
Similarity Search with

Multimodal Data

Zhe Wang

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Kai Li

January 2012

c© Copyright by Zhe Wang, 2011.

All Rights Reserved

Abstract

Similarity search systems are designed to help people to organize multimedia non-text

data and find valuable information. The multimedia data intrinsically has multiple

modalities (e.g., visual and audio features from video clips) which can be exploited

to construct better search systems. Traditionally, various integration techniques have

been used to aggregate multiple modalities. However, such algorithms do not scale

well for large datasets. As the multimedia data grows, it is a challenge to build a

search system to handle large-scale multimodal data efficiently and provide users with

information they need.

The goal of this dissertation is to study how to effectively combine multiple modal-

ities to implement similarity search systems for large datasets. I have carried out

my study through three similarity search systems each designed for different applica-

tion. Each system combines multiple modalities to help users find desired information

quickly. With VFerret system, I studied how to combine visual features with audio

features for effective personal video search. With Image Spam Detection System,

I explored several aggregation methods to integrate multiple image spam filters to

detect image spams. With my Product Navigation System, I studied how to combine

text search with image similarity search to help user find desired products. This

thesis has also studied a rank-based model which helps system designers to construct

more efficient large-scale multimodal similarity search systems.

Although the general solution to using multimodal data in a similarity search

system is still unknown, this dissertation shows that it is possible to substantially

improve search accuracy and efficiency by leveraging domain specific knowledge of

multimodal data. The VFerret system improves search accuracy from an average

precision of 0.66 to 0.79 by combining visual and audio features. The Image Spam

Detection System significantly lowers the false positive rate from a previous result of

1% to 0.001% while maintaining comparable detection rates by combining multiple

iii

image filters intelligently. My Product Navigation System reduces number of user

clicks by 60% compared to traditional systems through a new method of combining

text search with image similarity search. These results support further adoption and

study of multimodal data in similarity search system designs.

iv

Acknowledgements

First and foremost I would like to thank my adviser Kai Li for his encouragement,

guidance, experience and support. I am extremely fortunate to work with Kai and

have learned a lot from him. Kai showed me not only how to think openly, but also

how to execute my ideas practically. It was a pleasure to be his student and to work

in his research group.

I am very grateful to Moses Charikar for being my unofficial second adviser. From

group discussions to paper deadlines, Moses always contributes insightful ideas and

provides great help. His strong theoretical knowledge and creative thinking guide me

throughout my graduate study.

I would also like to thank Olga Troyanskaya for being my thesis reader and Jennifer

Rexford and Andrea LaPauph for serving in my thesis committee. Also many thanks

to Vivek Pai, Jaswinder Singh, Fei-fei Li and Perry Cook for their guidance and

support.

I feel lucky to have met so many good friends in Princeton. Very special thanks

to Qin Lv, William Josephson, Wei Dong. Collaborating with them has been a truly

inspirational experience. Many thanks to Kyoungsoo Park, Matthew Hoffman for

several enjoyable works in my early graduate days. It is a great pleasure to work

closely with people within my research group: Yungang Bao, Chris Bienia, Jia Deng,

Yida Wang and Wendy Zhang. I feel honored to have had opportunity to work with so

many brilliant people and friends here in Princeton: Nitin Garg, Jordan Boyd-Garber,

Shirley Gaw, Limin Jia, Jia Li, Junwen Lai, Ruoming Pang, Yaoping Ruan, Haakon

Ringberg, Grant Wallace, Yong Wang, Dinghao Wu, Wen Xu, Qian Xi, Bangpeng

Yao, Harlan Yu, Chi Zhang, Ming Zhang, Yaping Zhu. Also, I owe a special thanks

to Melissa Lawson for all her help during my Princeton years.

This work was supported in part by Gigascale Systems Research Center, Google

Research Grant, Yahoo Research Grant, Intel Research Council, National Science

v

Foundation grants CSR-0509447 and CSR-0509402.

