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Abstract. We study the problem of selling a good to a group of bidders with interdependent values
in a prior-free setting. Each bidder has a signal that can take one of k different values, and her value
for the good is a weakly increasing function of all the bidders’ signals. The bidders are partitioned into
` expertise-groups, based on how their signal can impact the values for the good, and we prove upper
and lower bounds regarding the approximability of social welfare and revenue for a variety of settings,
parameterized by k and `. Our lower bounds apply to all ex-post incentive compatible mechanisms
and our upper bounds are all within a small constant of the lower bounds. Our main results take
the appealing form of ascending clock auctions and provide strong incentives by admitting the desired
outcomes as obvious ex-post equilibria.
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1 Introduction

We study the problem of selling a good to bidders with interdependent values, which has received a lot of
attention in economics (e.g., see [12, Chapters 6 and 10]), and recently also in computer science (e.g., [20,
3, 7, 6, 8, 4, 9, 19]). In contrast to the private values model, where each bidder knows her value for the good
being sold, the interdependent value literature assumes that each bidder has some private signal regarding
the value of the good, e.g., through some research or technical expertise, and the actual value of the good
to each bidder is a function of all the bidders’ signals. For instance, a common motivating example for this
problem involves firms competing over the mineral rights of a piece of land [23]: each firm has conducted
some tests, trying to estimate the land’s capacity in desired minerals, but each of these tests may provide
only partial evidence, and the best estimate can be inferred by appropriately aggregating all the test results,
e.g., by computing the average across all of these measurements.

The main difficulty when designing auctions for bidders with interdependent values arises from the fact
that the bidders’ signals are not known to the auctioneer, or to the other bidders. Therefore, the auctioneer
needs to elicit these signals before deciding who should win the item and what the price should be. But,
why would any bidder reveal her true signal to the auctioneer? A sealed-bid auction is said to be ex-post
incentive compatible if truth-telling, i.e., reporting the true signal to the auctioneer, is an equilibrium for all
the bidders. Designing ex-post incentive compatible auctions with non-trivial welfare or revenue guarantees
has been a central goal of this line of research.

Prior work has considered several different ways in which the bidders’ values can depend on the vector
of signals. For example, in the common value model all the bidders have the same value for the good but,
even in this special case, the design of ex-post incentive compatible auctions is a non-trivial problem. This
problem becomes even harder when the bidders’ values can differ. To enable the design of efficient incentive
compatible mechanisms, prior work has introduced useful restrictions on the structure of these valuation
functions, such as submodularity over signals (SOS) [7, 1], or constraints across pairs of valuation functions,
such as the single-crossing property [17, 16].

? The first and last authors were partially supported by NSF grants CCF-2008280 and CCF-1755955. The second
author was supported by an REU through CCF-1755955.



In this paper, we consider a variety of settings with interdependent values that are not captured by
(approximate) SOS or the single-crossing property. We let k be the number of possible values that a bidder’s
signal can have, and we partition the bidders into ` expertise-groups, depending on the type of information
that their signals provide regarding the good being sold. Using these parameters, we prove upper and lower
bounds, parameterized by k and `, on the extent to which auctions can approximate the optimal welfare
or revenue. All our proposed auctions are ex-post incentive compatible, but our main results also satisfy
stronger incentive guarantees: they can be implemented not only as direct-revelation mechanisms (sealed-bid
auctions), but also as ascending clock auctions, and they admit the desired outcomes as obvious ex-post
equilibria [14] which are easy for the bidders to verify, thus leading to more practical solutions.

1.1 Our Results

We begin, in Section 3, by considering the interesting case where each bidder’s signal regarding the quality of
the good can take two possible values, either “low” or “high”, and each bidder’s value is a weakly increasing
function of these signals. If the valuation function of each bidder is symmetric, i.e., every bidder’s signal
matters the same, then we provide a clock auction that achieves a 5-approximation of the optimal social
welfare, and a variation of that auction that guarantees revenue that is a 10-approximation of the optimal
social welfare. We then generalize these results to non-symmetric functions, where the bidders are partitioned
into ` groups based on their expertise, and signals from different groups may have different impact on the
values. Our generalization achieves a 5`-approximation for social welfare and a 10`-approximation for revenue.

In Section 4, we go beyond the case of binary signals and consider problem instances with k distinct
signal value options, {0, 1, . . . , k − 1}, allowing for the bidders’ signals regarding the quality of the good to
be more refined. The valuation of each bidder can be an arbitrary weakly increasing function of the average
quality estimate of each group. Using a reduction to the binary case, we design a clock auction that achieves
a 5`(k − 1)-approximation for social welfare and a 10`(k − 1)-approximation for revenue. To complement
these positive results, we also prove a lower bound of `(k − 1) + 1 for the welfare approximation ratio of
ex-post incentive compatible auctions.

Our auctions in these two sections achieve signal discovery using random sampling, while minimizing the
probability of rejecting the highest value bidder. Unlike prior work, our random sampling process is adaptive,
depending on prior signal discovery. Thus, our auction gradually refines our estimate of the item’s quality
as perceived by the bidders and eventually decides who to allocate to, aiming to achieve high welfare and
revenue. Apart from matching the lower bound up to small constants, these auctions crucially also guarantee
improved incentives: they admit the desired outcome not just an ex-post equilibrium, but as an obvious
ex-post equilibrium, making our upper bounds stronger.

Finally, in Section 5 we consider the most general setting with any number of signals k > 2 and arbitrary
quality functions per expert type. We first prove a stronger lower bound of `

(
k
2

)
+ 1 for the welfare approx-

imation of ex-post incentive compatible auctions. Then we prove the existence of a universally incentive
compatible and individually rational auction that matches this bound.

Due to space constraints, the proofs of some theorems (particularly those which are similar to previous
proofs) have been deferred to the appendix.

1.2 Related Work

In an interdependent values setting, a bidder’s value for a good may depend on how much others value it.
This idea is formally captured by the canonical interdependent values model given by Milgrom and Weber
[17]. The interdependent values setting has been well-studied in the economics literature for its descriptive
ability to capture many real-world scenarios. Noted examples in the literature include the mineral rights [23]
and common value (e.g., “wallet game”) models [11] discussed above, and the resale model [18] in which the
value a bidder has for a good (e.g., a painting) depends on her own value for the good and the amounts
others may be willing to pay on its resale.

A common assumption when studying the interdependent values setting in both the computer science
and economics literature is that the valuations of the bidders satisfy a single-crossing condition. Following
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the definition of Roughgarden and Talgam-Cohen [20], a set of valuation functions satisfies single-crossing if
for all bidders i and j

∂vi(si, s−i)

∂si
≥ ∂vj(si, s−i)

∂si
.

