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Abstract— Privacy preserving data publishing has attracted
considerable research interest in recent years. Among the existing
solutions, ε-differential privacy provides one of the strongest pri-
vacy guarantees. Existing data publishing methods that achieve ε-
differential privacy, however, offer little data utility. In particular,
if the output dataset is used to answer count queries, the noise in
the query answers can be proportional to the number of tuples
in the data, which renders the results useless.

In this paper, we develop a data publishing technique that
ensures ε-differential privacy while providing accurate answers
for range-count queries, i.e., count queries where the predicate on
each attribute is a range. The core of our solution is a framework
that applies wavelet transforms on the data before adding noise
to it. We present instantiations of the proposed framework for
both ordinal and nominal data, and we provide a theoretical
analysis on their privacy and utility guarantees. In an extensive
experimental study on both real and synthetic data, we show the
effectiveness and efficiency of our solution.

I. INTRODUCTION

The boisterous sea of liberty is never without a wave. —
Thomas Jefferson.

Numerous organizations, like census bureaus and hospitals,
maintain large collections of personal information (e.g., cen-
sus data and medical records). Such data collections are of
significant research value, and there is much benefit in making
them publicly available. Nevertheless, as the data is sensitive
in nature, proper measures must be taken to ensure that its
publication does not endanger the privacy of the individuals
that contributed the data. A canonical solution to this problem
is to modify the data before releasing it to the public, such
that the modification prevents inference of private information
while retaining statistical characteristics of the data.

A plethora of techniques have been proposed for privacy
preserving data publishing (see [1], [2] for surveys). Existing
solutions make different assumptions about the background
knowledge of an adversary who would like to attack the
data — i.e., to learn the private information about some
individuals. Assumptions about the background knowledge of
the adversary determine what types of attacks are possible
[3]–[5]. A solution that makes very conservative assumptions
about the adversary’s background knowledge is ε-differential
privacy [6]. Informally, ε-differential privacy requires that the
data to be published should be generated using a randomized
algorithm G, such that the output of G is not very sensitive to
any particular tuple in the input, i.e., the output of G should
rely mainly on general properties of the data. This ensures
that, by observing the data modified by G, the adversary is

TABLE I

MEDICAL RECORDS

Age Has Diabetes?
< 30 No
< 30 No
30-39 No
40-49 No
40-49 Yes
40-49 No
50-59 No
≥ 60 Yes

TABLE II

FREQUENCY MATRIX

Has Diabetes?
Yes No

Age

< 30 0 2
30-39 0 1
40-49 1 2
50-59 0 1
≥ 60 1 0

not able to infer much information about any individual tuple
in the input data, and hence, privacy is preserved.

The simplest method to enforce ε-differential privacy, as
proposed by Dwork et al. [6], is to first derive the frequency
distribution of the tuples in the input data, and then publish
a noisy version of the distribution. For example, given the
medical records in Table I, Dwork et al.’s method first maps
the records to the frequency matrix in Table II, where each
entry in the first (second) column stores the number of diabetes
(non-diabetes) patients in Table I that belong to a specific age
group. After that, Dwork et al.’s method adds independent
noise1 with a Θ(1) variance to each entry in Table II (we will
review this in detail in Section II-B), and then publishes the
noisy frequency matrix.

Intuitively, the noisy frequency matrix preserves privacy, as
it conceals the exact data distribution. In addition, the matrix
can provide approximate results for any queries about Table I.
For instance, if a user wants to know the number of diabetes
patients with age under 50, then she can obtain an approximate
answer by summing up the first three entries in the first column
of the noisy frequency matrix.

Motivation. Dwork et al.’s method provides reasonable ac-
curacy for queries about individual entries in the frequency
matrix, as it injects only little noise (with a constant variance)
into each entry. For aggregate queries that involve a large
number of entries, however, Dwork et al.’s method fails to
provide useful results. In particular, for a count query answered
by taking the sum of a constant fraction of the entries in the
noisy frequency matrix, the approximate query result has a
Θ(m) noise variance, where m denotes the total number of
entries in the matrix. Note that m is typically an enormous
number, as practical datasets often contain multiple attributes

1Throughout the paper, we use the term “noise” to refer to a random variable
with a zero mean.



with large domains. Hence, a Θ(m) noise variance can render
the approximate result meaningless, especially when the actual
result of the query is small.

Our Contributions. In this paper, we introduce Privelet
(privacy preserving wavelets), a data publishing technique
that not only ensures ε-differential privacy, but also provides
accurate results for all range-count queries, i.e., count queries
where the predicate on each attribute is a range. Specifically,
Privelet guarantees that any range-count query can be an-
swered with a noise whose variance is polylogarithmic in
m. This significantly improves over the O(m) noise variance
bound provided by Dwork et al.’s method.

The effectiveness of Privelet results from a novel application
of wavelet transforms, a type of linear transformations that has
been widely adopted for image processing [7] and approximate
query processing [8]. As with Dwork et al.’s method, Privelet
preserves privacy by modifying the frequency matrix M of the
input data. Instead of injecting noise directly into M , however,
Pirvelet first applies a wavelet transform on M , converting M
to another matrix C. Privelet then adds a polylogarithmic noise
to each entry in C, and maps C back to a noisy frequency
matrix M ∗. The matrix M ∗ thus obtained has an interesting
property: The result of any range-count query on M ∗ can be
expressed as a weighted sum of a polylogarithmic number of
entries in C. Furthermore, each of these entries contributes
at most polylogarithmic noise variance to the weighted sum.
Therefore, the variance of the noise in the query result is
bounded by a polylogarithm of m.

The remainder of the paper is organized as follows. Sec-
tion II gives a formal problem definition and reviews Dwork et
al.’s solution. In Section III, we present the Privelet framework
for incorporating wavelet transforms in data publishing, and
we establish a sufficient condition for achieving ε-differential
privacy under the framework. We then instantiate the frame-
work with three differential wavelet transforms. Our first
instantiation in Section IV is based on the Haar wavelet
transform [7], and is applicable for one-dimensional ordinal
data. Our second instantiation in Section V is based on a novel
nominal wavelet transform, which is designed for tables with
a single nominal attribute. Our third instantiation in Section
VI is a composition of the first two and can handle multi-
dimensional data with both ordinal and nominal attributes.
We conduct a rigorous analysis on the properties of each
instantiation, and provide theoretical bounds on privacy and
utility guarantees, as well as time complexities. In Section VII,
we demonstrate the effectiveness and efficiency of Privelet
through extensive experiments on both real and synthetic
data. Section VIII discusses related work. In Section IX, we
conclude with directions for future work.

II. PRELIMINARIES

A. Problem Definition

Consider that we want to publish a relational table T that
contains d attributes A1, A2, ..., Ad, each of which is either
ordinal (i.e., discrete and ordered) or nominal (i.e., discrete and

USA Canada ... Brazil Argentina ...
North America South America ...

Any

Fig. 1. A Hierarchy of Countries

unordered). Following previous work [9], [10], we assume that
each nominal attribute Ai in T has an associated hierarchy,
which is a tree where (i) each leaf is a value in the domain
of Ai, and (ii) each internal node summarizes the leaves in
its subtree. Figure 1 shows an example hierarchy of countries.
We define n as the number of tuples in T , and m as the size
of the multi-dimensional domain on which T is defined, i.e.,
m =

∏d
i=1 |Ai|.

We aim to release T using an algorithm that ensures ε-
differential privacy.

Definition 1 (ε-Differential Privacy [6]): A randomized al-
gorithm G satisfies ε-differential privacy, if and only if (i) for
any two tables T1 and T2 that differ only in one tuple, and (ii)
for any output O of G, we have

Pr {G(T1) = O} ≤ eε · Pr {G(T2) = O} . �
We optimize the utility of the released data for OLAP-style

range-count queries in the following form:

SELECT COUNT(*) FROM T
WHERE A1 ∈ S1 AND A2 ∈ S2 AND ... AND Ad ∈ Sd

For each ordinal attribute Ai, Si is an interval defined on
the domain of Ai. If Ai is nominal, Si is a set that contains
either (i) a leaf in the hierarchy of Ai or (ii) all leaves in
the subtree of an internal node in the hierarchy of A i — this
is standard for OLAP-style navigation using roll-up or drill-
down. For example, given the hierarchy in Figure 1, examples
of Si are {USA}, {Canada}, and the set of all countries
in North America, etc. Range-count queries are essential for
various analytical tasks, e.g., OLAP, association rule mining
and decision tree construction over a data cube.

B. Previous Approaches

As demonstrated in Section I, the information in T can be
represented by a d-dimensional frequency matrix M with m
entries, such that (i) the i-th (i ∈ [1, d]) dimension of M is
indexed by the values of Ai, and (ii) the entry in M with a
coordinate vector 〈x1, x2, . . . , xd〉 stores the number of tuples
t in T such that t = 〈x1, x2, . . . , xd〉. (This is nothing else
than the lowest level of the data cube of T .) Observe that
any range-count query on T can be answered using M , by
summing up the entries in M whose coordinates satisfy all
query predicates.