Finally, special thanks to my grandma, Ruidi Cheng who helped me to become

who I am today. Many thanks to my parents, Chuilin Wang and Xiaoxin Han, for

their love, guidance and support and my in-laws, Delong Shang and Ying Ma, for

their support. And to my love, Hongyu Shang, for her endless support and encour-

agement; to my kids, Hallie and Derek for bringing joy to my life.

The materials of Chapter 2, 3 and 5 have been used in the following publications

and presented in the corresponding conferences:

[Chapter 2] Zhe Wang, Matthew Hoffman, Perry Cook and Kai Li. VFerret: Content-

Based Similarity Search Tool for Continuous Archived Video. In Proceedings of

the 3rd ACM Workshop on Capture, Archival and Retrieval of Personal Expe-

riences (CARPE). Santa Barbara, California, USA. October 2006

[Chapter 3] Zhe Wang, William Josephson, Qin Lv, Moses Charikar and Kai Li. Fil-

tering image spam with near-duplicate detection. In Proceedings of the 4th

Conference on Email and Anti-Spam (CEAS). Mountain View, CA, USA. Au-

gust 2007

[Chapter 5] Zhe Wang, Wei Dong, William Josephson, Qin Lv, Moses Charikar, Kai

Li. Sizing Sketches: A Rank-Based Analysis for Similarity Search. In Proceed-

ings of the 2007 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems. San Diego, CA, USA. June 2007

vi

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Similarity search with multimodal data 1