Loosely speaking, single-crossing states that a bidder is more sensitive to her own signal than anyone else
is. Using this assumption, many strong results can be obtained for both welfare and revenue. For example,
Dasgupta and Maskin [5] demonstrated that the celebrated Vickrey-Clarke-Groves (VCG) mechanism can be
adapted and extended into the common value setting to obtain optimal welfare given single-crossing. Ausubel
[2] demonstrated that a generalized Vickrey auction can achieve efficiency in a multi-unit setting with single-
crossing valuations. For revenue, Li [15] and Roughgarden and Talgam-Cohen [20] gave, independently,
auctions extracting near optimal revenue in the interdependent values model for any matroid feasibility
constraint when the valuations satisfy single-crossing and the signals are drawn from distributions with
a regularity-type condition. Chawla et al. [3] gave an alternative generalization of the VCG auction with
reserve prices and random admission which approximates the optimal revenue in any matroid setting without
conditions on signal distributions.

On the other hand, it is well-known that without single-crossing, achieving the optimal welfare becomes
impossible [5, 10]. There have thus been recent efforts to approximate the optimal welfare when the single-
crossing assumption is relaxed. Eden et al. [6] suggested a notion called “c-single-crossing” wherein each
bidder is at most a factor c times less sensitive to changes in her own signal than any other bidder is (exact
single-crossing has c = 1). They gave a 2c-approximate randomized mechanism when valuation functions are
concave and satisfy c-single-crossing. Eden et al. [7] proposed an alternative notion termed “submodularity
over signals” (SOS) which, loosely speaking, stipulates that a valuation function must be less sensitive to
increases in any particular signal when the other signals are high. The authors then gave a randomized
4-approximate mechanism for all single-parameter downward-closed settings when valuation functions are
SOS; this factor was very recently improved to 2 for the case of binary signals by Amer and Talgam-Cohen [1].
We note that the valuations studied in this paper satisfy neither c-single-crossing nor (approximate) SOS, in
general. Our work proposes alternative parameterizations of the valuation functions and it provides another
step toward a better understanding of interdependent values beyond the classic, and somewhat restrictive,
single-crossing assumption.

In accordance with some recent work in computer science (e.g., see [6, 7]), and unlike much of the existing
economics literature, we consider a prior-free setting where there is no distributional information regarding
the signals of the bidders. Thus, our results are in consistent with “Wilson’s doctrine” [22], which envisions
a mechanism design process that is less reliant on the assumption of common knowledge. Our results are
independent of an underlying distribution and do not assume that the auctioneer or the bidders have any
information regarding each other’s signals.

2 Preliminaries

We consider a setting where a set N of n bidders is competing to receive a good. Each bidder i ∈ N has a
private signal si regarding the good being sold, which can take one of k publicly known different values. Her
valuation of the good, vi(s), is a publicly known weakly increasing function of the vector of all the bidders’
signals, s = (s1, s2, . . . , sn). In many settings of interest it is natural to assume that this is a symmetric
function over the signals, e.g., when all the bidders have the same access to information, or the same level of
expertise. However, we also consider the case when the signal of some bidders may have a different impact
than others’. To capture this case we partition the bidders into ` > 1 groups and assume that each group
has different types of expertise. In this case, the valuation functions vi(s) are symmetric with respect to the
signals of bidders with the same type of expertise, but arbitrarily non-symmetric across bidders with different
types of expertise. Note that this captures arbitrary monotone valuation functions when ` = n, and it also
captures several classes of instances where the valuations of different bidders are not (even approximately)
single-crossing or SOS. We call a bidder optimal for some signal vector s if i is a highest value bidder for
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that signal profile, i.e., i ∈ arg maxj∈N{vj(s)}. We use h(s) to refer to an optimal bidder for signal vector s,
breaking ties arbitrarily but consistently if there are multiple optimal bidders for s.

In interdependent value settings, a direct-revelation mechanism receives the bidders’ signals as input and
outputs a bidder to serve and a vector of prices p(s) which each bidder is charged. For any bidder i, the
utility ui(s) = vi(s)− pi(s) if i is served and ui(s) = −pi(s), otherwise. A mechanism is ex-post individually
rational if ui(s) ≥ 0 for all i, assuming all bidders report their true signals.A mechanism is ex-post incentive
compatible if the utility that bidder i receives by reporting her true signal is at least as high as the utility
she would obtain by reporting any other signal, assuming all the other bidders report their true signals,
i.e., ui(si, s−i) ≥ ui(s

′
i, s−i) for all i, s−i. If a mechanism uses randomization, we say that it is universally

ex-post individually rational and ex-post incentive compatible (universally IC-IR) if it is a distribution over
deterministic ex-post individually rational and ex-post incentive compatible mechanisms.

We look to design universally IC-IR randomized mechanisms that aim to serve the bidder with highest
realized value given the signal profile. We measure the expected performance of these mechanisms against
the optimal solution given full information. Given some instance I, let A(I) denote the bidder served by
auction A. We then say that A achieves an α-approximation to the optimal welfare for a family of instances
I if

sup
I∈I

maxi∈N{vi(s)}
E
[
vA(I)(s)

] ≤ α

where the expectation is taken over the random coin flips of our mechanism. In terms of revenue, note that
for mechanisms that are individually rational (like the ones that we propose in this paper), we know that the
revenue of these mechanisms is always a lower bound for their social welfare. We therefore use the optimal
social welfare as an upper bound for the optimal revenue and say that A achieves an α-approximation of
revenue for a family of instances I if

sup
I∈I

maxi∈N{vi(s)}
E
[
pA(I)(s)

] ≤ α.

Our main results in this paper take the form of clock auctions over signals. A clock auction over signals
is a multi-round dynamic mechanism in which bidders are faced with personalized ascending signal clocks.
Throughout the auction, the clocks are non-decreasing and, at any point in the auction, a bidder may choose
to permanently exit the auction (thereby losing the good permanently). When a bidder is declared the winner,
she is offered a price (greater than or) equal to the value implied by the final clock signals for all bidders. In a
clock auction, a bidder exits the auction if and only if her signal clock is greater than her true signal, we refer
to this as consistent bidding. In particular, we seek to design clock auctions where consistent bidding is an
obvious ex-post equilibrium (OXP) strategy profile [13]. A strategy profile is an OXP of an auction if for any
bidder i, holding all other bidders’ strategies fixed (and assuming they are acting truthfully), the best utility
i can obtain by deviating from her truthful strategy under any possible type profile of the other bidders
consistent with the history (i.e., their clock signals) is worse than the worst utility i can obtain by following
her truthful strategy under any possible type profile of the other bidders consistent with the history.

