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Abstract

This paper addresses the well-known classification task of data mining, where the goal is to discover rules
predicting the class of examples (records of a given data set). In the context of data mining, small disjuncts are
rules covering a small number of examples. Hence, these rules are usually error-prone, which contributes to a
decrease in predictive accuracy. At first glance, this is not a serious problem, since the impact on predictive ac-
curacy should be small. However, although each small disjunct covers few examples, the set of all small dis-
juncts can cover a large number of examples. This paper presents evidence that this is the case in several data
sets. This paper also addresses the problem of small disjuncts by using a hybrid decision-tree/genetic algorithm
approach. In essence, examples belonging to large disjuncts are classified by rules produced by a decision-tree
algorithm (C4.5), while examples belonging to small disjuncts are classified by a genetic algorithm specifically
designed for discovering small-disjunct rules. We present results comparing the predictive accuracy of this hy-
brid system with the prediction accuracy of three versions of C4.5 alone in eight public domain data sets. Over-
all, the results show that our hybrid system achieves better predictive accuracy than all three versions of C4.5

alone.
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1. Introduction

In essence, data mining consists of extracting knowl-
edge from data. The basic idea is that, intuitively, real-
world databases contain hidden knowledge useful for
decision making, if this hidden knowledge can be dis-
covered. For instance, data about the previous sales of
a company might contain hidden, implicit knowledge
about which kind of product each kind of customer
tends to buy. Hence, by analyzing that data, one can
discover knowledge potentially useful for increasing
the sales of the company.

Data mining is actually an interdisciplinary field,
since there are many kinds of algorithms, derived from
several different research areas (arguably, mainly ma-
chine learning and statistics), which can be used to
extract knowledge from data. In this paper we follow a
machine learning approach (rather than a statistical
approach) for data mining [16]. More precisely, we are
interested in discovering knowledge that is not only
accurate, but also comprehensible for the user. The
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discovery of comprehensible knowledge is facilitated
by the use of a high-level, rule-based knowledge repre-
sentation — see below.

The data mining task addressed in this paper is clas-
sification. In this task each example (or database rec-
ord) belongs to a class, which is indicated by the value
of a goal attribute. This attribute can take on a small
number of discrete values, each of them corresponding
to a class. The goal of the classification algorithm is to
predict the class of an example, based on the value of
the other attributes (called predictor attributes) for that
example. For a comprehensive review of the classifi-
cation task the reader is referred to [10], while for a
comprehensive review of data mining in general the
reader is referred to [25]. A specialized review of data
mining with evolutionary algorithms can be found in
[7].

In the context of the classification task, the discov-
ered knowledge is often expressed as a set of [F-THEN
prediction rules of the form: IF <conditions> THEN
<class>. From a logical viewpoint, typically the dis-
covered rules are in disjunctive normal form, where
each rule represents a disjunct and each rule condition



represents a conjunct. A small disjunct can be defined
as a rule that covers a small number of training exam-
ples [11].

In general rule induction algorithms have a bias that
favors the discovery of large disjuncts, rather than
small disjuncts. This is due to the belief that speciali-
zations in the training set are unlikely to be valid in the
test set. Hence, at first glance small disjuncts should
not be included in the discovered rule set, since they
tend to be error prone [11]. However, although each
disjunct covers a small number of examples, the set of
all small disjuncts can cover a large number of exam-
ples. For instance [4] reports a real-world application
where small disjuncts cover roughly 50% of the train-
ing examples. Therefore, if the rule induction algo-
rithm ignores small disjuncts and discovers only large
disjuncts, classification accuracy will be significantly
degraded.

In our previous work [1,2] we have proposed a hy-
brid decision tree/genetic algorithm method for rule
discovery that copes with the problem of small dis-
juncts. The basic idea is that examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm, while examples belonging to
small disjuncts (whose classification is considerably
more difficult) are classified by rules produced by a
genetic algorithm specifically designed for discovering
small-disjunct rules.

However, that previous work had two limitations.
First, it reported results for only two data sets. Second,
it compared the performance of the hybrid system only
with the default version of C4.5 [19]. This paper ex-
tends our previous work in three directions:

(a) we report more extensive results on eight data sets;

(b) we compare the performance of the hybrid system
not only with the default version of C4.5, but also
with two other versions of C4.5 more adapted to
cope with small disjuncts; and

(c) we present an analysis of the number of small
disjuncts found in each data set, showing that
small disjuncts occur more often than one might
think at first glance.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes
our hybrid decision tree/genetic algorithm method for
rule discovery, focusing on the genetic algorithm,
which was specifically designed for discovering small-
disjunct rules. Section 4 reports the results of experi-
ments evaluating the performance of our system on
eight data sets. Finally, Section 5 presents conclusions
and future research directions.

2. Related Work

Liu et al. present a new technique for organizing
discovered rules in different levels of detail [12]. The
algorithm consists of two steps. The first one is to find
top-level general rules, descending down the decision
tree from the root node to find the nearest nodes whose
majority classes can form significant rules. They call
these rules the top-level general rules. The second is to
find exceptions, exceptions of the exceptions and so
on. They determine whether a tree node should form
an exception rule or not using two criteria: significance
and simplicity. Some of the exception rules found by
this method could be considered as small disjuncts.
However, unlike most of the projects discussed below,
the authors do not try to discover small-disjuncts rules
with greater predictive accuracy. Their method was
proposed only as a form of summarizing a large set of
discovered rules. By contrast our work aims at discov-
ering new small-disjunct rules with greater predictive
power than the corresponding rules discovered by a
decision tree algorithm. Next we discuss other research
more related to our work.

