Finding More Null Pointer Bugs, But Not Too Many

David Hovemeyer

Dept. of Physical Sciences
York College of Pennsylvania

dhovemey@ycp.edu

Abstract

In the summer of 2006, the FindBugs project was challenged to
improve the null pointer analysis in FindBugs so that we could
find more null pointer bugs. In particular, we were challenged to
try to do as well as a publicly available analysis by Reasoning,
Inc on version 4.1.24 of Apache Tomcat. Reasoning’s report is a
result of running their own static analysis tool and using manual
auditing to remove false positives. Reasoning reported a total of
9 null pointer warnings in Tomcat 4.1.24, of which only 2 were
reported by FindBugs 1.0. While we wanted to improve the analysis
in FindBugs, we wanted to retain our current low level of false
positives.

As of result of the work presented in this paper, FindBugs
now reports 4 of the 9 warnings in Tomcat, shows that one of the
warnings reported by Reasoning is a false positive, and classifies
the remaining 4 as being dependent on the feasibility of a particular
path, which cannot be easier ascertained by a local examination
of the source code. Moreover, we found 24 additional null pointer
bugs in Tomcat that had been missed by Reasoning, and overall
doubled the number of null pointer bugs found by FindBugs while
improving the quality and significance of reported defects.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-

gramming Languages]: Program analysis; D.2.4 [Software/Program

Verification]: Reliability
General Terms Algorithms, Reliability, Security

Keywords FindBugs, null pointers, static analysis, bugs, bug pat-
terns, Java, software quality

1. Introduction

In the summer of 2006, David Morgenthaler challenged the Find-
Bugs project to improve the null pointer analysis in FindBugs.
Dr. Morgenthaler had been previously employed at Reasoning, a
company that provided static analysis for software defect detec-
tion as a service. Dr. Morgenthaler was now employed by Google,
where among other duties he was evaluating static defect detec-
tion tools for internal use. Reasoning had previously made public
a sample [8] of the output of their services on version 4.1.24 on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’07 June 13-14, 2007, San Diego, California, USA.

Copyright © 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00.

William Pugh

Dept. of Computer Science
Univ. of Maryland

pugh®cs.umd.edu

Apache Tomcat [1]. Reasoning had applied their own static anal-
ysis tool, and, after filtering out the warnings they believed to be
false positives, reported 9 null pointer bugs. FindBugs 1.0 reported
only two of the warnings reported by Reasoning. For some time
we had wanted to improve our analysis to find more defects, and
Dr. Morgenthaler’s challenge and Reasoning’s report provided us
additional motivation and test cases.

The static analysis tool used by Reasoning could have a much
higher false positive rate than was acceptable for FindBugs, since
they performed internal manual suppression of false positives be-
fore results were shown to customers. In particular, the issue of
infeasible paths is a challenging problem for static analysis tools.
Consider, for example:

PrintWriter log = null;
if (anyLogging) log = new PrintWriter(...);
if (detailedLogging) log.println("Log started");

This code will throw a null pointer exception if anyLogging is
false and detailedLogging is true. The names of these boolean
variables suggest that this situation cannot arise at runtime. but
verifying that through static analysis might be difficult. As we
can see in this example, the infeasible path problem involves a
path through the program that depends on at least two branches.
Even if both branches can be decided in both directions (true and
false), they both have to be decided in a correlated manner in
order for the potential null-pointer bug to manifest. To address this
problem, static analysis tools can compute path conditions—the
conditions that must be true in order for the path to be executed. If
the analysis can show that the path conditions are infeasible, then
the potential defect is also shown to be infeasible. In the following
modification of the above example, the path condition for the null
pointer exception is logLevel < 0 A logLevel > 3, which can
shown to be infeasible by appropriate techniques.

