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What are Non-Iterative Computations?
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• Non-iterative computation flow
– Directed Acyclic

• Examples
– Batch style analytics

• Aggregation

• Sorting

– Text parsing
• Inverted index

– etc..



What are Iterative Computations?

• Iterative computation flow
– Directed Cyclic

• Examples
– Scientific computation

• Linear/differential systems

• Least squares, eigenvalues

– Machine learning
• SVM, EM algorithms

• Boosting, K-means

– Computer Vision, Web Search, etc ..
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Massive Datasets are Ubiquitous

• Traffic behavioral simulations

– Micro-simulator cannot scale to 
NYC with millions of vehicles

• Social network analysis

– Even computing graph radius on 
single machine takes a long time

• Similar scenarios in predicative 
analysis, anomaly detection, etc



Why Hadoop Not Good Enough?

• Re-shuffle/materialize data between operators

– Increased overhead at each iteration

– Result in bad performance

• Batch processing records within operators

– Not every records need to be updated

– Result in slow convergence



Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral 
Simulations

• Fewer Iterations: GRACE for Graph 
Processing

• Future Work
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Challenges of Behavioral Simulations

• Easy to program  not scalable

– Examples: Swarm, Mason

– Typically one thread per agent, lots of contention

• Scalable  hard to program

– Examples: TRANSIMS, DynaMIT (traffic), GPU 
implementation of fish simulation (ecology)

– Hard-coded models, compromise level of detail
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What Do People Really Want?

• A new simulation platform that combines:

– Ease of programming

• Scripting language for domain scientists

– Scalability

• Efficient parallel execution runtime
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A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005
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• Fish Behavior

– Avoidance: if too 
close, repel other fish

– Attraction: if seen 
within range, attract 
other fish

– Spatial locality for 
both logics



State-Effect Pattern

• Programming pattern to deal with concurrency

• Follows time-stepped model

• Core Idea: Make all actions inside of a tick 
order-independent
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States and Effects

• States: 

– Snapshot of agents at the beginning of the tick

• position, velocity vector
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• Effects:

– Intermediate results 
from interaction, used 
to calculate new states

• sets of forces from other 
fish

α

ρ



Two Phases of a Tick

• Query: capture agent interaction

– Read states  write effects

– Each effect set is associated with 
combinator function

– Effect writes are order-independent

• Update: refresh world for next tick

– Read effects  write states

– Reads and writes are totally local

– State writes are order-independent

Tick

Update

Query
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A Tick in State-Effect

• Query
– For fish f in visibility α:

• Write repulsion to f’s effects

– For fish f in visibility ρ:
• Write attraction to f’s effects

• Update
– new velocity = combined 

repulsion + combined 
attraction + old velocity

– new position = old position + 
old velocity 13
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From State-Effect to Map-Reduce

Map1 t

Reduce1 t

Map2 t

Reduce2 t

Map1 t+1

…

Assign
effects (partial)

Forward data

Aggregate 
effects

Update 
Redistribute data

…
Distribute data

…

21

Tick

Communicate

New State

Communicate 

Effects

Update
effects  new state

Query
state effects



BRACE (Big Red Agent Computation Engine)
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• BRASIL: High-level scripting language for 
domain scientists

– Compiles to iterative MapReduce work flow

• Special-purpose MapReduce runtime for 
behavioral simulations

– Basic Optimizations

– Optimizations based on Spatial Locality



Spatial Partitioning

• Partition simulation space into regions, each 
handled by a separate node
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Communication Between Partitions

• Owned Region: agents in it are owned by the 
node

24Owned



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

25Owned Visible



Communication Between Partitions

• Visible Region: agents in it are not owned, but 
need to be seen by the node

26Owned Visible

• Only need to com-
municate with 
neighbors to

– refresh states

– forward assigned 
effects 



Experimental Setup

• BRACE prototype

– Grid partitioning

– KD-Tree spatial indexing

– Basic load balancing

• Hardware: Cornell WebLab Cluster (60 nodes, 
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB 
RAM)
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Scalability: Traffic

• Scale up the size of the highway with the number of 
the nodes

• Notch consequence of multi-switch architecture
28



Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral 
Simulations

• Fewer Iterations: GRACE for Graph 
Processing

• Conclusion
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Large-scale Graph Processing

• Graph representations are everywhere

– Web search, text analysis, image analysis, etc.

• Today’s graphs have scaled to millions of 
edges/vertices

• Data parallelism of graph applications

– Graph data updated independently (i.e. on a per-
vertex basis)

– Individual vertex updates only depend on 
connected neighbors 30



Synchronous v.s. Asynchronous

• Synchronous graph processing

– Proceeds in batch-style “ticks”

– Easy to program and scale, slow convergence

– Pregel, PEGASUS, PrIter, etc

• Asynchronous processing

– Updates with most recent data

– Fast convergence but hard to program and scale

– GraphLab, Galois, etc
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What Do People Really Want?
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• Sync. Implementation at first

– Easy to think, program and debug

• Async. execution for better performance

– Without re-implementing everything



GRACE (GRAph Computation Engine)
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• Iterative synchronous programming model

– Update logic for individual vertex

– Data dependency encoded in message passing

• Customizable bulk synchronous runtime

– Enabling various async. features through relaxing 
data dependencies



Running Example: Belief Propagation
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• Core procedure for many inference tasks in 
graphical models

• Upon update, each vertex first computes its 
new belief distribution according to its 
incoming messages:

• Then it will propagate its new belief to 
outgoing messages:



Sync. vs. Async. Algorithms
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• Update logic are actually the same: Eq 1 and 2

• Only differs in when/how to apply the update 
logic



Vertex Update Logic
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• Read in one message from each of the 
incoming edge

• Update the vertex value

• Generate one message on each of the 
outgoing edge



Belief Propagation in Proceed
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• Consider fix point achieved when the new 
belief distribution does not change much



Customizable Execution Interface
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• Each vertex is associated with a scheduling 
priority value

• Users can specify logic for:

– Updating vertex priority upon receiving a message

– Deciding vertex to be processed for each tick

– Selecting messages to be used for Proceed

• We have implemented 4 different execution 
policies for users to directly choose from



Original Belief Propagation
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• Use last received message upon calling 
Proceed, and schedule all vertices to be 
processed for each tick



Residual Belief Propagation
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• Use message residual as its “contribution” to 
vertex’s priority, and only update vertex with 
highest priority



Experimental Setup

• GRACE prototype
– Shared-memory

– Policies
• Jacobi

• GaussSeidel

• Eager

• Prior

• Hardware: 32-core Computer with 8 quad-core
processors and quad channel 128GB RAM.
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Results: Image Restoration with BP
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• GRACE’s prioritized policy achieve comparable 
convergence with GraphLab’s async scheduling, 
while achieve near linear speedup



Conclusions Thank you!
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• Iterative computations are common patterns in 
many applications

– Requires programming simplicity and automatic 
scalability

– Needs special care for performance

• Main-memory approach with various 
optimization techniques

– Leverage data locality to minimize communication

– Relax data dependency for fast convergence
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