Maximum Lik elihood and the Information
Bottleneck

Noam Slonim  Yair Weiss
Schoolof ComputerScience& Engineering,
Hebrev University, Jerusalen®1904,Israel

{noamm,yweisk@cs.huiji.ac.il

Abstract

Theinformationbottleneck(IB) methodis aninformation-theoreti¢dormulation
for clusteringproblems. Givenajoint distributionp(z, ), thismethodconstructs
anew variableT thatdefinegpartitionsover thevaluesof X thatareinformative
aboutY. Maximumlikelihood (ML) of mixture modelsis a standardstatistical
approacho clusteringproblems.In this paperwe ask: how arethetwo methods
related? We definea simplemappingbetweerthe IB problemandthe ML prob-
lem for the multinomial mixture model. We shav that underthis mappingthe
problemsare stronglyrelated. In fact, for uniform input distribution over X or
for large samplesize,the problemsare mathematicallyequialent. Specifically
in thesecasesegvery fixed point of the IB-functional definesa fixed point of the
(log) likelihood andvice versa. Moreover, the valuesof the functionalsat the
fixed pointsareequalundersimpletransformationsAs aresult,in thesecases,
every algorithmthatsolvesoneof the problemsjnducesa solutionfor the other

1 Intr oduction

Unsupervisecatlusteringis a centralparadigmin dataanalysis.Givena setof objects X,
one would like to find a partition 7(X) which optimizessomescorefunction. Tishby
et al. [1] proposeda principled information-theoreticapproachto this problem. In this
approachgiventhejoint distribution p(z, v), onelooksfor acompactepresentationf X,
whichpreseresasmuchinformationaspossibleaboutY” (se€f2] for adetaileddiscussion).

Themutualinformation,I(X;Y’), betweertherandomvariablesX andY is givenby [3]
I(X;Y) = 3 ex yevy P(@)p(y|z) log % . In[1] it is arguedthatboththecompactness
of therepresentatioandthe preseredrelevantinformationarenaturallymeasuredy mu-
tual information,hencethe above principle canbe formulatedasa trade-of betweerthese
guantities.Specifically Tishby et al. [1] suggestedo introducea compressedepresenta-
tion T of X, by definingg(t|z). Thecompactnessf therepresentatiois thendetermined
by I(T; X), while the quality of the clusters,T', is measuredy the fraction of informa-
tion they captureaboutY’, I(T;Y)/I(X;Y). ThelB problemcanbe statedasfinding a
(stochasticmappingg(t|z) suchthatthe IB-functional £ = I(T; X) — BI(T;Y) is min-
imized, where is a positive Lagrangemultiplier that determineghe trade-of between
compressiorand precision. It was showvn in [1] that this problemhasan exact optimal
(formal) solutionwithout any assumptioraboutthe origin of thejoint distribution p(z, y).

The standardstatisticalapproacho clusteringis mixture modeling. We assumehe mea-
surementg for eache comefrom oneof |T'| possiblestatisticalsourceseachwith its own



parameter®; (e.g. u, oy in Gaussiarmixtures). Clusteringcorrespondso first finding
the maximumlik elihoodestimate®f ©,; andthenusingtheseparameterso calculatethe
posteriorprobability that the measurementat 2 were generatedy eachsource. These
posteriomprobabilitiesdefinea “soft” clusteringof X values.

While bothapproachetry to solve the sameproblemthe viewpointsarequite different.In

theinformation-theoreti@pproachoassumptioris maderegardinghow thedatawasgen-
eratedbut we assumehatthejoint distribution p(x, y) is known exactly. In themaximum-
likelihood approachwe assumea specificgeneratre modelfor the dataand assumewne
have samplesi(z, y), notthetrue probability.

In spiteof theseconceptuatifferencesve shav thatundera properchoiceof the genera-
tive model,thesetwo problemsare stronglyrelated. Specifically we usethe multinomial
mixture model(a.k.athe one-sided[4] or the asymmetricclusteringmodel [5]), andpro-
vide asimple“mapping” betweerthe conceptof oneproblemto thoseof theother Using
this mappingwe shaw thatin general searchingor a solutionof one probleminducesa
searchin the solutionspaceof the other Furthermorefor uniform input distribution p(x)
or for largesamplesizes we show thatthe problemsaremathematicallyequivalent.Hence,
in thesecasesary algorithmwhich solvesoneproblem,inducesa solutionfor the other

2 Short review of the IB method

In the IB framework, oneis givenasinput a joint distribution p(z, y). Giventhis distri-
bution, a compressedepresentatiofi” of X is introducedthroughthe stochastianapping
q(t|z). Thegoalis to find ¢(t|z) suchthattheB-functional,£ = I(T; X) — BI(T;Y) is
minimizedfor agivenvalueof 3.