Weiss and Hirsh present a quantitative measure for
evaluating the effect of small disjuncts on learning
[24]. The authors reported experiments with a number
of data sets to assess the impact of small disjuncts on
learning, especially when factors such as training set
size, pruning strategy, and noise level are varied. Their
results confirmed that small disjuncts do have a nega-
tive impact on predictive accuracy in many cases.
However, they did not propose any solution for the
problem of small disjuncts.

Holte et al. investigated three possible solutions for
eliminating small disjuncts without unduly affecting
the discovery of “large” (non-small) disjuncts [11],
namely: (a) Eliminating all rules whose number of
covered training examples is below a predefined
threshold. In effect, this corresponds to eliminating all
small disjuncts, regardless of their estimated perform-
ance. (b) Eliminating only the small disjuncts whose
estimated performance is poor. Performance is esti-
mated by using a statistical significance test. (c) Using
a specificity bias for small disjuncts (without altering
the bias for large disjuncts).

Ting proposed the use of a hybrid data mining
method to cope with small disjuncts [21]. His method
consists of using a decision-tree algorithm to cope with
large disjuncts and an instance-based learning (IBL)
algorithm to cope with small disjuncts. The basic idea
of this hybrid method is that IBL algorithms have a
specificity bias, which should be more suitable for
coping with small disjuncts. Similarly, Lopes and
Jorge discuss two techniques for rule and case integra-
tion[13]. Case-based learning is used when the rule
base is exhausted. Initially, all the examples are used to



induce a set of rules with satisfactory quality. The
examples that are not covered by these rules are then
handled by a case-based learning method. In this pro-
posed approach, the paradigm is shifted from rule
learning to case-based learning when the quality of the
rules gets below a given threshold. If the initial exam-
ples can be covered with high-quality rules the case-
based approach is not triggered. In a high level of
abstraction, the basic idea of these two methods is
similar to our hybrid decision-tree/genetic algorithm
method. However, these two methods have the disad-
vantage that the IBL (or CBL) algorithm does not
discover any high-level, comprehensible rules. By
contrast, we use a genetic algorithm that does discover
high-level, comprehensible small-disjunct rules, which
is important in the context of data mining.

Weiss investigated the interaction of noise with rare
cases (true exceptions) and showed that this interaction
led to degradation in classification accuracy when
small-disjunct rules are eliminated [22]. However,
these results have a limited utility in practice, since the
analysis of this interaction was made possible by using
artificially generated data sets. In real-world data sets
the correct concept to be discovered is not known a
priori, so that it is not possible to make a clear distinc-
tion between noise and true rare cases. Weiss did ex-
periments showing that, when noise is added to real-
world data sets, small disjuncts contribute dispropor-
tional and significantly for the total number of classifi-
cation errors made by the discovered rules [23].

3. A Hybrid Decision-Tree/Genetic-Algorithm
System for Rule Discovery

As mentioned in the Introduction, we present a hy-
brid method for rule discovery that combines decision
trees and genetic algorithms. The basic idea is to use a
well-known decision-tree algorithm to classify exam-
ples belonging to large disjuncts and use a genetic
algorithm to discover rules classifying examples be-
longing to small disjuncts. This approach tries to com-
bine the best of both worlds. Decision-tree algorithms
have a bias towards generality that is well suited for
large disjuncts, but not for small disjuncts. Indeed, one
of the drawbacks of decision tree-building algorithms
is the fragmentation problem [8], where the set of ex-
amples belonging to a tree node gets smaller and
smaller as the depth of the tree is increased, making it
difficult to induce reliable rules from deep levels of the
tree.

On the other hand, genetic algorithms are robust,
flexible algorithms, which tend to cope well with at-
tribute interactions [6,7,18]. Hence, they can be more
casily tailored for coping with small disjuncts, which
are associated with large degrees of attribute interac-
tion [20,17].
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Figure 1. Overview of our hybrid Decision-
Tree/Genetic-Algorithm system

The proposed system discovers rules in two training
phases. In the first phase we run C4.5, a well-known
decision tree induction algorithm [19]. The induced,
pruned tree is transformed into a set of rules in the
usual way — that is, each path from the root to a leaf
node corresponds to a rule predicting the class speci-
fied in the corresponding leaf node. Hence, a decision
tree with d leaves is transformed into a rule set with d
rules (or disjuncts). Each of these rules is considered
either as a small disjunct or as a “large” (non-small)
disjunct, depending on whether or not its coverage (the
number of examples covered by the rule) is smaller
than or equal to a given threshold. A large-disjunct rule
is simply saved in order to classify new examples in
the future (examples of the test set). By contrast, the
small-disjunct rules discovered by C4.5 are not saved.
Rather, the corresponding small-disjunct examples
(i.e., the examples belonging to leaf nodes considered
small disjuncts) are passed to a genetic algorithm
(GA), triggering the second training phase. This sec-
ond phase consists of using the GA to discover rules
covering those small-disjunct examples. We have de-
veloped a GA specifically for this phase, as described
in detail below. The small-disjunct rules discovered by
this GA are then used to classify new examples in the
future (examples of the test set). The basic idea of the
entire process is shown in Figure 1.



3.1 Overview of a GA for Discovering Small-
Disjunct Rules

In this section we describe our genetic algorithm
(GA) developed for discovering small-disjunct rules —
i.e., rules covering the examples in a decision tree’s
leaf nodes deemed small disjuncts, as explained above.
A detailed description of this GA can also be found in
[1,2]. In any case, the below description is intended to
make this paper self-contained.

