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In designing a routing scheme for a communication network it is desirable to 
use as short as possible paths for routing messages, while keeping the routing 
information stored in the processors’ local memory as succinct as possible. The 
efftciency of a routing scheme is measured in terms of its stretch factor-the 
maximum ratio between the cost of a route computed by the scheme and that of a 
cheapest path connecting the same pair of vertices. This paper presents several 
simple families of routing schemes for general networks, featuring some desirable 
properties. Our two main families are the hierarchical covering pi&s schemes 
HCP, and the hierarchical balanced schemes HB, (for k t 1). The scheme HCP, 
guarantees a stretch factor of 2’ - 1 and requires storing a total of O(k . 
n’+l/k log’n) bits of routing information in the network. The new important 
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features of these schemes are applicability to networks with arbitrary edge costs 
and attractive stretch factors for small values of k. The purpose of the second 
method is to provide balanced bounds on the memory requirements of the 
individual vertices. The scheme HBk guarantees a stretch factor of 2 . 3k - 1 and 

requires storing at most O(k log n(d + n ‘jk)) bits of routing information in a 
vertex of degree d and 0th 1c1/k log n) bits overall. We also describe an efficient 
distributed preprocessing algorithm for this scheme, which requires same amount 
of space. 8 1990 Academic Press, Inc. 

1. INTR~D~JcTI~N 

1.1. Background 

A central activity of any computer network is the passing of messages 
among the processors. This activity is performed by a routing subsystem, 
consisting of a collection of message forwarding mechanisms and informa- 
tion tables, whose quality is pivotal to the overall performance of the 
network. It is therefore natural that the design of efficient routing schemes 
was the subject of much study over the last two decades. 

In this paper we study the question of designing efficient schemes with 
respect to two central parameters, namely, route eficiency and memory 
requirements. When designing a routing strategy for a network it is clearly 
desirable to be able to route messages with small communication cost. At 
the same time, the space used for the rout6g tables is also a significant 
consideration. There are a number of reasons to minimize the memory 
requirements of a routing scheme. The task of routing is usually per- 
formed by a special-purpose processor (an “IMP” in the IS0 terminology 
[T, Z]) which may have limited resources. Furthermore, it is usually 
desirable that the routing tables be kept in fast memory (e.g., a “cache”), 
in order to expedite message traffic. Also, we do not want memory 
requirements to grow fast with the size of the network, since it means that 
the incorporation of new vertices to the network requires adding hardware 
to all the vertices in the network. It is therefore interesting to search for 
routing schemes that involve small communication cost and have low space 
requirements at the individual vertices. 

Technically, the two parameters are measured as follows. We assume 
that there is a cost function associated with the network links. The cost of 
routing a message is simply the sum of the costs of the transmissions 
performed during the routing. The route eficiency of a routing scheme is 
formulated in terms of its stretch factor--the maximum ratio (over all 
possible processor pairs) between the communication cost of a route 
produced by the scheme and the cheapest possible cost for passing a 
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message between the same pair of processors. The space requirement of a 
scheme is the maximum number of memory bits used by any single 
processor to store the routing information. 

Let us demonstrate the combined behavior of these two parameters by 
looking at two extreme examples. The direct routing scheme in an n- 
processor network is constructed by specifying, at each vertex U, a set of 
n - 1 pointers, one pointer for each possible destination vertex x # u. 
Each such pointer points to some neighbor w  of u, to which u will 
forward a message destined to X. The message is forwarded along those 
pointers until it eventually arrives at its destination. Clearly, it is advanta- 
geous to set up the pointers with respect to a fixed destination x in such a 
way that they form a tree of shortest paths towards X, based on the edge 
costs. Then the communication cost of such a routing is optimal, i.e., the 
stretch factor is 1. The disadvantage of the direct routing scheme is that 
each vertex has to maintain a very large (Q(n) bit) routing table. 

At the other extreme lies the j7ooding routing scheme, in which instead 
of forwarding a message along a shortest path, the sender simply floods 
(broadcasts) it through the whole network. Clearly, this scheme requires 
no memory overhead. On the other hand, the communication cost of such 
a scheme may be significantly higher than optimal, since instead of using 
just one link, we may be using a lot of (possibly expensive) links. Thus, the 
stretch factor is unbounded. 

The natural question which arises here is whether one can design a 
routing scheme which combines low memory requirements and small 
communication cost. 

1.2. Existing Work 

The problem was first raised in [KKl]. However, in order to apply the 
methods of [KKl] and several consequent works [KK2, P, S] one needs to 
make some fairly strong assumptions regarding the existence of a certain 
partition of the network. Such a partition does not always exist, and 
furthermore, no algorithm is provided for constructing it when it does 
exist. Also, somewhat stronger technical assumptions are required in order 
to guarantee good performance bounds. 

Most consequent work on the problem has focused on solutions for 
special classes of network topologies. Optimal or near-optimal routing 
strategies were designed for various topologies like trees [SKI, rings, 
complete networks and grids [vLTl, vLT21, series-parallel networks, outer- 
planar, k-outerplanar, and planar networks [FJl, FJ2]. (By “optimal” we 
mean here stretch factor 1 and a total memory requirement of O(n log n) 
bits in an n-processor network.) 
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In [PU] the problem is dealt with for general networks. Rather than 
designing a scheme only for some fixed stretch factor, the method pre- 
sented in [PU] is parameterized and applies to the entire range of possible 
stretch factors. The construction yields an almost optimal behavior, as 
implied from a lower bound given in [PU] on the space requirement of any 
scheme with a given stretch factor. Specifically, the hierarchical routing 
schemes of [PU] guarantee a stretch factor of 12k + 3 while requiring a 
total of O(n’ +‘lk) bits of routing information in the network (for every 
fixed k 2 1). 

Unfortunately, the routing strategy of [PUI suffers from several deficien- 
cies which make it impractical. One weakness of the solution of [PUI is 
that it deals only with unit-cost edges, while the construction of [KKll and 
the separator-based strategies of [FJ2], for instance, apply also to the case 
of networks with costs on the edges. This property may be important for 
practical applications, where edge costs are sometimes used to reflect 
physical distances, estimated link delays and congestion conditions in the 
network. 

A second problem is that in [PU] the initial design has to determine not 
only the routes but also the labels used for addressing the vertices. This is 
inappropriate, since it would require changing the addresses of vertices 
each time the routes are recomputed. In fact, it is preferable to allow each 
vertex to choose its own address. 

A third problem is that the method bounds the total space requirements 
of the scheme, but not the individual memory requirements of each vertex. 
(This problem exists also in [FJl, FJ21.) In particular, some vertices are 
designated as centers and are required to store more information than 
others. Other vertices may just happen to be the crossing point of many 
routes which are maintained by the scheme. It is true that such a situation 
frequently occurs in real networks, and in fact, some vertices are intention- 
ally designated to play the role of communication centers. However, these 
centers are selected according to the presence of appropriate resources at 
specific vertices or edges. The method of [PU] assigns the centers based on 
some graph-theoretic considerations which need not necessarily coincide 
with the practical ones. Moreover, a good bound on the amount of 
memory used in routing tables is important even in major vertices where 
memory is not a problem, since as mentioned earlier, the special-purpose 
routing processor (the “IMP”) may have limited resources and small fast 
memory. 

Finally, the preprocessing algorithm proposed in [PU] is a centralized 
(polynomial time) algorithm. One would prefer a preprocessing algorithm 
which is distributed and space efficient. (Again, this issue was not consid- 
ered in previous work as well.) In particular, it is preferable that the 
preprocessing algorithm obey the same space constraints imposed on the 
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size of routing tables in the individual vertices. (This is of secondary 
importance when the update phase is allowed access to auxiliary, slower 
memory.) 

1.3. Contributions of This Paper 

In this paper we propose several new routing methods which attempt to 
overcome the problems mentioned above. In particular, all of the schemes 
presented below solve the problem for arbitrary networks with arbitrary 
(non-negative) edge costs and have efficient distributed preprocessing 
algorithms. 

The main two methods have the following characteristics. The first 
method yields the family of hierarchical covering pivots schemes, HCP,. 
For every k 1 1, the scheme HCP, uses O&Z’+‘/~ log2 n) bits of memory 
throughout the network and guarantees a stretch of at most 2k - 1. While 
this method is less efficient asymptotically than that of [PU], it is much 
simpler and yields attractive performance for small values of k. For 
example, for k = 2, i.e., using 06~ 3/2 log* n) bits of memory, the stretch is 
at most 3, rather than 27 in the scheme of [PU]. Further, unlike [PU], the 
schemes have the advantage of not having to specify special addressing 
labels, i.e., the original vertex names may be used for addressing purposes. 

The main problem left unsolved by the first method is that the memory 
requirements of vertices are not balanced, and some vertices may require 
much more memory than the average. The second method we present 
overcomes this problem and yields a family of hierarchical balanced 
schemes, HB,. For every k 2 1, the scheme H& uses O(k log n(d + ?z’/~)) 
bits of memory in a vertex with degree d and O(kn’+‘/k log n) bits of 
memory overall, and guarantees a stretch of at most 2 * 3k - 1. However, 
in these schemes we have to choose new names to be used by vertices for 
addressing purposes. For these schemes we also present an efficient 
distributed preprocessing algorithm for setting up the tables, that uses 
space which is bounded by the same bounds per vertex. 

