B8 CORNELL

IIIIIIIIII

Automatic Scaling Iterative
Computations

Guozhang Wang Cornell University

Aug. 7th, 2012

What are Non-lterative Computations?

* Non-iterative computation flow
— Directed Acyclic

 Examples
— Batch style analytics
* Aggregation
* Sorting
— Text parsing
* Inverted index
— etc..

What are Iterative Computations?

* |terative computation flow
— Directed Cyclic

 Examples

— Scientific computation
* Linear/differential systems
* Least squares, eigenvalues

— Machine learning

* SVM, EM algorithms é
e Boosting, K-means Output Data

— Computer Vision, Web Search, etc ..

* Traffic behavioral simulations

— Micro-simulator cannot scale to
NYC with millions of vehicles

e Social network analysis

— Even computing graph radius on .;,’ﬁ':,;“* fd.
single machine takes a long time . - .- - ;:
. 5 i ':*i.“ -'&_'gi;‘F
o w8 ‘.jthi';: e
nz u"l%‘ = LI ,:E;"‘"’
* Similar scenarios in predicative '« nu ot E

analysis, anomaly detection, etc -

=% \Why Hadoop Not Good Enough?

* Re-shuffle/materialize data between operators
— Increased overhead at each iteration
— Result in bad performance

* Batch processing records within operators
— Not every records need to be updated
— Result in slow convergence

=9 Talk Outline

e Fast Iterations: BRACE for Behavioral
Simulations

* Fewer lterations: GRACE for Graph
Processing

e Future Work

) Challenges of Behavioral Simulations

* Easy to program - not scalable
— Examples: Swarm, Mason
— Typically one thread per agent, lots of contention

» Scalable = hard to program

— Examples: TRANSIMS, DynaMIT (traffic), GPU
implementation of fish simulation (ecology)

— Hard-coded models, compromise level of detail

=% What Do People Really Want?

* A new simulation platform that combines:
— Ease of programming
 Scripting language for domain scientists

— Scalability

 Efficient parallel execution runtime

) A Running Example: Fish Schools

 Fish Behavior

— Avoidance: if too
close, repel other fish

— Attraction: if seen
within range, attract
other fish

— Spatial locality for
both logics

= State-Effect Pattern

* Programming pattern to deal with concurrency

* Follows time-stepped model

* Core Idea: Make all actions inside of a tick
order-independent

=% States and Effects

* States:

— Snapshot of agents at the beginning of the tick
* position, velocity vector

o Effects:

— Intermediate results
from interaction, used
to calculate new states

e sets of forces from other
fish

11

B Two Phases of a Tick

* Query: capture agent interaction
— Read states = write effects

— Each effect set is associated with
combinator function

— Effect writes are order-independent

* Update: refresh world for next tick

— Read effects = write states
— Reads and writes are totally local
— State writes are order-independent

Tick

Query

Update

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity .

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity 14

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity .

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity y

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity .

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity »

=% A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity .

A Tick in State-Effect

* Query
— For fish f in visibility
* Write repulsion to f’s effects
— For fish f in visibility p:
* Write attraction to f’s effects
* Update

— new velocity = combined
repulsion + combined
attraction + old velocity

— new position = old position +
old velocity "

=% From State-Effect to Map-Reduce

v

Tick

Query

state—> effects

gE—

(Mapl >< Dlstrlbute data

Communicate
Effects

Qeduce — A55|gn
_ effects (partial)

Update

effects 2 new state

>Q\/Iap2 >{ Forward data

J

Communicate
New State

Aggregate
—>@educe2 effects

__ Redistribute data

21

Y BRACE (Big Red Agent Computation Engine)

 BRASIL: High-level scripting language for
domain scientists

— Compiles to iterative MapReduce work flow

e Special-purpose MapReduce runtime for
behavioral simulations

— Basic Optimizations
— Optimizations based on Spatial Locality

) Spatial Partitioning

e Partition simulation space into regions, each
handled by a separate node

23

J Communication Between Partitions

* Owned Region: agents in it are owned by the
node

q
@

O

(

D
)

™
o | &N | &N

o

o

Q

] Owned »

(=) Communication Between Partitions

* Visible Region: agents in it are not owned, but
need to be seen by the node

] owned [visible .