Thejoint distribution over X, Y andT is definedthroughthe IB Markovianindependence
relation, T + X — Y. Specifically every choiceof ¢(t|z) definesa specificjoint prob-
ability ¢;p(z,y,t) = p(z,y)q(t|z). Thereforethe distributionsq(t) andg(y|t) thatare
involvedin calculatingthe IB-functionalaregivenby

{ q(t) = X, , as(z,y,t) = 32, p(2)q(t|z)
1)
a(ylt) = ;05 X, ws(@,y,t) = ;5 X, Pz, y)a(t|z) .

In principle every choiceof ¢(t|z) is possiblebut asshovn in [1], if ¢(¢) andg(y|t) are
given,thechoicethatminimizes. is definedthrough,

9(t)  _sDxr(p(yl2)la(It)
t.CL' — e KL \ply|z)|gly , 2
altle) = 705 @

whereZ($, z) is the normalization(partition) functionand Dk, (p|q) = Y plog % is the
Kullback-Leiblerdivergence Iteratingoverthis equatiorandthe I B-stepdefinedin Eq.(1)
definesaniterative algorithmthatis guaranteetb corvergeto a (local) fixedpointof £ [1].

3 Short review of ML for mixtur e models

In a multinomial mixture model,we assumeahatY takeson discretevaluesand sample
it from a multinomial distribution 6(y|t(z)), wheret(z) denotesc’s label. In the one-
sidedclusteringmodel [4] [5] we furtherassumehattherecanbe multiple obsenationsy

correspondindo asinglex but they areall sampledrom thesamemultinomialdistribution.
This modelcanbedescribedhroughthefollowing generatie process:



¢ For eachz choosea uniquelabelt(z) by samplingfrom = (t).
e Forl=1:N
— chooser; by samplingfrom v(z).
— choosey; by samplingfrom 8(y|t(z;)) andincreasen(z;, y;) by one.

Let? = (ti, ...,t|x) denotegherandomvectorthatdefinesthe (typically hidden)labels,
or topicsfor all x € X. Thecompletdik elihoodis givenby:

Py, Fem87) = TS (b)) Ty ()8 (b)) ®3)
= TSt T ()0 )", (4)

wheren(z;,y;) is acountmatrix. The (true)likelihoodis definedthroughsummingover
all the possiblechoicesof £,

L(n(z,y) : 7,6,7) = > _ plx,y,t: 7,6,7) . )
7

Given n(z,y), the goal of ML estimationis to find an assignmenfor the parameters
w(t),8(y|t) and~y(z) suchthatthe likelihoodis (at leastlocally) maximized. Sinceit is

easyto shav thatthe ML estimatefor v(z) is just the empiricalcountsn(z) /N (where
n(z) =3, n(z,y)), wefurtherfocusonly onestimatingr, 6.

A standardalgorithmfor this purposeis the EM algorithm[6]. Informally, in the E-step
we replacethe missingvalueof ¢(z) by its distribution p(¢(x)|y(z)) which we denoteby
g=(t). In the M-stepwe usethatdistribution to reestimater, §. Usingstandardierivation
it is easyto verify thatin our contet the E-stepis definedthrough

n(z n(y|z)log 6
2:(t) = k(x)n(t)e () 32, nlylz) log O(y]2) ©)
= ky (x)w(t)e”(z)[zv n(ylz)log 0(y[t)— ) n(ylz)logn(y|z)] @
= ko(2)m(t)e @ PxL(D00ID) @

where k(z) and k2(z) are normalizationfactorsandn(y|z) = % The M-stepis

simply givenby
{ m(t) o< 3y 0a(t)

0(ylt) o< 32, (@, y)ga (1) -

Iteratingover theseEM stepsis guaranteedo corvergeto alocal fixed point of thelik eli-
hood.Moreover, every fixed point of thelik elihooddefinesa fixed point of this algorithm.