1.2 Previous Work . 5

1.2.1 Theoretical Results on Multimodal Data 6

1.2.2 Similarity Search Systems with Multimodal Data 7

1.2.3 Theoretical Work on Dimension Reduction 7

1.2.4 Other Similarity Search Systems 9

1.3 Contributions . 11

2 Video Search with Visual and Audio Features 14

2.1 Introduction . 14

2.2 Previous work . 16

2.3 System Overview . 17

2.4 Content-Based Similarity Search . 19

2.4.1 Video clip segmentation . 19

2.4.2 Visual feature extraction . 20

2.4.3 Audio feature extraction . 21

2.4.4 Combined feature vector . 22

vii

2.4.5 Similarity search . 23

2.5 VFerret: Content Search for Continuous Captured Video 24

2.5.1 Video capture system . 24

2.5.2 Video search system . 25

2.6 Evaluation . 28

2.6.1 Benchmark . 29

2.6.2 Evaluation metric . 29

2.6.3 Results . 30

2.6.4 System overhead . 31

2.7 Summary . 31

3 Spam Detection with Multiple Image Features 33

3.1 Introduction . 33

3.2 Previous work . 36

3.3 Main Idea . 38

3.4 Anti-Spam System: Image Spam Detection System 41

3.4.1 Known Image Spam Techniques 43

3.4.2 Image Spam Filters . 47

3.5 Evaluation . 49

3.5.1 Evaluation Datasets . 49

3.5.2 Individual Image Spam Filter Results 51

3.5.3 Combined Image Spam Detection Results 52

3.5.4 Image Spam Filter Speed . 54

3.5.5 Image Spam Signature Size 55

3.6 Summary . 55

4 Product Navigation with Image and Text Features 57

4.1 Introduction . 57

viii

4.2 Previous work . 58

4.3 System Architecture . 59

4.4 Image Assisted Product Navigation System 62

4.4.1 System Workflow . 62

4.4.2 Image Search Subsystem . 64

4.4.3 User Interface . 65

4.5 Evaluation . 67

4.5.1 Evaluation Dataset . 67

4.5.2 Experimental setup . 68

4.6 Summary . 70

5 Rank-Based Model for Sketch 72

5.1 Introduction . 72

5.2 Previous Work . 75

5.3 Filtering for Similarity Search . 76

5.3.1 Similarity Search . 76

5.3.2 L1 Sketch Construction . 77

5.3.3 Filtering using Sketches . 78

5.4 Analytical Model . 80

5.4.1 Distance Distribution . 82

5.4.2 Sketch Distance Distribution 83

5.4.3 Rank Distribution . 84

5.4.4 Search Quality Estimation . 87

5.5 Evaluation . 88

5.5.1 Datasets . 88

5.5.2 Evaluation Metrics and Method 90

5.6 Experimental Results . 92

5.6.1 Distance Distribution Model 92

ix

5.6.2 Sizing Sketches . 94

5.6.3 Extrapolating to Larger Dataset Size 96

5.6.4 Discussion . 97

5.7 Case Study . 100

5.8 Summary . 101

6 Conclusion and Future Work 102

6.1 Conclusion . 102

6.2 Future work . 103

x

Chapter 1

Introduction

1.1 Similarity search with multimodal data

We live in an exploding digital universe and the amount of data has grown exponen-

tially. According to a 2011 study by IDC [57], the digital universe, or the amount of

the digital information created and replicated, is estimated to be 1.2 zettabytes(1021

bytes) in 2010 and to grow to 1.8 zettabytes in 2011. The dominating data types

are scientific sensory data and multimedia data such as image, audio and video. The

grand challenge is to find valuable information from such massive amounts of data

quickly. For example, search systems for scientific data can help make new scientific

discoveries, search systems for image and video data can help people better organize

their data and find desired products faster, and search systems for commercial TV

and broadcast audio advertisements can help market analysis and improve business

decision making.

There have been multiple methods proposed to search for information from mul-

timedia data. In the past, users tried to index such data by manually labelling it

with tags and then searching for it with keywords. But this is not a scalable solu-

tion when the amount of such data grows quickly. As an example, Table 1.1 shows

1

Website Time Frame New Contents Data Size Source
Twitter (text msg) Feb,2011 140M tweets/day 20GB/day [118]
Youtube (video) Mar,2010 24 hours/min 6TB/day [136]
Facebook (image) 2011 new 750M photos 60TB/day [40]

year weekend

Table 1.1: Data size: comparison of text data vs non-text data

that the amount of non-text data generated by users greatly exceeds traditional text

data. In recent years, the focus has shifted towards building content-based similarity

search system. The idea is to allow users to quickly find contents that are similar to

those they already found via other methods. This would greatly speed up the search

process on unlabeled data.

Most of the research on existing similarity search systems has focused on finding

the best features for the similarity search task. But multimedia data intrinsically

contains multiple modalities. For example, video data contains both visual and audio

information, and image data contains color, shape and texture information, etc. Two

important open questions in this realm are:

• Is combining multiple features always beneficial, and

• How should one effectively combine features in general?

This thesis studies real system issues on how to integrate multiple features effectively

for large-scale datasets.

The standard method to construct a similarity search system with multimodal

data is to use “K-Nearest-Neighbor”(KNN) search method. Here, we define distances

between pairs of objects; given a query object, the search system returns the K

data objects that are nearest to the query object according to the distance function.

In order to define distances, we first convert both the query object and the data

objects into different types of feature vectors, with one type of feature vector for

each modality. The distance between a pair of objects is obtained by summing up

2

feature distances for each modality. This gives rise to a KNN search problem on a

high dimensional space.

Equation 1.1 below shows how multiple features are typically aggregated. Here,

we have M modalities. Variable wm is the feature weight for each modality. Data

object Datam is represented by a D-dimensional real-valued vector. d(X, Y) is a

domain specific distance function, and it is usually modeled by one of the `p norms.

We want to find K data objects with the smallest total distance to the query object:

Dist(Query, Data).

Dist(Query, Data) =
∑

1≤m≤M

(wm ∗ d(Querym, Datam))

d(X, Y) =

(∑
1≤i≤D

(Xi − Yi)
p

)1/p

Figure 1.1 shows the typical architecture of a similarity search system with mul-

timodal data. The example depicts a similarity search engine for video data. The

system works in two phases. The first phase is an offline data processing stage where

all video data that needs to be indexed is processed offline to speed up online searches

later. The second phase is the online query stage, where the user submits a query

video clip and the system returns all the similar video clips.