The first step in the design of a GA for rule discov-
ery is to decide what an individual (candidate solution)
represents. In our case, each individual represents a
small-disjunct rule. The genome of an individual con-
sists of the conditions in the antecedent (IF part) of the
rule. The goal of the GA is to evolve rule conditions
that maximize the predictive accuracy of the rule, as
evaluated by a fitness measure — described later. The
GA also has a rule-pruning operator that favors the
discovery of shorter, more comprehensible rules, as
will be seen in Section 3.5.

The consequent (THEN part) of the rule, which
specifies the predicted class, is not represented in the
genome. Rather, it is fixed for a given GA run, so that
all individuals have the same rule consequent during
that entire run.

Each run of our GA discovers a single rule (the best
individual of the last generation) predicting a given
class for examples belonging to a given small disjunct.
Since we need to discover several rules to cover exam-
ples of several classes in several different small dis-
juncts, we run our GA several times for a given da-
taset. More precisely, we need to run our GA d * ¢
times, where d is the number of small disjuncts and c¢ is
the number of classes to be predicted. For a given
small disjunct, the i-th run of the GA, i= 1,..., ¢, dis-
covers a rule predicting the i-th class.

The next subsections describe in detail the individual
representation, the fitness function, and the genetic
operators used in our GA.

3.2 Individual Representation

In our GA each individual represents the antecedent
(IF part) of a small-disjunct rule. More precisely, each
individual represents a conjunction of conditions com-
prising a given rule antecedent.

The rule antecedent contains a variable number of
rule conditions, since one does not know a priori how
many conditions will be necessary to compose a good
rule. In practice, for implementation purposes, one has
to specify both a lower limit and an upper limit on the
number of conditions of a rule antecedent. In our GA
the minimum number of rule conditions is 2. Although
this number could be set to 1, recall that our GA is
searching for small-disjunct rules. It is very unlikely

that a rule with a single condition can accurately pre-
dict the class of an example belonging to a small dis-
junct, so a lower limit of 2 seems to make sense.

The maximum number of rule conditions is more
difficult to determine. In principle, the maximum num-
ber of rule conditions could be m, where m is the num-
ber of predictor attributes in the dataset. However, this
would have two disadvantages. First, it could lead to
the discovery of very long rules, which goes against
the desire to discover comprehensible rules. Second, it
would require a long genome to represent individuals,
which tends to increase processing time. To avoid
these problems, we use a heuristic to select the subset
of attributes that is used to comprise rule conditions.

Our heuristic is based on the fact that different small
disjuncts identified by the decision-tree algorithm can
have several ancestral rule conditions in common. For
instance, suppose that two sibling leaf nodes of the
decision tree were deemed small disjuncts and let & be
the number of ancestral nodes of those two nodes.
Then the two corresponding rule antecedents have & - 1
conditions in common. Therefore, it does not make
sense to use these common conditions in the rules to be
discovered by the GA, since they will not be good at
discriminating between the two corresponding small
disjuncts. Hence, for each small disjunct, the genome
of a GA individual contains only the attributes that
were not used to label any ancestor of the leaf node
defining that small disjunct.

To represent a variable-length rule antecedent (phe-
notype) we use a fixed-length genome, for the sake of
simplicity. Recall that each GA run discovers a rule
associated with a given small disjunct. For a given run
of the GA, the genome of an individual consists of n
genes, where n = m - k, where m is the total number of
predictor attributes in the dataset and k& is the number
of ancestor nodes of the decision tree leaf node identi-
fying the small disjunct in question.

Each gene represents a rule condition (phenotype) of
the form 4; Op; V;;, where the subscript i identifies the
rule condition, i = 1,..., n; 4; is the i-th attribute; V; is
the j-th value of the domain of 4;; and Op; is a logi-
cal/relational operator compatible with attribute 4; —
see Figure 2. B; represents an active bit, which takes on
the value 1 or O to indicate whether or not, respec-
tively, the i-th condition is present in the rule antece-
dent (phenotype).

As an example, the i-th rule condition encoded in the
genome could be a condition such as “Sex = female”,
where attribute 4; is “Sex”, the operator Op; is “=" and
the value Vj; is “female”. As another example, the i-th
rule condition encoded in the genome could be “Salary
< 20,0007, where the operator Op; is “<”. In the former
example the operator “=" was used because Sex is a
categorical (nominal) attribute, whereas in the latter
example the operator “<” was used because Salary is a
continuous (real-valued) attribute.
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Figure 2. Structure of the genome of an individual.

3.3 Fitness Function

Assume, without loss of generality, that there are two
classes. Let positive (“+”) class be the class predicted
by a given rule, and let negative (“-*) class be any class
other than the class predicted by the rule. For instance,
suppose that there are three classes, c;, ¢,, and c3, and
suppose that the rule being evaluated predicts class c;.
Then, class c; is considered the positive class, and
classes ¢, and c; are grouped into a single negative
class.

To evaluate the quality of an individual (candidate
rule), our GA uses the following fitness function:

Fitness = (TP / (TP + FN)) * (IN/ (FP+ TN)) (1)

where

TP (true positives) = number of “+” examples that
were correctly classified as “+” examples;

FP (false positives) = number of “-” examples that

were wrongly classified as “+” examples;
FN (false negatives) = number of “+” examples that
were wrongly classified as “-”” examples;
TN (true negatives) = number of “-” examples that
were correctly classified as “-” examples.