9)

An alternatve derivation[7] is to definethefreeenegy functional:

F(n(a,y) : q,m,0) = —zqm [bgw )+ 3 n(z,y)logbl)|  (20)

Yy
+ Z Qw IOg Q:c . (11)

The E-steptheninvolvesminimizing F' with respecto ¢ while the M -stepminimizesit
with respectto 7, 6. Sincethis functionalis bounded(undermild conditions),the EM
algorithmwill corvergeto alocal fixed point of F' which correspondso a fixed point of
thelikelihood. At thesefixedpoints, F will becomedenticalto — log L(n(z,y) : m,6).



4 The ML <« IB mapping

As alreadymentionedthe IB problemandthe ML problemstemfrom differentmotiva-
tionsandinvolve different“settings”. Hence,it is not entirely clearwhatis the purposeof
“mapping” betweentheseproblems. Here,we definethis mappingto achieve two goals.
Thefirstis theoreticallymotivated:usingthe mappingwe shav somemathematicaéquiv-
alencebetweerboth problems. The seconds practically motivated,wherewe show that
algorithmsdesignedor oneproblemare (in somecasesyuitablefor solvingthe other

A naturalmappingwould beto identify eachdistribution with its correspondingne. How-
ever, this direct mappingis problematic.Assumethatwe are mappingfrom ML to IB. If
we directly map g, (t), 7(t), 0(y|t) to q(t|x),q(t), q(y|t), respectiely, obviously thereis
no guaranteghatthe IB Markovianindependenceelationwill hold oncewe completethe
mapping.Specifically usingthis relationto extractq(t) throughEq.(1)will in generake-
sultwith adifferentprior over T thenby simply definingq(t) = = (¢). However, we notice
thatoncewe definedg(¢|z) andp(z,y), the otherdistributionscould be extractedby per
forming the IB-stepdefinedin Eq.(1). Moreover, asalreadyshavn in [1], performingthis
stepcanonly improve (decreasebhe correspondindB-functional. A similar phenomenon
is presentoncewe mapfrom IB to ML. Althoughin principle thereareno “consisteng”
problemsby mappingdirectly, we know thatoncewe definedy,, (t) andn(x, y), we canex-
tractr andd by asimple M -step.This step,by definition,will only improvethelikelihood,
whichis ourgoalin thissetting. Theonly remainingissueis to definea correspondingom-
ponentin theML settingfor thetrade-of parametef3. As wewill shav in thenext section,
the naturalchoicefor this purposes thesamplesize, N = }° . n(z,y).

Thereforeto summarizewe definethe M L + I B mappingby

@ (1) & alila), 1n(ey) & ple,y), N e rh, (12

wherer is a positive (scaling)constantand the mappingis completedby performingan
IB-stepor an M -stepaccordingto the mappingdirection. Notice thatunderthis mapping,
every searchin the solutionspaceof the IB probleminducesa searchn the solutionspace
of theML problem,andvice versa(seeFigure?2).

Observation 4.1 WhenX is uniformly distributed (i.e., n(x) or p(z) are constant),the
ML + IB mappingis equivalentfor a directmappingof ead distribution to its corre-
spondingone

This obsenationis a directresultfrom thefactthatif X is uniformly distributed,thenthe
IB-stepdefinedin Eq.(1)andthe M -stepdefinedin Eq.(9)aremathematicallyequivalent.

Obselrvation 4.2 WhenX is uniformly distributed,the EM algorithmis equivalento the
IB iterative optimizationalgorithmunderthe M L + I B mappingwithr = | X]|.

Again,thisobsenationis adirectresultfrom theequivalenceof theB-stepandthe M -step
for uniform prior over X. Additionally, we noticethatin this casen(z) = % = % =B,
henceEq.(6)andEq.(2)arealsoequivalent. It is importantto emphasizethough,thatthis
equialenceholdsonly for a specificchoiceof 8 = n(z). While clearlythe IB iterative
algorithm(andproblem)aremeaningfulfor any valueof 3, thereis no suchfreedom(for

goodor worse)in theML setting,andthe exponentiafactorin EM mustben(x).

5 Comparing ML andIB

Claim 5.1 WhenX is uniformly distributedandr = | X|, all thefixedpointsof thelikeli-
hood L are mappedo all thefixedpointsof theIB-functional £ with 8 = n(z). Moreover,



atthefixedpoints,—log L o< £ + k, with k constant.!