For the offline data processing stage, it is typical to first extract certain features

from the multimedia data that can be used to best “describe” the contents. That

is, if two pieces of video clips are considered to be similar, the features extracted

from them should also be close to each other in the high dimensional space according

to certain distance measures. Typically, the extracted feature is a high dimensional

vector, such as a color histogram. The distance measure here can be a simple L1

3

F

Offline Data

Processing

Feature Extraction

Feature Storage/Index

Visual Features

Index

Feature

Storage

Audio Features

F Similarity Search

with Multimodal Data

Online

Query
Feature Extraction

Aggregated

Results

Visual Features

Audio Features

Figure 1.1: Similarity Search System with Multimodal Data

distance. Alternately, the extracted feature could be a set of feature vectors, such as

a collection of region based local features as described in Lv’s paper [79]. Here, one

possible distance measure is the Earth Mover Distance [93] which defines a distance

between two sets of feature vectors.

Since there are different perspectives on defining similarity, we can have multiple

kinds of features describing the same content. In the example illustrated in Figure 1.1,

we can extract visual features such as color and shape from the image of video and

audio features from the sound track of the video. These multiple kinds of features form

the multiple modalities of the video data. If combined properly, they can potentially

improve the final similarity search accuracy.

The second step in the offline processing stage is to insert all features into the

feature database and build an index for fast retrieval. The traditional indexing meth-

ods are based on space partitioning techniques such as R-tree [55], K-D tree [12] and

4

SR-tree [65]. Recently, several indexing methods based on locality sensitive hashing

(LSH) [60, 50, 30, 87] have been proposed for approximate KNN search. By relax-

ing the search criteria to conduct approximate KNN search rather than exact KNN

search, it is possible to significantly speed up the search process while losing only a

small percentage of precision.

For the online query stage, the user will submit a video clip as the query to initiate

the similarity search. The query video clip will go through the same feature extraction

process as in the offline processing stage. The extracted feature vectors are compared

with the stored ones in the feature databases to find similar objects. This kind of

KNN similarity search will generate a list of candidate video clips that are closest to

the query video clip in the feature space. For objects with multiple kinds of features,

it is typical to assign different weights to each feature and calculate overall object

distance as a combination of individual feature distances.

1.2 Previous Work

While domain experts on multimedia data have done significant research on searching

such data, they still have difficulties in handling large-scale datasets. For example,

many complicated algorithms work well with tens of thousands of objects, but are not

capable of handling datasets with billions of objects. From a system designer’s per-

spective, I am interested in investigating practical methods for performing similarity

searches on large-scale datasets and effectively choosing multiple simple features to

achieve the best possible accuracy.

There are various lines of research involving similarity search with large-scale

multimodal data. We can categorize them into theoretical studies and system imple-

mentations, and further split each into research working with multimodal data and

research focusing on large scale datasets. I have summarized these lines of research

5

in the following four sections:

1.2.1 Theoretical Results on Multimodal Data

In theoretical studies of integration methods with various multimodal datasets, re-

searchers have investigated different methods of combining multiple features to achieve

higher accuracy for similarity search. Since features are designed with different goals

in mind, they could be focusing on different aspects of the data. As shown in Fig-

ure 1.1, the features can be designed to capture different properties of the objects

such as color, shape and texture. Modern computer vision algorithm can aggregate

dozens of features to boost the accuracy of the search [48].

There are two main approaches to build systems to optimally combine multiple

features for better accuracy. The first approach uses learning based fusion techniques:

Verlinde compared different decision fusion techniques in designing a multimodal bio-

metric identity verification system [122]. The paper demonstrate the strength of the

“logistic regression” method over other fusion methods such as “Maximum Likeli-

hood,” “Maximum A-Posteriori Probability,” etc. Recently, researchers have studied

more advanced learning methods such as SVM based “Super Kernel Fusion” [135]

and “Multiple Kernel Learning” [8], as well as boosting based methods such as “CG-

Boosting” [14], and “LP-Beta” [48].