3 Instances with Binary Signal Values

In this section, we consider the natural case where the signal of each bidder regarding the good can take one
of two possible values, e.g., “low quality” and “high quality”. We first focus on instances where the bidders’
valuation functions are symmetric over the signals, and we provide a clock auction which admits an ex-post
obvious equilibrium and 5-approximation to the optimal social welfare. We then extend this result to general
valuation functions, achieving a 5`-approximation to the optimal social welfare. This auction is then also
used as a building block for the results of the next section, which considers a setting with k > 2 signal values.

3.1 A Clock Auction for Symmetric Valuation Functions

A central result of this paper is the signal discovery auction, which is presented as a sealed-bid auction
below (see Mechanism 1), but can also be implemented as a clock auction (see Theorem 3). This auction
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aims to discover how many bidders have a high signal, while minimizing the probability that the optimal
bidder is rejected during the discovery process. Throughout the execution of the auction, the set A includes
the bidders that remain active, i.e., the ones that have not been rejected yet. The variables qmin and qmax

provide a lower and an upper bound, respectively, for the number of bidders that have a high signal, based
on the signals discovered up to that point. Note that qmin is initialized to 0 and qmax is initialized to n,
corresponding to all bidders having signal 0 or signal 1, respectively. The set R∗ contains all the bidders that
have been rejected, without first verifying that they are not optimal.

The auction uses randomized sampling in order to initiate this discovery process: it chooses one of the
active bidders uniformly at random, it rejects that bidder, and then uses its signal value to narrow down
the range [qmin, qmax]. We refer to this as a “costly” signal discovery, because it may lead to the rejection of
the highest value bidder. Then, this discovery leads to a sequence of “free” signal discoveries, by using this
information to identify active bidders that cannot be optimal, rejecting them, and then using their signal
to further narrow down the [qmin, qmax] range. When no additional free signal discoveries are available, the
auction removes any bidder of R∗ that is now verified to be non-optimal, and executes another costly signal
discovery.

This process continues until there is only one active bidder, at which point this bidder is declared the
winner. We say that a signal profile s is consistent with some q ∈ [qmin, qmax] if it contains a number of “high”
signals equal to q. If this bidder i is optimal for a signal profile s consistent with exactly one q ∈ [qmin, qmax],
then the bidder is awarded the good at price p = vi(s); if the bidder is optimal for multiple signal profiles
consistent with distinct numbers of “high” signal bidders in [qmin, qmax], she is awarded the good at the
price corresponding to a signal profile with the fewest number of “high” signal bidders.

Mechanism 1: Signal discovery auction for binary signal values

1 Let A← N , R∗ ← ∅, qmin ← 0, and qmax ← n
2 while |A| > 1 do

// A ‘‘costly’’ signal discovery

3 Select a bidder i ∈ A uniformly at random
4 Let A← A \ {i} and R∗ ← R∗ ∪ {i}
5 if si = 0 then
6 qmax ← qmax − 1
7 else
8 qmin ← qmin + 1

// A sequence of ‘‘free’’ signal discoveries

9 while ∃j ∈ A that is not optimal for any s consistent with some q ∈ [qmin, qmax] do
10 A← A \ {j}
11 if sj = 0 then
12 qmax ← qmax − 1
13 else
14 qmin ← qmin + 1

15 while ∃j ∈ R∗ that is not optimal for any s consistent with some q ∈ [qmin, qmax] do
16 R∗ ← R∗ \ {j}
17 Let i be the single bidder in A
18 Let s′i be the smallest signal such that i is optimal for (s′i, s−i)
19 if vi(s) ≥ vi((s

′
i, s−i)) then

20 Award the good to i at price vi((s
′
i, s−i))

The following lemma shows that the size of R∗ is never more than 2, which allows us to bound the
probability that the auction identifies the optimal bidder.

Lemma 1. Throughout the execution of the signal discovery auction, the size of R∗ is never more than 2.
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Proof. We first note that, throughout the auction, the only bidders in A ∪ R∗ are the potentially optimal
bidders (i.e., those which correspond to some possible signal profile) since bidders are removed from A∪R∗
when they are determined to be non-optimal. Initially R∗ is empty and at the beginning of each iteration of
the outer while-loop, one randomly sampled active bidder i is added to this set, increasing its size by one.
The signal of bidder i is then used to update either qmin or qmax; if si = 0 the auction can infer that qmax

is not the true number of high signal bidders, and if si = 1 the auction can infer that qmin is not the true
number of high signal bidders. In both of these cases, some possible symmetric signal profile is ruled out,
and this may lead to a sequence of “free” signal discoveries, as discussed below.

Whenever a symmetric signal profile s is ruled out, there are four possibilities regarding the bidder who
is optimal for that level, i.e., the bidder h(s):

1. If h(s) is in A and is not optimal for any other s′ consistent with some number q of high signal bidders in
the updated interval [qmin, qmax], then the first inner-while loop of the auction will remove that bidder
from A and use its signal to rule out one more quality level.

2. If h(s) is in A and is also optimal for some other s′ consistent with some number q of high signal bidders
in the updated interval [qmin, qmax], then the iteration of the outer while-loop terminates without any
additional operations and we proceed to the next iteration.

3. If h(s) is in R∗, and is not optimal for any other s′ consistent with some number q of high signal bidders
in the updated interval [qmin, qmax], then the second inner while-loop removes h(s) from R∗ and we
proceed to the next iteration of the outer while-loop.

4. If h(s) is in R∗, and is also optimal for some other s′ consistent with some number q of high signal bidders
in the updated interval [qmin, qmax], then the iteration of the outer while-loop terminates without any
additional operations and we proceed to the next iteration.

Considering these four possibilities, note that while the first case arises, the execution remains in the
first inner while-loop and the size of R∗ remains unchanged. When the third case arises, the size of R∗ is
first reduced by one (because the auction enters the second inner while-loop) and then proceeds to the next
iteration of the outer while-loop, which may bring this up to the same size again. As a result, the third case
does not increase the size of R∗ either.

On the other hand, both cases 2 and 4 may lead to an increase in the size of R∗ by 1, since they terminate
the current iteration of the outer while-loop and may proceed to the next one, which would add one more
bidder to R∗.