Corollary 5.2 WhenX is uniformly distributed,everyalgorithmwhich findsa fixedpoint
of L, inducesa fixedpoint of £ with 8 = n(z), andvice versa. Whenthe algorithmfinds
several fixedpoints,the solutionthat maximized. is mappedo the onethat minimizest.

Proof: We provethedirectionfrom ML to IB. theoppositedirectionis similar. We assume
thatwe aregivenobsenationsn(z, y) wheren(z) is constantand, 8 thatdefineafixed
point of thelikelihood L. As aresult,thisis alsoa fixed point of the EM algorithm(where
gz (t) is definedthroughan E-step). Using obsenation 4.2 it follows thatthis fixed-point
is mappedo afixed-pointof £ with 5 = n(z), asrequired.

Sinceatthefixedpoint, —log L = F, it is enoughto shawv therelationshipbetweenF" and
L. Rewriting F' from Eq.(10) we get

7(t)

Usingthe M L. — I B mappingandobsenation4.1we get
F = Z (t|z)lo

Multiplying bothsidesby p(z) = le_l = r~1 andusingthe IB Markovian independence
relation,we find that

F(n(e,): 0,7,8) = S aat)og L - Y logbl) Y n(@ne0. (09
t,y z

Zp z,y)q(t|z) . (14)

rlF = Zp q(t|z) log —ﬁz )a(ylt)log q(ylt) - (15)

Reducinga (constantBH (Y') = =83,  a(t)a(y[t) log p(y) to bothsidesgives:
r'F—BH(Y)=I(T;X) - BI(T;Y)=L, (16)
asrequired.We emphasizagainthatthis equivalenceis for aspecificvalueof g = n(z).

Corollary 5.3 WhenX is uniformly distributedandr = |X|, everyalgorithm deceases
F | iff it deceasesC with 8 = n(z).

This corollary is a direct resultfrom the above proof that shoved the equivalenceof the
free enegy of themodelandthe IB-functional (up to lineartransformations).

The previous claimsdealtwith the specialcaseof uniform prior over X. The following
claimsprovide similar resultsfor thegeneraktasewhenthe N (or 3) arelargeenough.

Claim 5.4 For N — oo (or 8 — o0), all thefixedpointsof L are mappedo all thefixed
pointsof £, andviceversa. Moreover, at thefixedpoints,—log L o< L + k.

Corollary 5.5 WhenN — oo every algorithm which findsa fixed point of L, inducesa
fixedpoint of £ with 8 — oo, andvice versa. Whenthe algorithm findsseveral different
fixedpoints,the solutionthat maximized. is mappedo the solutionthat minimizeZ.

! A similarresultwasrecentlyobtainedndependentlyn [8] for thespecialcaseof “hard” cluster
ing. It is alsoimportantto keepin mind thatin mary clusteringapplicationsa uniform prior over X
is “forced” duringthe pre-processo avoid non-desirabléias. In particularthis wasdonein several
previous applicationof thelB method(see[2] for details).
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Figurel: Progres®f £ and F' for different3 and N valueswhile runningilB andEM.

Proof: Again, we prove only the directionfrom ML to IB asthe oppositedirectionis
similar. We aregivenn(z,y) whereN = > n(z,y) — oo andr,d thatdefinea fixed
pointof L. Usingthe E-stepin Eq.(6)we extractg, (t), endingup with afixedpointof the
EM algorithm.We noticethatfrom N — oo followsn(z) — oo Vz € X. Thereforethe
mappingg, (t) becomesleterministic:

_J 1 t=argmingDgr(n(y|z)|0(y|t'))
(1) = { 0 otherwise. 4

Performingthe M L — I B mapping(includingtheIB-step),it is easyto verify thatwe get
q(y|t) = O(y|t) (butq(t) # =(t) if theprior over X is notuniform). After completingthe
mappingwe try to updateg(¢|x) throughEq.(2). Sincenow § — oo it follows thatg(t|x)
will remaindeterministic.Specifically

vewrnn 1 t=argming Dicr(plyl)lawlt)
q (t|$)_{ 0 otherwise, (18)

which is equalto its previous value. Therefore we areat a fixed point of the IB iterative
algorithm,andby thatat a fixed point of theIB-functional £, asrequired.