Our approach is based on the use of communication centers, or “pivots,” 
spread throughout the network. A regular vertex can send messages 
directly only to a small subset of vertices in its nearby vicinity. Messages to 
other vertices have to be forwarded through the pivots. Our two hierarchi- 
cal schemes are based on hierarchies of pivots, where pivots on higher 
levels control larger “zones” in the network. 

This indirect forwarding design enables us to reduce the memory 
requirements needed for routing, since most vertices need to store routing 
information only for a small section of the network. On the other hand, it 
increases communication cost, since messages need not, in general, be 
moving along shortest paths towards their destination. An appropriate 
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partition of the network into clusters and appropriate selection and 
assignment of pivots, can guarantee that both overheads are low. 

Intuitively, in the hierarchical covering pivots schemes, the pivots played 
the role of “mail boxes”; that is, the hierarchical organization of the pivots 
centered on the process of collecting messages from their senders. In 
contrast, in the hierarchical balanced schemes, the pivots act as “post 
offtces”; that is, the hierarchical organization is based on the process of 
distributing messages to their destinations. 

The particular construction methods described here differ from that of 
[PU] in several important ways. To begin with, the new methods make use 
of inherently different hierarchical designs. In [PU], the scheme is com- 
posed of a collection of independent schemes. Each scheme W&~, i 2 1, 
is based on a partition of the network into clusters of radius 2’. Transmit- 
ting a message from a sender to a destination is based on a “trial and 
error” process involving repeated trials, each attempting to route the 
message using one of the individual schemes. In case of failure, the 
message is returned to the sender, who then tries the next scheme in 
the hierarchy. The route of each individual scheme is itself a complex 
path, composed of three segments: from the sender to its cluster leader in 
that partition, from this leader to the leader of the destination and finally 
to the destination. In contrast, the routing process described here is 
conceptually much simpler. A message is passed from the sender to the 
destination in a single try, and no retries are needed. In our first method, 
the path consists of two segments: from the sender to its pivot on the 
appropriate level (through a chain of lower-level pivots), and then to the 
destination itself. In our second method the path again consists of two 
segments: from the sender to the pivot of the destination on the appropri- 
ate level, and then to the destination itself (through a chain of lower-level 
pivots). Thus the hierarchical organization is utilized internally within the 
(single) routine scheme. 

A second important difference is in the clustering method. The clusters 
described in [PU] are based on radius constraints, whereas the clustering 
structure proposed here is based on size constraints. This difference is 
responsible for the fact that the new methods are capable of handling 
arbitrary edge costs and that individual memory requirements can be 
bounded. 

The rest of the paper is organized as follows. Section 2 contains 
necessary definitions. In Section 3 we introduce some preliminaries. In 
Section 4 we present three routing methods of increasing complexity, the 
last of which is the HCP, family. Section 5 presents the second method 
giving the balanced routing schemes HB,. Finally Section 6 handles the 
issue of efficient preprocessing algorithms for the balanced schemes. 
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2. DEFINITION OF THE PROBLEM 

2.1. Neti Model 

We consider the standard model of a point-to-point communication 
network, described by a connected undirected interconnection graph G = 
(V, El, v = {I,. . .) n). The vertices represent the processors of the net- 
work and the edges represent bidirectional communication channels be- 
tween the vertices. The degree (number of neighbors) of each vertex 
u E Y is denoted by de&u). A vertex may communicate directly only with 
its neighbors, and messages between nonneighboring vertices are sent 
along some path connecting them in the network. We also assume that 
messages sent and variables maintained at vertices contain @log n) bits. 

A cost value cost(e) > 0 is associated with each edge e E E. For two 
vertices U, w  let dist(u, w) denote the cost of the cheapest path connecting 
them, where the cost of a path (e,, . . . , e,) is Cr 4 i ~ ,cost(e,). For two sets 
of vertices U, W, let dist(U, W) = min{dist(u, w)lu E U, w  E W). The 
diameter of the network G is defined as 

diam(G) = max(dist(u,w)lu,w E V). 

A local radius of a graph G at a vertex x is 

r,(G) = rrEax{dist(x,u)). 

A center of a graph G is any vertex c such that for every u E V, 

r,(G) s r,(G). 

The radius of the graph is the local radius r,(G) of some center c. 

2.2. On-line and Off-line Routing Schemes 

A routing scheme RS for the network G consists of two procedures, a 
preprocessing procedure Pre(RS) and a delivery protocol Delivery( 
The preprocessing procedure Pre(RS) performs the necessary preprocess- 
ing in the network, e.g., constructs certain distributed data structures. The 
delivery protocol Delivery can be invoked at any vertex u with a 
destination parameter U, and a message parameter 44. The protocol then 
delivers the message M from the sender u to the destination u via a 
sequence of message transmissions. This sequence of message transmis- 
sions depends on the particular data structures constructed by the prepro- 
cessing protocol. Thus the protocol specifies for each pair of vertices 
u, u E V a route p(RS, u, u) in the network connecting u to u. (We 
sometimes omit the parameter RS when it is clear from the context.) 
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We consider two versions of the problem. In the off-line version we 
apply a centralized sequential algorithm that uses full information about 
the network and computes the appropriate routes and distributed data 
structures. In this version we do not limit the space used by the prepro- 
cessing protocol Pre(RS). The on-line version requires computing the 
routes and the necessary data structures in a distributed way. Further, 
the space used by the preprocessing protocol Pre(RS) must not exceed the 
space used by the delivery protocol Delivery( 

2.3. Complexity Measures for Routine Schemes-Stretch and Memory 

The communication cost of the delivery protocol when invoked at a 
vertex u with a destination u and an O(log n&bit message is 

Ip(RS,w)l = c cost(e) 

(i.e., the cost of the path p(RS, u, u) through which the message is 
transmitted). Given a routine scheme RS for an n-processor network 
G = (V, E), we say that RS stretches the path from u to u (for every 
u, u E V) by Ip(RS, u, u)l/dist(u, v). We define the stretch factor 
STRETCHCRS) of the scheme RS to be 

STRETCH( RS) = max 
b(RS~u~v)~ 

U,UGV dist(u, u) ’ 

Comment. STRETCH(RS) can be viewed as measuring essentially the 
“normalized” communication complexity of the routing scheme, i.e., the 
ratio of the actual communication cost to the optimal communication cost. 

The vertex memory Memory,,,,,, (r, v> of a protocol r at a vertex v is 
the number of bits maintained by the vertex. The total memory 
Memory,,,,(r) of the protocol is the total number of memory bits main- 
tained by all network vertices. The vertex memory MemoIy,,,,,(RS, v> of a 
routing scheme RS (at a vertex u) is the vertex memory requirement of the 
delivery protocol of RS for the off-line problem, and is the maximum 
between the memory requirements of the delivery protocol and the pre- 
processing protocol of RS for the on-line problem. Define MemoIy,,,,,(RS) 
similarly. 

3. TECHNICAL PRELIMINARIES 

3.1. Neighborhoods 

Our schemes are based on a notion of neighborhood which is defined by 
volume rather than radius (as in [PU]). The neighborhood of a vertex 
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u E V with respect to a specific set of destinations S G V and a parameter 
1 I j I n, is a collection of j of the nearest vertices to u from the set S. 
More precisely, order the vertices of S by increasing distance from u, 
breaking ties by increasing vertex names. Hence x +” y if either dist(x, U) 
< dist(y, LJ) or dist(x, U) = dist(y, U) and x < y. Then N(v, j, S) contains 
the first j vertices in S according to the order <“. (In some of our 
schemes, e.g., the ones described in Section 4, we can do with neighbor- 
hoods defined in a more relaxed manner, in which ties are resolved 
arbitrarily.) 

The radius of the neighborhood N(v, j, S) is defined as 

r(u,.i,S) = max dist( u, x). 
xEN(u,j,S) 

When S = V we sometimes omit the third parameter and write simply 
N(v, j) or r(u, j). The basic useful fact regarding the radius is 

FACT 3.1. For every vertex w: 
1. If w  E N(u, j, S) then dist(u, w) I r(u, j, S>. 

2. If w  E S - N(u, j, S) then dist(u, w> 2 r(u, j, S>. 

One more fact we need about the sets N(v, j, S) is the following: 

LEMMA 3.1. For every set S c V, vertices u, w E I/and integer 1 I j I n, 

r(u, j,S) I r(w, j,S) + dist(u,w). 

proof: By contradiction, relying on the fact that IN(u, j, S)l = 
lN(w, j, S)l = i. 0 

3.2. Covers 

For the construction of our routing schemes we need some basic facts 
concerning the concept of covers. Consider a collection 2 of subsets of 
size s of a set B. A set of elements M G B is said to couer those sets of X 
that contain at least one element of M. A cover of GP is an M E B 
covering all sets in X. A fractional couer for .GV is a system of nonnega- 
tive real weights {t,lu E B} such that CxcStx 2 1 for every set S E X. 
Let T* = minC,,. x t where the minimum is taken over all fractional 
covers. Since the weight system assigning t, = l/s to every vertex u is a 
fractional cover, we get 

FACT 3.2. T* I IBl/s. 