However, at the end of each iteration of the outer while-loop, A and R∗ contain only bidders that are
optimal for some s consistent with some number of high signal bidders q in [qmin, qmax] (all the others are
removed from A in the first inner while-loop and from R∗ in the second inner while-loop). Also, at the end
of each iteration of the outer while-loop, we have qmax = qmin + |A|. To verify this fact note that the signal
of everyone not in A has already been used to update the interval [qmin, qmax] and the only signals not used
yet are those of the bidders in A. If all the bidders in A have a low signal, then the true s has qmin bidders
with high signals. If they all have a high signal (adding |A| bidders with high signal), the true s has qmax

bidders with high signals.
Therefore, we know that at the end of each iteration of the outer while-loop, every bidder in A and R∗ is

optimal for some possible symmetric signal profile with a number of high value bidders in [qmin, qmax] and
there are at most |A| + 1 such distinct signal profiles. If R∗ is empty at that point, this means that there
can be at most one bidder in A that is optimal for two distinct signal profiles. If |R∗| = 1, then there are
|A|+ 1 optimal bidders and |A|+ 1 distinct signal profiles, so there is no bidder in A or R∗ that is optimal
for more than one such profile. This means that in the next iteration of the outer while-loop, cases 2 and
4 listed above cannot arise, and therefore the size of R∗ cannot be strictly more than 1 at the end of any
iteration of the outer while loop. ut

Theorem 1. The signal discovery auction achieves a 5-approximation of the optimal welfare for instances
with binary signals.

Proof. Let i∗ be the optimal bidder and q∗ be the true number of high signals. We first observe that a bidder
is removed from A ∪ R∗ only if they are determined to be non-optimal. Thus, we know that i∗ ∈ A ∪ R∗
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throughout the running of the algorithm. By Lemma 1 we know that |R∗| ≤ 2 throughout the running of the
algorithm. There are then at most 5 distinct bidders who can be in A ∪ R∗ at the end of the algorithm: i∗

and the (up to) four other bidders optimal for signal profiles corresponding to q∗−2, q∗−1, q∗+ 1, or q∗+ 2
high signal bidders. Provided that these four other bidders enter R∗ (or are eliminated) before i∗ is added
to R∗ we then obtain the optimal welfare. We conclude by noting that, since the choices of the bidder to be
added to R∗ is made uniformly at random, we can envision the order in which bidders are added to R∗ as a
uniform at random permutation over the bidders fixed at the outset. In a uniform random permutation, i∗

follows these four bidders with probability 1/5. ut

The signal discovery auction, as presented, achieves no interesting worst-case approximation for revenue
when the benchmark is the ex-post optimal welfare. In particular, if there is a single optimal bidder for
all the signal profiles corresponding to numbers of high signal bidders in [qmin, qmax], and the true number
of high signal bidders is qmax, the mechanism charges the winner i a price of vi(s

′) where s′ is the signal
profile obtained by her signal being 0 (corresponding to qmin high signal bidders). If the true signal profile
s′′ corresponds to having qmax bidders of high signal, the ex-post optimal welfare is vi(s

′′), which can be
arbitrarily higher than vi(s

′). To address this issue, our next result shows that if we slightly modify the
pricing rule of the mechanism, then we can achieve revenue which is a 10-approximation of the ex-post
optimal welfare (which simultaneously also implies that the welfare we obtain is a 10-approximation).

Theorem 2. The pricing rule of the signal discovery auction can be adjusted to achieve revenue which is a
10-approximation of the optimal welfare for instances with binary signals.

Proof. If in line 18 of Mechanism 1 we instead select a s for which i is optimal consistent with some random
q′ ∈ [qmin, qmax] and s is the true signal profile, we extract all of the welfare as revenue. Since i is the only
bidder with unknown signal value, there are at most two levels for which i is optimal so we select the signal
profile with probability 1/2, yielding the 10-approximation. Note that in line 20 we only allocate the item if
the price is below the true value of i, so we preserve ex-post IC-IR with this modification. ut

We conclude this section by verifying that the outcome of the signal discovery auction can be implemented
as an obvious ex-post equilibrium [13].

Theorem 3. The signal discovery auction can be implemented as an ascending clock auction over the signals
wherein consistent bidding is an obvious ex-post equilibrium.

Proof. Rather than asking bidders to report their signals we may instead equip each bidder with a signal
clock. The clocks of all bidders begin at 0 and when bidder i would have her signal discovered by the above
mechanism, we instead raise the clock of i to 1. If i rejects the new clock signal level (i.e., permanently exits
the auction), she cannot win the item regardless of her beliefs about the signals of the remaining bidders.

If the true signal of i is 1, for any profile of signals of the remaining bidders (assuming these signals are
true) the worst utility i can obtain by accepting the increased clock signal level is 0 (by losing the item or by
winning the item and being charged exactly her welfare). Thus, at any point in the auction, regardless of the
history, when i is approached to increase her clock signal level, the best utility i can obtain by not accepting
the increased clock signal level (thereby necessarily losing the good) is weakly less than the worst utility i
can obtain by accepting the increased clock signal level. On the other hand, if the true signal of i is 0, for
any profile of signals of the remaining bidders (assuming these signals are true) if she instead accepts the
increased clock signal level she either will continue to lose the auction (thereby obtaining a utility of 0) or
win the auction at a quality level higher than the actual underlying quality of the good. Since the threshold
signal of i would then be 1, she would necessarily be charged a price weakly higher than her value for the
good and she would obtain non-positive utility. Thus, in either case, truthfully responding whether or not
the clock signal level is above a bidder’s signal is an obvious ex-post equilibrium. ut

Corollary 1. The version of the signal discovery auction which obtains revenue guarantees can also be
implemented as an ascending clock auction over the signals wherein consistent bidding is an obvious ex-post
equilibrium.
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Proof. The proof follows exactly as above except we raise the clock signal level of the winning bidder to the
one corresponding to the randomly selected signal profile (effectively setting a take-it-or-leave-it price at this
signal). ut

3.2 A Clock Auction for General Valuation Functions

In this section, we demonstrate how our auction for symmetric valuation functions, i.e., the case where
` = 1, above, can be easily extended to handle general valuation functions over binary signals, leading to
approximation bounds that depend on the number of expert-groups, `.

The mechanism first uniformly at random selects some `′ ∈ {1, 2, . . . , `}, and then assumes that the
optimal bidder belongs to expertise type `′. The mechanism rejects all bidders outside expertise-group `′ and
“learns” their signals. The auction then knows all the signals of bidders not in `′ and the problem reduces
to also discovering the number of bidders in `′ that have a high signal. We can therefore run Mechanism 1
among the bidders in `′ to decide the winner among them, and the price offered to her.

Theorem 4. The above mechanism yields a 5`-approximation of the optimal welfare for instances with
binary signals.