Dwork et al. [6] prove that M can be released in a privacy
preserving manner by adding a small amount of noise to each
entry in M independently. Specifically, if the noise η follows
a Laplace distribution with a probability density function

Pr{η = x} =
1
2λ

e−|x|/λ, (1)



then the noisy frequency matrix ensures (2/λ)-differential
privacy. We refer to λ as the magnitude of the noise. Note
that a Laplace noise with magnitude λ has a variance 2λ2.

Privacy Analysis. To explain why Dwork et al.’s method
secures privacy, suppose that we arbitrarily modify a tuple
in T . In that case, the frequency matrix of T will change
in exactly two entries, each of which will be decreased or
increased by one. For example, assume that we modify the
first tuple in Table I, by setting its age value to “30-39”. Then,
in the frequency matrix in Table II, the first (second) entry
of the second column will be decreased (increased) by one.
Intuitively, such small changes in the entries can be easily
offset by the noise added to the frequency matrix. In other
words, the noisy matrix is insensitive to any modification to
a single tuple in T . Thus, it is difficult for an adversary to
infer private information from the noisy matrix. More formally,
Dwork et al.’s method is based on the concept of sensitivity.

Definition 2 (Sensitivity [6]): Let F be a set of functions,
such that the output of each function f ∈ F is a real number.
The sensitivity of F is defined as

S(F ) = max
T1,T2

∑
f∈F

|f(T1) − f(T2)| , (2)

where T1 and T2 are any two tables that differ in only one
tuple. �

Note that the frequency matrix M of T can be regarded
as the outputs of a set of functions, such that each function
maps T to an entry in M . Modifying any tuple in T will only
change the values of two entries (in M ) by one. Therefore,
the set of functions corresponding to M has a sensitivity of
2. The following theorem shows a sufficient condition for ε-
differential privacy.

Theorem 1 ( [6]): Let F be a set of functions with a
sensitivity S(F ). Let G be an algorithm that adds independent
noise to the output of each function in F , such that the noise
follows a Laplace distribution with magnitude λ. Then, G
satisfies (S(F )/λ)-differential privacy. �

By Theorem 1, Dwork et al.’s method guarantees (2/λ)-
differential privacy, since M corresponds to a set of queries
on T with a sensitivity of 2.

Utility Analysis. Suppose that we answer a range-count query
using a noisy frequency matrix M ∗ generated by Dwork et
al.’s method. The noise in the query result has a variance
Θ(m/ε2) in the worst case. This is because (i) each entry in
M∗ has a noise variance 8/ε2 (by Equation 1 and ε = 2/λ),
and (ii) a range-count query may cover up to m entries in M ∗.
Therefore, although Dwork et al.’s method provides reasonable
accuracy for queries that involve a small number of entries in
M∗, it offers unsatisfactory utility for large queries that cover
many entries in M ∗.

III. THE PRIVELET FRAMEWORK

This section presents an overview of our Privelet technique.
We first clarify the key steps of Privelet in Section III-A,

and then provide in Section III-B a sufficient condition for
achieving ε-differential privacy with Privelet.

A. Overview of Privelet

Our Privelet technique takes as input a relational table T
and a parameter λ and outputs a noisy version M ∗ of the
frequency matrix M of T . At a high level, Privelet works in
three steps as follows.

First, it applies a wavelet transform on M . Generally
speaking, a wavelet transform is an invertible linear function,
i.e., it maps M to another matrix C, such that (i) each entry
in C is a linear combination of the entries in M , and (ii)
M can be losslessly reconstructed from C. The entries in C
are referred to as the wavelet coefficients. Note that wavelet
transforms are traditionally only defined for ordinal data, and
we create a special extension for nominal data in our setting.

Second, Privelet adds an independent Laplace noise to each
wavelet coefficient in a way that ensures ε-differential privacy.
This results in a new matrix C∗ with noisy coefficients. In the
third step, Privelet (optionally) refines C ∗, and then maps C∗

back to a noisy frequency matrix M ∗, which is returned as the
output. The refinement of C ∗ may arbitrarily modify C ∗, but it
does not utilize any information from T or M . In other words,
the third step of Privelet depends only on C ∗. This ensures
that Privelet does not leak any information of T , except for
what has been disclosed in C∗. Our solution in Section V
incorporates a refinement procedure to achieve better utility
for range-count queries.

B. Privacy Condition

The privacy guarantee of Privelet relies on its second step,
where it injects Laplace noise into the wavelet coefficient
matrix C. To understand why this achieves ε-differential
privacy, recall that, even if we arbitrarily replace one tuple
in the input data, only two entries in the frequency matrix
M will be altered. In addition, each of those two entries will
be offset by exactly one. This will incur only linear changes
in the wavelet coefficients in C, since each coefficient is a
linear combination of the entries in M . Intuitively, such linear
changes can be concealed, as long as an appropriate amount
of noise is added to C.

In general, the noise required for each wavelet coefficient
varies, as each coefficient reacts differently to changes in M .
Privelet decides the amount of noise for each coefficient based
on a weight function W , which maps each coefficient to a
positive real number. In particular, the magnitude of the noise
for a coefficient c is always set to λ/W(c), i.e., a larger weight
leads to a smaller noise. To analyze the privacy implication
of such a noise injection scheme, we introduce the concept of
generalized sensitivity.

Definition 3 (Generalized Sensitivity): Let F be a set of
functions, each of which takes as input a matrix and outputs
a real number. Let W be a function that assigns a weight to
each function f ∈ F . The generalized sensitivity of F with



respect to W is defined as the smallest number ρ such that∑
f∈F

(
W(f) · |f(M) − f(M ′)|

)
≤ ρ · ‖M − M ′‖1 ,

where M and M ′ are any two matrices that differ in only one
entry, and ‖M − M ′‖1 =

∑
v∈M−M ′ |v| is the L1 distance

between M and M ′. �

Observe that each wavelet coefficient c can be regarded as
the output of a function f that maps the frequency matrix M to
a real number. Thus, the wavelet transform can be regarded as
the set of functions corresponding to the wavelet coefficients.
The weight W(c) we assign to each coefficient c can be
thought of as a weight given to the function associated with c.
Intuitively, the generalized sensitivity captures the “weighted”
sensitivity of the wavelet coefficients with respect to changes
in M . The following lemma establishes the connection be-
tween generalized sensitivity and ε-differential privacy

Lemma 1: Let F be a set of functions that has a generalized
sensitivity ρ with respect to a weight function W . Let G be a
randomized algorithm that takes as input a table T and outputs
a set {f(M) + η(f) | f ∈ F} of real numbers, where M is
the frequency matrix of T , and η(f) is a random variable that
follows a Laplace distribution with magnitude λ/W(f). Then,
G satisfies (2ρ/λ)-differential privacy.

Proof: See Appendix A.

By Lemma 1, if a wavelet transform has a generalized
sensitivity ρ with respect to weight function W , then we
can achieve ε-differential privacy by adding to each wavelet
coefficient c a Laplace noise with magnitude 2ρ/W(c). This
justifies the noise injection scheme of Privelet.

IV. PRIVELET FOR ONE-DIMENSIONAL ORDINAL DATA

This section instantiates the Privelet framework with the
one-dimensional Haar wavelet transform [7] (HWT), a popu-
lar technique for processing one-dimensional ordinal data. The
one-dimensional HWT requires the input to be a vector that
contains 2l (l ∈ N) totally ordered elements. Accordingly, we
assume wlog. that (i) the frequency matrix M has a single
ordinal dimension, and (ii) the number m of entries in M
equals 2l (this can be ensured by inserting dummy values into
M [7]). We first explain the HWT in Section IV-A, and then
present the instantiation of Privelet in Section IV-B.

A. One-Dimensional Haar Wavelet Transform

The HWT converts M into 2l wavelet coefficients as
follows. First, it constructs a full binary tree R with 2 l leaves,
such that the i-th leaf of R equals the i-th entry in M
(i ∈ [1, 2l]). It then generates a wavelet coefficient c for each
internal node N in R, such that c = (a1−a2)/2, where a1 (a2)
is the average value of the leaves in the left (right) subtree of
N . After all internal nodes in R are processed, an additional
coefficient (referred to as the base coefficient) is produced by
taking the mean of all leaves in R. For convenience, we refer to
R as the decomposition tree of M , and slightly abuse notation
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v1 v2 v3 v4 v5 v6 v7 v8

3 2 2 -1

1 0

-0.5

c4

c1

c2 c3

c5 c6 c7

5.5c0

3 6 2 8 4 5 7

Fig. 2. One-Dimensional Haar Wavelet Transform

by not distinguishing between an internal node in R and the
wavelet coefficient generated for the node.