PrintWriter log = null;
if (logLevel > 0) log = new PrintWriter(...);
if (logLevel > 3) log.println("Log started");

Unfortunately, many infeasible path conditions are not easy to
disprove. Rather than worrying about disproving path conditions,
FindBugs 1.0 used a null pointer analysis that reported a warning if
there was a statement or branch in a program that, if executed/taken,
would guarantee the occurrence of a null pointer exception (NPE).
Since programmers strive to avoid writing unreachable code and
redundant conditional tests, the existence of such a statement or
branch is a good indicator of programming defect. If the statement
or branch is unreachable, then that is generally taken as evidence
of a programming fault that warrants correction, to improve the
performance and understandability of the code.

In this paper, we describe several techniques we developed
and implemented in more recent versions of FindBugs in order
to find more null pointer bugs, while retaining the property that

322 while(it.hasNext()) {

323 0Object elt = it.next();

324 if((null == obj && null == elt)
|| obj.equals(elt)) {

325 count++;

326 }

Figure 1. Defect 01

519 HttpServletRequest hreq = null;

520 if (req instanceof HttpServletRequest)
521 hreq = (HttpServletRequest) req;

522

523 if (isResolveHosts())

524 result.append(req.getRemoteHost());
525 else

526 result.append(req.getRemoteAddr());

551 result.append(hreq.getMethod());

Figure 2. Defect 08

null pointer warnings are only emitted if a branch or statement
exists that if executed would guarantee a null pointer exception.
Combined with strengthened analysis to track null values in fields,
these improvements roughly double the number of null pointer
defects found by FindBugs, without increasing the false positive
rate. Our improved analysis is substantially better than analysis
based on proving the feasibility of path conditions at producing
easy-to-understand warnings.

2. Reasoning report on Tomcat

Table 1 gives the null pointer warnings reported [8] by Reasoning.
Figures 1, 2, and 3 show part of the code for the defects numbers
01, 08, and 09, respectively, by Reasoning. The defect numbers
are those assigned by Reasoning, which also include 3 array bound
errors, 12 resource leaks and 2 bad string comparisons.

Figure 1 is a relatively simply bug that was found by the null
pointer analysis in FindBugs 1.0 [6]: if the test null == elt
evaluates to false, we are guaranteed to get a null pointer exception
when we dereference obj by invoking the equals method on it.

Figure 2 is a bug we want to report, but the analysis in [6]
doesn’t. If the test on line 520 fails, we are guaranteed to get a
null pointer exception at line 551 (assuming no other exceptions
prevent us from reaching line 551). However, there is no simple
path! from the else branch of line 520 to line 551. The conditions
at lines 523, 530 and 532 mean that there are 8 different paths from
line 520 to line 551, and each of these paths have path conditions
that traditional analysis would try to show are feasible or infeasible.

Figure 3 is a warning we do not wish to report in FindBugs.
This null pointer exception can occur only if is it simultaneously
possible for req to not be a HttpServletRequest and for type
= ’¢’. This is exactly the kind of infeasible path problem that we
were concerned about. Clearly, this defect should be prioritized
below defects 01 and 08, and at this point, we don’t want FindBugs
to report this potential defect.

3. Improving the null pointer analysis

While the most significant changes to our analysis were partially
motivated by the challenge of improving our results on Tomcat, we

I'We define a simple path to be one in which there are no conditional
branches.

889 HttpServletRequest hreq = null;

890 if (req instanceof HttpServletRequest)
891 hreq = (HttpServletRequest) req;
892

893 switch (type) {

905 case ’c’:
906 Cookie c = hreq.getCookies();

Figure 3. Defect 09

made a number of other changes to our null pointer analysis since
FindBugs 1.0. This section summarizes them, notes the impact on
the number of warnings FindBugs reports on Eclipse and Sun’s 1.6
JVM implementation, and notes the connection to improving its
results on Tomcat.

3.1 Warnings removed

FindBugs no longer reports a number of warnings reported by
FindBugs 1.0. There are four basic reasons for this:

e Suppression of warnings inside try/catch blocks We found
a number of cases where code could perform a null pointer
dereference, but the code was inside a small try/catch block that
was designed to anticipate and handle that situation.

Better handling of assertions. In particular, FindBugs now
analyzes code as if assertion checking is always enabled. This
means that we will treat assert x !'= null; as an assertion
that x is non-null, since the analysis understands the successor
of that statement can be reached only if x is non-null.

