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Graphs are ubiquitous.. 
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Social Networks Web 

Retail Advertising 

Computer Vision 

DNA Analysis 

Physical Simulations 
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• Capture complex dependencies and 
interactions 

 

• Become essential in knowledge discovery and 
scientific studies 
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Research Goal: 
 

A new graph computation framework that 
allows: 
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• Sync. implementation for easy programming 
 

• Async. execution for better performance 

• Without reimplementing everything 



 
 
 

Running Example: Belief Propagation 

• Core procedure for many inference tasks in 
graphical models 

– Example: MRF for Image Restoration 
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Running Example: Belief Propagation 

• Based on message passing to 
update local belief of each 
vertex: 
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𝑣 

𝑚𝑣→𝑢 (𝑥𝑢) 

𝑢 

𝑏𝑢 𝑥𝑢 ∝ ϕ𝑢(𝑥𝑢)  𝑚𝑤→𝑢(𝑥𝑢)

𝑒𝑤,𝑢∈𝐸
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𝑣 

𝑚𝑢→𝑣 (𝑥𝑣) 

𝑢 

𝑏𝑢 𝑥𝑢 ∝ 𝜙𝑢(𝑥𝑢)  𝑚𝑤→𝑢(𝑥𝑢)

𝑒𝑤,𝑢∈𝐸

 

𝑚𝑢→𝑣(𝑥𝑣) ∝  𝜙𝑢,𝑣(𝑥𝑢, 𝑥𝑣) ∙

𝑥𝑢∈Ω

𝑏𝑢(𝑥𝑢)

𝑚𝑣→𝑢(𝑥𝑢)
 

(1) 

(2) 



 
 
 

Original BP Implementation 
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Comparing Original and Residual BPs 

• Computation logic is actually identical: Eq 1 and 2 
 

• Only differs in when/how to apply this logic 
25 



GRACE: 
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• Separate vertex-centric computation from 
execution policies 
 

• Customizable BSP-style runtime that enables 
asynchronous execution features 



 
 
 

Vertex-Centric Programming Model 

• Update vertex data 
value based on 
received messages 
 

• Generate new 
messages for 
outgoing edges 
 

• Send out messages 
to neighbors and 
vote for halt 

List<Msg> Proceed(List<Msg> msgs) { 
  Distribution newBelief = potent; 
  for (Msg m in msgs) { 
    newBelief = times(newBelief, m.belief); 
  } 
  List<Msg> outMsgs(outDegree); 
  for (Edge e in outgoingEdges) { 
    Distribution msgBelief; 
    msgBelief = divide(newBelief, Msg[e]); 
    msgBelief = convolve(msgBelief, e.potent); 
    msgBelief = normalize(msgBelief); 
    outMsg[e] = new Msg(msgBelief); 
  } 
  if (L1(newBelief, belief) < eps) voteHalt(); 
  belief = newBelief; 
  return outMsgs; 
} 



 
 
 

Vertex-Centric Programming Model 

• Update vertex data 
value based on 
received messages 
 

• Generate new 
messages for 
outgoing edges 
 

• Send out messages 
to neighbors and 
vote for halt 

List<Msg> Proceed(List<Msg> msgs) { 
  Distribution newBelief = potent; 
  for (Msg m in msgs) { 
    newBelief = times(newBelief, m.belief); 
  } 
  List<Msg> outMsgs(outDegree); 
  for (Edge e in outgoingEdges) { 
    Distribution msgBelief; 
    msgBelief = divide(newBelief, Msg[e]); 
    msgBelief = convolve(msgBelief, e.potent); 
    msgBelief = normalize(msgBelief); 
    outMsg[e] = new Msg(msgBelief); 
  } 
  if (L1(newBelief, belief) < eps) voteHalt(); 
  belief = newBelief; 
  return outMsgs; 
} 



 
 
 