Consider the following two simple procedures for creating a cover 
for Gl?. 
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GREEDY COVER ALGORITHM. Start with M = 0 and iteratively add an 
element that increases the number of sets covered by M as much as 
possible. Stop when M becomes a cover. This M is called a greedy couer 
for A?. 

We rely on the following lemma of Lovasz. 

LEMMA 3.2 (L>. Let M be a greedy cuuer for A?. Then 

IMI < (1nlGYl + 1)7* I 
(1nlGVI + l)lBl 

s 

For the random algorithm we assume that IBI 2 2s and that In A?‘= 
o(s). 

RANDOM COVER ALGORITHM. Randomly select each element u E B 
into the set M with probability p = c lnl ~!?‘l /s, where c > 1 is a constant. 

In the proof of the next lemma we use the following propositions. The 
first states the Chernoff estimate [C] for the tails of the binomial distribu- 
tion and the second is an easy fact. 

PROPOSITION 3.1 (Chernoff). Ler X be a random variable with a bino- 
mial distrz%ution and wctation E = E(X). Then for a > 0, 

Pr( X > (1 + (Y) E) < e-a2E/2 

PROPOSITION 3.2. For 0 < (Y I 4 and p > 0, 

(1 - a)’ < em+. 

LEMMA 3.3. Let M be a set constructed by the mndomized algorithm 
under the above assumptions. Then, with probabil.i& at least p = 1 - 
1/1sw-‘, 

1. MisacoverforS?,and 

2. IMI I 2clBlInl~lJs. 

proof: Denote by q the probability that there exists a set S E A? that 
is not covered by M. For a fixed S E 2 the probability that no v E S has 
been selected is bounded by (1 - p)“. It follows that q 5 I #I(1 - p)“. 
Using Proposition 3.2 we get that q 5 I Z{e-P”. Plugging in the value of 
p, c In I G%‘! /s, we get that q I l/I G??I’- ‘, thus proving the first part of the 
lemma. 
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The expected size of it4 is E = E(M) =pIB] = clB]lnlA?l/s. Using 
Chernoff bound (Proposition 3.1) for (Y = 1 we get that 

Pr IA4 
( 

2clBllnl~l 
2 

I 
5 e-clBllnliIq/2s = (21 -cPI/2~* 

s 

The second part of the lemma is implied as we assumed that IBI 2 2s. q 

4. PIVOT-BASED ROUTING SCHEMES 

In this section we propose several pivot-based strategies for designing 
routing schemes. The first subsection describes one of our basic tools, 
called interval tree routing. The following three subsections present and 
analyze three families of routing schemes of increasing complexity, namely, 
the single pivot schemes SP,, the covering pivots schemes CP and the 
hierarchical covering pivots schemes HCP,. 

4.1. Interval Tree Routing 

In this section we describe a routing component introduced in [PU], 
which is based on the routing scheme of [SK]. We call this component an 
interval tree routing. It is defined for a subgraph G’ = (V’, E’): and a 
designated vertex r E v’, and is denoted ZTR*(G’, r) or ZTR*(v’, r). 

Preprocessing. The scheme is constructed as follows: 

1. Construct a BFS (shortest path) spanning tree T for G’, rooted 
at r. 

2. Assign the vertices of v’ a DFS (pre-order) numbering according 
to T. 

3. Associate with each vertex v an interval label in the form of a pair 
of integers int(v) = (Lowest, Highest) such that the interval [Lowest, 
Highest] contains precisely the preorder numbers of the vertices of v’ in 
the subtree rooted at v. (Note that Lowest is simply the DFS number of v 
itself.) In particular, the interval attached to v is contained in that of u iff 
v is a descendant of u. 

4. The root r of an ITR*(V’, r) component stores a translation table 
mr, specifying for every vertex v E V’ its interval label int(v) in the 
component. 

Delivery. Routing a message from a vertex u to a vertex w  for 
u, w  E V’ involves sending the message upwards in the tree until it reaches 
the root, and then downwards to w. More specifically, this routing is done 
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as follows: 

1. The sender attaches a header to the message, containing an 
identifier for the routing component used (in order to enable us to use this 
component in a network when other routing components are present as 
well), the name of the final destination, W, and the name of the intermedi- 
ate destination r, the root of the component. 

2. The message is then sent to I (note that it is always possible to 
send a message upwards to the root in an ZTR* component). 

3. The root r modifies the header by eliminating its own name and 
attaching the interval label int(w) of W. 

4. Finally, the root sends the message down the tree to W. 

It should be clear that this is not necessarily an optimal route in G’. 
However, the length of the route is at most twice the height of the tree. 

Complexity. Maintaining such a component involves the following 
memory requirements. Each vertex u must store its own interval label 
int(v) as well as the interval label int(w) of each of its children w  in the 
tree. In addition it has to store the name of the edge leading to its parent 
and to each of its children. Finally, the root has to store the translation 
table (containing I VI items). Thus the overall memory requirement for 
maintaining ZTR*(v’, r) is Memory,,,,l(ZTR*(V’, r)) = O( I VI log n). 

4.2. The “Single Pivot” Scheme 

Let us now describe our simplest routing strategy, called the single pivot 
scheme, or SP, for some k 2 1. 

Preprocessing. 
1. Fix m = nllk. 

2. Select some center c of the graph (as defined in Section 2.11, called 
the pivot. 

3. Construct a single routing component R, = ZTR*(V, c) on the 
entire graph. 

4. For every other vertex v E V select a neighborhood N(LJ, m) and 
construct a component R, = ZTR*(N(v, m), v). 

Delivery. The delivery protocol operates as follows. Suppose a vertex u 
wishes to send a message to a vertex W. The sender u first consults its 
translation table m, to see if w  E N(u, m). If w  does belong to U’S 
neighborhood then the message is sent directly using R,. Otherwise, the 
routing is done using the R, component of the scheme, i.e., u sends the 
message to c which forwards it to w. 
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Complexity. We now analyze the memory and stretch complexities of 
the scheme SP,. 

LEMMA 4.1. For every k 2 1, the total memory requirement of the routing 
scheme SP, satisfies Memory,,,,(SP,) = O(n’+l/k log n). 

Proof The component R, rooted at the pivot c E P requires 
O(n log n) bits. Each other component requires O(nllk log n) bits, sum- 
ming up to O(n 1+1/k log n) bits. c] 

Let r,,(G) denote the minimum radius of a neighborhood N(v, m) in 
G, and denote the maximal degree in the graph by A. 

FACT 4.1. r,,,(G) L 1 + log,-,(m/A) L log, m = log m/log A. 

LEMMA 4.2. For every k 2 1, the stretch factor of the routing scheme SP, 
satisfies 

WG) 
sTRETCH(SP,) I ~ 

r&G) ’ 

ProoJ If the destination w  is in the neighborhood of U, then an 
optimal path is used. Otherwise, dist(u, w) 2 r,,,,(G), and the message is 
sent using the main ZTR* component R,, and hence along a path of cost 
at most 2r(G). 0 

COROLLARY 4.1. For every k 2 1, the stretch factor of the routing scheme 
sPk satisfies 

STRETCH( SP,) I 
2r( G)log A 

log m . 

Consider now random graphs G in the space G,,,+, for 0 < (Y < 1, and 
apply the routing scheme with the parameter m = nljk to them. (Recall 
that G, p is the probability space of all n-vertex graphs, where each edge 
is chosen independently with probability p.) For such a graph, with 
high probability the maximal degree and the radius satisfy A I 2na and 
r(G) I l/a, hence we get: 

COROLLARY 4.2. For fured k and a and for a random graph G in 
G rl,,F’~ the routing scheme SP, has stretch factor 

STRETCH( SP,) I 2k + 1 

asymptotically almost surely. 
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4.3. The “Covering Pivots” Scheme 

The next step is designing a routing scheme in which there are several 
global ITR* components in use, each rooted in a different pivot in the 
graph. By carefully choosing the locations for the pivots it is possible to 
considerably reduce the stretch. We refer to this scheme as the covering 
pivots scheme, or CP. 

Preprocessing. 
1. Fix m = 6. 
2. For every vertex v E I/ select a neighborhood N(v, m). 

3. Using one of the covering algorithms of Section 3.2, select a set 
P c V of pivots covering these neighborhoods, i.e., with the property that 
for every v E V there is some u E P such that u E NV, m>. 

4. For every vertex v, compute the pivot that is closest to v according 
to our definition of distance and denote it by p(v). 

5. Construct a component R, = ZTR*(V, c) around each chosen pivot 
c E P and a component R, = ITR*W(v, m), v) for every other vertex 
VEV-P. 

Delivery. The delivery protocol operates as in the single-pivot scheme, 
except that now, whenever a sender u does not find the destination w  in 
its translation table TT,, it sends the message through its designated pivot 
p(u), i.e., using the component Rpcuj. 