For a comprehensive discussion about this and re-
lated rule-quality measures in general, independent of
genetic algorithms, the reader is referred to [10]. Here
we briefly mention that, in the above formula, the term
(TP / (TP + FN)) is often called sensitivity, whereas the
term (TN / (FP + TN)) is often called specificity. These
two terms are multiplied to force the GA to discover
rules that have both high sensitivity and high specific-
ity, since it would be relatively simple to maximize one
of these terms by reducing the other.

Note that our fitness function does not take into ac-
count rule comprehensibility. However, our GA has a
rule-pruning operator that fosters the discovery of
shorter, more comprehensible rules, as discussed in
section 3.5.

3.4 Conventional Genetic Operators

We use the well-known tournament method for se-
lection, with tournament size of 2 [14]. We also use
standard one-point crossover with crossover probabil-
ity of 80%, and mutation probability of 1%. Further-
more, we use elitism with an elitist factor of 1 — i.e.,

the best individual of each generation is passed unal-
tered into the next generation [9].

The action of one-point crossover in our previously-
described individual representation is illustrated in
Figure 3, where the crossover point, denoted by a ver-
tical line (“”), fell between the second and the third
genes. In each gene (corresponding to a rule condition)
the number 1 or 0 between brackets denotes the value
of the active bit flag, as explained in Section 3.2. Note
that crossover points can fall only between genes, and
not inside a gene. Hence, crossover swaps entire rule
conditions between individuals, but it cannot produce
new rule conditions.

Sex=male(0) | Age<25(1)[ Employed=no(1) | Salary>50,000(0),

Sex=fem (1)| Age<25(1) |Employed=yes(1)| Salary>30,000(0)

(a) Parent individuals (before crossover)

Sex=male (0) [Age<25(1) [ Employed=yes(1)|Salary>30,000(0)

Sex=fem (1)| Age<25 (1)| Employed=no(1)| Salary>50,000(0)

(b) Offspring (after crossover)

Figure 3: One-Point Crossover in our Individual
Representation

The creation of new rule conditions is accomplished
by the mutation operator, which replaces the attribute
value of a condition (the element V; of Figure 2) with a
new randomly-generated value belonging to the do-
main of the corresponding attribute. For instance, sup-
pose the condition “Marital Status = single” is en-
coded into the genotype of an individual. A mutation
could modify this condition into the new condition
“Marital_Status = divorced”.

3.5 Rule Pruning Operator

We have developed an operator especially designed
for improving the comprehensibility of candidate rules.
The basic idea of this operator, called the rule-pruning
operator, is to remove several conditions from a rule to
make it shorter. In a high level of abstraction, remov-
ing conditions from a rule is a common way of ren-
dering a rule more comprehensible in the data mining
and machine learning literature (although details of the
method vary a lot among algorithms). Our rule-pruning
operator is applied to every individual of the popula-



tion, right after the individual is formed as a result of
crossover and mutation operators.

Unlike the usually simple operators of conventional
GAs, our rule-pruning operator is an elaborate proce-
dure based on information theory [3]. This procedure
can be regarded as a way of incorporating a classifica-
tion-related heuristic into a GA for rule discovery. The
heuristic in question is to favor the removal of rule
conditions with low information gain, while keeping
the rule conditions with high information gain.

The rule-pruning operator works in an iterative
fashion. In the first iteration the condition with the
smallest information gain is considered. This condition
is kept in the rule (i.e., its active bit is set to 1) with
probability equal to its normalized information gain (in
the range 0...1), and is removed from the rule (i.e., its
active bit is set to 0) with the complement of that prob-
ability. Next the condition with the second smallest
information gain is considered. Again, this condition is
kept in the rule with probability equal to its informa-
tion gain, and is removed from the rule with the com-
plement of that probability. This iterative process is
performed while the number of conditions occurring in
the rule is greater than the minimum number of rule
conditions - at present set to 2, as explained earlier -
and the iteration number is smaller than or equal to the
number of genes (maximum number of rule conditions)
n.

The information gain of each rule condition cond; of
the form <4; Op; V;> is computed as follows [19,3]:

InfoGain(cond;) = Info(G) — Info(G|cond;), 2)
where

Info(G) = - Z o (GI/TI* loga(IGITI) A3)
Info(GJcond;) = 4)

= (VIIT) D (VilIVi) * loga(Vil/IVil)
= (RVITD D, ((=Vill=Vi) *loga(=Vill=ViD)

where G is the goal (class) attribute, ¢ is the number of
classes (values of G), |Gj| is the number of training
examples having the j-th value of G, |T| is the total
number of training examples, |Vj| is the number of
training examples satisfying the condition <4; Op; V>,
[Vjj| is the number of training examples that both satisfy
the condition <4; Op; V;> and have the j-th value of G,
|—Vj| is the number of training examples that do not
satisfy the condition <4; Op; V;>, and |-Vj| is the
number of training examples that do not satisfy <4; Op;
V;> and have the j-th value of G.

The use of the above rule-pruning procedure com-
bines the stochastic nature of GAs, which is partly
responsible for their robustness, with an information-
theoretic heuristic for deciding which conditions com-
pose a rule antecedent, which is one of the strengths of

some well-known data mining algorithms. As a result
of the action of this procedure, our GA tends to pro-
duce rules that have both a relatively small number of
attributes and high-information-gain attributes, whose
values are estimated to be more relevant for predicting
the class of an example.