The second approach uses non-learning based methods. The search system adopts

a traditional probabilistic Bayesian framework as described by Kittler [69]. It uses

various rules such as sum rule, product rule and min/max rule to aggregate results

from multiple features in the KNN similarity search framework. It has been reported

in recent papers [15, 11] to be as effective as sophisticated machine learning methods

in large-scale image similarity search.

6

1.2.2 Similarity Search Systems with Multimodal Data

Researchers have designed various experimental similarity search systems with multi-

modal data in different research fields such as biometric verifications, image similarity

search, video similarity search, etc.

Biometric verification research [41, 104, 29] has shown performance improvement

from combining multiple biometric characteristics such as fingerprints, 2D/3D face

traits, signatures, hand geometry, etc. Ross provides a survey [92] on information

fusion in biometrics.

In providing image similarity search systems, various researchers [135, 8, 48] have

merged multiple image features invented by prior research to generate better classi-

fication results. The fusion methods used include SVM based approach [135], Mul-

tiple Kernel Learning [8], boosting based approaches [14, 48], and KNN based ap-

proaches [15, 11].

Researchers have also taken advantage of multiple modalities exhibited in video

data when building video content-based search systems. The video data inherently

comes with visual and audio content. Moreover, it is often possible to extract other

features such as captions present in commercial video, screen text information present

in the news video [76], tags and concepts created by online users [74, 130], click

through information collected by online video servers [129] and context information

found in online social network [53]. Recent progress has been described in two sur-

vey papers: “Surveys on Multimodal Video Indexing” [106] and “Multimodal Video

Representation for Semantic Analysis” [5].

1.2.3 Theoretical Work on Dimension Reduction

In theoretical studies of algorithmic approaches to large-scale datasets, recent research

has both studied and employed compact data representations (sketches) of high di-

mensional data, dimension reduction techniques, algorithms for building indexes for

7

high dimensional large-scale datasets and streaming algorithms.

A compact data representation (sketch) is helpful in dealing with large-scale high

dimensional datasets. It reduces the storage requirement for the feature data and

improves search speed. A sketch is a compact representation for the original high

dimensional feature vector. Moreover, it is designed such that the distance between

the high dimensional feature data can be approximated by the sketch distance. The

sketch construction is dependent on the distance function used on the feature data.

Charikar [23] showed in 2002 how sketch constructions can be derived from rounding

techniques used in approximation algorithms. Later in 2004, he also developed a new

sketching technique for estimating the Earth Mover’s Distance in [80]. Such sketching

techniques reduce of the feature data storage requirement by almost an order of

magnitude while still retaining about 90% accuracy in the similarity search [126].

Researchers have investigated dimension reduction techniques to reduce the di-

mensionality of high dimensional feature data while still maintaining the quality of

features in similarity search. The traditional dimension reduction techniques include

Principle Component Analysis (PCA) and Independent Component Analysis (ICA)

which both try to summarize the data with fewer dimensions. Indyk and Motwani

introduced Locality-Sensitive Hashing (LSH) [60] to perform probabilistic dimension

reduction on high dimensional data. They designed a hash function such that the

probability of hash collision is higher for objects that are closer in the high dimen-

sional space. LSH can be used to construct an LSH index as described in the next

paragraph.

For similarity search, the traditional indexing method does not work efficiently

since it is designed to search for exact matches. New indexing techniques have been

designed to speed up similarity search. Techniques such as R-tree [55], K-D tree [12]

and S-R tree [65] have been proposed, but their performances suffer when the data

dimensionality increases. Recently, the LSH indexing method based on p-stable dis-

8

tribution [30] has been studied extensively to index high dimensional data. Further

improvements such as multi-probe LSH [81] and “A posteriori multi-probe LSH” [63]

have tried to intelligently probe multiple buckets of LSH hash tables to reduce the

space requirements of the LSH index.