Example 1: Figure 2 illustrates an HWT on a one-
dimensional frequency matrix M with 8 entries v1, . . . , v8.
Each number in a circle (square) shows the value of a wavelet
coefficient (an entry in M ). The base coefficient c0 equals the
mean 5.5 of the entries in M . The coefficient c1 has a value
−0.5, because (i) the average value of the leaves in its left
(right) subtree equals 5 (6), and (ii) (5 − 6)/2 = −0.5. �

Given the Haar wavelet coefficients of M , any entry v in
M can be easily reconstructed. Let c0 be the base coefficient,
and ci (i ∈ [1, l]) be the ancestor of v at level i of the
decomposition tree R (we regard the root of R as level 1).
We have

v = c0 +
l∑

i=1

(gi · ci) , (3)

where gi equals 1 (−1) if v is in the left (right) subtree of ci.

Example 2: In the decomposition tree in Figure 2, the leaf
v2 has three ancestors c1 = −0.5, c2 = 1, and c4 = 3. Note
that v2 is in the right (left) subtree of c4 (c1 and c2), and the
base coefficient c0 equals 5.5. We have v2 = 3 = c0 + c1 +
c2 − c4. �

B. Instantiation of Privelet

Privelet with the one-dimensional HWT follows the three-
step paradigm introduced in Section III-A. Given a parameter
λ and a table T with a single ordinal attribute, Privelet
first compute the Haar wavelet coefficients of the frequency
matrix M of T . It then adds to each coefficient c a random
Laplace noise with magnitude λ/WHaar(c), where WHaar is
a weight function defined as follows: For the base coefficient
c, WHaar(c) = m; for a coefficient ci at level i of the decom-
position tree, WHaar(ci) = 2l−i+1. For example, given the
wavelet coefficients in Figure 2, WHaar would assign weights
8, 8, 4, 2 to c0, c1, c2, and c4, respectively. After the noisy
wavelet coefficients are computed, Privelet converts them back
to a noisy frequency matrix M ∗ based on Equation 3, and then
terminates by returning M ∗.

This instantiation of Privelet with the one-dimensional
HWT has the following property.

Lemma 2: The one-dimensional HWT has a generalized
sensitivity of 1 + log2 m with respect to the weight function
WHaar.



Proof: Let C be the set of Haar wavelet coefficients of
the input matrix M . Observe that, if we increase or decrease
any entry v in M by a constant δ, only 1+log2 m coefficients
in C will be changed, namely, the base coefficient c0 and all
ancestors of v in the decomposition tree R. In particular, c0

will be offset by δ/m; for any other coefficient, if it is at
level i of the decomposition tree R, then it will change by
δ/2l−i+1. Recall that WHaar assigns a weight of m to c0,
and a weight of 2l−i+1 to any coefficient at level i of R.
Thus, the generalized sensitivity of the one-dimensional Haar
wavelet transform with respect to WHaar is

(
m · δ/m +

l∑
i=1

(
2l−i+1 · 2 · δ/2l−i+1

))
/δ = 1 + log2 m.

By Lemmas 1 and 2, Privelet with the one-dimensional
HWT ensures ε-differential privacy with ε = 2(1+log2 m)/λ,
where λ is the input parameter. On the other hand, Privelet
also provides strong utility guarantee for range-count queries,
as shown in the following lemma.

Lemma 3: Let C be a set of one-dimensional Haar wavelet
coefficients such that each coefficient c ∈ C is injected
independent noise with a variance at most (σ/WHaar(c))

2.
Let M∗ be the noisy frequency matrix reconstructed from C.
For any range-count query answered using M ∗, the variance
of noise in the answer is at most (2 + log2 |M∗|)/2 · σ2.

Proof: See Appendix B.

By Lemmas 2 and 3, Privelet achieves ε-differential privacy
while ensuring that the result of any range-count query has a
noise variance bounded by

(2 + log2 m) · (2 + 2 log2 m)2/ε2 = O
(
(log2 m)3/ε2

)
(4)

In contrast, as discussed in Section II-B, with the same privacy
requirement, Dwork et al.’s method incurs a noise variance of
O(m/ε2) in the query answers.

Before closing this section, we point out that Privelet with
the one-dimensional HWT has an O(n + m) time complexity
for construction. This follows from the facts that (i) mapping
T to M takes O(m + n) time, (ii) converting M to and from
the Haar wavelet coefficients incur O(m) overhead [7], and
(iii) adding Laplace noise to the coefficients takes O(m) time.

V. PRIVELET FOR ONE-DIMENSIONAL NOMINAL DATA

This section extends Privelet for one-dimensional nom-
inal data by adopting a novel nominal wavelet transform.
Section V-A introduces the new transform, and Section V-B
explains the noise injection scheme for nominal wavelet coeffi-
cients. Section V-C analyzes the privacy and utility guarantees
of the algorithm and its time complexity. Section V-D com-
pares the algorithm with an alternative solution that employs
the HWT.
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Fig. 3. A nominal wavelet transform

A. Nominal Wavelet Transform

Existing wavelet transforms are only designed for ordinal
data, i.e., they require that each dimension of the input matrix
needs to have a totally ordered domain. Hence, they are
not directly applicable on nominal data, since the values of
a nominal attribute A are not totally ordered. One way to
circumvent this issue is to impose an artificial total order on
the domain of A, such that for any internal node N in the
hierarchy of A, the set of leaves in the subtree of N constitutes
a contiguous sequence in the total order.

For example, given a nominal attribute A with the hierarchy
H in Figure 3, we impose on A a total order v1 < v2 <
. . . < v6. As such, A is transformed into an ordinal attribute
A′. Recall that for a nominal attribute, the range-count query
predicate “A ∈ S” has a special structure: S either contains (i)
a leaf in the hierarchy of A or (ii) all leaves in the subtree of
an internal node in the hierarchy of A. Therefore, S is always
a contiguous range in the imposed total order of A. With this
transformation, we can apply Privelet with the HWT on any
one-dimensional nominal data. The noise variance bound thus
obtained is O

(
(log2 m)3/ε2

)
(see Equation 4).

While using the HWT is one possible solution, Privelet
does not stop here. We will show how to improve the above
O

(
(log2 m)3/ε2

)
bound to O(h2/ε2), where h is the height of

the hierarchy H on the nominal data. (Note that h ≤ log2 m
holds for any hierarchy where each internal node has at least
two children.) This improvement can result in a reduction
of noise variance by an order of magnitude or more in
practice, as we will discuss in Section V-D. Therefore, our new
solution really makes a difference in practice. The core of our
solution is a novel wavelet transform that creates a different
decomposition tree for generating wavelet coefficients.

A first thought for a different decomposition tree might
be to use the hierarchy H . But how can we adopt H as a
decomposition tree in a wavelet transform? Assume that there
is an internal node N in H that has k children. How should
we generate wavelet coefficients from N? Intuitively, if k = 2,
we may produce a coefficient c from N as in the HWT, i.e.,
we first compute the average value a1 (a2) of the leaves in
the left (right) subtree of N , and then set c = (a1 + a2)/2.
But what if k > 2? Should we generate one coefficient from
each pair of subtrees as in HWT? But that will result in(
k
2

)
coefficients, which is undesirable when k is large. Is it

possible to generate coefficients without relying on pairwise
comparison of subtrees? We answer this question positively
with the introduction of the nominal wavelet transform.

Given a one-dimensional frequency matrix M and a hier-



archy H on the entries in M , the nominal wavelet transform
first constructs a decomposition tree R from H by attaching
a child node Nc to each leaf node N in H . The value of
Nc is set to the value of the entry in M that corresponds to
N . For example, given the hierarchy H in the left hand side
of Figure 3, the decomposition tree R constructed from H
is as in right hand side of the figure. In the second step, the
nominal wavelet transform computes a wavelet coefficient for
each internal node of R as follows. The coefficient for the root
node (referred to as the base coefficient) is set to the sum of
all leaves in its subtree, also called the leaf-sum of the node.
For any other internal node, its coefficient equals its leaf-sum
minus the average leaf-sum of its parent’s children.

Given these nominal wavelet coefficients of M , each entry
v in M can be reconstructed using the ancestors of v in the
decomposition tree R. In particular, let ci be the ancestor of
v in the (i + 1)-th level of R, and fi be the fanout of ci, we
have

v = ch−1 +
h−2∑
i=0

⎛
⎝ci ·

h−2∏
j=i

1
fj

⎞
⎠ , (5)

where h is the height of the hierarchy H on M . To understand
Equation 5, recall that c0 equals the leaf-sum of the root in
R, while ck (k ∈ [1, h − 1]) equals the leaf-sum of ck minus
the average leaf-sum of ck−1’s children. Thus, the leaf-sum
of c1 equals c1 + c0/f0, the leaf-sum of c2 equals c2 + (c1 +
c0/f0)/f1, and so on. It can be verified that the leaf-sum of
ch−1 equals exactly the right hand side of Equation 5. Since
v is the only leaf of ch−1 in R, Equation 5 holds.