J Communication Between Partitions

* Visible Region: agents in it are not owned, but
need to be seen by the node

* Only need to com-
municate with 0
neighbors to O

— refresh states

— forward assigned
effects

@)

] owned [visible e

Experimental Setup

* BRACE prototype
— Grid partitioning
— KD-Tree spatial indexing
— Basic load balancing

 Hardware: Cornell WebLab Cluster (60 nodes,
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB

RAM)

-

Load Balacin - -
Master g epoch commun
Node |checkpointing
—
A 4 X tick communication
/ I b
1
1
1
1
» v Py
(Map (Map Map)
. 4 > L v
4 — 4 <] v
Reduce 2 Reduce 2 Reduce 2
Worker 1 Worker 2 Worker 3

ication

27

Scalability: Traffic

2.5e+006

" BRACE - indexing, no LB ——

2e+006 r

1.5e+006 r

1e+006 |

500000 r

Throughput [agent ticks/sec]

|5 1IO 1I5 2|O 2IS 3|O 3|5
Slave Nodes
e Scale up the size of the highway with the number of

the nodes

* Notch consequence of multi-switch architecture

28

=% Talk Outline

e Fast Iterations: BRACE for Behavioral
Simulations

* Fewer Iterations: GRACE for Graph
Processing

e Conclusion

29

) Large-scale Graph Processing

* Graph representations are everywhere

— Web search, text analysis, image analysis, etc.

* Today’s graphs have scaled to millions of
edges/vertices

e Data parallelism of graph applications

— Graph data updated independently (i.e. on a per-
vertex basis)

— Individual vertex updates only depend on
connected neighbors

) Synchronous v.s. Asynchronous

* Synchronous graph processing
— Proceeds in batch-style “ticks”

— Easy to program and scale, slow convergence
— Pregel, PEGASUS, Prlter, etc

* Asynchronous processing
— Updates with most recent data
— Fast convergence but hard to program and scale
— Graphlab, Galois, etc

= What Do People Really Want?

* Sync. Implementation at first
— Easy to think, program and debug

e Async. execution for better performance

— Without re-implementing everything

32

=% GRACE (GRAph Computation Engine)

* [terative synchronous programming model
— Update logic for individual vertex
— Data dependency encoded in message passing

e Customizable bulk synchronous runtime

— Enabling various async. features through relaxing
data dependencies

Running Example: Belief Propagation

* Core procedure for many inference tasks in
graphical models

* Upon update, each vertex first computes its
new belief distribution according to its
IncOomMing Messages: bu(x.) e éulzs) [muwule)

Eap nic B

* Then it will propagate its new belief to
outgoing messages:
bu(zy)

My Ty) O E (v Tu, Tw) - —
J o MysulTu)
T LY k °

Sync. vs. Async. Algorithms

Algorithm 1: Original BP Algorithm Algorithm 2: Residual BP Algorithm
1 Initialize bﬁ]] as iy, forallu e V' ; 1 Initialize hf'ﬁu'] as ¢y, and hfm' as uniform distribution for all
2 Calculate the message 14 s o using by’ according to Eq. 2 for uel .
allu wve FE; 2 Initialize m.”"%! as uniform distribution forall u — v € E ;

3 Initialize =0 ; 3 Calculate message m,, ,y using by according to Eq. 2 for
-! repeat | allu —ve E;

b | — N

;_,; :, t+1; . 4 repeat

ek - 5 . ; old
. . — . 5 U = Arg MaX,(MaXw vk ||[My 5o — My o||) :

7 Calculate by’ using M according to Eq. | ; 6 ' o e

8 foreach outgoing edge e, , of u do

9 Calculate m.,,,, using b, according to Eq. 2 ; 7

8

10)
11 end 9
12 until Yu e V,||by’ — bl V|| < e 10

12 until Yu € V, ||b" — b7V < e

* Update logic are actually the same: Eq 1 and 2

* Only differs in when/how to apply the update
logic 35

=% Vertex Update Logic

List<=Message > Proceed(List<Message > msgs)

