
Multidimensional Spectral Hashing: Hashing
with the Kernel Trick

Yair Weiss, Rob Fergus, and Antonio Torralba

School of Computer Science, Dept. of Computer Science, CSAIL,
Hebrew University Courant Instistute, MIT

New York University
yweiss@cs.huji.ac.il,fergus@cs.nyu.edu,torralba@csail.mit.edu

Address Space

Seman cally

similar

images

Query address

Images in databaseSemantic 

Hash Function

Query image

Fig. 1. The basic idea of semantic hashing. In addition to the bucket of the query, we
also retrieve items in neighboring buckets. In this short note we show how to extend
this idea to multidimensional spectral hashing.

Figure 1 illustrates the basic idea of semantic hashing. Given a query, we
retrieve not just items with identical codes but also items with “similar codes”.
In the classic version of semantic hashing, the set of “similar codes” is defined
to be all codes withing Hamming distance one of the query, so retrieval can be
accomplished with a total of K + 1 lookups, where K is the number of bits in
the code. In MDSH the set of “similar codes” needs to be defined more carefully.

In MDSH, each datapoint i is represented by a binary vector of length K
which we denote by yi ∈ {−1, 1}K . During learning, the algorithm also learns a
vector of length K weights λ ∈ RK . The Hamming affinity between point i and
j is given by:



2 Multidimensional Spectral Hashing

H(i, j) = −1 +
∏
d

(
1 +

∑
k∈d

λkyi(k)yj(k)

)
(1)

Equation 1 can be shown to be an efficient calculation of a weighted Hamming
distance between two much longer bit vectors.

In order to perform semantic hashing with equation 1 we need to quickly
find “similar codes”, i.e. for a given query whose code is given by yi to efficiently
find other binary codes yj whose affinity (given by equation 1) is large. Since
the affinity depends on the weights, it does not make sense to choose all codes
that differ only by one bit.

The key property of equation 1 that we can use is that the affinity depends
only on a vector δij which is related to the Hamming distance between yi and
yj :

δij(k) =

{
+1 , yi(k) = yj(k)
−1 , yi(k) 6= yj(k)

(2)

Or equivalently: δij(k) = yi(k)yj(k). Using this notation, we can rewrite equa-
tion 1 as:

H(i, j) = −1 +
∏
d

(
1 +

∑
k∈d

λkδij(k)

)
(3)

As an example, the affinity between y1 = (1, 1, 1, 1) and y2 = (−1, 1, 1, 1) will
be the same as the affinity between y3 = (1, 1,−1,−1) and y4(−1, 1,−1,−1)
since both cases the vectors differ only in the first location and δ12 = δ34 =
(−1, 1, 1, 1).

This means that we can precompute a set of “directions” {δl}Kl=1 and then
define the set of neighbors of query yi by yl(k) = yi(k)δl(k). The Hamming
affinity of yi to yl will (as we noted above) depend only on the elementwise
product δil(k) = yi(k)yl(k) = y2i δl(k) = δl(k) and so will not depend on the
query point yi and only on the direction δl. So we can precompute these directions
once during training, and use them for all queries.

In our current implementation we try (during learning) all codes that are
Hamming distance one or two from the all-ones codeword. We then choose the
K + 1 directions that have the highest affinity to the all ones codeword. These
directions are subsequently used for all queries. Thus we can still do retrieval
with a total of K + 1 lookups.