Example 3: Figure 3 illustrates a one-dimensional fre-
quency matrix M , a hierarchy H associated with M , and a
nominal wavelet transform on M . The base coefficient c0 = 30
equals the sum of all leaves in the decomposition tree. The
coefficient c1 equals 3, because (i) it has a leaf-sum 18, (ii)
the average leaf-sum of its parent’s children equals 15, and
(iii) 18 − 15 = 3.

In the decomposition tree in Figure 3, the entry v1 has three
ancestors, namely, c0, c1, and c3, which are at levels 1, 2, and
3 of decomposition tree, respectively. Furthermore, the fanout
of c0 and c1 equal 2 and 3, respectively. We have v1 = 9 =
c3 + c0/2/3 + c1/3. �

Note that our novel nominal wavelet transform is over-
complete: The number m′ of wavelet coefficients we generate
is larger than the number m of entries in the input frequency
matrix M . In particular, m′−m equals the number of internal
nodes in the hierarchy H on M . The overhead incurred by
such over-completeness, however, is usually negligible, as the
number of internal nodes in a practical hierarchy H is usually
small compared to the number of leaves in H .

B. Instantiation of Privelet

We are now ready to instantiate Privelet for one-dimensional
nominal data. Given a parameter λ and a table T with a
single nominal attribute, we first apply the nominal wavelet
transform on the frequency matrix M of T . After that, we

inject into each nominal wavelet coefficient c a Laplace noise
with magnitude λ/WNom(c). Specifically, WNom(c) = 1 if
c is the base coefficient, otherwise WNom(c) = f/(2f − 2),
where f is the fanout of c’s parent in the decomposition tree.

Before converting the wavelet coefficients back to a noisy
frequency matrix, we refine the coefficients with a mean
subtraction procedure. In particular, we first divide all but
the base coefficients into disjoint sibling groups, such that
each group is a maximal set of noisy coefficients that have
the same parent in the decomposition tree. For example, the
wavelet coefficients in Figure 3 can be divided into three
sibling groups: {c1, c2}, {c3, c4, c5}, and {c6, c7, c8}. After
that, for each sibling group, the coefficient mean is computed
and then subtracted from each coefficient in the group. Finally,
we reconstruct a noisy frequency matrix M ∗ from the modified
wavelet coefficients (based on Equation 5), and return M ∗ as
the output.

The mean subtraction procedure is essential to the utility
guarantee of Privelet that we will prove in Section V-B. The
intuition is that, after the mean subtraction procedure, all noisy
coefficients in the same sibling group sum up to zero; as such,
for any non-root node N in the decomposition tree, the noisy
coefficient corresponding to N still equals the noisy leaf-sum
of N minus the average leaf-sum of the children of N ’s parent;
in turn, this ensures that the reconstruction of M ∗ based on
Equation 5 is meaningful.

We emphasize that the mean subtraction procedure does not
rely on any information in T or M ; instead, it is performed
based only on the noisy wavelet coefficients. Therefore, the
privacy guarantee of M ∗ depends only on the noisy coef-
ficients generated before the mean subtraction procedure, as
discussed in Section III.

C. Theoretical Analysis

To prove the privacy guarantee of Privelet with the nominal
wavelet transform, we first establish the generalized sensitivity
of the nominal wavelet transform with respect to the weight
function WNom used in the noise injection step.

Lemma 4: The nominal wavelet transform has a generalized
sensitivity of h with respect to WNom, where h the height of
the hierarchy associated with the input frequency matrix.

Proof: Suppose that we offset an arbitrary entry v in
the input frequency matrix M by a constant δ. Then, the
base coefficient of M will change by δ. Meanwhile, for the
coefficients at level i (i ∈ [2, h]) of the decomposition tree,
only the sibling group Gi that contains an ancestor of v will
be affected. In particular, the ancestor of v in G i will be offset
by δ − δ/|Gi|, while the other coefficients in Gi will change
by δ/|Gi|. Recall that WNom assigns a weight 1 to the base
coefficient, and a weight 1/(2 − 2/|Gi|) for all coefficients
in Gi. Therefore, the generalized sensitivity of the nominal
wavelet transform with respect to WNom should be

1 +
h∑

i=2

( 1
2 − 2/|Gi| ·

(
1 − 1

|Gi| +
|Gi| − 1
|Gi|

))
= h.



By Lemmas 1 and 4, given a one-dimensional nominal
table T and a parameter λ, Privelet with the nominal wavelet
transform ensures (2h/λ)-differential privacy, where h is the
height of the hierarchy associated with T .

Lemma 5: Let C ′ be a set of nominal wavelet coefficients
such that each c′ ∈ C′ contains independent noise with a
variance at most (σ/WNom(c′))2. Let C∗ be a set of wavelet
coefficients obtained by applying a mean subtraction procedure
on C ′, and M ∗ be the noisy frequency matrix reconstructed
from C∗. For any range-count query answered using M ∗, the
variance of the noise in the answer is less than 4σ2.

Proof: See Appendix C.

By Lemmas 4 and 5, when achieving ε-differential privacy,
Privelet with the nominal wavelet transform guarantees that
each range-count query result has a noise variance at most

4 · 2 · (2h)2/ε2 = O
(
h2/ε2

)
. (6)

As h ≤ log2 m holds in practice, the above O
(
h2/ε2

)
bound

significantly improves upoen the O
(
m/ε2

)
bound given by

previous work.
Privelet with the nominal wavelet transform runs in O(n +

m) time. In particular, computing M from T takes O(n)
time; the nominal wavelet transform on M has an O(m)
complexity. The noise injection step incurs O(m) overhead.
Finally, with a breath-first traversal of the decomposition tree
R, we can complete both the mean subtraction procedure
and the reconstruction of the noisy frequency matrix. Such
a breath-first traversal takes O(m) time under the realistic
assumption that the number of internal nodes in R is O(m).

D. Nominal Wavelet Transform vs. Haar Wavelet Transform

As discussed in Section V-A, Privelet with the HWT can
provide an O

(
(log2 m)3/ε2

)
noise variance bound for one-

dimensional nominal data by imposing a total order on the
nominal domain. Asymptotically, this bound is inferior to the
O(h2/ε2) bound in Equation 6, but how different are they in
practice? To answer this question, let us consider the nominal
attribute Occupation in the Brazil census dataset used in our
experiments (see Section VII for details). It has a domain with
m = 512 leaves and a hierarchy with 3 levels. Suppose that we
apply Privelet with the one-dimensional HWT on a dataset that
contains Occupation as the only attribute. Then, by Equation 4,
we can achieve a noise variance bound of

(2 + log2 m) · (2 + 2 log2 m)2/ε2 = 4400/ε2.

In contrast, if we use Privelet with the nominal wavelet
transform, the resulting noise variance is bounded by

4 · 2 · (2h)2/ε2 = 288/ε2,

i.e., we can obtain a 15-fold reduction in noise variance.
Due to the superiority of the nominal wavelet transform over
the straightforward HWT, in the remainder of paper we will
always use the former for nominal attributes.

8 4
1 5M
v11 v12

v21 v22

6 2
3 -2

C1

v'11 v'12

v'21 v'22

4.5 0
1.5 2C2

c11 c12

c21 c22

Fig. 4. Multi-Dimensional Wavelet Transform

VI. MULTI-DIMENSIONAL PRIVELET

This section extends Privelet for multi-dimensional data.
Section VI-A presents our multi-dimensional wavelet trans-
form, which serves as the basis of the new instantiation of
Privelet in Section VI-B. Section VI-C analyzes properties of
the new instantiation, while Section VI-D further improves its
utility guarantee.

A. Multi-Dimensional Wavelet Transform

The one-dimensional wavelet transforms can be extended
to multi-dimensional data using standard decomposition [7],
which works by applying the one-dimensional wavelet trans-
forms along each dimension of the data in turn. More specifi-
cally, given a frequency matrix M with d dimensions, we first
divide the entries in M into one-dimensional vectors, such
that each vector contains a maximal set of entries that have
identical coordinates on all but the first dimensions. For each
vector V , we convert it into a set S of wavelet coefficients
using the one-dimensional Haar or nominal wavelet transform,
depending on whether the first dimension of M is ordinal or
nominal. After that, we store the coefficients in S in a vector
V ′, where the coefficients are sorted based on a level-order
traversal of the decomposition tree (the base coefficient always
ranks first). The i-th (i ∈ [1, S]) coefficient in V ′ is assigned d
coordinates 〈i, x2, x3, . . . , xd〉, where xj is the j-th coordinate
of the entries in V (j ∈ [2, d]; recall that the j-th coordinates of
these entries are identical). After that, we organize all wavelet
coefficients into a new d-dimensional matrix C1 according to
their coordinates.