To shaw that—log L < £ + k we noticeagainthatatthefixedpoint FF = —log L. From
Eq.(13)we seethat

N—oo

lim F =~ logf(ylt) Y n(zy)a:(1) - (19)

Usingthe M L — I B mappingandsimilar algebraasabove, we find that
lim F = Blim —-rBI(T;Y)+rBH(Y) = ﬂlim r(C+BH(Y)). O (20)
—00 —00

N—oo

Corollary 5.6 WhenN — oo everyalgorithmdecreased iff it decleases with 8 — oo.

How largemustN (or 8) be?We addresghis questionthroughnumericsimulations.Yet,
roughlyspeakingye noticethatthevalueof NV for whichtheabove claims(approximately)
hold is relatedto the “amountof uniformity” in n(z). Specifically a crucial stepin the
aboveproofassumedhateachn(z) is largeenoughsuchthatg, (t) becomesleterministic.
Clearly, whenn(z) is lessuniform, achieving this situationrequiredarger N values.

6 Simulations

We performedseveral different simulationsusing differentIB and ML algorithms. Due
to the lack of space,only one exampleis reportedbelow; In this examplewe usedthe



ML — IB mapping
- ~. ML “ideal” world
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IR “real” world
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ML ~ min DKL(BCYIIIL(n(x.y): 17.6))

IB ~ min DkL(Gzacx,y, DI IQ(x.y. 1)

Figure2: In generalML (for mixture models)andIB operaten differentsolutionspaces.
Nonethelessasequencef probabilitiesthatis obtainedhroughsomeoptimizationroutine
(e.g.,EM) in the “ML space”,canbe mappedto a sequencef probabilitiesin the “IB
space”,andvice versa. The mainresultof this paperis that undersomeconditionsthese
two sequencearecompletelyequialent.

Multil0, subsebf the 20-Nevsgroupscorpus[9], consistedf 500 documentsandomly
choserfrom 10 differentdiscussiorgroups.Denotingthe documentdy X andthewords
by Y, afterpre-processin§l0] we have | X| = 500, |Y| = 2000, N = 43433, |T| = 10.
Sinceour maingoal wasto checkthe differencesdetweenB andML for differentvalues
of N (or ), we further producedanotherdataset.In this datawe randomlychooseonly
about5% of theword occurrences$or everydocumente € X, endingupwith N = 2171.
For both datasetsve clusteredthe documentsnto 10 clusters,using both EM and the
iterative IB (ilB) algorithm(wherewe took p(z,y) = +n(z,y), 8 = %, r = |X|). For
eachalgorithmwe usedthe M L < IB mappingto calculateF’ and £ duringthe process
(e.g.,for ilB, aftereachiterationwe mappedrom I B to M L, including the M -step,and
calculatedr’). We repeatedhis procedurdor 100 differentinitializations,for eachdataset.

In these200 runswe foundthatusuallyboth algorithmsimprovedbothfunctionalsmono-
tonically. Comparinghefunctionalsduringthe processye seethatfor thesmallersample
sizethedifferencesareindeedmoreevident (Figure1l). Comparingthefinal valuesof the
functionals(after 50 iterations which typically yieldedcorvergence)we seethatin 58 out
of 200 runsilB corvergedto asmallervalueof F' thanEM. In 46 runs,EM corvergedto a
smallervalueof £. Thus,occasionallyilB findsabetterML solutionor EM findsa better
IB solution. This phenomenormvasmuchmorecommonfor the large samplesizecase.

7 Discussion

While we have shavn thatthe ML and IB approachesre equivalentundercertaincon-
ditions, it is importantto keepin mind the differentassumption$oth approachesnake
regardingthejoint distribution over z, y, t. Themixturemodel(1) assumeshatY isinde-
pendenbof X givenT (X) and(2) assumeshatp(y|z) is oneof a smallnumber(|T|) of
possibleconditionaldistributions. For this reasonthe marginal probability over z, y (i.e.,
p(z,y : m,0)) is usuallydifferentfrom p(z,y) = +n(z,y). Indeed analternate view of
ML estimationis asminimizing Di 1, (p(z, y)| L(n(z,y) : 7, 0)).