Complexity. By Lemmasi 3.2 and 3.3, the algorithms of Section 3.2 
selects a covering set P of pivots whose size is at most 2cn In n/m for 
some constant c > 1. Since m = 6 we get a total of O<G log n) pivots. 
This implies 

LEMMA 4.3. The total memory requirement of the routing scheme CP 
sati$es 

Memory,,& CP) = 0( n312 log2 n). 

&oc$ The component R, rooted at a pivot c E P requires O(n log n) 
bits, so all of these components together require O(n3i2 log2 n) bits. Each 
other component requires O(6 log n), summing up to O(n312 log n) bits. 

cl 

As for the stretch factor of the scheme CP, we have the following 
lemma. 

LEMMA 4.4. The stretch factor of the routing scheme CP sati$es 
STRETCH(CP) < 3. 
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Proo$ If the destination w  is in the neighborhood of u, then an 
optimal path is used. Otherwise, dist(u, w) 2 r(u, m), and the message is 
sent using the component Rpcuj, where p(u) is a pivot belonging to 
ZV(u, m). The first segment of the route, from u to p(u), is of cost at most 
r(u, m). The second segment of the route is along some shortest path from 
p(u) to w. Thus by the triangle inequality it is of cost at most r(u, m) + 
dist(u, w). Hence the total cost of the route satisfies 

Ip(u,w)l < r(u,m) + (r(u,nz) + dist(u,w)) 5 3 dist(u,w). 0 

Combining Lemma 4.3 and Lemma 4.4 yields 

THEOREM 4.1. For every n-vertex network G it is possible to constnxt a 
covering pivots scheme CP with memory requirement 

Memory,,& CP) = 0( n3/* log* n) 

and stretch factor 

STRETCH( CP) I 3. 

4.4. The “Hierarchical Covering Pivots” Scheme 

The CP strategy of Section 4.3 leads to a small stretch factor at the cost 
of using a total of O(n 3/2 log* n) bits of memory. In this section we 
present a family of hierarchical covering-pivots schemes, HCP,, which for 
every k 2 1, use 0tk.n ‘+‘ik log* n) bits of memory and guarantee a 
stretch of at most 2k - 1. 

Overview. Let us start with an overview of the structures and informa- 
tion items required in the vertices of the network. We base our schemes 
on a hierarchy of sets of pivots, 

Pkml cPk-* c -** CP, cPo = V’. 

For every 0 I i I k - 1, /PiI is of size about nl-i/k. On each level 
0 I i I k - 1 we maintain a routing component ZTR*UV(v, n(i+1)/k), v) 
for every pivot u E Pi, enabling routing from u to vertices in its 
N(v, n(i+‘)/k) neighborhood. This means that for each level i, every pivot 
v knows how to get to the n(i+1)/k nearest vertices in the network. 
Specifically, the pivots of level 1 I i I k - 1 are selected so as to have the 
covering property with respect to the neighborhoods N(v, nilk) of pivots 
u E Piml. For every 1 I i I k - 1, we associate with every pivot v E Pi-l 
a unique pivot pi(v) such that pi(v) E N(v, nilk). Each vertex v has to 
know an outgoing edge toward its pivot pi(V). 

With the information structure described above maintained in the 
network, routing is carried out according to the following schematic plan. 
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z = PS(U) 

2-j-id 2 
f\ 

d = dirt(u, w) 

FIG. 1. The schematic description of routing from II to w and the bounds on distance 
relationships in HCP, 

Suppose u wants to send a message to W. Then the message is transferred 
through the chain of pivots associated with u from successively higher 
levels, until it reaches a pivot z E P, knowing the destination w  (i.e., such 
that w  E N(z, n(s+1)/k)). This pivot sends the message to w  directly using 
its component R, (see Fig. 1). 

Preprocessing. The scheme HCP, is constructed as follows: 

1. Let P,, = V and pa(u) = u for every u E I/. 
2. For i = 1 to k - 1 do: 

(a) For every u E Pi- 1 select a neighborhood N(v, n’lk) and con- 
struct a routing component R, = ZTR*(N(v, nilk), v). (If a routing 
component has already been constructed for u in one of the 
previous iterations then the new component replaces it.) 

(b) Using one of the covering algorithms of Section 3.2, select a set Pi 
of pivots covering these neighborhoods, i.e., with the property that 
for every u E PipI there is some u E Pi such that u E N(u, nilk). 

(c) For every vertex u E Pi- 1, compute the pivot of Pi that is closest 
to u according to our definition of distance and denote it by p,(v). 

End for 
3. For every u E P&i construct a routing component R, = ZTR*(V, v) 

(again, discarding previously constructed components). 

Delivery. The delivery protocol proceeds as follows (Fig. 1). Suppose u 
wants to send a message to w, and suppose u E Pi for some 0 I j I k - 1. 
If w  E Mu, n’j+l”k ) then u sends the message to w  directly using the 
component R,. Otherwise, u sends the message to its pivot in the next 
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level, pj+&u). This pivot is now responsible for the message, and deals 
with it just as if it was originated by itself. Thus, a message originated at u 
is transferred through the chain of pivots associated with u from succes- 
sively higher levels, until reaching a pivot z E P, knowing the destination 
w  (i.e., such that w  E N(z, n (S+l)/k)). This pivot sends the message to w  
directly using its component R, (see Fig. 1). Since the pivots in the highest 
level, Pk- r, know the entire graph, it is clear that every message eventually 
arrives at its destination. 

Complexity. The memory requirements of the hierarchical schemes are 
summarized as follows. 

LEMMA 4.5. The total memory requirement of the routing scheme HCP, 
sati.@es 

Memory,,& HCP,) = O(kn’+‘/k log’ n). 

Proof: Let us first estimate the size of the sets Pi constructed in Step 
2(b) of the preprocessing algorithm. Note that the assumptions needed for 
the randomized algorithm hold here. Thus by the properties of the 
covering algorithms of Section 3.2 (Lemmas 3.2 or 3.3 as appropriate), 
there is a constant c > 1 such that 

2clP,-lllnlP,-,I 2cn Inn 
Pjl 5 ,Q/k I ni/k = O(n’-i/k log n). 

Each component R, constructed in iteration i for u E Piml requires 
O(ni/k log n) bits, hence the total amount of memory for components of 
pivots in PipI is 

O(IPi-llni/k log n) = O(n’+‘/k log2 n). 

The overall result follows from summing these memory requirements over 
all k levels of the hierarchy. 0 

In order to analyze the stretch factor of these schemes we need to 
establish the following facts. 

LEMMA 4.6. Let u E Piml. If z E Mu, nilk) then 

1. dist(u, p&u)) I distk, z) and 

2. disHpi( z) _< 2 dist(u, 21. 

Proof The first claim is immediate from Fact 3.1 and the covering 
algorithms of Section 3.2. The second claim follows since by the triangle 
inequality, dist(p,(u>, z) _< dist(p,(u), u) + dist(u, z>. El 
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LEMMA 4.7. Suppose the route p(u, w> defied by the scheme for u and w  
~throughthechainofpiuotsu=uj,uj+l,...,uswhereO~j~s~k-1 
and Ui E Pi for j I i I s. Then 

Ip(u,w)l I (2$-j+’ - l)dist(u,w). 

Pr.oc$ First rise the previous lemma to prove by induction on i, 
j < i I s, that 

1. dist&-r, ui> I 2’-j-’ dist(u, w) and 

2. dist(u,, w) I 2’-j distiu, w). 

As a result, we get the global distance relationships described in Fig. 1. 
The lemma now follows, since 

I&w)] I c 2’-‘-‘dist(u,w) + 2”-‘dist(u,w) 
j+ls;ils 

= (2s-i+’ - l)dist(u,w) 0 

COROLLARY 4.3. The stretch factor of the routing scheme HCP, sati.$es 

STRETCH( HCP,) I 2k - 1. 

Combining Lemma 4.5 and Corollary 4.3 yields 

THEOREM 4.2. For euery n-vertex network G and for every k 2 1 it is 
possible to construct a hiemrchical covering-pbots scheme HCP, with mem- 
ory reqlliW?Wlt 

Memoxy,,,( HCP,) = O(kn’+“k log2 II) 

and stitch factor 

STRETCH( HCP,) I 2k - 1. 

5. MEMORY-BALANCED ROUTING SCHEMES 

There are two basic reasons why the hierarchical schemes described in 
the last section are not memory-balanced. The first is the use of large 
“communication centers” in the scheme. The root of each ZTR* compo- 
nent has to know of every vertex in its tree, and some trees are very large 
Cm particular, trees on the highest level span the entire network). A 
second situation in which a vertex may need much space is when it 
happens to be the “crossroad” of many routes. This happens whenever a 
vertex occurs in many different ITR* components (i.e., whenever it resides 
in the neighborhoods of many pivots). 
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Thus in order to get rid of these problems we need to devise a way of 
limiting the use of “communication centers” and bounding the number of 
occurrences of a vertex in different routing components. 

The rest of this section is organized as follows. The first two subsections 
describe two basic routing components to be used in our schemes. The 
following subsection describes and analyzes the hierarchical balanced 
scheme. 