In the second step, we treat C1 as the input data, and
apply a one-dimensional wavelet transform along the second
dimension of C1 to produce a matrix C2, in a manner similar
to the transformation from M to C1. In general, the matrix Ci

generated in the i-th step will be used as the input to the (i+1)-
th step. In turn, the (i+1)-th step will apply a one-dimensional
wavelet transform along the (i + 1)-th dimension of C i, and
will generate a new matrix Ci+1. We refer to Ci as the step-
i matrix. After all d dimensions are processed, we stop and
return Cd as the result. We refer to the transformation from M
to Cd as an Haar-nominal (HN) wavelet transform. Observe
that Cd can be easily converted back to the original matrix
M , by applying inverse wavelet transforms along dimensions
d, d − 1, . . . , 1 in turn.

Example 4: Figure 4 illustrates an HN wavelet transform
on a matrix M with two ordinal dimensions. In the first step
of the transform, M is vertically divided into two vectors
〈v11, v12〉 and 〈v21, v22〉. These two vectors are then converted
into two new vectors 〈v ′

11, v
′
12〉 and 〈v′

21, v
′
22〉 using the



one-dimensional HWT. Note that v ′
11 and v′

21 are the base
coefficients. The new matrix C1 is the step-1 matrix.

Next, C1 is horizontally partitioned into two vectors
〈v′11, v′21〉 and 〈v′

12, v
′
22〉. We apply the HWT on them, and

generate two coefficient vectors 〈c11, c21〉 and 〈c12, c22〉, with
c11 and c12 being the base coefficients. The matrix C2 is
returned as the final result. �

B. Instantiation of Privelet

Given a d-dimensional table T and a parameter λ, Privelet
first performs the HN wavelet transform on the frequency
matrix M of T . Then, it adds a Laplace noise with magnitude
λ/WHN (c) to each coefficient c, where WHN is a weight
function that we will define shortly. Next, it reconstructs a
noisy frequency matrix M ∗ using the noisy wavelet coeffi-
cients by inverting the one-dimensional wavelet transforms on
dimensions d, d − 1, . . . , 1 in turn.2 Finally, it terminates by
returning M ∗.

The weight function WHN is decided by the one-
dimensional wavelet transforms adopted in the HN wavelet
transform. Let Wi be the weight function associated with
the transform used to compute the step-i (i ∈ [1, d]) matrix,
i.e., Wi = WHaar if the i-th dimension of M is ordinal,
otherwise Wi = WNom. We determine the weight WHN (c)
for each HN wavelet coefficient c as follows. First, during the
construction of the step-1 matrix C1, whenever we generate a
coefficient vector V ′, we assign to each c′ ∈ V ′ a weight
W1(c′). For instance, if the first dimension A1 of M is
nominal, then W1(c′) = 1 if c is the base coefficient, otherwise
W1(c′) = f/(2f − 2), where f is the fanout of the parent of
c′ in the decomposition tree. Due to the way we arrange the
coefficients in C1, if two coefficients in C1 have the same
coordinates on the first dimension, they must have identical
weights.

Now consider the second step of the HN wavelet transform.
In this step, we first partition C1 into vectors along the
second dimension, and then apply one-dimensional wavelet
transform to convert each vector V ′′ to into a new coefficient
vector V ∗. Observe that all coefficients in V ′′ should have the
same weight, since they have identical coordinates on the first
dimension. We set the weight of each c∗ ∈ V ∗ to be W2(c∗)
times the weight shared by the coefficients in V ′′.

In general, in the i-th step of the HN wavelet transform,
whenever we generate a coefficient c from a vector V ⊂ C i−1,
we always set the weight of c to the product of Wi(c) and the
weight shared by the coefficients in V — all coefficients in V
are guaranteed to have the same weight, because of the way
we arrange the entries in Ci−1. The weight function WHN for
the HN wavelet transform is defined as a function that maps
each coefficient in Cd to its weight computed as above. For
convenience, for each coefficient c ∈ Ci (i ∈ [1, d − 1]), we
also use WHN (c) to denote the weight of c in Ci.

2If the i-the dimension is nominal, then, whenever we convert a vector V′
in the step-i matrix back to a vector V in the step-(i − 1) matrix, we will
apply the mean substraction procedure before the reconstruction of V .

Example 5: Consider the HN wavelet transform in Figure 4.
Both dimensions of the frequency matrix M are nominal, and
hence, the weight function for both dimensions is WHaar . In
the step-1 matrix C1, the weights of the coefficients v ′

11 and
v′21 equal 1/2, because (i) they are the base coefficients in the
wavelet transforms on 〈v11, v12〉 and 〈v21, v21〉, respectively,
and (ii) WHaar assigns a weight 1/2 to the base coefficient
whenever the input vector contains only two entries.

Now consider the coefficient c11 in the step-2 matrix C2.
It is generated from the HWT on 〈v ′

11, v
′
21〉, where both v′

11

and v′
12 have a weight 1/2. In addition, as c11 is the base

coefficient, WHaar(c11) = 1/2. Consequently, WHN (c11) =
1/2 · WHaar(c11) = 1/4. �

C. Theoretical Analysis

As Privelet with the HN wavelet transform is essentially a
composition of the solutions in Sections IV-B and V-B, we can
prove its privacy (utility) guarantee by incorporating Lemmas
2 and 4 (3 and 5) with an induction argument on the dataset
dimensionality d. Let us define a function P that takes as input
any attribute A, such that

P(A) =
{

1 + log2 |A| if A is ordinal
the height h of A’s hierarchy otherwise

Similarly, let H be a function such that

H(A) =
{

(2 + log2 |A|)/2 if A is ordinal
4 otherwise

We have the following theorems that show (i) the generalized
sensitivity of the HN wavelet transform (Theorem 2) and (ii)
the noise variance bound provided by Privelet with the HN
wavelet transform (Theorem 3).

Theorem 2: The HN wavelet transform on a d-dimensional
matrix M has a generalized sensitivity

∏d
i=1 P(Ai) with

respect to WHN , where Ai is the i-th dimension of M .
Proof: See Appendix D.

Theorem 3: Let C∗
d be a d-dimensional HN wavelet coef-

ficient matrix, such that each coefficient c∗ ∈ C∗
d has a noise

with a variance at most
(
σ/WHN (c∗)

)2
. Let M∗ be the noisy

frequency matrix reconstructed from C ∗
d , and Ai (i ∈ [1, d]) be

the i-th dimension of M ∗. For any range-count query answered
using M ∗, the noise in the query result has a variance at most
σ2 · ∏d

i=1 H(Ai).
Proof: See Appendix E.

By Theorem 2, to achieve ε-differential privacy, Privelet
with the HN wavelet transform should be applied with λ =
2/ε ·∏d

i=1 P(Ai); in that case, by Theorem 3, Privelet ensures
that any range-count query result has a noise variance of at
most

2
(

2/ε ·
d∏

i=1

P(Ai)
)2

·
d∏

i=1

H(Ai) = O
(
logO(1) m/ε2

)
,

since P(Ai) and H(Ai) are logarithmic in m.
Privelet with the HN wavelet transform has an O(n + m)

time complexity. This is because (i) computing the frequency



Algorithm Privelet+ (T , λ, SA)
1. map T to its frequency matrix M
2. divide M into sub-matrices along the dimensions specified in SA

3. for each sub-matrix
4. compute the HN wavelet coefficients of the sub-matrix
5. add to each coefficient c a Laplace noise with magnitude

λ/WHN (c)
6. convert the noisy coefficients back to a noisy sub-matrix
7. assemble the noisy sub-matrices into a frequency matrix M∗

8. return M∗

Fig. 5. The Privelet+ algorithm

matrix M takes O(n + m) time, (ii) each one-dimensional
wavelet transform on M has O(m) complexity, and (iii)
adding Laplace noise to the wavelet coefficients incurs O(m)
overhead.

D. A Hybrid Solution

We have shown that Privelet outperforms Dwork et al.’s
method asymptotically in terms of the accuracy of range-count
queries. In practice, however, Privelet can be inferior to Dwork
et al.’s method, when the input table T contains attributes with
small domains. For instance, if T has a single ordinal attribute
A with domain size |A| = 16, then Privelet provides a noise
variance bound of

2 · (2 · P(A)/ε
)2 · H(A) = 600/ε2,

as analyzed in Section VI-C. In contrast, Dwork et al.’s method
incurs a noise variance of at most

2 · (2 · |A|/ε)2 = 128/ε2,

as shown in Section II-B. This demonstrates the fact that,
Dwork et al.’s method is more favorable for small-domain
attributes, while Privelet is more suitable for attributes whose
domains are large. How can we combine the advantages of
both solutions to handle datasets that contain both large- and
small-domain attributes?