* Read in one message from each of the
incoming edge

 Update the vertex value

* Generate one message on each of the
outgoing edge

36

Belief Propagation in Proceed

List<Msg> Proceed (List<Msg> msgs) |
// Compute new belief from received messages

Distribution newBelief = potent;
for (Msg m in msgs) {
newBelief = times (newBelief, m.belief);

b

// Compute and send out messages
List<M=sg> cutM=sgs (cutDegree);
for (Edge e in outgoingEdges)

Distribution msgBelief = divide (newBelief, Msgle]);
msgBelief = convolve (msgBelief, e.potent);
msgBelief = normalize (msgBelief);

outM=sg[e] = new Msg(msgBelief);

b

// Vote to terminate upon convergence
if (Ll (newBelief, belief) < eps) wvoteHalt();
return outMsgs;

b
* Consider fix point achieved when the new
belief distribution does not change much 7

=H Customizable Execution Interface

* Each vertex is associated with a scheduling
priority value

e Users can specify logic for:
— Updating vertex priority upon receiving a message
— Deciding vertex to be processed for each tick
— Selecting messages to be used for Proceed

 We have implemented 4 different execution
policies for users to directly choose from

=% Original Belief Propagation

vold OnRecvMsg({Edge e, Message msg) |
/ Do nothing to update priority
/ since every vertex will be scheduled

M=g OnSelectMsg(Edge e) {
return PrevRcvdMsg(e);

vold OnPrepare (List<Vertex> vertices) |
Schedulelll (Everyone);

* Use last received message upon calling
Proceed, and schedule all vertices to be
processed for each tick

39

Residual Belief Propagation

volid OnRecvMsg({Edge e, Message msg)
Distn lastBelief = LastUsedMsg(e).belief;
float residual = L1l {newBelief, msg.belief);
UpdatePriority (residual, max);

OnSelectMsg(Edge e)
eturn LastRcvdMsgle);

Msg
-

void OnPrepare (List<Vertex> vertices)
Vertex selected = wvertices|[0];
for (Vertex vtx 1n vertices) |
1f (vix.priority » selected.pricrity)
selected = vtx;

Schedule (selected);

* Use message residual as its “contribution” to
vertex’s priority, and only update vertex with
highest priority

Driver Task

Vert Vertex Vertex :
Chunk 1 Chunk 2 Chunk n Manager '
* GRACE prototype | I |]
CLT CL] CLT] Information _
- S h a rEd - m e m O ry Worker 1 Worker 2 Workern| # Msg. Global :
0] 0 - Selectio Parameters]
[] ° Vertex
— Policies : ol IR [[= |
: : A Msg.
O O O | Reception
) (RS URSOTTY OO [T
JaCObI i i 4 All Vertices :
. (TTTTITIT I T I I I T T I T T I rrTd :
e GaussSeidel 1 I Il [sEE
= - — / Collection | :
Sync. Barrier] vertex |
* Eager [\ Qi
J L N\ Checking |
() I —ll\ll.‘\’\l\\ll\ \IIHII\IIIHI— '
Prlor Scheduled Vertices Un-Scheduled Vertices Scheduler

Hardware: 32-core Computer with 8 quad-core
processors and quad channel 128GB RAM.

100 b e, 30 Ideal
,,,,,,,,,,, GE - AS-P
w N 25 GL - Prior e A
= Py, i,
O -1 Py g, =
%D 10 ’ ””n,,%’ """"""""""""" -% 20
= 0, 2 15
a GE - S-J “, o
. 1072 GE - AS-E e K Ny, 10 &
- GE - AS-P s
GL - FIFO St /‘ """"""" N N |
107 GL - Prior ==eme=s | o | . | | A
0 2e+006 4e+006 6e+006 8e+006 1e+00 5 10 15 20 25 30
Updates Number of Worker Threads

* GRACE's prioritized policy achieve comparable
convergence with GraphlLab’s async scheduling,
while achieve near linear speedup

42

» Conclusions Thank you!

* |terative computations are common patterns in
many applications

— Requires programming simplicity and automatic
scalability

— Needs special care for performance

* Main-memory approach with various
optimization techniques

— Leverage data locality to minimize communication
— Relax data dependency for fast convergence

Acknowledgements

44