Proof. The probability that the optimal bidder does, indeed, belong to the expertise-group `′ is 1/`. If the
mechanism guesses the value of `′ correctly, then the rejection of all the other bidders comes at no cost, and
it reduces the problem to finding the optimal bidder within the group `′. But, since we now know all the
signal values of bidders outside the group `′, we can use Mechanism 1 to discover the optimal bidder with
probability at least 1/5 (by Theorem 1). Combining these observations, the above mechanism allocates to
the optimal bidder with probability at least 1/(5`). ut

Theorem 5. The pricing rule of the above mechanism can be adjusted to achieve revenue which is a 10`-
approximation of the optimal welfare for instances with binary signals.

Proof. Similar to above, the proof of this theorem closely follows the proof of Theorem 2. Given that we
select the type of expertise with the welfare-optimal bidder we obtain revenue which is a 10-approximation
to the welfare by running Mechanism 1 but instead selecting a random quality q′ ∈ [qmin, qmax] for which i
is optimal at line 20. ut

4 Shared Quality Functions over k Signal Values

We now move beyond instances with binary signals and consider a class of valuation functions over k ≥ 2
signal values. Each bidder i’s signal can take any value si ∈ {0, 1, . . . , k− 1} and the average of these signals
determines the quality of the good q =

∑
i∈N si (note that the average of the signals can be directly inferred

from the sum, so we use the sum for simplicity of notation).1 This captures a variety of settings where each
bidder has some estimate regarding the quality, but the true quality is best approximated by averaging over
all the bidders’ signals (e.g., see the wisdom of the crowds phenomenon [21]). Each bidder i’s value for the
good is provided by some (arbitrary) weakly increasing function vi(q), which depends only on q, quantifying
how much each bidder values quality.

Apart from these symmetric valuation functions, we also consider non-symmetric ones involving ` different
classes of experts. The bidders are partitioned into sets N1, N2, . . . , N`, depending on their expertise, and
the quality estimate from each expert group `′ is their average signal, i.e., q`′ =

∑
i∈N`′

si. In this case, the

quality of the good is captured by the shared quality vector q = (q1, q2, . . . , q`), and each bidder’s valuation
is a function vi(q). The only restriction on the valuation function is that it is weakly increasing with respect
to the underlying signals, but it can otherwise arbitrarily depend on the quality vector. For instance, this

1 Note that the actual k signal values need not be {0, 1, . . . , k − 1}, but we need them to be equidistant for our
results to hold.
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allows us to model settings where the signals of each group of experts imply the quality of the good with
respect to some dimension, and each bidder can then synthesize this information into a quite complicated
valuation function, depending on the aspects that she cares about the most.

In this section, we first provide a lower bound for the approximability of the optimal social welfare by
universally ex-post IC-IR auctions, parameterized by k and `. We then provide a way to leverage the ideas
from the previous section to achieve essentially matching upper bounds using clock auctions and ensuring
incentive guarantees even better than ex-post IC-IR.

4.1 Approximation Lower Bound for ex-post IC-IR auctions

We first prove a lower bound for the welfare approximation that one can achieve for the class of instances of
this section involving ` types of experts with k signal values each. It is worth noting that the construction for
this lower bound is based on a simple class of valuation functions that only depend on the weighted average
of the bidder’s signals (with each expert group having a different weight coefficient). Also, for the case k = 2,
i.e., the binary case considered in the previous section, this implies a lower bound of `+ 1.

Theorem 6. No ex-post incentive compatible auction with ` types of experts and shared quality functions
can achieve better than an `(k − 1) + 1-approximation to the optimal welfare.

Proof. We consider a particularly simple setting, in which the quality of the good can be summarized as
a weighted average of all the bidders’ signals (with bidders from different expertise classes given different
weights). Note that this is readily captured by the model described above. It follows that when we reduce
the signal of i by d > 0, the quality of the good changes by dwi. Note that d can be at most k − 1 different
values. We construct a valuation function as follows. For each j ∈ {0, 1, . . . , ` − 1}, we define the valuation
function of bidder i where (k − 1) · j + 1 ≤ i ≤ (k − 1) · (j + 1) as follows:

vi(t) =

{
∆i if t ≥ S − (i− (k − 1) · j) · wi,

0 otherwise.

Finally, for bidder i′ = (k−1) ·`+1 (who has signal 0 in s), vi′(t) = ∆i′ when t ≥ S and vi′(t) = 0 otherwise.
We let ∆1 = 1 and ∀i > 1, ∆i = H∆i−1 (H is arbitrarily large). In other words, at any of these qualities,
we must allocate the good to the optimal bidder with probability 1/α to obtain an α-approximation to the
optimal welfare in the worst case. To obtain a `(k−1)+1−ε approximation for ε > 0, it then must be that we
allocate the good to the optimal bidder at all of these qualities with probability at least 1/(`(k− 1) + 1− ε).
But then we have that for all d ∈ {1, 2, . . . , k − 1} and w ∈ {1, k, . . . , k`−1} if we allocate the good to the
optimal bidder i when the quality is S − dw with probability p, we must continue to allocate the good to
i with probability p when the quality is S in order to maintain universal ex-post incentive compatibility
(by monotonicity of an allocation rule). Finally, since there are `(k − 1) + 1 qualities identified above,
each of the distinct optimal bidders at these qualities must be allocated the good with probability at least
1/(`(k − 1) + 1− ε) at quality S, a contradiction. ut

4.2 A Clock Auction for Instances with Shared Quality Functions

We now provide a way to reduce this problem to the case of binary signals, while losing only a k − 1 factor
in our bounds. As a result, the induced upper bounds closely approximate the lower bound provided above.
The majority of this section discusses how Mechanism 2 achieves this reduction for the case where `, and
then briefly explain how to generalize our bounds for instances with ` > 1.

Similarly to Mechanism 1 in the binary setting, whose goal is to discover the number of signals that
are high, Mechanism 2 aims to discover the value of the sum of the signals. Throughout its execution, the
auction maintains an interval [qmin, qmax] such that the true sum q is guaranteed to be in that interval. It
gradually refines this range by discovering bidder signals as in the binary setting. The main difference is
that we now need to be more careful in order to ensure that the size of R∗ remains low. To achieve this,
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the auction chooses some m ∈ {0, 1, . . . , k − 2} uniformly at random and assumes that q mod (k − 1) = m.
It thus randomly reduces the number of values of q that it considers from n(k − 1) + 1 (since the sum can
initially range from 0 to n(k − 1)) to just n+ 1 (which is equal to the length of the [qmin, qmax] interval in
the case of binary signals). Importantly, the values of q that are considered after this sampling are spaced
apart by k − 1, allowing us to upper bound the size of R∗.