We answer the above question with the Privelet+ algorithm
illustrated in Figure 5. The algorithm takes as an input a table
T , a parameter λ, and a subset SA of the attributes in T . It first
maps T to its frequency matrix M . Then, it divides M into
sub-matrices, such that each sub-matrix contains the entries in
M that have the same coordinates on each dimension specified
in SA. For instance, given the frequency matrix in Table II,
if SA contains only the “Has Diabetes?” dimension, then the
matrix would be split into two one-dimensional sub-matrices,
each of which contains a column in Table II. In general, if M
has d dimensions, then each sub-matrix should have d− |SA|
dimensions.

After that, each sub-matrix is converted into wavelet coeffi-
cients using a (d − |SA|)-dimensional HN wavelet transform.
Privelet+ injects into each coefficient c a Laplace noise with
magnitude λ/WHN (c), and then maps the noisy coefficients
back to a noisy sub-matrix. In other words, Privelet+ processes
each sub-matrix in the same way as Privelet handles a (d −
|SA|)-dimensional frequency matrix. Finally, Privelet+ puts
together all noisy sub-matrices to obtain a d-dimensional noisy
frequency matrix M ∗, and then terminates by returning M ∗.

TABLE III

SIZES OF ATTRIBUTE DOMAINS

Age Gender Occupation Income
Brazil 101 2 (2) 512 (3) 1001

US 96 2 (2) 511 (3) 1020

Observe that Privelet+ captures Privelet as a special case
where SA = ∅. Compared to Privelet, it provides the flexibility
of not applying wavelet transforms on the attributes in SA.
Intuitively, this enables us to achieve better data utility by
putting in SA the attributes with small domains, since those
attributes cannot be handled well with Privelet. Our intuition
is formalized in Corollary 1, which follows from Theorems 2
and 3.

Corollary 1: Let T be a table that contains a set S of
attributes. Given T , a subset SA of S, and a parameter
λ, Privelet+ achieves ε-differential privacy with ε = 2/λ ·∏

A∈S−SA
P(A). In addition, it ensures that any range-count

query result has a noise variance at most
(∏

A∈SA
|A|) ·∏

A∈S−SA
H(A). �

By Corollary 1, when ε-differential privacy is enforced,
Privelet+ leads to a noise variance bound of

8/ε2 ·
( ∏

A∈SA

|A|
)
·

∏
A∈S−SA

(
(P(A))2 · H(A)

)
. (7)

It is not hard to verify that, when SA contains only attributes
A with |A| ≤ (P(A))2 ·H(A), the bound given in Equation 7
is always no worse than the noise variance bounds provided
by Privelet and Dwork et al.’s method.

Finally, we note that Privelet+ also runs in O(n+m) time.
This follows from the O(n+m) time complexity of Privelet.

VII. EXPERIMENTS

This section experimentally evaluates Privelet+ and Dwork
et al.’s method (referred as Basic in the following). Sec-
tion VII-A compares their data utility, while Section VII-B
investigates their computational cost.

A. Accuracy of Range-Count Queries

We use two datasets3 that contain census records of individ-
uals from Brazil and the US, respectively. The Brazil dataset
has 10 million tuples and four attributes, namely, Age, Gender,
Occupation, and Income. The attributes Age and Income are
ordinal, while Gender and Occupation are nominal. The US
dataset also contains these four attributes (but with slightly
different domains), and it has 8 million tuples. Table III shows
the domain sizes of the attributes in the datasets. The numbers
enclosed in parentheses indicate the heights of the hierarchies
associated with the nominal attributes.

For each dataset, we create a set of 40000 random range-
count queries, such that the number of predicates in each query
is uniformly distributed in [1, 4]. Each query predicate “A i ∈
Si” is generated as follows. First, we choose Ai randomly

3Both datasets are public available as part of the Integrated Public Use
Microdata Series (http://www.ipums.org).

http://www.ipums.org


from the attributes in the dataset. After that, if Ai is ordinal,
then Si is set to a random interval defined on Ai; otherwise,
we randomly select a non-root node from the hierarchy of A i,
and let Si contain all leaves in the subtree of the node. We
define the selectivity of a query q as the fraction of tuples in
the dataset that satisfy all predicates in q. We also define the
coverage of q as the fraction of entries in the frequency matrix
that are covered by q.

We apply Basic and Privelet+ on each dataset to produce
noisy frequency matrices that ensure ε-differential privacy,
varying ε from 0.5 to 1.25. For Privelet+, we set its input
parameter SA = {Age, Gender}, since each A of these two
attributes has a relatively small domain, i.e., |A| ≤ (P(A))2 ·
H(A), where P and H are as defined in Section VI-C. We use
the noisy frequency matrices to derive approximate answers
for range-count queries. The quality of each approximate
answer x is gauged by its square error and relative error with
respect to the actual query result act. Specifically, the square
error of x is defined as (x−act)2, and the relative error of x is
computed as |x−act|/ max{act, s}, where s is a sanity bound
that mitigates the effects of the queries with excessively small
selectivities (we follow with this evaluation methodology from
previous work [11], [12]). We set s to 0.1% of the number of
tuples in the dataset.

In our first set of experiments, we divide the query set QBr

for the Brazil dataset into 5 subsets. All queries in the i-th
(i ∈ [1, 5]) subset have coverage that falls between the (i−1)-
th and i-th quintiles of the query coverage distribution in Q Br.
On each noisy frequency matrix generated from the Brazil
dataset, we process the 5 query subsets in turn, and plot in
Figure 8 the average square error in each subset as a function
of the average query coverage. Figure 9 shows the results of
a similar set of experiments conducted on the US dataset.

The average square error of Basic increases linearly with the
query coverage, which conforms to the analysis in Section II-B
that Basic incurs a noise variance linear to the coverage of
the query. In contrast, the average square error of Privelet + is
insensitive to the query coverage. The maximum average error
of Privelet+ is smaller than that of Basic by two orders of
magnitudes. This is consistent with our results that Privelet+

provides a much better noise variance bound than Basic does.
The error of both Basic and Privelet+ decreases with the
increase of ε, since a larger ε leads to a smaller amount of
noise in the frequency matrices.

In the next experiments, we divide the query set for each
dataset into 5 subsets based on query selectivities. Specifically,
the i-th (i ∈ [1, 5]) subset contains the queries whose selectiv-
ities are between the (i− 1)-th and i-th quitiles of the overall
query selectivity distribution. Figures 8 and 9 illustrate the
average relative error incurred by each noisy frequency matrix
in answering each query subset. The X-axes of the figures
represent the average selectivity of each subset of queries.
The error of Privelet+ is consistently lower than that of Basic,
except when the query selectivity is below 10−7. In addition,
the error of Privelet+ is no more than 25% in all cases, while
Basic induces more than 70% error in several query subsets.

In summary, our experiments show that Privelet+ signifi-
cantly outperforms Basic in terms of the accuracy of range-
count queries. Specifically, Privelet+ incurs a smaller query
error than Basic does, whenever the query coverage is larger
than 1% or the query selectivity is at least 10−7.

B. Computation Time

Next, we investigate how the computation time of Basic and
Privelet+ varies with the number n tuples in the input data
and the number m of entries in the frequency matrix. For this
purpose, we generate synthetic datasets with various values of
n and m. Each dataset contains two ordinal attributes and two
nominal attributes. The domain size of each attribute is m1/4.
Each nominal attribute A has a hierarchy H with three levels,
such that the number of level-2 nodes in H is

√|A|. The
values of the tuples are uniformly distributed in the attribute
domains.

In the first set of experiments, we fix m = 224, and apply
Basic and Privelet+ on datasets with n ranging from 1 million
to 5 millions. For Privelet+, we set its input parameter SA = ∅,
in which case Privelet+ has a relatively large running time,
since it needs to perform wavelet transforms on all dimensions
of the frequency matrix. Figure 10 illustrates the computation
time of Basic and Privelet+ as a function of n. Observe that
both techniques scale linearly with n.

In the second set of experiments, we set n = 5 × 106, and
vary m from 222 to 226. Figure 11 shows the computation
overhead of Basic and Privelet+ as a function of m. Both
techniques run in linear time with respect to m.

In summary, the computation time of Privelet+ is linear
to n and m, which confirms our analysis that Privelet+ has
an O(n + m) time complexity. Compared to Basic, Privelet+

incurs a higher computation overhead, but this is justified by
the facts that Privelet+ provides much better utility for range-
count queries.

VIII. RELATED WORK

Numerous techniques have been proposed for ensuring ε-
differential privacy in data publishing [6], [13]–[20]. The
majority of these techniques, however, are not designed for
the publication of general relational tables. In particular, the
solutions by Korolova et al. [13] and Götz et al. [14] are
developed for releasing query and click histograms from
search logs. Chaudhuri and Monteleoni [15], Blum et al. [16],
and Kasiviswanathan et al. [17] investigate how the results of
various machine learning algorithms can be published. Nissum
et al. [18] propose techniques for releasing (i) the median value
of a set of real numbers, and (ii) the centers of the clusters
output from the k-means clustering algorithm. Machanava-
jjhala et al. [19] study the publication of commmuting patterns,
i.e., tables with a scheme 〈ID, Origin, Destination〉 where
each tuple captures the residence and working locations of
an individual.