/* n = number of genes = number of attributes available to compose
rule antecedent */

/* The i-th position of vectors Info Gain_Cond[] contains the infor-
mation gain of the i-th condition. This is used as the probability that
the condition is active */

/* The i-th position of vector Sorted Cond[] contains the id of the
condition with the i-th smallest information gain */

BEGIN
Min N Cond=2;  /* Minimum number of conditions */
FORi=1TOn
compute Info_Gain_Cond[i]; /* see text */
END FOR

sort the n conditions in increasing order of Info_Gain_Cond[i];
FORi=1TOn
Sorted Cond[i] = Id of condition with the i-th smallest
information gain;

END FOR

Iteration_Id = 1;

N_Act_Cond = number of active conditions (with active bit = 1)

in genome;

WHILE (N_Act_Cond >Min_N_Cond) AND (Iteration_Id <n)
Random_N = randomly-generated number in the range 0..1;
IF Random N <Info_Gain_Cond[Sorted Cond[Iteration Id]]

THEN condition whose Id is Sorted_Cond[Iteration_Id]
is active (i.e., it occurs in the rule)

ELSE condition whose Id is Sorted Cond[Iteration Id]
is not active (i.e. , it does not occur in the rule)

END WHILE

END

Figure 4: Rule-pruning procedure applied to GA
individuals

A more detailed description of our rule-pruning pro-
cedure is shown in Figure 4. As can be seen in this
Figure, the above-described iterative mechanism for
removing conditions from a rule is implemented by
sorting the conditions in increasing order of informa-
tion gain. From the viewpoint of the GA, this is a logi-
cal sort, rather than a physical one. In other words, the
sorted conditions are stored in a data structure com-
pletely separated from the individual’s data structure,
so that there is no modification in the actual order of
the conditions in the genome of the individual.

3.6 Classifying Examples in the Test Set

Recall that in our system each leaf node of the in-
duced decision tree is deemed a small disjunct or a
large disjunct, and that our method induces ¢ rules for
each of the d small disjuncts, where c is the number of
classes and d is the number of small disjuncts.

Once all d x ¢ runs of the GA are completed, exam-
ples in the test set are classified as follows. For each
test example, we push the example down the decision



tree until it reaches a leaf node. If that node is a large
disjunct, the example is classified by the decision tree
algorithm — i.e., it is assigned the majority class of the
examples in the leaf node. Otherwise — i.e., the leaf
node covering the example is a small disjunct — we try
to classify the example by using one of the ¢ rules
discovered by the GA for the corresponding small
disjunct.

At this point there are three possible outcomes. First,
there might be more than one small-disjunct rule cov-
ering the example, since the coverage of the rules dis-
covered by the GA can overlap with each other. In this
case the example is classified by the highest-quality
rule among all the rules covering the example, as esti-
mated by the fitness function computed by the genetic
algorithm. Second, there might be a single small-
disjunct rule covering the example. In this case the
example is simply classified by that rule. Third, there
might be no small-disjunct rule covering the test ex-
ample. In this case the example is classified by a de-
fault rule. In an earlier version of our system [1,2] we
have experimented with two strategies for defining the
default rule:

(1) Using a global default rule, which simply predicts
the majority class among all small-disjunct examples.
We call that a global default rule because the majority
class in chosen considering all examples in all small
disjuncts;

(2) Using a local default rule for each small disjunct.
That rule simply predicts the majority class among the
examples belonging to the current small disjunct.

For this paper we are only adopting the second strat-
egy, using the local default rule. We decided to use
only the local default rule because the difference be-
tween the results of both strategies was quite small,
and adopting the local default rule has the advantage
that the comparison of our system’s results with C4.5’s
results is fairer, since C4.5 effectively uses a “local
default rule”.

4. Computational Results

We have evaluated our system on eight public do-
main data sets from the well-known data set repository
at UCI (University of California at Irvine): Adult,
Connect, CRX, Hepatitis, Segmentation, Splice, Vot-
ing and Wave. These data sets are available at the:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Table 1 summarizes the data sets used in our experi-
ments. The first column shows the data set identifica-
tion, while the remaining columns report the number of
attributes, the number of examples and the number of
classes of the data set, respectively.

In our experiments we have used the predefined di-
vision of the Adult data set into a training and a test

set. For the Connect data set, we have randomly parti-
tioned this data set into a training set and a test set. In
the case of these two data sets the use of a single
training/test set partition is acceptable due to the rela-
tively large size of the data. Since the other six data
sets are not so large as the Adult and Connect data sets,
to make the results more reliable we have run a ten-
fold cross-validation procedure for each of those six
data sets. In other words, the data set was divided into
ten partitions and our hybrid decision tree / genetic
algorithm system was run ten times. In each run one of
the ten partitions was chosen as the test set and all the
other nine partitions were merged to compose the
training set. The results reported below for those six
data sets are an average over the ten runs.

Table 1. Main characteristics of data sets used in our

experiment

data set # atributes # examples # classes
Wave 21 5000 3
Hepatitis 19 155 2
Adult 14 45222 2
CRX 15 690 2
Voting 16 506 2
Connect 42 67557 3
Splice 60 3190 3
Segmentation 19 2310 7

As described in Section 3, our hybrid decision-
tree/GA rule discovery system uses a GA to discover
rules for classifying small-disjunct examples only —
recall that large-disjunct examples are classified by the
decision tree. Intuitively, the performance of our sys-
tem will be significantly dependent on the definition of
a small disjunct.