The streaming algorithm processes the large-scale dataset in a different way. Ini-

tially formalized by Alon in his paper “The Space Complexity of Approximating the

Frequency Moments” [2], streaming algorithms try to produce approximate answers

by processing data stream only once or with a few passes. Typical applications of

streaming algorithms include finding frequent items in data streams [24], clustering

datasets [25], counting distinct elements [10] and estimating entropy of a stream [22].

1.2.4 Other Similarity Search Systems

Similarity search systems for large-scale high dimensional data have been implemented

in various research areas. The most popular application of similarity search is image

similarity search. There were early research prototypes of image similarity search

in 1990s such as: QBIC [42], Windsurf [7], SIMPLIcity [125]. Recent advances in

indexing techniques, as well as growing image data availability, enable image similarity

search to be performed on much larger datasets. The Tiny Image project crawled and

indexed 80 million images [117]; CoPhIR project collected 100 million images [16].

For more research projects, Datta has a comprehensive survey on content-based image

retrieval [31]. There are several commercial products for image similarity search as

well. Incogna [59], Piximilar [58] and Riya [91] search similar images mostly by color

and shape. Tineye [116] is a reverse image search engine that indexes about two billion

images. It can detect partial duplicate images on the web from the user provided query

image. Both Google and Live search engines have incorporated similarity search for

a subset of the images they possess.

Many applications have relied on audio similarity search to find relevant songs

9

from a large music collection. Casey has written a survey on current research and the

future direction of content-based music information retrieval [21]. In the commercial

world, Shazam [99] allows users to search its database of 8 million songs. A user

can use the smart phone to “listen” to a short clip of a song played on the radio.

And then the Shazam app will query its database to figure out what the song is.

Soundhound [107] lets a user sing or hum the song of inquiry in order to search its

song database for a match. While both systems perform similarity search, they have

different focuses: Shazam requires almost exact match of the song with allowance for

noise and compression loss, while Soundhound requires a much less strict match of

the original song, as exemplified by the user’s hum.

Video similarity search systems started to appear in the 1990s with systems such as

VideoQ [45], QBIC [42], and Zhang’s integrated retrieval and browsing system [139].

In the last decade, with the explosive growth of home video, there has been an in-

creased interest in content-based video search. Specifically, the yearly TRECVID [100]

challenge, started in 2003, provides a large collection of videos and uniform scoring

procedures to encourage researchers to compete in video retrieval tasks. Similarity

search systems have been implemented with different focuses such as: whole video

near duplicate detection and copy detection [134, 71, 131], video clip fingerprint-

ing [72], concept based retrieval [105] and visual similarity search [137]. Geetha has

also written a comprehensive survey [47] on “Content-based Video Retrieval”.

Similarity search systems with large-scale high dimensional data also find applica-

tions in scientific data analysis. For genomic data, Eisen proposed hierarchical clus-

tering [114] using average linkage to group genes with similar genome-wide expression

data from DNA micro-array hybridization. Self Organizing Maps [115] and Mutual

Information Relevance Networks [18] also define the similarity over the whole gene

expression vector. But researchers seek to discover group of genes that co-express

in different subsets of experiments. Recent work has proposed an approximation

10

method using a bi-clustering algorithm [26] to discover low variance sub-matrices of

the complete data matrix.

1.3 Contributions

The goal of this dissertation is to study how to effectively combine multiple modal-

ities to implement similarity search systems for large-scale datasets. Since this is a

broad topic, we take a pragmatic approach by studying three individual systems each

requiring different integration of multimodal features. This allows us to investigate

several issues in multimodal data fusion. For each case, we attempt to answer the

following questions:

• How to build a system to effectively combine results from multiple features?

• How to combine text features with non-text features effectively for similarity

search?

• How to help a system designer model a growing system and predict the accuracy

of the system using sampled data?