The work closest to ours is by Dwork et al. [6] and Barak
et al. [20]. Dwork et al.’s method, as discussed perviously,
is outperformed by our Privelet technique in terms of the
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Fig. 6. Average Square Error vs. Query Coverage (Brazil)
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Fig. 7. Average Square Error vs. Query Coverage (US)
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accuracy of range-count queries. On the other hand, Barak
et al.’s technique is designed for releasing marginals, i.e.,
the projections of a frequency matrix on various subsets
of the dimensions. Given a set of marginals, Barak et al.’s
technique first transforms them into the Fourier domain, then
adds noise to the Fourier coefficients. After that, it refines
the noisy coefficients, and maps them back to a set of noisy
marginals. Although this technique and Privelet have a similar
framework, their optimization goals are drastically different.
Specifically, Barak et al.’s technique does not provide utility
guarantees for range-count queries; instead, it ensures that (i)
every entry in the noisy marginals is a non-negative integer,

and (ii) all marginals are mutually consistent, e.g., the sum of
all entries in a marginal always equals that of another marginal.

In addition, Barak et al’s technique requires solving a linear
program where the number of variables equals the number m
of entries in the frequency matrix. This can be computationally
challenging for practical datasets with a large m. For instance,
for the two census datasets used in our experiments, we have
m > 108. In contrast, Privelet runs in time linear to m and
the number n of tuples in the input table.

There also exists a large body of literature (e.g., [8],
[11], [12]) on the application of wavelet transforms in data
management. The focus of this line of research, however, is
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not on privacy preservation. Instead, existing work mainly
investigates how wavelet transforms can be used to construct
space- and time-efficient representations of multi-dimensional
data, so as to facilitate query optimization [11], or approximate
query processing [8], [12], just to name two applications.

IX. CONCLUSIONS

We have presented Privelet, a data publishing technique
that utilizes wavelet transforms to ensure ε-differential pri-
vacy. Compared to the existing solutions, Privelet provides
significantly improved theoretical guarantees on the accuracy
of range-count queries. Our experimental evaluation demon-
strates the effectiveness and efficiency of Privelet.

For future work, we plan to extend Privelet for the case
where the distribution of range-count queries is known in
advance. Second, currently Privelet only provides bounds on
the noise variance in the query results; we want to investigate
what guarantees Privelet may offer for other utility metrics,
such as the expected relative error of the query answers.
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APPENDIX

A. Proof of Lemma 1

Let T1 and T2 be any two tables that differ in only one
tuple, M1 and M2 be the frequency matrices of T1 and T2,
respectively. Let T3 = T1∩T2, and M3 be the frequency matrix
of T3. Observe that M1 and M3 differ in only one entry, and
the entry’s value in M1 differs from its value in M3 by one.
Since F has a generalized sensitivity ρ with respect to W ,

∑
f∈F

(
W(f) · |f(M1) − f(M3)|

)
≤ ρ · ‖M1 − M3‖1 = ρ.

Similarly, we have
∑
f∈F

(
W(f) · |f(M2) − f(M3)|

)
≤ ρ · ‖M2 − M3‖1 = ρ.

Let fi (i ∈ [1, |F |]) be the i-th query in F , and xi be an
arbitrary real number. We have

Pr
{G(T2) = 〈x1, x2, . . . , x|F |〉

}
Pr

{G(T2) = 〈x1, x2, . . . , x|F |〉
}

=
Π|F |

i=1

(
W(fi)

2λ · exp
(
−W(fi) · |xi − fi(M2)|/λ

))

Π|F |
i=1

(
W(fi)

2λ · exp
(
−W(fi) · |xi − fi(M1)|/λ

))

≤ Π|F |
i=1 exp

(
W(fi) · |fi(M1) − fi(M2)|/λ

)

≤ Π|F |
i=1 exp

(
W(fi) · |fi(M1) − fi(M3)|/λ

+ W(fi) · |fi(M2) − fi(M3)|/λ
)

≤ e2ρ/λ,

which completes the proof.

B. Proof of Lemma 3

Let R be the decomposition tree of M ∗. Recall that each
entry v in M ∗ can be expressed as a weighted sum (see
Equation 3) of the base coefficient c0 ∈ C and the ancestors
of v in R. In particular, the base coefficient has a weight 1 in
the sum. On the other hand, an ancestor c of v has a weight
1 (−1) in the sum, if v is in the left (right) subtree of c.
Therefore, for any one-dimensional range-count query with a



predicate “A1 ∈ S1”, its answer on M ∗ can be formulated as
a weighted sum y of the wavelet coefficients as follows:

y = |S1| · c0 +
∑

c∈C\{c0}

(
c · (α(c) − β(c)

))
,

where α(c) (β(c)) denotes the number of leaves in the left
(right) subtree of c that are contained in S1.

For any coefficient c, if none of the leaves under c is
contained in S1, we have α(c) = β(c) = 0. On the other
hand, if all leaves under c are covered by S1, then α(c) =
β(c) = 2l−level(c), where level(c) denotes the level of c in
R. Therefore, α(c) − β(c) 
= 0, if and only if the left or
right subtree of c partially intersects S1. At any level of the
decomposition tree R, there exist at most two such coefficients,
since S1 is an interval defined on A1.

Let l = log2 |M∗|. Consider a coefficient c at level i
(i ∈ [1, l]) of R, such that α(c) − β(c) 
= 0. Since the left
(right) subtree of c contains at most 2 l−i leaves, we have
α(c), β(c) ∈ [0, 2l−i]. Therefore, |α(c)− β(c)| ≤ 2l−i. Recall
that WHaar(c) = 2l−i+1; therefore, the noise in c has a
variance at most σ2/4l−i+1. In that case, the noise contributed
by c to y has a variance at most

(
α(c) − β(c)

)2 · σ2/4l−i+1 ≤ (
2l−i

)2 · σ2/4l−i+1

= σ2/4.

On the other hand, the noise in the base coefficient c0 has a
variance at most (σ/|M ∗|)2. Therefore, the noise contributed
by c0 to y has a variance at most |S1|2 · (σ/|M∗|)2, which is
no more than σ2.

In summary, the variance of noise in y is at most

σ2 + 2 · l · σ2/4 = (2 + log2 |M∗|)/2 · σ2,

which completes the proof.

C. Proof of Lemma 5

We will prove the lemma in two steps: The first step
analyzes the variance of noise in each coefficient in C ∗; the
second step shows that the result of any range-count query
can be expressed as a weighted sum of the coefficients in C ∗,
such that the variance of the sum is less than σ2.

Let C be the set of nominal wavelet coefficients of the input
frequency matrix M . Let G be any sibling group in C, and
G′ (G∗) be the corresponding group in C ′ (C∗). By the way
each coefficient in C is computed,

∑
g∈G g = 0. Let gi, g′

i,
and g∗

i denote the i-th (i ∈ [1, |G|]) coefficient in G, G′, and
G∗, respectively. Let ηi = g′i − gi be the noise in g′

i. We have

g∗1 = g′1 −
1
|G| ·

|G|∑
i=1

g′i = g1 + η1 − 1
|G| ·

|G|∑
i=1

(gi + ηi)

= g1 + (1 − 1
|G| ) · η1 − 1

|G|
|G|∑
i=2

ηi (8)

Recall that WNom(gi) = 1/(2 − 2/|G|). Hence, ηi has a
variance at most 4(1− 1/|G|)2 · σ2. By Equation 8, the noise

in g∗
1 has a variance at most(

(1 − 1/|G|)2 + (1/|G|)2 · (|G| − 1)
)
· 4(1 − 1/|G|)2 · σ2

= 4 (1 − 1/|G|)3 · σ2. (9)

Similarly, it can be proved that for each non-base coeffi-
cient c∗ in C∗, the variance of the noise in c∗ is at most
4 · (1 − 1/f)3 ·σ2, where f is the fanout of c∗’s parent in the
decomposition tree R. On the other hand, the base coefficient
c∗0 in C∗ has a noise variance at most σ2, since it is identical
to the base coefficient in C ′.

Now consider any range-count query q, such that the
predicate in q corresponds to a certain node N in the hierarchy
H associated with M ∗. Let h be the height of H . Given M ∗,
we can answer q by summing up the set S of entries that are
in the subtree of N in H . If N is a leaf in H , then S should
contain only the entry v∗ ∈ M∗ that corresponds to N . By
Equation 5,

v∗ = c∗h−1 +
h−2∑
i=0

⎛
⎝c∗i ·

h−2∏
j=i

1
fj

⎞
⎠ , (10)

where c∗i ∈ C∗ is the ancestor of v∗ at the (i+1)-th level of the
decomposition tree, and fi is the fanout of c∗i . As discussed
above, c∗0 has a noise variance at most σ2, while c∗i (i ∈
[1, h− 1]) has a noise variance at most 4 · (1 − 1/fi−1)

3 · σ2.
By Equation 10 and the fact that fi ≥ 1, it can verified that
the variances of the noise in v∗ is less than 4σ2.

