on
received messages

• Generate new
messages for
outgoing edges

• Send out messages
to neighbors and
vote for halt

List<Msg> Proceed(List<Msg> msgs) {
 Distribution newBelief = potent;
 for (Msg m in msgs) {
 newBelief = times(newBelief, m.belief);
 }
 List<Msg> outMsgs(outDegree);
 for (Edge e in outgoingEdges) {
 Distribution msgBelief;
 msgBelief = divide(newBelief, Msg[e]);
 msgBelief = convolve(msgBelief, e.potent);
 msgBelief = normalize(msgBelief);
 outMsg[e] = new Msg(msgBelief);
 }
 if (L1(newBelief, belief) < eps) voteHalt();
 belief = newBelief;
 return outMsgs;
}

Vertex-Centric Programming Model

• Update vertex data
value based on
received messages

• Generate new
messages for
outgoing edges

• Send out messages
to neighbors and
vote for halt

List<Msg> Proceed(List<Msg> msgs) {
 Distribution newBelief = potent;
 for (Msg m in msgs) {
 newBelief = times(newBelief, m.belief);
 }
 List<Msg> outMsgs(outDegree);
 for (Edge e in outgoingEdges) {
 Distribution msgBelief;
 msgBelief = divide(newBelief, Msg[e]);
 msgBelief = convolve(msgBelief, e.potent);
 msgBelief = normalize(msgBelief);
 outMsg[e] = new Msg(msgBelief);
 }
 if (L1(newBelief, belief) < eps) voteHalt();
 belief = newBelief;
 return outMsgs;
}

Vertex-Centric Programming Model

• Update vertex data
value based on
received messages

• Generate new
messages for
outgoing edges

• Send out messages
to neighbors and
vote for halt

List<Msg> Proceed(List<Msg> msgs) {
 Distribution newBelief = potent;
 for (Msg m in msgs) {
 newBelief = times(newBelief, m.belief);
 }
 List<Msg> outMsgs(outDegree);
 for (Edge e in outgoingEdges) {
 Distribution msgBelief;
 msgBelief = divide(newBelief, Msg[e]);
 msgBelief = convolve(msgBelief, e.potent);
 msgBelief = normalize(msgBelief);
 outMsg[e] = new Msg(msgBelief);
 }
 if (L1(newBelief, belief) < eps) voteHalt();
 belief = newBelief;
 return outMsgs;
}

Vertex-Centric Programming Model

• Update vertex data
value based on
received messages

• Generate new
messages for
outgoing edges

• Send out messages
to neighbors and
vote for halt

List<Msg> Proceed(List<Msg> msgs) {
 Distribution newBelief = potent;
 for (Msg m in msgs) {
 newBelief = times(newBelief, m.belief);
 }
 List<Msg> outMsgs(outDegree);
 for (Edge e in outgoingEdges) {
 Distribution msgBelief;
 msgBelief = divide(newBelief, Msg[e]);
 msgBelief = convolve(msgBelief, e.potent);
 msgBelief = normalize(msgBelief);
 outMsg[e] = new Msg(msgBelief);
 }
 if (L1(newBelief, belief) < eps) voteHalt();
 belief = newBelief;
 return outMsgs;
}

Customizable BSP-Style Runtime

31

Scheduler

32

• At each tick barrier:

– Check if the computation can stop

– Collect graph data snapshot

– Schedule the subset of vertices for the next tick

Driver

33

• When update a vertex:

– Choose which received messages to use

– Specify what to do with the newly received
messages

• For each worker:

– Get a partition of the
graph

– Apply update function
for scheduled vertices

– Send newly generated
messages to neighbors

Back to Original BP

34

 void OnPrepare(List<Vertex> vertices) {
 scheduleAll(true);
}

Msg OnSelectMsg(Edge e) {
 return PrevRecvdMsg(e);
}

void OnRecvMsg(Edge e, Message msg) {
 // Do nothing since every vertex
 // will be scheduled
}

• Schedule all vertices
at the tick barrier

• Use the message
received from the
last tick

Back to Residual BP

35

 • Schedule only one
vertex with the
highest residual

• Use the most
recently received
message

void OnPrepare(List<Vertex> vertices) {
 Vertex selected = vertices[0];
 for (Vertex vtx in vertices)
 if (vtx.priority > selected.priority)
 selected = vtx;
 Schedule(selected);
}

Msg OnSelectMsg(Edge e) {
 return GetLastRecvdMsg(e);
}

void OnRecvMsg(Edge e, Message msg) {
 Distn lastBelief = GetLastUsedMsg(e).belief;
 float residual = L1(newBelief, msg.belief);
 UpdatePrior(GetRecVtx(e), residual, sum);
}

Experimental Setup

36

• Implementation

– Multi-core prototype

– Static graph partitioning

– Four execution policies

• Jacobi, Gauss-Seidel,
Eager, Prioritized

• Hardware: 8 quad-cores with 128GB RAM

Results: Image Restoration with BP

37

Results: Image Restoration with BP

38

Conclusions

39

Thank you!

• Graph processing: Code synchronously while
execute asynchronously (if it is better)

• We can make such a development cycle easy

– Code-once with vertex-centric programming model

– Customizable BSP-style runtime to allow switching
with various execution policies

http://www.cs.cornell.edu/bigreddata/grace/