5.1. Decentralized Interval Tree Routing 

The ZTR* scheme as described in Section 4.1 requires the root of the 
tree to store a translation table specifying the interval label of every vertex 
in the tree. In a memory-balanced scheme this cannot be permitted. We 
therefore have to use a modified version of the ZTR* scheme that does not 
use such tables. Instead, the interval label int(tt) of a vertex u has to be 
part of U’S addressing label. 

Preprocessing. The modified scheme ZTRCG’, r) (for a subgraph G’ = 
(V’, E’) and a vertex r E V’) is constructed just as the scheme ZTR*(G’, t), 
except we do not need the translation table TT, at the root. 

Delivery. Routing a message from a vertex u to a vertex u for u, u E V’ 
involves sending the message upwards (i.e., towards the root) in the tree 
until it reaches the lowest common ancestor of u and U, and then 
downwards on the path leading to u. (Again, this is not necessarily an 
optimal route in G’.) The header of the message has to contain an 
identifier for the routing component used (in order to enable us to use this 
component in a network when other routing components are present as 
well) and the interval Iabel of the destination. This clearly enables each 
vertex along the way to decide (using its own label and those of its children 
in the tree) which way to forward the message. 

Comp~. Maintaining the modified component involves the same 
memory requirements as before, except now the root does not maintain 
the translation table. Consequently it is possible to bound the individual 
memory requirements for maintaining ZTR(V’, r) in a vertex u E V’ by 

Memory~,,(ZTR(V’,r),v) = U(deg(v)logn). 

The overall memory requirement is still 

Memory,,,( ZTR( V’, r)) = O(lV’lIog n). 
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5.2. The “Forwarding Routing” Scheme 

We now introduce a second type of basic routing component, which we 
call forwarding routing (FR). In this scheme, in order for a vertex u to be 
able to send a message to a vertex w, u has to store in its memory the 
name of a forwarding edge FE(w), which is the first edge along some 
shortest path from u to w. Clearly, in order for such an approach to make 
sense it is necessary to ensure the consistency (and sufficiency) of the 
information stored along shortest paths. 

Preprocessing. The partial routing component FR(S, j), for a specific 
set of destinations S L I/ and an integer j, is constructed as follows: 

1. For every vertex u E V select a neighborhood N(v, j, S). 

2. For every vertex u construct a table (FE(w)lw E N(v, j, S)) of 
forwarding edges for the vertices in its neighborhood, such that FE(w) is 
the first edge along some shortest path from u to w. 

Delivery. Suppose that a vertex v wants to send a message to a 
destination w  such that w  E N(u, j, S). Then v consults its FE table, 
retrieves the edge FE(w) = (v, z) and sends the message through this 
edge to z. The crucial consistency property maintained in this structure is 
that whenever this happens, w  appears also in the FE table of t, so the 
message does arrive along a shortest path. This is guaranteed by the 
following lemma. 

LEMMA 5.1. Zf w E N( v, j, S) and x occurs on some shortest path 
connecting v and w then also w E N(x, j, S>. 

ProoJ By contradiction. Assume that w  +Z N(x, j, S). We claim that for 
every z E N(x, j, S), also z E N(v, j, S). In order to prove this it suffices 
to show that every z E N(x, j, S) satisfies z <L, w, since w  is included in 
N(v, j, S). Consider some z E N(x, j, S). By the triangle inequality 

dist(u,z) I dist(u,x) + dist(x,t). 

By Fact 3.1 dist(x, z) I dist(x, w). Since x is on a shortest path from u to 
w, dist(v, w) = dist(u, x) + dist(x, w). Put together, 

dist(v,z) 5 dist(u,w). 

There are two cases to consider. If dist(v, z) < dist(u, w) then the claim 
is immediate. Now suppose dist(u, z) = dist(v, w), then necessarily 
dist(x, z) = dist(x, w) too. Since w  $5 N(x, j, S) and z E N(x, j, S), by 
definition z <X w, so z < w. Therefore also z +U w. It follows from our 
claim that N(x, j, S) L N(v, j, S), and since both are of size j, N(x, j, S) 
= N(v, j, S). But w  E N(v, j, S) - N(x, j, S), a contradiction. q 
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Complexity. The memory cost of the component FR(S, j) per vertex u 
is 

Memory,,,,,(FR(S,j),v) = O(jlogn), 

and the overall memory requirement is 

Memory,,,,,(FR(S, j)) = 0C.h log n>. 

5.3. The “Hierarchical Balanced” Scheme 

In this section we present the family of hierarchical balanced schemes, 
HB,, which for every k 2 1, use O(kn l/k log n> bits of memory per vertex 
and guarantee a stretch of at most 2 * 3k - 1. 

Overview. Let us again start with an overview of the method. These 
schemes are also based on a hierarchy of sets of pivots, Pk c Pkel c * . . 
c P, c PO = V, such that for every 0 I i I k, IPi I is of size about nlmilk. 
A vertex v is a j-pivot if it belongs to 4 (hence also to Pi for 0 I i < j) 
but not to q+l (hence also not to Pi for j + 1 < i I k). For each level 
0 I i I k we maintain a forwarding routing component FR(Pi, m,) based 
on the set Pi, where m, is about n Ilk for every i. This means that for each 
level i, every vertex v knows how to get to the m, nearest pivots from Pi. 
Specifically, the pivots of level 1 I i I k are selected so as to have the 
covering property with respect to the neighborhoods NV, mi, P,-,> of 
pivots v E PieI. 

With every vertex v we associate a unique pivot pi(v), referred to as the 
i-post of v, in every level 0 I i 5 k. This i-post is selected as follows. 
Suppose that v is a j-pivot. For 0 < i I j + 1, pi(v) is taken to be the 
smallest pivot in Pi according to -c”. In particular, 

l forO<i<j,pi(v)=v,and 

l Pj+j+lCv) E N(V, mj+l, pj)* 

For j + 2 I i I k we define pi(v) recursively by setting pi(v) = 
pi(pi- 1( v)). Each j-pivot v E I/ is given a label consisting of its original 
name v, its highest level, j, and all its i-posts for i 2 j + 1. Thus v’s label 
becomes the tuple (j, v, P~+~(v), . . . , pk(v)). Finally, a j-pivot v, j > 0, has 
a zone Z,(v) for every 1 I i I j, consisting of all (i - 1)-pivots ZJ for whom 
pi(u) = v. It also has an ZTR component Ri(v) covering its zone Z,(v). 

With the information structure described above maintained in the 
network, routing is carried out as follows. Suppose u wants to send a 
message to w. Let i be the minimal index such that the i-post pi(w) of w  
is in the neighborhood N(u, mi, Pi> of u. The originator u sends the 
message to pi(w) using the forwarding component FR(Pi, m,). The mes- 
sage is then forwarded to w  through the chain of j-posts pi(w), j = i, 
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d = dbt(w,u) 

FIG. 2. The schematic description of routing from II to w and the bounds on distance 
relationships in HB,. 

i - l,..., s, where w  = p,(w) is an s-pivot. Each post pi(w) along the way 
forwards the message to the next post pi-r(w) on the tree component 
Rj(pj). See Fig. 2. 

Preprocessing. The scheme HB, is constructed as follows: 

1. Let ZJ, = I/ and pa(u) = LI for every u E V. . 
2. Fii 112 = n’/k. 
3. If i < k then let ??$ = m else let mk = Ipkl. 
4. For i = 0 to k - 1 do: 

(a) Construct a forwarding scheme FR(P,, mi>. 
(b) Let ~= {N(u, Illi, P~)Iv E Pi}. 
(c) Using one of the covering algorithms of Section 3.2, select a set 

Pi+r c_ Pi of pivots covering the sets of 2, i.e., with the property 
that for every u E Pi there is some u E P,+r such that u E 
NV, mi, Pi). The vertices of Pi - Pi+ r are called i-pivots. 

Cd) For every u E 4: 
i. Associate with u an (i + D-post pi+Ju), chosen as the small- 

est such pivot u E Pi+ r according to -C o (in particular, if 

’ E pi+l then pi+Ju) = u). 
ii. Construct a shortest path connecting u with pi+ I( II). 

(e) For every u E Pi+ 1: 
i. Let the zone of u, Zi+,<u>, be the collection of pivots u E Pi 

which chose u as their (i + D-post (i.e., such that pi+,(u) = 
VI. 

ii. Denote by Ti+,(u) the tree composed of the union of the 
shortest paths connecting u to the pivots in Z,+,(u). 
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iii. Construct a component R,+,(u) = ITR(T,+l(~), v). 
(f) Associate with each vertex u E V - Pi an i + l-post pi+ I(u) = 

Pi+ltPi(“))* 
End for 

5. Construct a forwarding scheme FR(P,, m,). 
6. In the end of the process, label each j-pivot u by (j, U, 

Pj+ I(U), a * - f Pk(u)). 