Mechanism 2: Signal discovery auction for k signal values

1 Let A← N , R∗ ← ∅, qmin ← 0, and qmax ← n(k − 1)
2 Choose some m ∈ {0, 1, . . . , k − 2} uniformly at random
3 S ← {q ∈ [qmin, qmax] | q mod (k − 1) = m}
4 while |A| > 1 do

// A ‘‘costly’’ signal discovery

5 Select a bidder i ∈ A uniformly at random
6 Let A← A \ {i} and R∗ ← R∗ ∪ {i}
7 qmax ← qmax − (k − 1− si)
8 qmin ← qmin + si

// A sequence of ‘‘free’’ signal discoveries

9 while ∃j ∈ A that is not optimal for any q ∈ S ∩ [qmin, qmax] do
10 A← A \ {j}
11 qmax ← qmax + sj − k + 1
12 qmin ← qmin + sj
13 while ∃j ∈ R∗ that is not optimal for any q ∈ S ∩ [qmin, qmax] do
14 R∗ ← R∗ \ {j}
15 Let i be the single bidder in A
16 Choose the smallest quality level q′ ∈ S ∩ [qmin, qmax] for which i is optimal
17 if vi(q(s)) ≥ vi(q

′) then
18 Award the good to i at price vi(q

′)

Lemma 2. The set of R∗ in Mechanism 2 is never more than 2.

Proof. We first note that, throughout the auction, the only bidders in A ∪ R∗ are the potentially optimal
bidders (i.e., those which correspond to some possible signal profile) since bidders are removed from A∪R∗
when they are determined to be non-optimal. Initially R∗ is empty and at the beginning of each iteration of
the outer while-loop, one randomly sampled active bidder i is added to this set, increasing its size by one. The
signal of bidder i is then used to update qmin and qmax possibly eliminating a quality from S ∩ [qmin, qmax]
and this may lead to a sequence of “free” signal discoveries, as discussed below.

Whenever a level q is ruled out, there are four possibilities regarding the bidder who is optimal for that
level, i.e., the bidder h(q):

1. If h(q) is in A and is not optimal for any other quality level in the updated interval S ∩ [qmin, qmax],
then the first inner-while loop of the auction will remove that bidder from A and use its signal to rule
out one more quality level.

2. If h(q) is in A and is also optimal for some other quality level in the updated interval S ∩ [qmin, qmax],
then the iteration of the outer while-loop terminates without any additional operations and we proceed
to the next iteration.

3. If h(q) is in R∗, and is not optimal for any other quality level in the updated interval S ∩ [qmin, qmax],
then the second inner while-loop removes h(q) from R∗ and we proceed to the next iteration of the outer
while-loop.

4. If h(q) is in R∗, and is also optimal for some other quality level in the updated interval S ∩ [qmin, qmax],
then the iteration of the outer while-loop terminates without any additional operations and we proceed
to the next iteration.
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Considering these four possibilities, note that while the first case arises, the execution remains in the
first inner while-loop and the size of R∗ remains unchanged. When the third case arises, the size of R∗ is
first reduced by one (because the auction enters the second inner while-loop) and then proceeds to the next
iteration of the outer while-loop, which may bring this up to the same size again. As a result, the third case
does not increase the size of R∗ either.

On the other hand, both cases 2 and 4 may lead to an increase of the size of R∗ by 1, since they terminate
the current iteration of the outer while-loop and may proceed to the next one, which would add one more
bidder to R∗. However, at the end of each iteration of the outer while-loop, A and R∗ contain only bidders
that are optimal for some level in S ∩ [qmin, qmax] (all the others are removed from A in the first inner
while-loop and from R∗ in the second inner while-loop). At the end of each iteration of the outer while-loop,
we have qmax = qmin + (k − 1) · |A| since the only signals still not used are those of bidders in A and
these signals range from 0 to k − 1. On the other hand, the consecutive qualities in S are k − 1 apart, so
|S ∩ [qmin, qmax]| ≤ |A|+ 1 (with equality if both qmin and qmax are in S).

Therefore, we know that at the end of each iteration of the outer while-loop, every bidder in A and R∗

is optimal for some level in S ∩ [qmin, qmax] and there are at most |A| + 1 levels in that interval. If R∗ is
empty at that point, this means that there can be at most one bidder in A that is optimal for two levels
in the interval. If |R∗| = 1, then there are |A| + 1 optimal bidders and |A| + 1 optimal levels, so there is
no bidder in A or R∗ that is optimal in more than one levels. This means that in the next iteration of the
outer while-loop, cases 2 and 4 given in Lemma 1 cannot arise, and therefore the size of R∗ cannot increase
beyond 1 by the end of any iteration of the outer while loop. ut

Theorem 7. The signal discovery auction achieves a 5(k − 1) approximation of the optimal welfare for
instances with shared quality functions.

Proof. Given that we guess the correct quality residue (i.e., the optimal quality is in the set S we randomly
select) the proof follows Theorem 1 and its proof directly. Let q∗ denote the true quality and i∗ the optimal
bidder for this quality. We first observe that a bidder is removed from A ∪ R∗ only if they are determined
to be non-optimal. Thus, we know that i∗ ∈ A ∪R∗ throughout the running of the algorithm. By Lemma 1
we know that |R∗| ≤ 2 throughout the running of the algorithm. Thus, there are at most 5 distinct bidders
who can be in A ∪R∗ at the end of the algorithm – i∗ and the (up to) four other bidders optimal for signal
profiles corresponding to q∗ − 2, q∗ − 1, q∗ + 1, or q∗ + 2 high signal bidders. Provided that these four other
bidders enter R∗ before i∗ we then obtain the optimal welfare. We conclude by noting that, since the choices
of the bidder to be added to R∗ is made uniformly at random, we can envision the order in which bidders are
added to R∗ as a uniform at random permutation over the bidders fixed at the outset. In a uniform random
permutation, i∗ follows these four bidders with probability 1/5, so we obtain a 5p-approximation where p is
the probability with which we select the correct residue. Since we guess this uniformly at random, we obtain
a 5(k − 1)-approximation. ut

Theorem 8. The pricing rule of the signal discovery auction can be adjusted to achieve revenue which is a
10(k − 1) approximation of the optimal welfare for instances with shared quality functions.