Better handling of panic methods. We’ve seen a fair number
of false positives caused by code such as if (x == null)
panic(); followed by a dereference of x. Unless FindBugs
understands that the panic () method won’t return normally, it
will report a null pointer defect here. We can’t simply match on
the name panic, since different projects use different names for
such methods. We also can’t depend on checking to see if the
method returns normally, because some systems have methods
that log a fatal error message and then return normally. We
have done some custom modeling of specific panic methods we
supported by various frameworks, and allow users of FindBugs
to improve their analysis results by specifying any additional
panic methods used in their own codebases.

¢ Better modeling of the JDK. FindBugs incorporates a model
of which method parameters and return values in the core
API methods must be non-null. An improved modeling of
which JDK methods always return non-null values eliminated
some false positives. For example, in one package of the JDK,
java.util.concurrent, we had modeled all the method pa-
rameters as taking non-null parameters unless explicitly spec-
ified otherwise. Additional methods were introduced into that
package after FindBugs 1.0 were released, and thus FindBugs
1.0 wrongly marked some of these methods as requiring non-
null parameters. (This is something of an artificial case, due to
the explicit modeling of the JDK in FindBugs.)

3.2 Warnings reclassified

FindBugs 1.0 reported a null pointer correctness bug if an equals ()
method would throw a null pointer exception if given a null argu-
ment. (It should instead return a false value if its parameter is null.)
In FindBugs 1.1, this was reclassified as a bad practice bug, rather
than a correctness bug. While one could make the case that this
is incorrect code, we found that developers didn’t want to wade
through these warnings when performing correctness bug triage.

| FB1.0 FBI1.1+ library File line
01 | yes yes commons-collections-2.1 CollectionUtils.java 324
05 | no no, path-dependent | tomcat-4.1.24 StandardWrapperValve.java 185
08 | no yes tomcat-4.1.24 AccessLogValve.java 551
09 | no no, path-dependent | tomcat-4.1.24 AccessLogValve.java 906
10 | no no, path-dependent | tomcat-4.1.24 CertificatesValve.java 385
18 | yes yes jakarta-tomcat-connectors IntrospectionUtils 847
19 | no no, disproven jakarta-tomcat-connectors IntrospectionUtils 847
20 | no no, path-dependent | jakarta-tomcat-connectors IntrospectionUtils 912
21 | no yes jakarta-tomcat-connectors IntrospectionUtils 915

Table 1. Null pointer warnings reported by Reasoning

In general, each project or organization should adopt a rule as to
whether this bad practice is acceptable. Similarly, we reclassified
clone() and toString() methods returning a null value as bad
practices rather than correctness bugs.

3.3 More accurate modeling of core API methods

Since FindBugs version 1.0, we have improved the modeling of
which methods in the core Java API classes require non-null val-
ues. Some of the improvements come from explicit marking (us-
ing annotations) of methods requiring non-null parameters. Others
depend upon an iterative application of our guaranteed dereference
computation to determine method parameters that are always deref-
erenced (or passed to methods that, in turn, dereference them). Our
guaranteed dereference computation improved in FindBugs 1.2.0,
and we don’t separately break out which improvements came from
explicit marking and which came from computation of guaranteed
dereferences. In both cases, the new bugs that are reported due to
these improvements involve passing a possibly-null value as an ar-
gument to a method that will unconditionally dereference it.

3.4 Reporting of errors on exception paths

FindBugs 1.0 contained an error in how it tracked potential null
pointer dereferences on exception paths. Since the quality of these
warnings wasn’t very good, they were reported at a low priority
level warnings (which are ignored by default). One we fixed this
problem, we were able to report such warnings as medium priority.

3.5 Field tracking

We added limited tracking of static and instance fields in order to
detect more cases where a null value could be loaded from a field.
We ignore aliasing, don’t track volatile fields, and assume that any
method call could modify any field of any object passed to the
method call. We also assume that any synchronization could cause
all non-final fields to change.

