

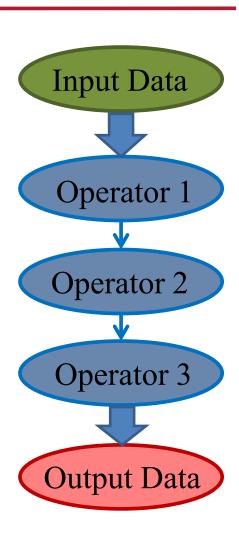
Automatic Scaling Iterative Computations

Guozhang Wang Cornell University

Aug. 7th, 2012

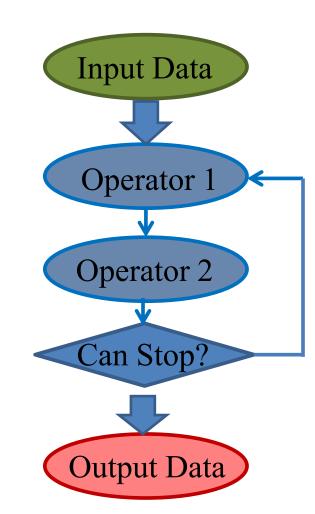
What are Non-Iterative Computations?

- Non-iterative computation flow
 - Directed Acyclic
- Examples
 - Batch style analytics
 - Aggregation
 - Sorting
 - Text parsing
 - Inverted index
 - etc...



What are Iterative Computations?

- Iterative computation flow
 - Directed Cyclic
- Examples
 - Scientific computation
 - Linear/differential systems
 - Least squares, eigenvalues
 - Machine learning
 - SVM, EM algorithms
 - Boosting, K-means
 - Computer Vision, Web Search, etc ...



Massive Datasets are Ubiquitous

- Traffic behavioral simulations
 - Micro-simulator cannot scale to NYC with millions of vehicles

- Social network analysis
 - Even computing graph radius on single machine takes a long time

• Similar scenarios in predicative analysis, anomaly detection, etc

Why Hadoop Not Good Enough?

- Re-shuffle/materialize data between operators
 - Increased overhead at each iteration
 - Result in bad performance

- Batch processing records within operators
 - Not every records need to be updated
 - Result in slow convergence

Talk Outline

- Motivation
- Fast Iterations: BRACE for Behavioral Simulations
- Fewer Iterations: GRACE for Graph Processing
- Future Work

Challenges of Behavioral Simulations

• Easy to program → not scalable

- Examples: Swarm, Mason
- Typically one thread per agent, lots of contention

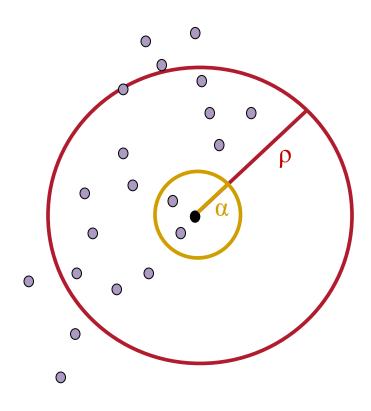
Scalable → hard to program

- Examples: TRANSIMS, DynaMIT (traffic), GPU implementation of fish simulation (ecology)
- Hard-coded models, compromise level of detail

- A new simulation platform that combines:
 - Ease of programming
 - Scripting language for domain scientists
 - Scalability
 - Efficient parallel execution runtime

A Running Example: Fish Schools

- Adapted from Couzin et al., Nature 2005
- Fish Behavior
 - Avoidance: if too close, repel other fish
 - Attraction: if seen
 within range, attract
 other fish
 - Spatial locality for both logics



State-Effect Pattern

Programming pattern to deal with concurrency

Follows time-stepped model

 Core Idea: Make all actions inside of a tick order-independent

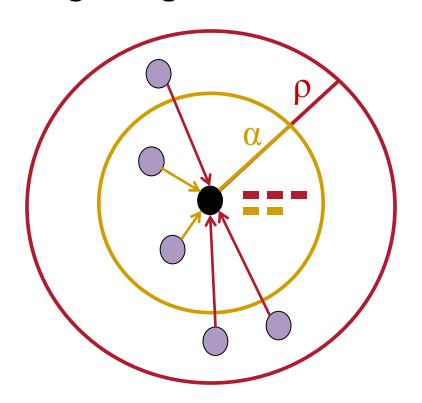
States and Effects

• States:

- Snapshot of agents at the beginning of the tick
 - position, velocity vector

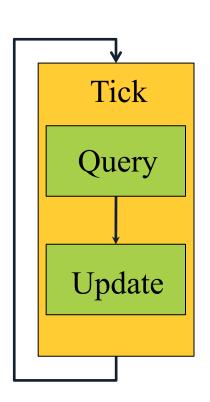
• Effects:

- Intermediate results
 from interaction, used
 to calculate new states
 - sets of forces from other fish



Two Phases of a Tick

- Query: capture agent interaction
 - Read states → write effects
 - Each effect set is associated with combinator function
 - Effect writes are order-independent
- Update: refresh world for next tick
 - Read effects → write states
 - Reads and writes are totally local
 - State writes are order-independent

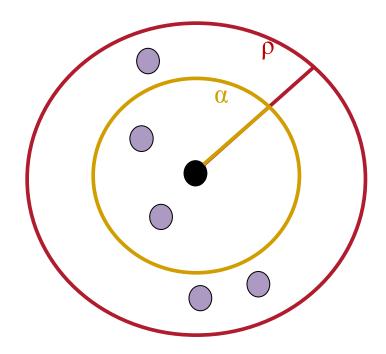


A Tick in State-Effect

Query

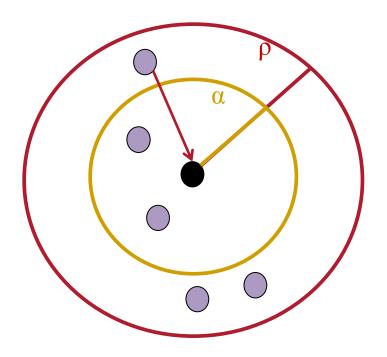
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



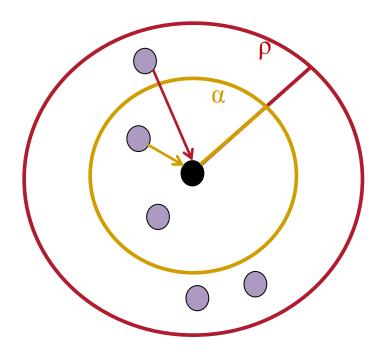
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility p:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



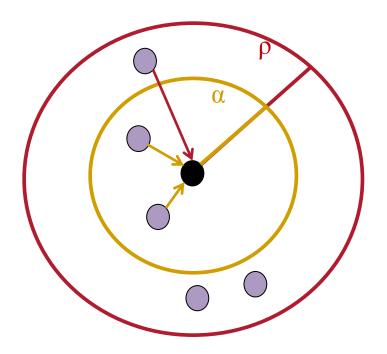
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



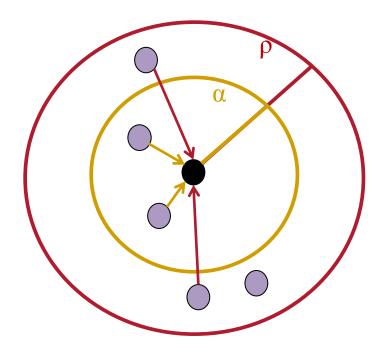
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



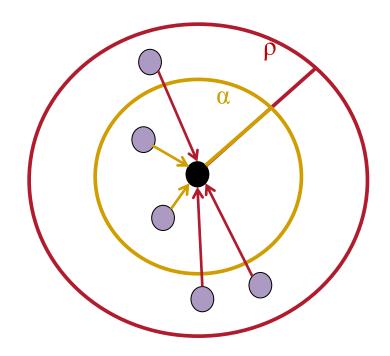
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity

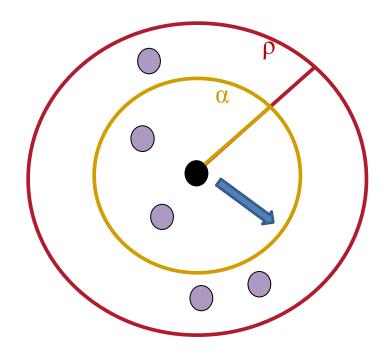


A Tick in State-Effect

Query

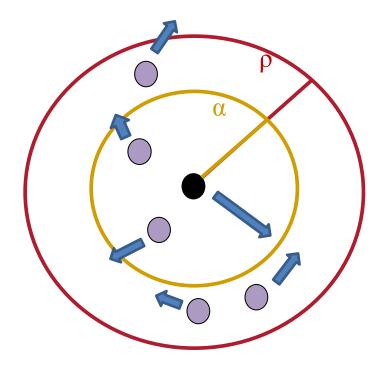
- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity

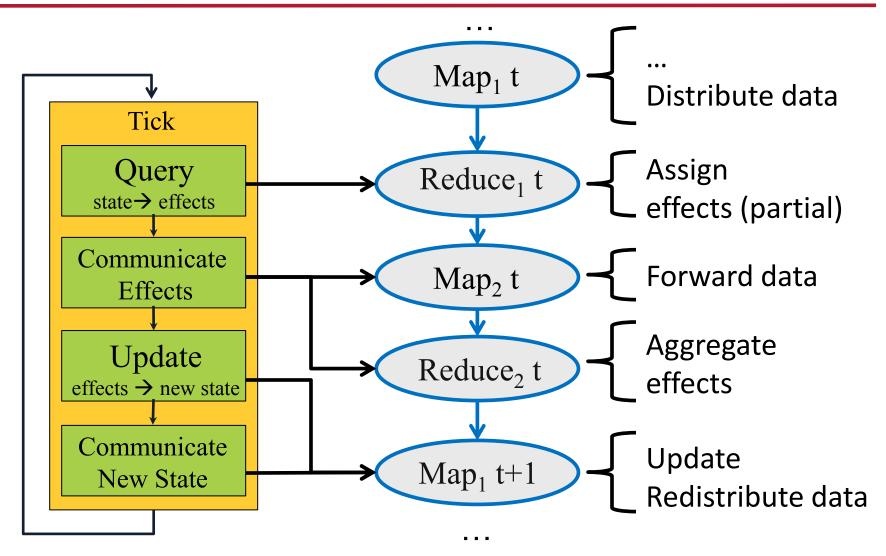


- For fish f in visibility α :
 - Write repulsion to f's effects
- For fish f in visibility ρ:
 - Write attraction to f's effects

- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity



From State-Effect to Map-Reduce

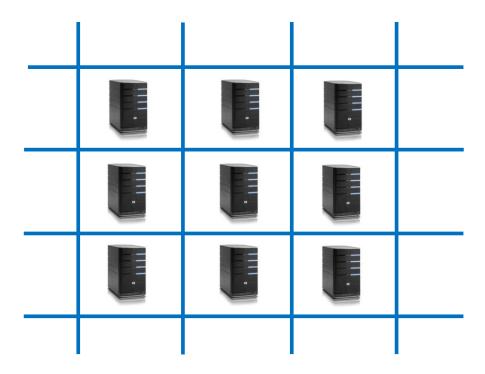


BRACE (Big Red Agent Computation Engine)

- BRASIL: High-level scripting language for domain scientists
 - Compiles to iterative MapReduce work flow
- Special-purpose MapReduce runtime for behavioral simulations
 - Basic Optimizations
 - Optimizations based on Spatial Locality