The first system, VFerret, allows users to search continuous archived personal

video data. The goal is to allow users to search digital copies of personal memory

and find valuable information in the future. The challenge is that users archive the

personal video continuously and they don’t have time to segment and annotate the

video properly. We designed the VFerret system to allow users to search the video by

similarity and time range. The results show that search accuracy could be improved

to an average precision of 0.79 by combining audio and visual features, compared to

0.46 and 0.66 by independently using audio or visual features individually. By using

a compact data structure (sketch), the system could easily hold the audio and visual

features in memory for a year’s worth of video on a personal laptop computer.

11

The second system, Image Spam Detection System, detects image spam in email.

Due to the success of text spam detection systems, spammers moved to image spam

which is much more difficult to detect due to the limitations of current computer

vision techniques. We take a different approach that uses near duplicate detection

to identify image spam. We rely on traditional anti-spam methods to catch a subset

of spam images, and then use multiple image spam filters to detect all images that

“look” like the spam images caught by traditional methods. Our prototype system

achieved an 89% detection rate with a 0.001% false positive rate. The traditional

computer vision based method had a similar detection rate but a much higher false

positive rate of around 1%.

The third system, Product Navigation System, helps users find the desired prod-

ucts. Traditional product navigation systems use a text based search engine to locate

labeled products. However, since product databases are growing fast and product

tags are often ambiguous, searching for a specific product can be time consuming

and cumbersome for users. New methods work by leveraging the images associated

with the product to help the search. The challenge is to build a search system to

combine text-based search and content-based image search to help customers quickly

find the right products. We propose a search system that combines text search with

content-based image search to improve navigation through the product hierarchy tree

found in most e-commerce sites. We evaluated such a design with product data from

a top e-commerce site and found that our design reduces the number of user clicks

by 60% compared to current standard practice.

During the implementation of these systems, we encountered one common prob-

lem — the datasets are large and keep growing. It is often difficult for the system

designers to properly size the resources for the system ahead of time. In order to

address this problem, we designed a rank-based model for sizing sketches, compact

data structures which approximate the original features. The model is designed to

12

help system designers understand how to choose sketch size properly with only a sub-

set of data available, and to ultimately design more efficient large-scale multimodal

systems.

Since multiple modalities are intrinsic in multimedia non-text data, we would

like to investigate how to leverage them when designing similarity search systems.

Although we have not found a general solution to using multimodal data in similarity

search systems, this dissertation shows that it is possible to substantially improve

search accuracy and efficiency by combining domain specific knowledge of multimodal

data. We have studied the problem using three real systems, and they demonstrated

much better accuracy compared to systems that did not leverage multimodal data.

The following chapters will describe each similarity search system in detail.

13

Chapter 2

Video Search with Visual and

Audio Features

2.1 Introduction

A challenge in building a digital memory system is the ability to search desired in-

formation quickly and conveniently. In 1945, Vannevar Bush described his vision of

Memex [120]: “a device in which an individual stores all his books, records, and com-

munications, and which is mechanized so that it may be consulted with exceeding

speed and flexibility.”. Today, commodity disks and video cameras can easily be used

to implement the first part of Bushs description of the Memex – continuously cap-

ture and achieve a persons life. The challenge is to design and implement a retrieval

system that “may be consulted with exceeding speed and flexibility,” realizing the

second part of the Memex vision.

Much of the previous work on building retrieval systems for continuous archived

data is based on attributes, annotations, or automatic classifications. These ap-

proaches have limitations in different dimensions. Attributes such as time and lo-

cation are helpful for information retrieval, but they do not describe the content of

14

the archived information. Annotations of non-text data (such as audio, images, and

video) can provide a text-based search engine with effective ways to retrieve informa-

tion. However, generating annotations for a continuous-archived life log is a daunting

and perhaps impossible task for most people. Automatic classifications try to gener-

ate annotations automatically. They tend to generate coarse-grained classes, whereas

retrieving information in a life-long continuous archive require both coarse-grained

and fine-grained content-based search capabilities.