Deliuery. The delivery protocol proceeds as follows: Suppose u wants 
to send a message to w. Denote the j-posts of w  by wj = pi(w) for every 
0 I j _< k. Let i be the minimal index such that wi E N(u, mi, 4) and let 
s be the maximal index such that w  = w,. The originator u starts by 
sending the message to wi using the forwarding component FR(e, mi). 
The message is now forwarded to w  through the chain of j-posts Wj, 
j = i, i - 1,. . . , s. Consider the first step along this chain. Recall that 
p&w) was chosen to be pi(w) = pi(wi-,). Therefore pi(wiml) = wi too, so 
by the definition of zones, wi-i belongs to the zone Z,(wJ The message 
can therefore be forwarded from wi on the tree component Ri(wj) to 
wi-i. The same process repeats itself on Ri-&wi- i) and the message gets 
forwarded to wie2, and so on, until it arrives w, = w. 

Since on the last level the forwarding scheme enables every vertex u to 
send messages to any pivot in Pk, a message destined to w  must eventually 
reach some i-post of w, pi(w). Since every pivot w E Pi has an ZTR 
component covering a shortest path to every PipI pivot in its zone, and 
pieI E Z,(pi(w)), it is possible to get from pi(w) to pidI(w). By the 
same argument it is possible to proceed along the chain of j-posts to w. 
Hence the scheme works correctIy for every origin and destination. 

Complexity. In order to analyze the memory requirements of the scheme 
HB, we need to prove that the trees of the various pivots in a given level 
Pi are all disjoint. This is done in the following technical lemma. 

LEMMA 5.2. For every 1 I i I k and for every ul, u2 E Pi, Ti(u,) and 
TJ u 2) are vertex-d&joint. 

Proof By contradiction. Assume that Ti(u,) and I&) intersect in 
some vertex x for some u,, z.+ E Pi. Then for j = 1,2 there is a vertex 
wj E Zi(uj) such that x occurs on the shortest path connecting Wi to ui. 

Without loss of generality, x is the first intersection of the paths, tracing 
the paths from the endpoints ui and u2 (see Fig. 3). 

By the rules of the algorithm, since p,(w,) was set to ui, necessarily 
u1 +w1 u*. (Recall that a +c b if either dist(a, c) < dist(b, c) or dist(a, c) 
= dist(b, c) and a < 6.) Since dist(u,, w,) = dist(u,, X) + dist(x, w,) and 
dist(u,, w,) < dist(u,, X) + dist(x, w,), it follows that u1 <X u2. Since 
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FIG. 3. Node x belonging to both T,(u,) and q;:(u,). 

dist(u,, w,) = dist(u,, x) + dist(x, w,) and dist(u,, w,) I dist(u,, X> + 
dist(x, wz), it follows that u1 <,,,* u2. Hence u1 should have been chosen as 
pj(w,), a contradiction. q 

LEMMA 5.3. The memory requirements of the routing scheme HB, sari& 

1. Memoryvertex(HBk, v) = O(k log n(deg(v) + nllk)), and 

2. Memory,,,,,(HB,) = OG7z’+“k log n). 

proof: By Lemma 5.2 each vertex u participates in at most one ZTR 
component in each level, so the memory it uses for the trees in all levels is 
at most O(k * deg(a)log n). The total memory used for the ZTR schemes is 
O(kn log n). In addition, u participates in the forwarding scheme of each 
level. For all levels but the last, this involves O(m log n) bits of memory. 
For the last level the cost is O(l P,Ilog n). Noting again that the assump- 
tions of the randomized algorithm hold, by Lemmas 3.2 or 3.3 there is a 
constant c > 1 such that 

Since lP,,l = I VI, we get that 

lPil I (2c In n)’ * nleijk. 

Particularly, lPkl = O(lnk n), and since log IZ = oWk2) for sufficiently 
large n, lPkl = O(n Ilk) It follows that O(km log n> bits are used by each . 
vertex for the forwarding schemes FR on all k + 1 levels of the hierarchy. 
The required results follow from adding the memory requirements of the 
ZTR and FR components. •I 
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It remains to analyze the resulting stretch factor. 

LEMMA 5.4. For 1 I i I k - 1, ifp,-i(w) e N(u, ?rzi, Pi-i) then 

1. dist&(w), J+-~(w)) 5 2 distk pi-,(w)), and 
2. dist(u, p,(w)) _< 3 dist(u, pi-,(w)). 

Proof: Let y = pi-,(w) and z = pi(w) (see Fig. 21, and let P = Pi-,. 
Since y e N(u, mi, P>, by Fact 3.1 T(U, mi, P) I dist(u, y). Since z E 
N(y, mi, P), by Fact 3.1 r(y, mi, P) 2 dist(y, z). By Lemma 3.1, 
r(y, mi, P) I T(U, mi, P) f distk, y). Put together, we get that dist(y, Z) 

I 2 dist(u, y), which proves the first claim. The second claim follows since 
by the triangle inequality, dist(u, z) I dist(u, y) + dist(y, z). 0 

As a result, we get the global distance relationships depicted in Fig. 2 
and summarized in the following corollary: 

COROLLARY 5.1. Zfpj(w) 4 I+, m) for euery 0 I j < i then 

1. dist(p,-r(w), p,(w)) I 2 * 3’-’ * dist(u, w), and 

2. distk, pi(w)) I 3’ * dist(u, w). 

LEMMA 5.5. Zf p,(w) E N(z.4, mi, Pi> and pi(w) E Mu, “j, pi> for euery 
0 I j < i then the cost of the route satisfies Ip(u, w)l _< (2 * 3’ - l)dist(u, w). 

proof: 

I 3’ + 2 c 3j-’ dist(u,w) I (2. 3’ - l)dist(u,w). •I 
( I<jsi ) 

COROLLARY 5.2. The stretch factor of the routing scheme HB, satisfies 

STRETCH( Hs,) I 2 * 3k - 1. 

THEOREM 5.1. For every n-vertex network G and for every k L 1 it is 
possible to construct a hierarchical balanced scheme HB, with memory 
requirement 

Memory,,,& HB,, U) = 0( k log n(deg( u) + n”k)) 

for each vertex u, and 

Memory,,& HB,) = O(kn’+‘/k log n) 

overall, and stretch factor 

STRETCH( HB,) < 2 * 3k - 1. 
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6. DISTRIBUTED PREPROCESSING WITH BOUNDED SPACE 

6.1. Overview 

In this section we describe a distributed preprocessing algorithm that 
initializes the schemes HB,. Its space overhead, at a single vertex with 
degree d, is O(k log n(d + n “‘9) bits, the same as that of the delivery 
protocol. The preprocessing stage includes computing all the pivots, con- 
structing the zones and establishing the forwarding schemes FR and the 
ZTR schemes. The latter requires also assigning appropriate names to the 
vertices. 

We assume a synchronous network model in the sense that all vertices 
have access to a global clock. A message sent upon time T from v to u 
arrives at u strictly after time 1~1 + cost(v, u) - 1, but no later than 
[r] + cost(v, u). Intuitively, this means that messages can be sent only at 
integer times. This is why arrival times depend on 171, rather than r, and 
edge delays S(e) may fluctuate as cost(e) - E I 6(e) I cost(e), for all 
E < 1, i.e., the delay of e is at most cost(e). 

Since we allow message transmissions at times which are not integers, 
the algorithm is driven by messages and by the global clock. Messages can 
be sent either in response to arriving messages, or in response to clock 
pulses, which occur at integer times. 

Our algorithm employs the following four procedures. 

(1) Initialization procedure. Appoints all the pivots and triggers all 
other procedures. 

(2) Forwarding-construction procedure. Constructs the forwarding 
routing schemes FR and computes the parent and children pointers of the 
ZTR schemes in the zones. 

(3) DFS-numbering procedure. Simultaneously operates on the span- 
ning trees of all the zones, assigning DFS numbering to the vertices of the 
trees for the ZTR schemes and computing the interval labels. 

(4) Post-update procedure. Specifies for each vertex its posts. 

Each of those procedures has local variables and output variables. The 
local variables are recognized only inside the procedure, while the output 
of the procedure is written in the output variables. All the variables are 
appropriately initialized to nil, 0, or 0. The values of k, m = nllk, 
m1=m2= . . . =mk-,= m, and c > 1 are global and known to all the 
vertices. 

Observe that we can construct a spanning tree by invoking the algorithm 
of [GHSI and then use this tree for computing n, the size of the network, 
in case it is not globally known. This tree can later be used for other tasks, 
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like counting the number of pivots, detecting termination of a process 
running in the network, etc. Each of these tasks requires only O(log n) 
space per vertex. 

6.2. Initialization Procedure 

The initialization procedure first randomly selects the pivots for each 
level and then invokes the other procedures. At each vertex, the proce- 
dure outputs variables pipi, for 0 I i I k, so that pi = self if the vertex is 
chosen as a pivot of level i and pi = nil otherwise. 

The pivot selection process is based on the randomized covering algo- 
rithm described in Section 3.2. Note that the algorithm is given in a 
“Monte-Carlo” version, i.e., there is a small probability that the algorithm 
might err and produce a pivot set that is not a cover. It is easy to modify 
our algorithm into a “Las-Vegas” algorithm, by detecting the fact that 
there is no pivot in a certain neighborhood; in this case the algorithm is 
restarted. 