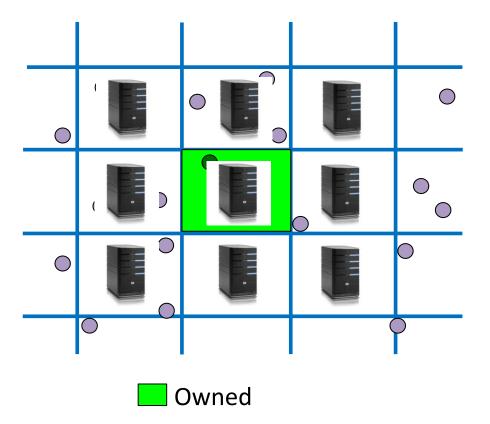
Spatial Partitioning

 Partition simulation space into regions, each handled by a separate node



Communication Between Partitions

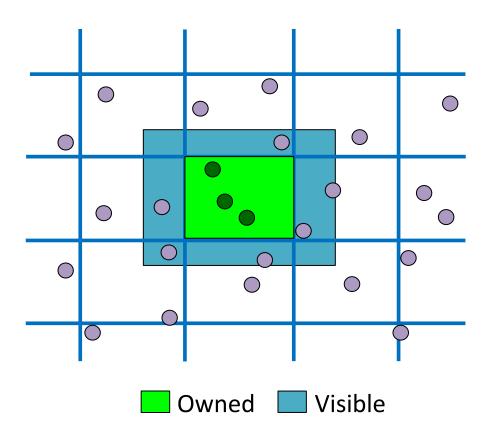
Owned Region: agents in it are owned by the node



Communication Between Partitions

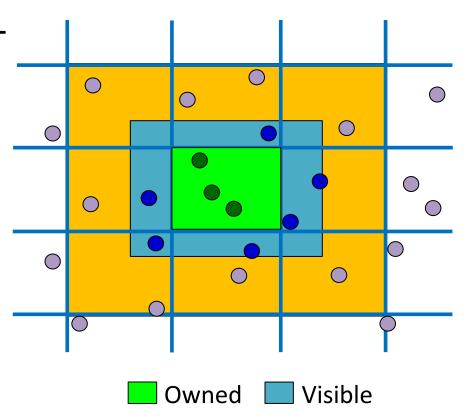
 Visible Region: agents in it are not owned, but need to be seen by the node



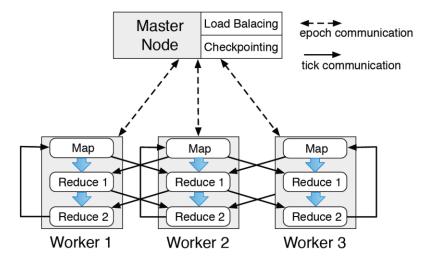


Communication Between Partitions

- Visible Region: agents in it are not owned, but need to be seen by the node
- Only need to communicate with neighbors to
 - refresh states
 - forward assigned effects

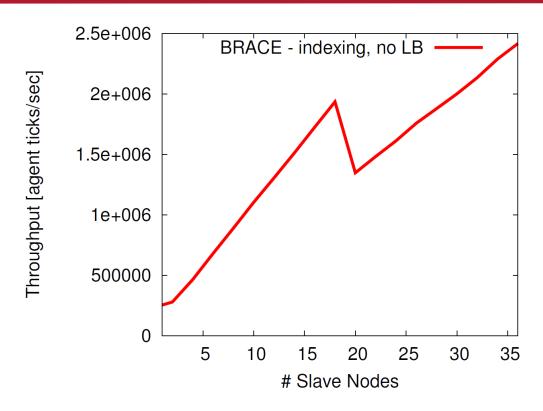


- BRACE prototype
 - Grid partitioning
 - KD-Tree spatial indexing
 - Basic load balancing



 Hardware: Cornell WebLab Cluster (60 nodes, 2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB RAM)

Scalability: Traffic



- Scale up the size of the highway with the number of the nodes
- Notch consequence of multi-switch architecture

Talk Outline

- Motivation
- Fast Iterations: BRACE for Behavioral Simulations
- Fewer Iterations: GRACE for Graph Processing
- Conclusion

Large-scale Graph Processing

- Graph representations are everywhere
 - Web search, text analysis, image analysis, etc.
- Today's graphs have scaled to millions of edges/vertices
- Data parallelism of graph applications
 - Graph data updated independently (i.e. on a pervertex basis)
 - Individual vertex updates only depend on connected neighbors

Synchronous v.s. Asynchronous

- Synchronous graph processing
 - Proceeds in batch-style "ticks"
 - Easy to program and scale, slow convergence
 - Pregel, PEGASUS, PrIter, etc

- Asynchronous processing
 - Updates with most recent data
 - Fast convergence but hard to program and scale
 - GraphLab, Galois, etc

What Do People Really Want?