In our experiments we have used a commonplace
definition of small disjunct, based on a fixed threshold
of the number of examples covered by the disjunct.
The general definition is: “A decision-tree leaf is con-
sidered a small disjunct if and only if the number of
examples belonging to that leaf is smaller than or equal
to a fixed size S.” We report here experiments with two
different values for the parameter S, namely S = 10 and
S=15.

We chose the values of S=10 and S=15 for our ex-
periments for the following reasons. First, it is desir-
able that the value of S is not too small, since in this
case there would always be too few examples for
training the GA. Intuitively, values of S considerably
smaller than 10 would have the disadvantage of pro-
ducing disjuncts that are too small, with too few exam-
ples for inducing reliable rules. On the other hand, a
considerably larger value of S is not desirable either,
due two reasons. First, the GA was designed to dis-
cover rules covering only few examples, which has
simplified its design, since each run of the GA has to
discover only one rule per class. As the number of



examples belonging to a small disjunct increases, ide-
ally the GA should probably discover more than one
rule per class for each small disjunct. This would re-
quire a significant chance in the design of the GA. In
the current GA an individual represents a single rule,
and there is no mechanism to enforce population diver-
sity (such as niching). If one wanted the GA to dis-
cover more rules per class, such a mechanism would
have to be added. Second, and perhaps even more
important, a large value of S would beg the question of
the meaning of a “small” disjunct. Our work is based
on the assumption that in general C4.5 can correctly
classify large-disjunct examples. The GA is called to
classify only small-disjunct examples. If a leaf node in
the tree produced by C4.5 has considerably more than
15 examples, intuitively C4.5 has enough examples to
perform a good classification (otherwise it would
probably have split on that node, producing a larger
tree). Hence, in our experiments we used the values S
=10 and S = 15 as reasonable trade-offs between the
above-described conflicting problems. We emphasize,
however, that we make no claim that the values S = 10
or S =15 are optimal. (An optimization of the value of
S could be done in future work, but the optimal value
would probably be dependent on the data set.)

For each of these two S values, we have done ten
different experiments, varying the random seed used to
generate the initial population of individuals of the
GA. The results reported below, for each value of S,
are an arithmetic average of the results over these ten
different experiments. Therefore, the total number of
experiments is 20 (2 values of S * 10 different random
seeds).

Note that the actual number of GA runs is much
more than 20 for each data set. In each experiment we
run the GA ¢ * d times, where ¢ is the number of
classes and d is the number of small disjuncts.

As the decision-tree component of our hybrid algo-
rithm we have used C4.5, a well-known decision-tree
algorithm [19]. We used the default parameters of
C4.5. To make the comparison fair, we have made no
attempt to optimize GA parameters such as population
size, number of generations, and probabilities of cross-
over and mutation. We used relatively common pa-
rameter values suggested in the literature. More pre-
cisely, in all the experiments, in each run of the GA the
population size is 200 individuals, the GA is run for 50
generations, and the probabilities of crossover and
mutation are 80% and 1%, respectively.

We now report results evaluating the performance
of our hybrid C4.5/GA system. We start by comparing
the accuracy rate of our hybrid system against the
accuracy rate of C4.5 alone. The results are shown in
Table 2. The first column of this table indicates the
data sets. The second column shows the accuracy rate
on the test set achieved by C4.5, classifying both large-
disjunct and small-disjunct examples. Note that the

accuracy rate of C4.5 alone is independent of the defi-
nition of small disjunct (value of S). The next two
columns report the overall accuracy rate on the test set
achieved by our hybrid C4.5/GA system — i.e., using
C4.5 to classify large-disjunct examples and our GA to
classify small-disjunct examples. Each of those two
columns reports the results for a specific value of S
(small disjunct size). The values between brackets are
standard deviations.

Table 2. Accuracy Rate of C4.5 and our hybrid
C4.5/GA system

Hybrid C4.5/GA
data set C4.5 S=10 S=15
Wave 75.54 |79.60 (2.0) + |80.30 (2.0) +
Hepatitis 83.64 |84.97 (6.0) 82.25 (5.0)
Adult 79.21 |79.83 (0.1) + |79.55(0.1) +
CRX 84.53 |86.12 (4.0) 86.37 (2.0)
Voting 94.63 [92.30 (1.0)- [91.72(2.0)
Connect 72.6 |75.93(0.8) + |74.62(0.2) +
Splice 45.98 |46.45 (0.9) 47.70 (2.0)
Segmentation | 97.67 [93.62 (0.8)- [93.16(1.0) -

Let us now discuss the results reported in Table 2. In
the last two columns of this table the cells where the
hybrid C4.5/GA system achieved a higher accuracy
rate than C4.5 alone are shown in bold. Note that when
S = 10 the hybrid system outperforms C4.5 alone in 6
out of the 8 data sets, and when S = 15 the former
outperforms the latter in 5 out of the 8 data sets. In
total, the hybrid system outperforms C4.5 alone in 11
out of 16 cases — i.e., in 68.8% of the cases. However,
not all results are statistically significant. In the last
two columns of Table 2 the cases where the better
(worse) accuracy of the hybrid system is statistically
significant is indicated by the “+” (“-*) symbol. A
result was considered as statistically significant when
the difference between the accuracy rate of the hybrid
system and of C4.5 was larger than two standard de-
viations. Note that when § = 10 the hybrid system is
significantly better than C4.5 in 3 data sets and the
reverse is true in 2 data sets. When § = 15 the hybrid
system is significantly better than C4.5 in 3 data sets,
and the reverse is true in one data set. In total, the
results of the hybrid system are significantly better
than the results of C4.5 in 6 out of 16 cases (i.e., 37.5%
of the cases), whereas the reverse is true in only 3 out
of 16 cases (i.e., 18.8% of the cases).