Vertex-Centric Programming Model 

• Update vertex data 
value based on 
received messages 
 

• Generate new 
messages for 
outgoing edges 
 

• Send out messages 
to neighbors and 
vote for halt 

List<Msg> Proceed(List<Msg> msgs) { 
  Distribution newBelief = potent; 
  for (Msg m in msgs) { 
    newBelief = times(newBelief, m.belief); 
  } 
  List<Msg> outMsgs(outDegree); 
  for (Edge e in outgoingEdges) { 
    Distribution msgBelief; 
    msgBelief = divide(newBelief, Msg[e]); 
    msgBelief = convolve(msgBelief, e.potent); 
    msgBelief = normalize(msgBelief); 
    outMsg[e] = new Msg(msgBelief); 
  } 
  if (L1(newBelief, belief) < eps) voteHalt(); 
  belief = newBelief; 
  return outMsgs; 
} 



 
 
 

Vertex-Centric Programming Model 

• Update vertex data 
value based on 
received messages 
 

• Generate new 
messages for 
outgoing edges 
 

• Send out messages 
to neighbors and 
vote for halt 

List<Msg> Proceed(List<Msg> msgs) { 
  Distribution newBelief = potent; 
  for (Msg m in msgs) { 
    newBelief = times(newBelief, m.belief); 
  } 
  List<Msg> outMsgs(outDegree); 
  for (Edge e in outgoingEdges) { 
    Distribution msgBelief; 
    msgBelief = divide(newBelief, Msg[e]); 
    msgBelief = convolve(msgBelief, e.potent); 
    msgBelief = normalize(msgBelief); 
    outMsg[e] = new Msg(msgBelief); 
  } 
  if (L1(newBelief, belief) < eps) voteHalt(); 
  belief = newBelief; 
  return outMsgs; 
} 



 
 
 

Customizable BSP-Style Runtime 
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Scheduler 
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• At each tick barrier: 
 

– Check if the computation can stop 
 

– Collect graph data snapshot 
 

– Schedule the subset of vertices for the next tick 

 



 
 
 

Driver 
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• When update a vertex: 

– Choose which received messages to use 

– Specify what to do with  the newly received 
messages 

 

 

• For each worker: 
 

– Get a partition of the 
graph 

– Apply update function 
for scheduled vertices 

– Send newly generated 
messages to neighbors 

 



 
 
 

Back to Original BP 
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 void OnPrepare(List<Vertex> vertices) { 
    scheduleAll(true); 
} 
 
Msg OnSelectMsg(Edge e) { 
    return PrevRecvdMsg(e); 
} 
 
void OnRecvMsg(Edge e, Message msg) { 
    // Do nothing since every vertex 
    // will be scheduled 
} 
 
 

• Schedule all vertices 
at the tick barrier 

 

• Use the message 
received from the 
last tick 

 



 
 
 

Back to Residual BP 
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 • Schedule only one 
vertex with the 
highest residual 

 

• Use the most 
recently received 
message 

 

 

void OnPrepare(List<Vertex> vertices) { 
    Vertex selected = vertices[0]; 
    for (Vertex vtx in vertices) 
        if (vtx.priority > selected.priority) 
         selected = vtx; 
    Schedule(selected); 
} 
 
Msg OnSelectMsg(Edge e) { 
    return GetLastRecvdMsg(e); 
} 
 
void OnRecvMsg(Edge e, Message msg) { 
    Distn lastBelief = GetLastUsedMsg(e).belief; 
    float residual = L1(newBelief, msg.belief); 
    UpdatePrior(GetRecVtx(e), residual, sum); 
} 



 
 
 

Experimental Setup 
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• Implementation 

– Multi-core prototype 

– Static graph partitioning 

– Four execution policies 

• Jacobi, Gauss-Seidel, 
Eager, Prioritized 

 
 

 
• Hardware: 8 quad-cores with 128GB RAM 

 



 
 
 

Results: Image Restoration with BP 
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Conclusions 
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Thank you! 

• Graph processing: Code synchronously while 
execute asynchronously (if it is better) 

 

• We can make such a development cycle easy 

– Code-once with vertex-centric programming model 

– Customizable BSP-style runtime to allow switching 
with various execution policies 

http://www.cs.cornell.edu/bigreddata/grace/ 