- Sync. Implementation at first
 - Easy to think, program and debug

- Async. execution for better performance
 - Without re-implementing everything

GRACE (GRAph Computation Engine)

- Iterative synchronous programming model
 - Update logic for individual vertex
 - Data dependency encoded in message passing
- Customizable bulk synchronous runtime
 - Enabling various async. features through relaxing data dependencies

Running Example: Belief Propagation

- Core procedure for many inference tasks in graphical models
- Upon update, each vertex first computes its new belief distribution according to its incoming messages: $b_u(x_u) \propto \phi_u(x_u) \prod_{e_{w.u} \in E} m_{w \to u}(x_u)$
- Then it will propagate its new belief to outgoing messages:

$$m_{u\to v}(x_v) \propto \sum_{x_u \in \Omega} \phi_{u,v}(x_u, x_v) \cdot \frac{b_u(x_u)}{m_{v\to u}(x_u)}$$

Sync. vs. Async. Algorithms

```
Algorithm 1: Original BP Algorithm

1 Initialize b_u^{(0)} as \phi_u for all u \in V;

2 Calculate the message m_{u \to v}^{(0)} using b_u^{(0)} according to Eq. 2 for all u \to v \in E;

3 Initialize t = 0;

4 repeat

5 t = t + 1;

6 foreach u \in V do

7 Calculate b_u^{(t)} using m_{w \to u}^{(t-1)} according to Eq. 1;

8 foreach outgoing edge e_{u,v} of u do

9 Calculate m_{u \to v}^{(t)} using b_u^{(t)} according to Eq. 2;

10 end

11 end

12 until \forall u \in V, ||b_u^{(t)} - b_u^{(t-1)}|| \leq \epsilon;
```

```
Algorithm 2: Residual BP Algorithm

1 Initialize b_u^{(new)} as \phi_u and b_u^{(old)} as uniform distribution for all u \in V;

2 Initialize m_{u \to v}^{(old)} as uniform distribution for all u \to v \in E;

3 Calculate message m_{u \to v}^{(new)} using b_u^{(new)} according to Eq. 2 for all u \to v \in E;

4 repeat

5 u = \arg\max_v(\max_{(w,v) \in E} ||m_{w \to v}^{new} - m_{w \to v}^{old}||);

6 Set b_u^{(old)} to b_u^{(new)}:

7 Calculate b_u^{(new)} using m_{w \to u}^{(new)} according to Eq. 1;

8 foreach outgoing edge e_{u,v} of u do

9 Set m_{u \to v}^{(old)} to m_{u \to v}^{(new)};

10 Calculate m_{u \to v}^{(new)} using m_{u \to v}^{(new)} according to Eq. 2;

11 end

12 until \forall u \in V, ||b_u^{(new)} - b_u^{(old)}|| \le \epsilon;
```

35

- Update logic are actually the same: Eq 1 and 2
- Only differs in when/how to apply the update logic

List<Message> Proceed(List<Message> msgs)

- Read in one message from each of the incoming edge
- Update the vertex value
- Generate one message on each of the outgoing edge

Belief Propagation in Proceed

```
List<Msq> Proceed(List<Msq> msqs) {
  // Compute new belief from received messages
 Distribution newBelief = potent;
  for (Msg m in msgs) {
    newBelief = times(newBelief, m.belief);
 // Compute and send out messages
  List<Msg> outMsgs(outDegree);
  for (Edge e in outgoingEdges)
    Distribution msgBelief = divide(newBelief, Msg[e]);
    msgBelief = convolve(msgBelief, e.potent);
    msgBelief = normalize(msgBelief);
    outMsg[e] = new Msg(msgBelief);
 // Vote to terminate upon convergence
  if (L1(newBelief, belief) < eps) voteHalt();
  return outMsgs;
```