3.6 Guaranteed dereferences

While all of the techniques we’ve described are useful, none of
them address the defects in Tomcat that we wanted to catch. In
addition to the forwards data flow analysis used in FindBugs 1.0
[6], we added a backwards dataflow analysis of which values are
guaranteed to be dereferenced on all non-exception paths to exit.
We had already done a version of this analysis to determine which
method parameters are unconditionally dereferenced, but we made
some substantial improvements to it and also now incorporate it
into our intra-procedural null pointer analysis. In Defect 08 (Fig-
ure 2), the backwards propagation tells us that at else branch of the
test on line 521, the current value of hreq is guaranteed to be deref-
erenced. When the backwards propagation of values guaranteed to
be dereferenced encounters a statement or branch where that value
is guaranteed to be null, we report an error. (Note that the analysis
tracks values and not variables: see Section 4.)

v1 guaranteed
to be dereferenced

» 4

v2 guaranteed
to be dereferenced

v3 = ®O(vl, v2)

Y.

v3 guaranteed
to be dereferenced

Figure 4. Propagating a guaranteed dereference backwards across
a ¢-node. (Dashed arrows show direction of propagation.)

We only consider non-exception paths due to the ever-present
possibility of unchecked exceptions. Because a substantial number
of Java bytecode instructions can throw unchecked exceptions, in-
cluding all method invocations, there are generally very few places
where a value is guaranteed to be dereferenced on a/l forward paths,
including paths which include exception control flow. Since excep-
tion control flow usually indicates an error, we feel it is reasonable
to exclude these paths from consideration.

4. Implementation notes

Our null-pointer analysis is based on a forward dataflow analysis
that approximates static single assignment form (SSA) for values in
local variables and on the operand stack. Specifically, the analysis
tries to detect all cases where two values in local variables or the
operand stack are the same, and assign such values the same “value
number”. When two distinct values in the same local variable or
operand stack location are merged as the result of a control join,
the analysis creates a fresh value number distinct from any existing
value number. Such join points are analogous to ¢-nodes in SSA.

We compute the guaranteed dereferences as a backwards dataflow
problem over our SSA approximation. At each program location
where a value is dereferenced, the analysis considers adding that
value number to the set of values guaranteed to be dereferenced. As
an optimization, we omit any dereference that occurs at a location
where the dereferenced value is definitely non-null; such derefer-
ences can be safely ignored. If a value is dereferenced at a location
where the value is guaranteed to be null, we report the error directly
rather than propagating the dereference.

When the guaranteed dereference analysis encounters a ¢-node
going backwards, it must rewrite the dereferenced value sets on
each control edge leading into the ¢-node to translate from the

value number assigned by the ¢-node to the corresponding input
value to the ¢-node. This is illustrated in Figure 4.

The category of program locations we denote as “dereferences”
are more inclusive than actual dereferences (i.e., instructions with
a built-in null check); they are any location where the use of a null
value has a high likelihood of causing a null pointer exception.
For example, we also count as dereferences passing a value to a
parameter that must be non-null, returning a value from a method
that must return a non-null value, and storing a value into a field
that has been annotated as non-null.

We treat conditional branches on nullness specially. Specif-
ically, in computing the guaranteed dereferences that propagate
backwards from an if (x == null), for the value in x we check
to see if x is guaranteed to be dereferenced just on the true branch
and ignore the else branch. Other values are marked as having a
guaranteed dereference only if they have a guaranteed dereference
on both branches.

4.1 Reporting defects

As part of our backwards guaranteed-dereference dataflow anal-
ysis, we compute, for each distinct known-null value, the set of
locations such that one location in the set is guaranteed to derefer-
ence the value on a non-exception path to the method exit. When a
guaranteed dereference and a known null value collide, we report
a warning that gives both the location where the value is known
to be null and the set of locations, one of which is guaranteed to
dereference it.

We prune the set of dereference locations as follows: if the
set contains both locations = and y, and y postdominates x, then
remove x from the set of locations that are reported. This is rather
effective at capturing the “interesting” dereference locations, and in
the vast majority of cases we report a single dereference location.