Ontheotherhand,in the IB framework, T' is definedthroughthe IB Markovian indepen-
dencerelation: T <+ X — Y. Thereforethe solutionspaceis the family of distributions
for whichthisrelationholdsandthemaminaldistributionoverz, y is consistentith thein-
put. Interestinglyit is possibleto give analternatve formulationfor the B problemwhich
alsoinvolveskKL minimization[11]. In thisformulationthelB problemis relatedto mini-
mizing Dk r(qr8 (2, y,1)|Q(z,y,t)), whereQ(z, y, t) denoteghe family of distributions



for which the mixture modelassumptiorholds, X — T « Y. 2

In this sensewe may saythatwhile solvingthe IB problem,onetriesto minimizethe KL
with respecto the“ideal” world, in which T separateX from Y. Ontheotherhand,while
solvingthe ML problem,oneassumesan‘ideal” world, andtriesto minimizethe KL with
respecto thegivenmaminaldistribution p(x, y). Ourtheoreticabnalysisshavsthatunder
the M L. + I B mappingthesewo proceduresirein somecase®quialent(seeFigure2).

Oncewe are ableto mapbetweenML and|B, it shouldbe interestingto try and adopt
additionalconceptdrom oneapproactto the other In the following we provide two such
examples. In the IB framework, for large enoughg, the quality of a given solutionis

measuredhrough {(()T(Xs;)) < 1 [1]. This measureprovidesa theoreticalupperbound,
which can be usedfor purposesof model selectionand more. Usingthe ML < IB
mappingwe cannow adoptthis measurdor the ML estimationproblem(for largeenough
N); In EM, the exponentialfactorn(x) in generaldependsn z. However, its analogous
componentin the IB framework, 3, obviously doesnot. Nonethelessin principle it is
possibleto reformulatethe IB problemwhile defining 8 = B(x) (without changingthe

form of the optimal solution). We leave thisissuefor futureresearch.

We have shavn thatfor the multinomialmixture model,ML andIB areequialentin some
cases.lt is worth noting thatin principle, by choosinga differentgeneratie model,one
mayfind furtherequivalencesAdditionally, the IB methodwasrecentlyextendednto the
multivariatecase wherea new family of IB-lik e variationalproblemswas presentecgnd
solved[11]. A naturalquestionis to look for furthergeneratre modelsthatcanbemapped
to this multivariatelB problemsandwe areworkingin this direction.

Acknowledgments

Insightful discussionsvith Nir FriedmanNaftali TishbyandGal Elidanaregreatlyappre-
ciated.

References

[1] N.Tishby F. PereiraandW. Bialek. The InformationBottleneckmethod.In Proc.37th Allerton Confeenceon Communi-
cationand Computation1999.

[2] N. Slonim. ThelnformationBottleneck:theoryandapplications.Ph.D.thesis,The Hebrev University 2002.
[3] T.M. CoverandJ.A. Thomas.Elementof InformationTheory JohnWiley & SonsNew York, 1991.
[4] T.Hofmann,J.PuzichaandM. I. Jordan.Learningfrom dyadicdata.In Proc.of NIPS-11 1998.

[5] J.Puzicha,T. Hofmann,andJ. M. Buhmann.Histogramclusteringfor unsupervisedegmentatiorandimageretrieval. In
Pattern Reca@nition Letters 20(9),899-909,1999.

[6] A.P.DempsterN. M. Laird, andD. B. Rubin. MaximumLikelihoodfrom incompletedatavia the EM algorithm. Journal
of the RoyalStatisticalSocietyB, vol. 39, pp.1-38,1977.

[71 R.M. NealandG. E. Hinton. A view of the EM algorithmthatjustifiesincremental sparseandothervariants. In M. I.
Jordan(editor),Learningin GraphicalModels pp.355-368,1998.

[8] L.HermesT. zbller, andJ. M. Buhmann Parametridistributional clusteringfor imagesegmentationin Proc. of European
Confeenceon ComputenVision (ECCV) 2002

[9] K. Lang.Learningto filter netnavs. In Proc.of the 12thInt. Conf on MachineLearning 1995.

[10] N. Slonim,N. FriedmanandN. Tishby. Unsupervisedlocumentlassificatiorusingsequentialnformationmaximization.
In Proc. of SIGIR-25 2002.

[11] N. Friedman©. MosenzonN. Slonim,andN. Tishby. MultivariateInformationBottleneck.In Proc. of UAI-17, 2001.

2The KL with respecto Q is definedasthe minimum over all the membersn Q. Therefore,
here bothamgumentwof theKL arechangingduringthe processandthedistributionsinvolvedin the
minimizationareover all thethreerandomvariables.