 Consider fix point achieved when the new belief distribution does not change much

Customizable Execution Interface

- Each vertex is associated with a scheduling priority value
- Users can specify logic for:
 - Updating vertex priority upon receiving a message
 - Deciding vertex to be processed for each tick
 - Selecting messages to be used for Proceed
- We have implemented 4 different execution policies for users to directly choose from

Original Belief Propagation

```
void OnRecvMsg(Edge e, Message msg) {
   // Do nothing to update priority
   // since every vertex will be scheduled
}
Msg OnSelectMsg(Edge e) {
  return PrevRcvdMsg(e);
}
void OnPrepare(List<Vertex> vertices) {
  ScheduleAll(Everyone);
}
```

 Use last received message upon calling Proceed, and schedule all vertices to be processed for each tick

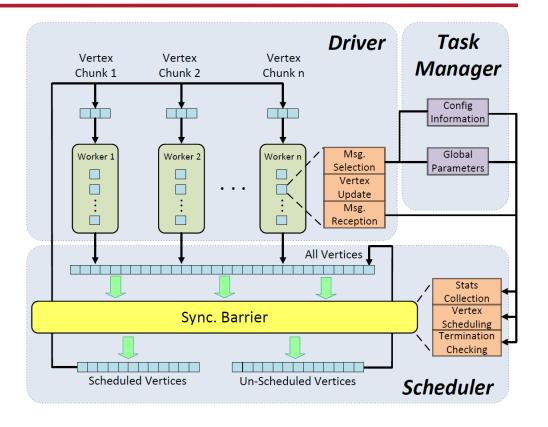
Residual Belief Propagation

```
void OnRecvMsq(Edge e, Message msq) {
  Distr lastBelief = LastUsedMsq(e).belief;
  float residual = L1(newBelief, msg.belief);
  UpdatePriority(residual, max);
Msq OnSelectMsq(Edge e) {
  return LastRcvdMsq(e);
void OnPrepare(List<Vertex> vertices) {
  Vertex selected = vertices[0];
  for (Vertex vtx in vertices) {
    if (vtx.priority > selected.priority)
      selected = vtx;
  Schedule (selected);
```

 Use message residual as its "contribution" to vertex's priority, and only update vertex with highest priority

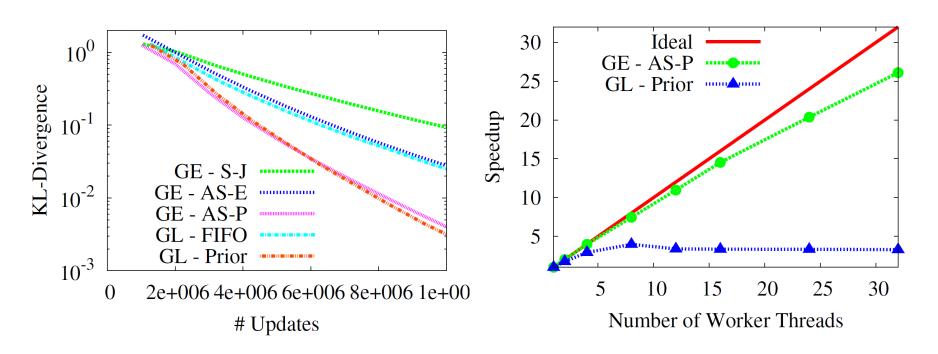
Experimental Setup

- GRACE prototype
 - Shared-memory
 - Policies
 - Jacobi
 - GaussSeidel
 - Eager
 - Prior



 Hardware: 32-core Computer with 8 quad-core processors and quad channel 128GB RAM.

Results: Image Restoration with BP



 GRACE's prioritized policy achieve comparable convergence with GraphLab's async scheduling, while achieve near linear speedup

Thank you!

- Iterative computations are common patterns in many applications
 - Requires programming simplicity and automatic scalability
 - Needs special care for performance
- Main-memory approach with various optimization techniques
 - Leverage data locality to minimize communication
 - Relax data dependency for fast convergence

Acknowledgements