Although our analysis does not find as many bugs as purely
path-based approaches, it has the considerable advantage that the
bugs reported are easy to understand. A path-based analyzer might
find many paths between a location where a value is known to
be null and a dereference of that value. Reporting all paths might
overwhelm the user, while picking one path arbitrarily might result
in reporting an infeasible path. Our analysis reports warnings the
user can verify with relative ease, since the null value mentioned by
the warning is guaranteed to be dereferenced at one of the reported
locations (unless an exception occurs).

4.2 Defect prioritization

FindBugs uses a number of heuristics in trying to prioritize defect
warnings. As mentioned, we only report a null pointer warning if
there is a statement or branch that, if executed/taken, guarantees a
null pointer exception, assuming our program model is correct.?
If the execution of a statement (as opposed to a taken branch)
guarantees a null pointer exception, we raise the priority of the
warning. In our auditing of defect warnings we have found a fair
number of cases where developers write conditional tests that they
never expect to be fully covered. However, we have it found it much
rarer for developers to intentionally write statements that they never
expect to be executed.

5. Results

We were quite happy with the results of our new analysis. Table
1 notes the changes in our results on the warnings reported by
Reasoning. In addition to reporting two more of the defects found
by Reasoning, we report 24 additional null pointer defects missed

2 Our program model could be wrong due to field aliasing, not understand-
ing which methods modify which functions, or not understanding when ex-
ceptions will be thrown and execution will not continue normally

// org.apache.cataline.core.StandardPipeline:
546 protected void log(String message) {

547

548 Logger logger = null;

549 if (container !'= null)

550 logger = container.getLogger();

551 if (logger != null)

552 logger.log(... + container.getName()

553 + "]: " + message);

554 else

555 System.out.println(... + container.getName ()
556 + "]: " + message);

557

5568 }

Figure 5. Null pointer bug missed by Reasoning

// sun.awt.X11.XMSelection
// lines 242-246
public synchronized void removeSelectionListener(
XMSelectionListener listener) {
if (listeners == null) {
listeners.remove(listener);

}

Figure 6. The Null Pointer Bug That Didn’t Bark

by Reasoning. Figure 5 shows an interesting example of a defect
found by the new analysis in Tomcat but not reported by Reason-
ing. FindBugs reports that if container is null on line 549, then
container will be dereferenced at either line 552 or line 555. In
fact, only the dereference at line 555 is feasible if container is
null. When asked about this example, Dr. Morgenthaler said that
Reasoning’s static analysis tool had reported a potential null pointer
exception on the path from line 549 to line 552, but had not re-
ported a potential null pointer exception on a path from line 549 to
line 555. Since the NPE at line 552 was infeasible, they filtered it
out.

Table 2 shows the overall changes in our results on Sun’s JDK
1.6.0-b105 and Eclipse 3.2.1. This table details the changes in the
high/medium priority null pointer correctness warnings about paths
where a value is known to be null and guaranteed to later be used
in a way that required it to be non-null. Because Java is a memory-
safe language, not all of these defects are important, and trying to
identify the important null pointer defects is ongoing work. Figure
6 shows an interesting situation where the most severe impact of
the defect is felt when the null pointer exception does not occur. If
a listener is removed before any have been added, a null pointer
exception will occur. But that situation seems unlikely and if it
does occur, hopefully the null pointer exception will get logged
and reported, leading to the software being fixed. However, in the
typical case, where a listener is removed after having been added,
the impact of the defect is to make removal of listeners fail silently.

5.1 Other analysis tools

This section tries to provide some understanding of where the
current FindBugs analysis fits in the world of static analysis for
null pointers. It is important to understand that there is no one way
to design a null pointer analysis. FindBugs has been tuned to have
a very low false positive rate, so that it can be reasonably applied to
multi-million line programs. Other tools have made different trade
offs for false negatives and false positives.