Proof. Given that we guess the correct quality residue which occurs with probability 1/(k − 1), if in line 16
of Mechanism 2 we instead select a random quality q′ ∈ S∩ [qmin, qmax] for which i is optimal and this is the
true quality, we extract all of the welfare as revenue. Note that i is the only bidder with unknown signal and
this signal can only affect the quality by at most k − 1. Also, adjacent quality levels in S ∩ [qmin, qmax] are
k−1 apart. Thus, there are at most two levels in S∩[qmin, qmax] for which i is optimal so we select the correct
quality with probability 1/2, yielding the 10(k− 1)-approximation. Note that in line 18 we only allocate the
item if the price is below the true value of i, so we preserve ex-post IC-IR with this modification. ut

Theorem 9. Mechanism 2 can be implemented as an ascending clock auction over the signals wherein
consistent bidding is an obvious ex-post equilibrium.

Proof. The proof follows closely the proof of Theorem 3. Rather than asking bidders to report their signals
we may instead equip each bidder with a signal clock. The clock of all bidders begin at 0 and when bidder i
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would be sampled by the above mechanism, we instead raise the clock of i by one signal level at a time until
she rejects the signal level or reaches signal k − 1.2 If i rejects the new clock signal level (i.e., permanently
exits the auction), she cannot win the item (as above) regardless of her beliefs about the signals of the
remaining bidders.

If the true signal of i is k − 1, for any profile of signals of the remaining bidders (assuming these signals
are true) the worst utility i can obtain by accepting the clock signal level throughout the raising process
(until it reaches k−1) is 0 (by losing the item or by winning the item and being charged exactly her welfare).
Thus, at any point in the auction, regardless of the history, when i is approached to increase her clock signal
level, the best utility i can obtain by not accepting all increased clock signal levels (thereby necessarily losing
the good) is weakly less than the worst utility i can obtain by accepting the increased clock signal level. On
the other hand, if the true signal of i is strictly less than k − 1, for any profile of signals of the remaining
bidders (assuming these signals are true) if she instead continues to accept the clock signal level even at
k − 1 (if she rejects at any point she loses the item regardless of when she rejects) she either will continue
to lose the auction (thereby obtaining a utility of 0) or win the auction at a quality higher than the actual
underlying quality of the good. Since the threshold signal of i would then be k− 1, she would necessarily be
charged a price weakly higher than her value for the good and she would obtain non-positive utility. Thus,
in either case, truthfully responding whether or not the clock signal level is above a bidder’s signal is an
obvious ex-post equilibrium. ut

Theorem 10. Mechanism 2 can be modified to yield a 5(k − 1)`-approximation of the optimal welfare and
achieve revenue which is a 10(k− 1)`-approximation of the optimal welfare for shared quality functions with
` expertise types.

Proof. The proof of this theorem follows directly from the proofs of Theorems 7 and 8.

Consider the algorithm which first uniformly at random selects some type `′ of expertise and guesses that
the optimal bidder belongs to this type. It then samples all bidders outside expertise type `′ and updates
qmin to be the quality obtained by the signal vector of the sampled bidders’ signals and 0 for all bidders
of expertise `′. Finally, the auction then restricts attention to the qualities which may arise for all possible
signal profiles of bidders of expertise `′ and runs Mechanism 2 for these bidders and qualities.

We begin with the welfare guarantee. Given that we select the type of expertise with the welfare-optimal
bidder we obtain welfare which achieves a 5(k − 1)-approximation to the optimal welfare from running
Mechanism 1 on the correct type of expertise (discarding the other bidders). Since we select every expertise
type with equal probability (i.e., 1/`) we obtain a 5(k − 1)`-approximation as desired. For revenue, given
that we select the type of expertise with the welfare-optimal bidder we obtain revenue achieving a 10(k−1)-
approximation to the optimal welfare by instead selecting a random quality level q′ ∈ S ∩ [qmin, qmax] for
which i is optimal (see the proof of Theorem 8 for additional details). Since we select the correct expertise
type with probability 1/` we obtain the 10(k − 1)`-approximation as desired. ut

5 General Valuation Functions and Signal Values

We now turn to the more general case where the quality of the good is any weakly increasing function of the
signals that treats bidders with the same expertise type symmetrically. We provide an approximation lower
bound for any allocation function that is monotone: a necessary condition of ex-post IC. We conclude our
results by proving that there exists a universally IC-IR auction that matches the approximation ratio lower
bound. We can adjust the mechanism to achieve revenue that is k · (`

(
k
2

)
+ 1) approximation of the welfare.

2 To ensure that bidders cannot “identify” that they have been used for signal discovery, we can, with some small
probability, instead run a uniform ascending signal clock auction which awards the item to the bidder with the
highest signal. This sacrifices a small constant in the approximation guarantee, but enhances the practicality of
our auction as all bidders are incentivized to continue to remain in the auction even as their clock is rising (which
would indicate that they were used for signal discovery in Mechanism 2).
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Theorem 11. No ex-post incentive compatible auction can get more than a `
(
k
2

)
+ 1-approximation to the

optimal welfare. Also, no universally ex-post IC-IR auction can obtain revenue more than a `
(
k
2

)
+ 1 fraction

of the revenue.

Proof. Similarly to the shared quality functions case, we will construct a set of bidders, valuation functions,
and signal profiles such that we can find some signal vector for which at least `

(
k
2

)
+ 1 bidders all require

positive probability of allocation by enforcing monotonicity constraints required to achieve ex-post incentive
compatibility.

We define the set of bidders

N = {i∗} ∪ {(i, j, l) | i ∈ {1, . . . , k − 1}, j ∈ {0, . . . , i− 1}, l = {1, . . . , `}}.

Note that the total number of bidders is exactly |N | = `
(
k
2

)
+ 1. We consider the following signal profile

s where s(i,j,l) = i and si∗ is arbitrary. We design a valuation function such that either monotonicity or
feasibility would be violated at s if the allocation achieves an approximation ratio better than |N |.

Additionally, we define the set of signal profiles S(i,j,l) where a bidder with expertise type l and signal i
reduces her signal to j < i. Due to our constraints, any valuation function has the same outputs among all
signal profiles in any S(i,j,l).

Now we are ready to define the valuation function for each bidder. Let M be an arbitrarily large value.
For any bidder (i, j, l) we have:

v(i,j,l)(s
′) =


M j s′ ∈ S(i,j,l)

M j s′ is obtained by increasing signals from a profile in S(i,j,l)

0 otherwise

For bidder i∗ we have

vi∗(s
′) =


Mk s′ = s

Mk s′ is obtained by increasing signals from s

0 otherwise

By the definition we can easily deduce that the valuation is monotone. We need to argue that it is
symmetric across expert levels:
Expert Symmetry: We need to argue that this valuation function we define satisfies expert symmetry:
Consider any two signal profiles in S(i,j,l) and S(i′,j′,l′) respectively. There are three cases:

– l 6= l′: Clearly the valuation function can differ among these profiles.
– l = l′: but i 6= i′: The number of type-l experts with signal i in any strategy profile S(i,j,l) is i− 2 while

there are i − 1 such experts in every strategy profile in S(i′,j′,l′). Therefore the valuation call tell these
profiles apart.