Overall, the results of Table 2 show that the hybrid
system has obtained somewhat better accuracy rates
than the default version of C4.5 alone. However, to
better evaluate the performance of the hybrid it is also
important to compare it against other method(s) to
cope with small disjuncts. In particular, we wanted to
compare the hybrid system against another method that
induces rules or trees (which can be straightforwardly



converted to rules). In this case the kind of knowledge
representation used by the systems being compared is
the same, and the difference in the results will reflect
mainly differences in search strategies. Hence, we can
compare the evolutionary search strategy of the GA
against the local, greedy search strategy of a rule in-
duction or decision tree algorithm.

Within this spirit we now report the results of an-
other experiment comparing our hybrid C4.5/GA sys-
tem against a “double run” of C4.5. The later is a new
way of using C4.5 to cope with small disjuncts, as
follows. The main idea of our “double run” of a deci-
sion-tree algorithm is to build a classifier running the
algorithm C4.5 twice. The first run considers all exam-
ples in the original training set, producing a first deci-
sion-tree. Once identified which examples belong to
small disjuncts, the system groups all the examples
belonging to small disjuncts (according to the first
decision tree) into a single example subset. This can be
thought of as a second training set. Then C4.5 is run
again on this second, reduced training set producing a
second decision tree.

In order to classify a new example, the rules discov-
ered by both runs of C4.5 are used as follows. First, the
system checks whether the new example belongs to a
large disjunct of the first decision tree. If so, the class
predicted by the corresponding leaf node is assigned to
the new example. Otherwise (i.e. the example belongs
to one of the small disjuncts of the first decision tree),
the new example is classified by the second decision
tree.

The motivation for this more elaborate use of C4.5
was an attempt to create a simple algorithm that was
more robust to cope with small disjuncts.

The results comparing the accuracy rate (on the test
set) of our hybrid system against the accuracy rate of
“double C4.5” — denoted by C4.5(2) - are shown in
Table 3.

Analogously to Table 2, the numbers between brack-
ets in the third and fifth columns of Table 3 are stan-
dard deviations, the cells where the hybrid system
outperforms “double C4.5” are shown in bold, and the
cells where the hybrid system’s results are significantly
better (worse) than double C4.5’s results contain the
symbol “+” (“-). Again, a result was considered sta-
tistically significant when the difference between the
accuracy rate of the hybrid system and of double C4.5
was larger than two standard deviations.

As can be observed in the Table 3, in all 16 cases the
accuracy rate of the hybrid system was better than the
accuracy rate of double C4.5. Furthermore, the differ-
ence is statistically significant in 9 out of the 16 cases
—1.e., in 56.3% of the cases.

Table 3. Accuracy Rate of “double C4.5” (denoted
C4.5 (2)) and our hybrid C4.5/GA system

S=10 S=15
dataset [C45(2)] C4.5/GA |C45(2)] C4.5/GA
Wave 69.97 |79.60 (2.0) + | 71.34 |80.30 (2.0) +
Hepatitis 81.90 |184.97 (6.0) 82.10 |82.25 (5.0)
Adult 79.19 |79.83 (0.1) + | 78.81|79.55 (0.1) +
CRX 85.50 |186.12 (4.0) 86.10 |86.37 (2.0)
Voting 89.50 |92.30 (1.0) + | 90.60 |91.72 (2.0)
Connect 49.90 |75.93 (0.8) + | 56.80 |74.62 (0.2) +
Splice 46.33 |46.45 (0.9) 46.84 |47.70 (2.0)

Segmentation | 44.10 |93.62 (0.8)+ 55.80 [93.16 (1.0) +

Finally, we report the results of a third experiment,
where we have compared the accuracy rate of our
hybrid system against C4.5 without tree pruning. It is
well known that in general (but not always) the results
of C4.5 with pruning are better than the results of C4.5
without pruning. However, in the context of our work
there is a motivation for evaluating the results of C4.5
without pruning. We are looking for small-disjunct
rules, which tend to be more specific rules. Turning off
C4.5 pruning does lead to more specific rules. Of
course, there is a danger that C4.5 without pruning will
overfit the data, and this approach will produce more
specific rules not only for small-disjunct examples, but
also for large-disjunct examples. In any case, it is
worth trying C4.5 without pruning as a possible solu-
tion for the problem of small disjuncts, since this is a
simple approach serving as a baseline solution for the
problem of small disjuncts.

Hence, we report in Table 4 results comparing the
accuracy rate (on the test set) of our hybrid system
with the accuracy rate of C4.5 without pruning.
Analogously to Table 2 and Table 3, the numbers be-
tween brackets in the third and fourth columns of Ta-
ble 4 are standard deviations, the cells where the hy-
brid system outperforms C4.5 without pruning are
shown in bold, and the cells where the hybrid system’s
results are significantly better (worse) than the results
of C4.5 without pruning contain the symbol “+” (“-).
Again, a result was considered statistically significant
when the difference between the accuracy rate of the
hybrid system and of C4.5 without pruning was larger
than two standard deviations.

As can be observed in the Table 4, in 14 cases out of
16 —i.e., in 87.5% of the cases — the accuracy rate of
the hybrid system was better than the accuracy rate of
C4.5 without pruning, and the opposite was true in
only 2 cases —i.e., in 12.5% of the cases. The results of
the hybrid system were significantly better in 6 cases —
i.e., in 37.5% of the cases; whereas the results of C4.5
without pruning were significantly better in only 2
cases —i.e., in only 12.5% of the cases.