On the other hand, if N is a level-(h− 1) node in H , then
S should contain all entries in M ∗ that are children of N in
H . Observe that each of these entries has a distinct parent in
the decomposition tree R, but they have the same ancestors at
levels 1 to h− 2 of R. Let c∗i be the ancestor of these entries
at level i + 1, and fi be the fanout of c∗i . Let X be the set of
wavelet coefficients in R that are the parents of the entries in
S. Then, X should be a sibling group in C ∗, and |X | = fh−2.
In addition, we have

∑
c∗∈X c∗ = 0, as ensured by the mean

substraction procedure. In that case, by Equation 5, the sum
of the entries in S equals

∑
v∗∈S

v∗ =
∑

c∗∈X

c∗ + |X | ·
h−2∑
i=0

⎛
⎝c∗i ·

h−2∏
j=i

1
fj

⎞
⎠

= c∗h−2 +
h−3∑
i=0

⎛
⎝c∗i ·

h−3∏
j=i

1
fj

⎞
⎠ .

Taking into account the noise variance in each c∗
i and the

fact that fj ≥ 1, we can show that the variance of noise in∑
v∗∈S v∗ is also less than 4σ2.
In general, we can prove by induction that, when N is a

level k (k ∈ [1, h − 2]) node in H , the answer for q equals

c∗k−1 +
k−2∑
i=0

⎛
⎝c∗i ·

k−1∏
j=i

1
fj

⎞
⎠ , (11)

where c∗k−1 is a wavelet coefficient at level k of the decom-
position tree R, c∗i (i ∈ [0, k − 2]) is the ancestor of c∗k−1 at



level i + 1, and fi is the fanout of c∗i . Based on Equation 11,
it can be shown that the noise variance in the answer for q is
less than 4σ2, which completes the proof.

D. Proof of Theorem 2

Let M ′ be any matrix that can be obtained by changing a
certain entry v in the input matrix M . Let δ = ‖M − M ′‖1,
and Ci (C ′

i) be the step-i matrix in the HN wavelet transform
on M (M ′). For any j ∈ [1, m], let Ci(j) and C ′

i(j) denote
the j-th entry in Ci and C ′

i, respectively. By the definition
of generalized sensitivity, Theorem 2 holds if and only if the
following inequality is valid:

m∑
j=1

(
WHN

(
Cd(j)

) · |Cd(j) − C′
d(j)|

)
≤ δ ·

d∏
i=1

P(Ai). (12)

To establish Equation 12, it suffices to prove that the following
inequality holds for any k ∈ [1, d].

m∑
j=1

(
WHN

(
Ck(j)

) · |Ck(j) − C′
k(j)|

)
≤ δ ·

k∏
i=1

P(Ai). (13)

Our proof for Equation 13 is based on an induction on k. For
the base case when k = 1, Equation 13 directly follows from
Lemmas 2 and 4. Assume that Equation 13 holds for some
k = l ∈ [1, d− 1]. We will show that the case when k = l +1
also holds.

Consider that we transform Cl into C ′
l , by replacing the en-

tries in Cl with the entries in C ′
l one by one. The replacement

of each entry in Cl would affect some coefficients in Cl+1.
Let C

(α)
l+1 denote the modified version of Cl+1 after the first

α entries in Cl are replaced. By Lemmas 2 and 4 and by the
way we assign weights to the coefficients in Cl+1,

m∑
j=1

(WHN

(
Cl+1(j)

)
WHN

(
Cl(α)

) ·
∣∣∣C(α)

l+1(j) − C
(α−1)
l+1 (j)

∣∣∣ )

≤ P(Al+1) · |Cl(α) − C′
l(α)| .

This leads to

P(Al+1) ·
m∑

α=1

(
WHN

(
Cl(α)

) · |Cl(α) − C′
l(α)|

)

≥
m∑

α=1

m∑
j=1

(
WHN

(
Cl+1(j)

) · ∣∣∣C(α)
l+1(j) − C

(α−1)
l+1 (j)

∣∣∣ )

≥
m∑

j=1

(
WHN

(
Cl+1(j)

) · ∣∣Cl+1(j) − C′
l+1(j)

∣∣ )
(14)

By Equation 14 and the induction hypothesis, Equation 13
holds for k = l + 1, which completes the proof.

E. Proof of Theorem 3

Our proof of Theorem 3 utilizes the following proposition.

Proposition 1: Let M , M ′, and M ′′ be three matrices that
have the same set of dimensions. Let Md, M ′

d, and M ′′
d be HN

wavelet coefficient matrix of M , M ′, and M ′′, respectively.
If M + M ′ = M ′′, then Md + M ′

d = M ′′
d .

Proof: Observe that both the Haar and nominal wavelet
transforms are linear transformations, since each wavelet co-
efficient they produce is a linear combination of the entries in
the input matrix. Consequently, the HN wavelet transform, as
a composition of the Haar and nominal wavelet transforms,
is also a linear transformation. Therefore, M + M ′ = M ′′

implies Md + M ′
d = M ′′

d .

In the following, we will prove Theorem 3 by an induction
on d. For the base case when d = 1, the theorem follows
directly from Lemmas 3 and 5. Assume that theorem also
holds for some d = k ≥ 1. We will prove that the case for
d = k + 1 also holds.

Let C∗
k be the step-k matrix reconstructed from C ∗

k+1

by applying inverse wavelet transform along the (k + 1)-th
dimension of C∗

k+1. We divide C∗
k into |Ak+1| sub-matrices,

such that each matrix C∗
k [a] contains all entries in C∗

k whose
last coordinate equals a ∈ Ak+1. Observe that each C∗

k [a] can
be regarded as a k-dimensional HN wavelet coefficient matrix,
and can be used to reconstruct a noisy frequency matrix M ∗[a]
with k dimension A1, . . . , Ak.

Consider any range-count query q on M ∗ with a predicate
“Ai ∈ Si” on Ai (i ∈ [1, k + 1]). Let us define a query q ′ on
each M ∗[a], such that q′ has a predicate “Ai ∈ Si” for any
i ∈ [1, k]. Let q(M∗) be the result of q on M ∗, and q′(M∗[a])
be the result of q′ on M ∗[a]. Let M ′ =

∑
a∈Sk+1

M∗[a]. It
can be verified that

q(M∗) =
∑

a∈Sk+1

q′(M∗[a]) = q′(M ′). (15)

Therefore, the theorem can be proved by showing that the
noise in q′(M ′) has a variance at most σ2 ·∏d

i=1 H(Ai). For
this purpose, we will first analyze the the noise contained in
the HN wavelet coefficient matrix C ′

k of M ′.
By Proposition 1 and the definition of M ′, we have C ′

k =∑
a∈Sk+1

C∗
k [a]. Let c′ be an arbitrary coefficient in M ′

k with
a coordinate xi on the i-th dimension (i ∈ [1, k]). Let V ∗

k

(V ∗
k+1) be a vector that contains all coefficients in C ∗

k (C∗
k+1)

whose coordinates on the first k are identical to those of c ′.
Then, c′ can be regarded as the result of a range-count query
on V ∗

k as follows:

SELECT COUNT(*) FROM V ∗
k

WHERE Ak+1 ∈ Sk+1

Observe that V ∗
k can be reconstructed from V ∗

k+1 by applying
inverse wavelet transform. Since each coefficient c∗ ∈ C∗

k+1

has a noise variance (σ/WHN (c∗))2, by Lemmas 3 and 5, the
result of any range-count query on V ∗

k should have a noise
variance at most

H(Ak+1) ·
(

σ · Wk+1(c∗)
WHN (c∗)

)2

,

where Wk+1 is the weight function associated with the one-
dimensional wavelet transform used to convert Ck into Ck+1.
It can be verified that

Wk+1(c∗)/WHN (c∗) = 1/WHN (c′).



Therefore, the noise in c′ has a variance at most H(Ak+1) ·
(σ/WHN (c′))2.

In summary, if we divide the coefficients in C ∗
k+1 into a set

U of vectors along the (k+1)-th dimension, then each coeffi-
cient c′ ∈ M ′

k can be expressed as a weighted sum of the coef-
ficients in a distinct vector in U . In addition, the weighted sum
has a noise with a variance at most H(Ak+1)·(σ/WHN (c′))2.
Furthermore, the noise in different coefficients in M ′

k are
independent, because (i) the noise in different vectors in U are
independent, and (ii) no two coefficients in M ′

k correspond to
the same vector in U . Therefore, by the induction hypothesis,
for any range-count query on the k-dimensional frequency
matrix M ′ reconstructed from M ′

k, the query results has a
noise with a variance no more than σ2 ·∑k+1

i=1 H(Ai). This, by
Equation 15, shows that the theorem also holds for d = k+1,
which completes the proof.
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