Every vertex is a pivot at level 0. Each pivot at level i - 1 becomes a 
pivot at level i with probability c In Ipi- 1 I /m. This selection rule guaran- 
tees that, with high probability, IPi1 < 2clP;,_,lln n/m. Moreover, with 
probability 1 - O(n’Y there exists a pivot at level i in every neighbor- 
hood N(v, m, Pi::_,). To calculate lPil we use the function Count(S) that 
counts the size of an arbitrary subset S c K This function is easily 
implemented with O(log n) space per vertex, given a spanning tree of the 
network. 

After the ith level in the selection process, each vertex triggers Proce- 
dure Forwarding-Constructioni. This procedure consists of a collection of 
I Pi ( interacting diffusing computatiovs [DSI, each propagating messages 
from a pivot w  E Pi to other vertices. It is shown in [SF] that assuming the 
presence of a spanning tree, termination detection of a collection of 
diffusing computations can be performed without any space overhead. 
This procedure is named Detect-Tetmination,. After Procedure Forward- 
ing-Constmction, is completed for all the vertices, every vertex triggers the 
DFS-Numberingi procedure. In the last step of the Initialization procedure 
the vertices in Pk trigger the Post-Update procedure. 

Output variables: 

l pi: pivot of the vertex on level i, for 0 I i -< k. 

l mk: the size of Pk. 

Local variables : 

l Coin: the value of the coin flip; receives the values head and tail. 

l size,: the size of IPil, for 0 I i s k. 
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PROCEDURE Initialization /* for a vertex self*/. 
i := 0; Coin := head; 
while i I k and Coin = head do; 

pi := self; /* you are a pivot of level i */ 
sizei := Count(P,); 
if i = k then mk := size,; 
trigger Procedure Forwarding-Construction i; 
trigger Procedure Detect-Termination,; 
/* wait until all forwarding schemes FR, of level i are completed */ 
trigger Procedure DFS-Numbering,; 
if i < k then flip Coin so that it comes head with probability 

c In size,/m; 
i := i + 1; 

end while /* you are an (i - l)-pivot */ 
if i - 1 = k then trigger Procedure Post-Update; 

end procedure 

6.3. Forwarding-Construction Procedure 

Procedure Forwarding-Constructioni has two main tasks. The first is to 
construct a forwarding routing scheme FR(P,, mi) for each level 0 I i I k. 
The goal of this construction is specifying, for every vertex U, a set of 
pointers pointing towards the mi pivots of level i that are closest to u 
according to the <U ordering. That is, for each vertex w  E Mu, mi, Pi>, 
the vertex u stores a pointer FEJw) pointing to a neighbor of u that 
resides along a shortest path to w. The second task of the procedure is to 
construct parent and children pointers, Parent, and Children i, respectively, 
for the zones of level i. 

The algorithm below takes advantage of the fact that network is syn- 
chronous and that message delays are very closely related to edge costs. 
Thus, the delay of a message sent over a communication path p is 
“essentially” the cost of that path, cost(p); to be more precise, it varies 
between cost(p) and cost(p) - 1. 

Each vertex u keeps a list List, containing pairs (u, w) such that 
u E N(v, mi, Pi> and w  = F&(u). It also keeps a variable Parent, initial- 
ized to nil. 

Each vertex u that is a pivot of level i initiates a process, propagating 
FORWARD,(u) messages throughout the entire network. Once a vertex u 
receives a message FORWARD,(u) from w, it checks whether Parent, = 
nil; if so it sets Parent, := w. Also, it checks whether Listi already contains 
a pair (u, is). If no such pair exists then u concludes that this is the first 
message received from u. Consequently, u adds the pair (u, w) to Listi, 
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and propagates the message to all neighbors. In fact, u propagates only 
FORWARD,(u) messages for vertices u E N(v, mj, P,), and discards mes- 
sages of vertices outside N(u, mi, Pi). 

Formally, for vertices u E N(u, mi, Pi>, define ti(u, u) to be the time at 
which vertex u receives a FORWARD,(u) message for the first time. This 
time is defined as 00 if such a message never arrives. Under the strategy 
described above, for all vertices u E Mu, m,, P,), [tj( u, u)] = dist(u, u). 
This fact is proved by induction on the length of a shortest path from u to 
u, using Lemma 5.1 as an induction step (the base of the induction is 
trivial). 

The strategy described above makes the assumption that upon receipt of 
a FORWARD,(u) message, the vertex u can determine whether u E 
N(v, mi, Pi>. This is not the case. Below, we describe the modification in 
the algorithm needed to get around this difficulty. 

Denote the radius of N(u, mi, Pi) by r = r(N(u, mi, Pi)>. Let us parti- 
tion the set Pi into the following four subclasses: 

Class A containing all vertices u E Pi such that dist(u, u) < r. 

Class B containing the m, - JAI vertices with the smallest names 
among the vertices u E P,. such that dist(u, v> = r. 

Class C containing the vertices u E Pi such that dist(u, u) = r but 
u 6 B. 

Class D containing vertices u E Pi such that dist(u, u> > r. 

Clearly, iV(u, mi, Pi) is the union of the classes A and B. 

The algorithm maintains the invariant that by pulse q, Listi contains all 
pairs (u, w), where u E N(v, mi, Pi> and dist(u, u) I q. Under this invari- 
ant, observe that: 

l At clock pulse r - 1, List, contains exactly the vertices of class A. 
Thus, IList, = (A 1 < mi at this pulse. 

l Let S be the set of vertices u such that u receives a FORWARD,(u) 
message for the first time between clock pulse r - 1 and clock pulse r. 
Then S is the union of the classes B and C. Also, the mi - IA I vertices of 
class B are those with the smallest names among the vertices of the set S. 

l At clock pulse r, List, contains exactly the vertices of classes A and 
B. Thus, IList, = IA1 + IBI = mi at this pulse. 

This enables u to recognize FORWARD,(u) messages of vertices u in 
class D, as upon their first arrival (List,1 = m,. Also, u can recognize 
FORWARD,(u) messages of vertices u in class A, as upon their first 
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arrival JList,I < m,. The only problem is to distinguish between vertices in 
classes B and C. All the FORWARD messages of these vertices arrive 
(for the first time) between pulses r - 1 and r. However, messages 
of vertices in class B do not necessarily arrive before those of vertices in 
class C. 

In order not to exceed the given size of space during this time interval, 
we need to dynamically delete vertices from class C as we insert vertices 
from class B. Towards this goal, each vertex maintains a list Newi, 
containing “candidates” to be inserted into Listi. Upon each clock pulse, 
the contents of New, are added to List,, and then New, is emptied. 

In general, whenever a vertex receives a FORWARD,(u) message from 
a neighbor w, it checks whether either Listi or New, contains a pair (u, i?l, 
or lList,( = m,. If either one of these conditions is true, the message is 
discarded. Else, the vertex inserts the pair (u, w) into New, list. Next, the 
vertex checks whether lNewiI + lListil > m,. If this is indeed the case, 
then necessarily lNewil + l~ist,I = mi + 1 as a result of the last insertion 
into New,. In this case, the vertex deduces that it is now between pulses r 
and r - 1, and that one of the entries in New, corresponds to a vertex in 
class C and hence should be purged. Clearly, this entry is the pair (U, Gi;) 
corresponding to maximal name G among all entries in New,. This entry is 
deleted from New,, thus reducing the total size of New, U Listi back to 
mi. 

Note that even though the number r is not known to u, it can easily 
identify clock pulse r at the first clock pulse by which (New,I + (Listi I = 
mi. 

For a vertex v, let (u, w) be the pair with the smallest ZJ among all pairs 
in NEW, after the first clock pulse when NEW, is not empty. Then w  is the 
parent of v in the zone of level i. At that point, v notifies w  of this fact by 
sending it the message CHILD,. 

Data Structure. We assume the existence of a data structure that 
supports the following operations on dynamic sets S whose members are 
ordered pairs (a, b). These pairs are stored according to their first item 
and it is assumed that a, z a2 for any two different pairs (a,, b,), (az, bJ 
in S. 

l Member(S, a): returns true iff there exists b such that (a, b) E S. 

. Insert(S, (a, 6)): adds (a, b) to S. 

l Delete(S, a): deletes the pair (a, b) from S, if such a pair exists. 
l ExtractMax( returns the pair (a, b) E S with the largest u among 

all pairs of S. 

l DeleteMax( abbreviation for Delete@, ExtractMax(S 
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l ExtractMin(S1: returns the pair (a, c) E S with the smallest a 
among all pairs of S. 

l size(S): returns the number of pairs in S. 

Output variables : 

l FEi(w): the forwarding edge to w, kept for each w  in Listi, for 
O<i<k. 

l Parent,: the parent of v in the zone of level i, for 0 I i I k. 

l Children,: the set of children of v in the zone of level i, for 
Osilk. 

Local variables : 

l Listi: A dynamic set containing the list of edges (w, FE,(w)) for each 
w  E NV, mi, Pi), for 0 I i I k. 

l New,: A dynamic set containing a list of pairs that are candidates to 
enter List,, for 0 I i 5 k. 