Table 4. Accuracy rate of our hybrid C4.5/GA system
and C4.5 without pruning

C4.5 without S=10 S=15
data set pruning C4.5/GA C4.5/GA
Wave 74.31 79.60 (2.0) + [80.30 (2.0) +
Hepatitis 77.67 84.97 (6.0) 82.25 (5.0)
Adult 76.50 79.83 (0.1) + [79.55(0.1) +
CRX 85.04 86.12 (4.0) 86.37 (2.0)
Voting 91.04 92.30 (1.0) 91.72 (2.0)
Connect 69.10 75.93 (0.8) + [74.62(0.2) +
Splice 46.30 46.45 (0.9) 47.70 (2.0)
Segmentation 97.08 93.62(0.8)- [93.16 (1.0) -

Figure 5 shows the percentage of training examples
which belong to small disjuncts for S=10 and S=15. As
discussed in the introduction, the percentage of small-
disjunct examples is representative, particularly when
S=15. Specifically, in the Wave data set more than
50% of the examples belong to small disjuncts.

Figure 5 provides a possible explanation for the

relatively bad performance of our hybrid C4.5/GA
method on the Segmentation data set (see the last rows
of Tables 2 and 4). As shown in Figure 5, out of the 8
data sets used in our experiment, this is the one having
the smallest proportion of examples belonging to small
disjuncts. Hence, it is possible that C4.5/GA did not
perform well on this data set because there were rela-
tively few examples belonging to small disjuncts, hin-
dering the performance of the GA component of the
method. Further research is necessary to confirm if this
remark can lead to a general pattern or if it holds only
for the Segmentation data set.
We now turn to the issue of computational efficiency.
Each run of the GA is relatively fast, since it uses a
training set with just a few examples. However, recall
that in order to discover all small disjunct rules we
need to run the GA ¢ * d times, where ¢ is the number
of classes and d is the number of small disjuncts.
Hence, it is important to know how long the entire set
of ¢ * d GA runs takes. This processing time obviously
varies with the number of small disjuncts, which de-
pends on both the data set and on the definition of
small disjunct (the value of the parameter S). In our
experiments, the processing time taken by all ¢ * d
runs of the GA was about 1 hour for the largest data
set, Connect, and the largest number of small disjuncts,
associated with the value S'= 15. The experiments were
performed on a Pentium II with 128 Mb of RAM and
166 MHz of clock. One hour seems to us a reasonable
processing time, especially considering that in real-
world applications the time to run a data mining algo-
rithm is typically just about 10% or 20% of the total
time spent with the knowledge discovery process [15].
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Figure 5. Relative frequency of the small disjuncts
found in the data sets used in our experiments

In addition, scalability to larger data sets does not seem
a problem so serious as one might think at first glance.
Most of the processing time of our hybrid system is
taken by the GA. However, the length of time taken by
each GA run depends essentially on the definition of
disjunct size, rather than on the size of the entire da-
taset. It is true that larger datasets tend to have a larger
number of small disjuncts, which in turn would in-
crease the processing time of our C4.5/GA system —
due to an increase in the number of GA runs. However,
this is a problem for any algorithm specifically de-
signed for coping with small disjuncts. The point is
that the processing time taken per small disjunct is



relatively short even when using a genetic algorithm,
since there are just a few examples in the training set
of a small disjunct.

Finally, if necessary the processing time taken by all
the ¢ * d GA runs can be considerably reduced by
using parallel processing techniques [5]. Actually, our
method greatly facilitates the exploitation of parallel-
ism in the discovery of small disjunct rules, since each
GA run is completely independent from the others and
it needs to have access only to a small data set, which
surely can be kept in the local memory of a simple
processor node.

5 Conclusions and Future Research

In this paper we have described a hybrid decision-
tree (C4.5)/GA system, where examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm and examples belonging to
small disjuncts are classified by rules produced by a
genetic algorithm developed specifically for discover-
ing small disjunct rules.

More precisely, we have compared our hybrid
C4.5/GA system with 3 algorithms based on the use of
C4.5 alone, namely: (a) the default version of C4.5; (b)
a “double run of C4.5”, where all the small-disjunct
examples found by the first run of C4.5 are grouped
together into a “second training set”, which is then
used to build another tree in the second run of C4.5; (¢)
C4.5 without pruning. Overall, the hybrid system ob-
tained better accuracy rates than all the 3 above-
mentioned versions of C4.5 alone. More precisely, the
accuracy rates obtained by the hybrid system were:

(a) somewhat better than the ones obtained both by
default version of C4.5 and by C4.5 without
pruning;

(b) considerably better than the ones obtained by a
double run of C4.5.

We have also presented evidence that small disjuncts
are more common in data sets than one might think at
first glance.

There are several possible directions for future re-
search. We are currently developing a new version of
our hybrid system where all the small-disjunct exam-
ples are merged together into a second training set, but
instead of running C4.5 on that set, we run a GA on
that set. As mentioned in Section 4, this requires the
GA to be extended with some niching method. In the
long term, we envisage two research directions. An
important one is to evaluate the performance of our
hybrid C4.5/GA system for different kinds of defini-
tion of small disjunct, e.g. relative size of the disjunct
(rather than absolute size, as considered in this paper).
Another interesting research direction would be to
compare the results of our system against rules discov-

ered by the GA only, although in this case the design
of the GA would have to be somewhat modified - e.g.
by using a niching mechanism, as mentioned in Section
4.
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