– l = l′, i = i′ but j 6= j′: Clearly these two signals agree on expertise type and signal count combination
apart from j and j′ at expert level l: the signal from S(i,j,l) has one more signal j and S(i,j′,l) has one
more signal j′.

Note that no signal in S(i,j,l) can be obtained by increasing a signals from a profile in S(i′,j′,l′) if either
i′ 6= i or l 6= l′. Therefore, any bidder (i′, j′, l′) has a positive allocation probability in S(i,j,l) only if i = i′

and l = l′. First, bidder (i, j, l) who has valuation M j for all signals in S(i,j,l). Since signal profiles in S(i,j,l)

can be obtained only by increasing signals from profiles in S(i,j′,l) for j′ < j, bidders (i, j′, l) with j′ < j have

valuation M j′ while all the rest have value 0. As a result, any bidder (i, j, l) is optimal at any signal S(i,j,l)

and any other bidder has at most 1/M -fraction of the optimal value. Finally, the same is true for signal s
where bidder i∗ is optimal with value Mk and any other bidder is has at most 1/M -fraction of it.

Assume that there exists a monotone feasible allocation function that achieves an approximation ratio
strictly better than `

(
k
2

)
+ 1. Therefore, as M increases it must be the case that the optimal bidder must be
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allocated with probability strictly higher than (`
(
k
2

)
+1)−1 at each signal profile. As a result, for every bidder

(i, j, l) must be allocated with at least that much probability in any signal profile S(i,j,l). By monotonicity
this bidder must also be allocated with at least that much probability when the signal profile is s. However
this is impossible as total allocation probability at s would exceed 1 and would violate the assumption that
the allocation is feasible.

Finally, any mechanism that is ex-post IR has revenue less than social welfare. As a result, no ex-post
IC-IR mechanism obtains revenue more than `

(
k
2

)
+ 1 fraction of the optimal social welfare. ut

Theorem 12. There exists a universally ex-post IC-IR auction that achieves a `
(
k
2

)
+ 1-approximation to

the optimal welfare.

Proof. We prove this result using the randomized allocation rule constructed using the following process:
xi(s) is the probability that we allocate the item to bidder i given the signal profile s.

1 ρ← min{n, `
(
k
2

)
+ 1}

2 xi(s)← 0 for all i and s
3 for each signal profile s do
4 i← h(s)
5 if xi(s) = 0 then
6 xi(s)← 1/ρ
7 for each signal profile (s′i, s−i) with s′i > si do
8 xi(s

′)← 1/ρ

9 return x

We proceed with proving that this allocation is feasible, approximates the social welfare and finally design
an universally IC-IR mechanism by choosing an appropriate pricing scheme.

Feasibility: First, we need to show that for any signal profile s the sum of the allocation probabilities
does not exceed 1, i.e.,

∑
i∈N xi(s) ≤ 1. Each of these bidders’ allocation probability is upper bounded by

(`
(
k
2

)
+ 1)−1. As a result, we complete our proof by bounding the number of bidders with strictly positive

allocation by `
(
k
2

)
+ 1 which implies that our allocation is feasible. If n < `

(
k
2

)
+ 1 then the result follows

trivially. Assume n > `
(
k
2

)
+ 1 and consider a bidder and signal si in s. If this bidder is allocated positive

probability it means that the bidder is either the bidder with the maximum value at s (allocated via steps 5
and 6) or was optimal at some signal (s′i, s−i) with s′i < si (allocated via steps 8 and 9 at profile (s′i, s−i)).
The number of bidders falling to the latter category is at most the number of distinct signals that can be
obtained by some bidder reducing their signal. There is k′ − 1 ways of reducing a signal with value k′ for
every expertise type in {1, . . . , `}. Summing over all expertise types and signal levels at s we get

∑̀
`′=1

k∑
k′=2

(k′ − 1) = `

(
k

2

)
Adding the bidder that is optimal at s we get that the number of bidders with strictly positive probability

at s is `
(
k
2

)
+ 1.

Approximation: If we set ρ = min{n, `
(
k
2

)
+ 1} the allocation is feasible and since at every signal profile s

we allocate to h(q(s)) with probability (min{n, `
(
k
2

)
+ 1})−1 the approximation ratio follows.

Incentives: Note each bidder is allocated with probability either 0 or 1/ρ. If a bidder is ever allocated an
allocation probability 1/ρ then the mechanism assigns also an allocation probability for all signal profiles
obtained by increasing this bidder’s signal in the second loop. This implies that the allocation is monotone.
It is well known that we can turn any monotone allocation to a universally ex-post IC-IR mechanism using
the payment identity. Since our allocation function assigns allocation probability 0 or 1/ρ at any signal
profile the payment function should be: if a bidder i is allocated the item at signal profile s then charge her
vi(q((t, s−i)) where t is the smallest sign al such that xi((t, s−i) = 1/ρ. ut
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Theorem 13. There exists a universally ex-post IC-IR auction that obtains revenue that is a k · (`
(
k
2

)
+ 1)

approximation to the social welfare.

Proof. Consider the following mechanism: Given a signal s, let i be the winner according to allocation
defined in the proof of Theorem 12 that approximates social welfare. Recall that to obtain a universally IC-
IR mechanism we offered the good to the bidder at the price vi(t, s−i) where t is the lowest signal that bidder
i can have to win the item with a strictly positive probability. Instead we choose to offer a take-it-or-leave-it
price vi(t̂, s−i) where t̂ is a random signal in {t, . . . , k − 1}.
Incentives: We argue that this mechanism is universally IC-IR. We consider two cases

– si < t : The bidder is never allocated the item. If the bidder raised her signal then price that was offered
by the mechanism would be at least vi(t, s−i) > vi(s).

– si ≥ t : If the bidder lowers her signal then the item is never allocated and she gets a utility of zero. If
the bidder raises her signal then this does not effect the randomized take-it-or-leave it price offered by
the mechanism. In any case the deviation is not profitable.

Revenue: Conditioned on the optimal bidder being allocated the item in the original allocation the bidder
accepts the price that equals her true value vi(s) with probability at least 1/k. Since these two events are
independent with probability 1/(k(`

(
k
2

)
+ 1)) our revenue equals the social welfare. ut
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