
Automatic Scaling Iterative
Computations

Guozhang Wang Cornell University

Aug. 7th, 2012
1

What are Non-Iterative Computations?

Input Data

Operator 2

Output Data

Operator 1

Operator 3

• Non-iterative computation flow
– Directed Acyclic

• Examples
– Batch style analytics

• Aggregation

• Sorting

– Text parsing
• Inverted index

– etc..

What are Iterative Computations?

• Iterative computation flow
– Directed Cyclic

• Examples
– Scientific computation

• Linear/differential systems

• Least squares, eigenvalues

– Machine learning
• SVM, EM algorithms

• Boosting, K-means

– Computer Vision, Web Search, etc ..

Can Stop?

Input Data

Operator 2

Output Data

Operator 1

Massive Datasets are Ubiquitous

• Traffic behavioral simulations

– Micro-simulator cannot scale to
NYC with millions of vehicles

• Social network analysis

– Even computing graph radius on
single machine takes a long time

• Similar scenarios in predicative
analysis, anomaly detection, etc

Why Hadoop Not Good Enough?

• Re-shuffle/materialize data between operators

– Increased overhead at each iteration

– Result in bad performance

• Batch processing records within operators

– Not every records need to be updated

– Result in slow convergence

Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral
Simulations

• Fewer Iterations: GRACE for Graph
Processing

• Future Work

6

Challenges of Behavioral Simulations

• Easy to program  not scalable

– Examples: Swarm, Mason

– Typically one thread per agent, lots of contention

• Scalable  hard to program

– Examples: TRANSIMS, DynaMIT (traffic), GPU
implementation of fish simulation (ecology)

– Hard-coded models, compromise level of detail

7

What Do People Really Want?

• A new simulation platform that combines:

– Ease of programming

• Scripting language for domain scientists

– Scalability

• Efficient parallel execution runtime

8

A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

9

α

ρ

• Fish Behavior

– Avoidance: if too
close, repel other fish

– Attraction: if seen
within range, attract
other fish

– Spatial locality for
both logics

State-Effect Pattern

• Programming pattern to deal with concurrency

• Follows time-stepped model

• Core Idea: Make all actions inside of a tick
order-independent

10

States and Effects

• States:

– Snapshot of agents at the beginning of the tick

• position, velocity vector

11

• Effects:

– Intermediate results
from interaction, used
to calculate new states

• sets of forces from other
fish

α

ρ

Two Phases of a Tick

• Query: capture agent interaction

– Read states  write effects

– Each effect set is associated with
combinator function

– Effect writes are order-independent

• Update: refresh world for next tick

– Read effects  write states

– Reads and writes are totally local

– State writes are order-independent

Tick

Update

Query

12

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 13

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 14

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 15

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 16

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 17

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 18

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 19

α

ρ

A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined

repulsion + combined
attraction + old velocity

– new position = old position +
old velocity 20

α

ρ

From State-Effect to Map-Reduce

Map1 t

Reduce1 t

Map2 t

Reduce2 t

Map1 t+1

…

Assign
effects (partial)

Forward data

Aggregate
effects

Update
Redistribute data

…
Distribute data

…

21

Tick

Communicate

New State

Communicate

Effects

Update
effects  new state

Query
state effects

BRACE (Big Red Agent Computation Engine)

22

• BRASIL: High-level scripting language for
domain scientists

– Compiles to iterative MapReduce work flow

• Special-purpose MapReduce runtime for
behavioral simulations

– Basic Optimizations

– Optimizations based on Spatial Locality

Spatial Partitioning

• Partition simulation space into regions, each
handled by a separate node

23

Communication Between Partitions

• Owned Region: agents in it are owned by the
node

24Owned

Communication Between Partitions

• Visible Region: agents in it are not owned, but
need to be seen by the node

25Owned Visible

Communication Between Partitions

• Visible Region: agents in it are not owned, but
need to be seen by the node

26Owned Visible

• Only need to com-
municate with
neighbors to

– refresh states

– forward assigned
effects

Experimental Setup

• BRACE prototype

– Grid partitioning

– KD-Tree spatial indexing

– Basic load balancing

• Hardware: Cornell WebLab Cluster (60 nodes,
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB
RAM)

27

Scalability: Traffic

• Scale up the size of the highway with the number of
the nodes

• Notch consequence of multi-switch architecture
28

Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral
Simulations

• Fewer Iterations: GRACE for Graph
Processing

• Conclusion

29

Large-scale Graph Processing

• Graph representations are everywhere

– Web search, text analysis, image analysis, etc.

• Today’s graphs have scaled to millions of
edges/vertices

• Data parallelism of graph applications

– Graph data updated independently (i.e. on a per-
vertex basis)

– Individual vertex updates only depend on
connected neighbors 30

Synchronous v.s. Asynchronous

• Synchronous graph processing

– Proceeds in batch-style “ticks”

– Easy to program and scale, slow convergence

– Pregel, PEGASUS, PrIter, etc

• Asynchronous processing

– Updates with most recent data

– Fast convergence but hard to program and scale

– GraphLab, Galois, etc

31

What Do People Really Want?

32

• Sync. Implementation at first

– Easy to think, program and debug

• Async. execution for better performance

– Without re-implementing everything

GRACE (GRAph Computation Engine)

33

• Iterative synchronous programming model

– Update logic for individual vertex

– Data dependency encoded in message passing

• Customizable bulk synchronous runtime

– Enabling various async. features through relaxing
data dependencies

Running Example: Belief Propagation

34

• Core procedure for many inference tasks in
graphical models

• Upon update, each vertex first computes its
new belief distribution according to its
incoming messages:

• Then it will propagate its new belief to
outgoing messages:

Sync. vs. Async. Algorithms

35

• Update logic are actually the same: Eq 1 and 2

• Only differs in when/how to apply the update
logic

Vertex Update Logic

36

• Read in one message from each of the
incoming edge

• Update the vertex value

• Generate one message on each of the
outgoing edge

Belief Propagation in Proceed

37

• Consider fix point achieved when the new
belief distribution does not change much

Customizable Execution Interface

38

• Each vertex is associated with a scheduling
priority value

• Users can specify logic for:

– Updating vertex priority upon receiving a message

– Deciding vertex to be processed for each tick

– Selecting messages to be used for Proceed

• We have implemented 4 different execution
policies for users to directly choose from

Original Belief Propagation

39

• Use last received message upon calling
Proceed, and schedule all vertices to be
processed for each tick

Residual Belief Propagation

40

• Use message residual as its “contribution” to
vertex’s priority, and only update vertex with
highest priority

Experimental Setup

• GRACE prototype
– Shared-memory

– Policies
• Jacobi

• GaussSeidel

• Eager

• Prior

• Hardware: 32-core Computer with 8 quad-core
processors and quad channel 128GB RAM.

41

Results: Image Restoration with BP

42

• GRACE’s prioritized policy achieve comparable
convergence with GraphLab’s async scheduling,
while achieve near linear speedup

Conclusions Thank you!

43

• Iterative computations are common patterns in
many applications

– Requires programming simplicity and automatic
scalability

– Needs special care for performance

• Main-memory approach with various
optimization techniques

– Leverage data locality to minimize communication

– Relax data dependency for fast convergence

44

Acknowledgements