PROCEDURE Forwarding-Constructioni /* for a vertex v */. 
upon triggering the procedure (for v E Pi>: 

send message FORWARD,(v) to all neighbors w; 
insert(Newi, (v, v)); 

upon receiving FORWARD,(u) message from neighbor w: 
if Member(List,, u) = MemberUVew,, U> = false and size(List,) < 

mi then do: 
insert(Newi, (u, w)>; /* tentative insertion */ 
if size(Li.st,) + size(NewJ > mi then DeleteMaxGVew,); 

/* handle overflow */ 
end if 

upon Clock pulse: 
if size(ListJ = 0 and size(New,) > 0 then do: 

(u, w) := ExtractMinGVew,); 
Parent, := w; /* choosing the parent in the zone of v */ 
send message CHILD, to neighbor w; 

end if 
for all (u, w) E New, do: 

FE,(u) := w; 
send message FORWARD,(u) to all neighbors; 
Insert(List,, (u, w)>; 
DeleteGVew,, u>; 

end for 
upon receiving CHILDi message from neighbor w: add w  to Childreni; 
end procedure 
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6.4. DFS-Numbeting and Zone-Construction 

The procedure DFS-Numbering, described in this section sets up the 
zones of level i (for each 0 5 i < k) and the ITRi schemes in each zone. 
Recall that the zones have been determined by the Parent, and the 
Children, pointers computed by Procedure Forward-Constructioni of the 
previous subsection. 

For each pivot q of level i, we now consider the tree T,(q), which 
defines the zone Z,(q) of level i around q. Recall that by Lemma 5.2 in 
every level all the zones are disjoint. 

We assign a DFS (pre-order) number to each vertex u E T(q), and 
maintain counters Lowest, and Highest, as the lowest and highest pre-order 
DFS numbers in the sub-tree rooted at u. The interval int(v) = 
(Lowest;, Highest;) contains the preorder numbers of all vertices in U’S 
sub-tree of level i. (Recall that Lowest, is the DFS number of u itself.) 
Also, for each child u of D, u maintains the parameters (Lowest,(u), 
Highesti(u where Highest,(u) equals Highest, of the vertex U, and 
Lowest,(u) equals Lowest, of U. 

The DFS procedure proceeds by forwarding a token that represents the 
“center of activity” along network edges. Transmission of a token is 
performed by sending a VISIT(p) message, where p is the highest DFS 
number in the sub-tree rooted at the vertex which sends the token. 
Returning a token is performed by sending a RETREAT(q) message, 
where q is the highest DFS number in the sub-tree rooted at the vertex 
which returns the token. 

Output variables: 

l Lowest,: DFS (pre-order) number of u in the DFS of level i, for 
Orilk. 

l Lowest,(w): the Lowest, of a neighbor w, for 0 I i I k. 

l Highest,: the maximal DFS number assigned to a vertex in the 
sub-tree rooted at U, for 0 I i I k. 

l Highesti( the Highest, of a neighbor w, for 0 I i I k. 

Local variables: 

l Unvisited,: the set of unvisited children in level i, for 0 I i 2 k. 
Initially, Unvisited, = Childreni. 

PROCEDURE DFS, /* subprocedure of procedure DFS-Numbering, */. 
if Unvisited, + 0 then do: 

pick u E Unvisited,; delete u from Unvisitedi; 
Lowest,(u) := Highest, + 1; 
send VISIT,(Highest,) to U; 
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else if Parent, f nil then send RETREATi(Highesti) to Parent,; 
end if 

end procedure 

PROCEDURE DFS-Numbering, (for a vertex self). 
upon triggering the procedure (at the root): 

Lowest, := 1; 
Highest, := 1; 
trigger Procedure DFS,; 

upon receiving VISIT,(p) from U: 
Lowest, := p + 1; 
Highesti := p + 1; 
trigger Procedure DFS,; 

upon receiving RETREAT,(p) from U: 
Highest,(u) := p; 
Highest, := p; 
trigger Procedure DFS,; 

end procedure 

6.5. Post-Update Procedure 

The goal of Procedure Post-Update is to compute the posts of every 
vertex. At the outset, all the vertices in Pk know their post; it is simply 
their original name. Now, whenever an i-pivot (i.e., a vertex which is a 
pivot of level i but not of level i + 1) learns about its posts for levels 
j > i, it has to pass this information on to all the I-level pivots in its zone 
Z,, for all 1 _< I _< i. For that purpose, it broadcasts its posts over its ZTR 
tree of level 1. Then the I-level pivots in that zone broadcast their new post 
over their zones, etc., until all the vertices in the network know their posts. 

In the code below, the message POST(j, qj, . . . , qk) is interpreted as 
saying that qj is a j-pivot, and its i-post at level i is qi, for j I i I k. 

Output variables: 

l posts: the new posts of a vertex v; it is a sequence (j, LJ, qj+ 1,. . . , qk), 
where v is a j-pivot. 

PROCEDURE Post-Update (for a vertex self>. 
upon triggering the procedure: (for u E Pk) 

posts := (k, serf); 
for each vertex z in Children, 

send message POSTCk, self> to z; 
upon receiving POSTS j, qj, . . . , qk) from w  = Parent,: 

for each vertex z in Childreni 
send message POST(j, qj, . . . , qk) to z; 

if pi-, = self then 



340 AWERBUCH ET AL. 

set posts := (j - 1, self, qj,. . . , qk); 
ifj - 1 > 0 then 

for 1 := 1 to j - 1 do: 
for each vertex z in Children, 

send message POST(1, self,. . . , self, qj, . . . , qk) to z, 
where self appears j - 1 times; 

end for 
end if 

end procedure 

6.6. Complexity of the Algorithm 

It takes dk log n bits at a vertex with degree d to maintain pi, Parent,, 
Children,, and posts. It takes km log n = kn’jk log n bits to maintain each 
of the lists Listi and New,. The memory requirements at a single vertex 
are thus upper-bounded by O(k log n(d + n’/k)) bits, summing up to 
O(knl+‘lk log n) bits over the entire network. 

REFERENCES 

[Cl 

[DSI 

[FJll 

[FJ21 

[GHSI 

lKK11 

W=l 

PI 

[PUI 

PI 

[SF1 

[SKI 

H. CHERNOFF, A measure of asymptotic efficiency for tests of hypothesis based on 
the sum of observations, Ann. Math. Srar&. 23 (1952), 493-507. 
E. W. DIJKWRA AND C. S. SCHOLTEN, Termination detection for diffusing computa- 
tions, Inform. Process. Lert. 11 (1980), 1-4. 
G. N. FREDERICKSON AND R. JANARDAN, Designing networks with compact routing 
tables, Algorithmica 3 (1988), 171-190. 
G. N. FREDERICKSON AND R. JANARDAN, Separator-based strategies for efficient 
message routing, in “Proceedings, 27th Symp. on Foundations of Computer Science, 
1986,” pp. 428-431. 
R. G. GALLAGHER, P. A. HUMBLET, AND P. M. SPIRA, A distributed algorithm for 
minimum-weight spanning trees, ACM Trans. Programming Lang. Systems 5 (19831, 
66-77. 
L. KLEINROCK AND F. KAMOUN, Hierarchical routing for large networks; Perfor- 
mance evaluation and optimization, Compur. Nerworks 1 (19771, 155-174. 
L. KLEINROCK AND F. KAMOUN, Optimal clustering structures for hierarchical 
topological design of large computer networks, Networks 10 (19801, 221-248. 
L. Lovbsz, On the ratio of optimal integral and fractional covers, Discrete Muthemat- 
its 13 (1975), 383-390. 
D. PELEG AND E. UPFAL, A tradeoff between size and efficiency for routine tables, 
JACM 36 (1989), 510-530. 
R. PERLMAN, Hierarchical networks and the subnetwork partition problem, in 
“Proceedings, 5th Conf. on System Sciences, 1982.” 
N. SHAVIT AND N. FRANCEZ, A new approach to detection of locally indicative 
stability, in “Proceedings, 13th ICALP, 1986,” pp. 344-358. 
N. SANTORO AND R. KHATIB, Labeling and implicit routing in networks, Comput. J. 
28 (1985). 5-8. 



ROUTING WITH SUCCINCT TABLES 341 

PI 

VI 

C. A. SUNSHINE, Addressing problems in multi-network systems, in “Proceedings, 
IEEE INFOCOM, 1982.” 
A. S. TANENBAUM, “Computer Networks,” Prentice-Hall, Englewood Cliffs, NJ, 
1981. 

[vLTl] J. VAN LEEUWEN AND R. B. TAN, Routing with compact routing tables, in “The Book 
of L” (G. Rozenberg and A. Salomaa, Eds.), pp. 259-273, Springer-Verlag, New 
York, 1986. 

[vLT2] J. VAN LEEUWEN AND R. B. TAN, Interval routing, Comput. J. 30 (19871, 298-307. 
VI H. ZIMMERMANN, OS1 reference model-The IS0 model of architecture for open 

systems interconnection, IEEE Trans. Cummun. 28 (19801, 425-432. 