Eclipse | JDK | Explanation
101 70 | Number of NP correctness warnings reported by FindBugs 1.0
-16 -20 | Warnings removed due to bug fixes and better modeling of asserts, panic methods, JDK libraries
-23 -13 | Warnings about equals method not handling null reclassified as bad practice
+8 | +38 | New warnings due to better modeling of JDK libraries
+3 | +16 | New warnings due to fix in tracking of null dereferences on exception paths
+37 | +12 | New warnings that required field tracking
+50 | +17 | New warnings that required guaranteed dereferences
+13 +1 | New warnings that required both field tracking and guaranteed dereferences
173 121 | Number of NP correctness warnings reported by FindBugs 1.2.0-dev

Table 2. Changes in null pointer warnings between FindBugs versions 1.0 and 1.2.0-dev

6 intraprocedural and 3 interprocedural microbenchmarks for null pointer defect detection. Each of these contains a defect. Some
microbenchmarks also have a variant that is a false positive. Substitute the operator or expression in the /* comments */ to geta

version with no defect: reporting a warning in those cases is a false positive.

int intral(int level) {
Object x = null;
if (level > 0)
x = new Object();
if (level < /% > x/ 4)
return x.hashCode();
return 0;

}

int intra2(boolean b) {
Object x = null;
if (b)

x = new Object();
if (Ib /* b */)
return x.hashCode();
return O;

}

int intra3(Object x) {
Object y = null;
if (x != null)
y = new Object();
if (y !'= null)
return x.hashCode() +
y.hashCode () ;
else

return x.hashCode() /* 0 *x/ ;

in

}

t intrad(boolean b) {
Object x = null;
Object y = null;
if (b)
x = "x";
if (x != null)
y ="y
if (y !'= null)
return x.hashCode() +
y.hashCode () ;
else
return x.hashCode() /* 0 */;

int intrab5(Object x) {

}

if (x == null) {
return x.hashCode();
}

return 0O;

int intra6(Object x) {

}

if (x == null) {

Object y = x;
return y.hashCode();
}
return 0;

int interil(boolean b) {
Object x = null;
if (b /% 'b *x/)
x = new Object();
return helperi(x, b);
}

int inter2() {
return helper2(null);
}

int inter3(boolean b) {
Object x = null;
if (b) x = "x";
return helper2(x);

}

// Bug when x is null
// and b is false
private int helperi(
Object x, boolean b) {
if (b) return 0O;
return x.hashCode();

}

private int helper2(Object x) {

return x.hashCode();

}

Figure 7. Null pointer microbenchmarks, v2

intraprocedural cases interprocedural

1 2 3 4 5 6 1 2 3
CodeSonar v,f v,f v,f v,f vf | vf vf | vf | vf
Eclipse \2% \2% \2% \2% v v
FindBugs v,f v,f vf | vf v v
Fortify v ff | viff | viff | vviff | v,f | vf
IntelliJ vy, if v,f v,f voff | vf | vf
Jtest v,f v,f v,f v,f vf | vf | vf
Klocwork vv,ff v,f v,f v

Table 4. Microbenchmark, v2, results from different tools

Tools
182 FindBugs 1.2.0-dev
1,018 Eclipse 3.3M2
272 IntelliJ 6.0.4

Table 3. Null pointer warnings on JDK

One comparison is to examine the total number of warnings
reported for a large code base. Table 3 reports the number of null
pointer warnings generated by various static analysis tools on Sun’s
jdk1.6.0-b105. The FindBugs numbers in this table differ from the
number in 2 because this table includes other kinds of null pointer
warnings, including warnings about unwritten fields being read
and dereferenced and about values being dereferenced and later
checked to see if they are null.

Now, no particular number of warnings is right or wrong. Both
IntelliJ and Eclipse undoubtedly correctly report some null pointer
defects that are missed by FindBugs. However, the number of warn-
ings reported by Eclipse make the idea of systematically reviewing
null pointer warnings reported by Eclipse tools on a large software
project a daunting task.

To further clarify the differences, we devised a series of null
pointer microbenchmarks, given in Figure 7 and in a Subversion
repository [7]. It is important to note that this is a microbenchmark,
designed to elucidate certain aspects of how null pointer analysis
works rather than to gauge the effectiveness or value of an analysis.
We analyzed both this microbenchmark and a variant in which x
is an instance field rather than a local variable. The results from
several different analysis tools are reported in Table 4. An entry
of v shows that the tool reported a warning for the version of the
benchmark where x is a local variable, and where the defect is
actually possible. An entry of vv shows that a defect is reported
in both the true positive and false positive case. Entries of f and ff
note the results if x is a field.

Several notes about the results in this table. Klocwork makes a
trial version of their analysis tool freely available on their website,
but their license strictly prohibits us from disclosing any informa-
tion about the capabilities of their tool. We have left a blank line for
Klocwork and encourage readers to download the Klocwork tool
and fill in their own results. Fortify Software notes that a revision
planned for release this summer incorporates some null pointer in-
terprocedural analysis. Coverity declined to share any information
on their tool. CodeSonar from GrammaTech, a tool for C/C++, does
an exceptionally precise job on a C++ version of the benchmark, as
appropriate for a defect detection tool designed for a language that
lacks memory safety. Jtest 8.0 from Parasoft don’t report defects in
two cases in the microbenchmark because they decided not to re-
port potential defects when the only reason to believe that the value
might be null is that it was previously compared to null. They report
that their users felt that doing so generated too many false positives,
but they have since decided to modify their analysis to allow users
to select whether to report potential defects in these cases.

6. Related work

There have been quite a number of papers on static analysis for
defect detection, and many of these [5, 4, 2] touch substantially,
but not exclusively, on finding null pointer defects. Our use of a
backwards analysis to propagate dereferenced values bears some
resemblance to the unlockset analysis used in RacerX [3].

We previously published work [6] on the null pointer bug detec-
tion used in FindBugs 1.0.

7. Conclusions

Since our work is done in the context of a memory safe language,
the impact of null pointer errors is typically much less significant
than in languages such as C/C++. Thus, we believe we have reached
a happy medium with our null pointer analysis. We are pleased with
the quality of the defects we are reporting, and given the number
of null pointer warnings we find in existing code, we don’t want to
expand the analysis to report warnings only feasible on some paths.

The most interesting question to us is not how to lower our false
positive or false negative rate, but how to identify high-impact null
pointer bugs. Once we can do that, trying to apply those techniques
over a larger field of null pointer bugs, including ones FindBugs
does not now report, would be of interest.

8. Acknowledgments

Thanks to David Morgenthaler for challenging us, and to all those
who have contributed to the FindBugs project. Brian Goetz and
the anonymous reviewers provided valuable suggestions to help us
improve the clarity of the paper. Fortify Software is the sponsor of
the FindBugs project, and additional support is provided by Google
and Sun Microsystems.

References

[1] Apache Tomcat. http://tomcat .apache.org, 2006.

[2] L. Dillig, T. Dillig, and A. Aiken. Static error detection using
semantic inconsistency inference. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2007.

[3] D. Engler and K. Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. In SOSP '03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 237-252,
New York, NY, USA, 2003. ACM Press.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as

deviant behavior: a general approach to inferring errors in systems

code. In SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pages 57-72, New York, NY, USA,

2001. ACM Press.

[5] D. Evans. Static detection of dynamic memory errors. In PLDI *96:
Proceedings of the ACM SIGPLAN 1996 conference on Programming
language design and implementation, pages 44-53, New York, NY,
USA, 1996. ACM Press.

[6] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a
static analysis to find null pointer bugs. In PASTE ’05: The 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, pages 13-19, New York, NY, USA, 2005. ACM
Press.

[7] W. Pugh. Null pointer detection microbenchmarks. http://

findbugs.googlecode.com/svn/trunk/NullPointerBenchmark/,

2006.

Reasoning, Inc. Reasoning inspection service defect data report for

Tomcat, version 4.1.24, January 2003. http://www.reasoning.

com/pdf/Tomcat _Defect_Report.pdf.

4

—

[8

[l