Princetons CASS (Content-Aware Search Systems) project studies how to build a

retrieval system to perform content-based search of a variety of data types. We have

designed a system called VFerret which provides the ability to perform content-based

similarity search on unlabeled continuous archived video data. We are interested in

several research issues. First, we are interested in studying how to use both audio and

visual features to effectively perform content-based similarity search on continuous

archived video data. Second, we would like to design a system that requires minimal

metadata to handle years of continuous archived data. Third, we would like the

system to allow users to combine the content-based similarity search capability with

annotation/attribute-based search in retrieval tasks.

This chapter describes the design and implementation of the VFerret system. The

system segments the video data into clips and extracts both visual and audio features

as metadata. The core component of the system is a content-based similarity search

engine constructed using a toolkit called Ferret [79] that searches the metadata by

a combination of filtering, indexing and ranking. The system also has a built-in

attribute/annotation search engine that allows users to perform a combination of

attribute/annotation-based and content-based search.

To experiment with the system, we used the DejaView Camwear model 200 as

a capturing device to continuously record 6 weeks of a graduate students life. To

evaluate the search quality of our system, we have manually labeled the data and

15

used a portion of the data as our training dataset. Our evaluation shows that the

system can achieve an average precision of 0.46 by using visual features alone, 0.66

by audio features alone, and 0.79 by combining visual and audio. Our analysis shows

that the current configuration of the system requires only 13.7Gbytes of storage for

the metadata of 10 years of continuous archived data.

2.2 Previous work

Retrieving continuous archived data is an active field. Traditional methods use var-

ious kinds of attributes and annotations to aid retrieval. Mylifebits uses extensive

attributes and annotations to create links between video, audio and all personal in-

formation together. Lifelog presents a system using GPS, body sensor and voice

annotation to index the video.

There have also been various projects working on content-based video retrieval.

Marvel [103], VideoQ [45], and most notably various projects participating TRECVID

workshop [86] use visual and audio features and apply the content-based search tech-

nique to retrieve video clips. These projects mostly focus on commercial video clips,

which pose different kind of challenges than personal continuous archived video.

Content-based audio retrieval research (e.g. Ellis and Lee [38]) has tended to fo-

cus more on automatic classification, clustering, and segmentation problems than on

generic similarity search. Some work has been done towards defining similarity spaces

for shorter-timescale sound effects and instrument tones (e.g. MARSYAS3D [97],

Terasawa, Slaney, and Berger [113]). The problem of developing longer-timescale

similarity metrics for music is also being actively studied (see e.g. Logan and Sa-

lomon [75], Vignoli and Pauws [123]).

Content-based image retrieval research has studied various visual features to find

similar images. The initial QBIC [42] and many other content-based image search

16

system surveyed by Smeulders [102] studied quality of different image feature repre-

sentations. More recently, region-based image retrieval like Blobworld [20] and local

feature-based image retrieval like PCA-SIFT [67] demonstrated better retrieval per-

formance. Since these methods are much more computationally intensive, we did not

adopt them in our video search system.

Research on home video segmentation [133, 140] and organization [56] investigated

techniques to organize home video which shares some similar characteristics with

continuous archived video. Further investigation is needed to apply these methods to

continuously archived video.

2.3 System Overview

When designing the system, we first examine a number of usage scenarios of contin-

uous archived data to identify the needed functionalities. The following is a set of

sample tasks a graduate student wants:

• Find the talk given by a professor during an industrial affiliate day.

• Recall the ideas proposed by a particular team member during a project group

meeting.

• Find the clip where I met some baby Canadian geese along a trail.

For the first question, if one can find the specific date when the industrial affiliate

day is from her calendar, it should be easy to find the clip quickly by browsing through

the clips on that day.

The second and third tasks, however, will be more difficult and time-consuming

with attribute/annotation-based search method if the video clips are not rigorously

annotated. What we are proposing is to use content-based search to locate these

17

Video Capture

Video Segmentation

Time, Attributes

Extraction

Visual Feature

Extraction

Audio Feature

Extraction

Content-Based Feature DatabaseAttribute

Input Data

Processing

Content-Based Feature DatabaseAttribute

Database

Attribute

based

search

Clustering Content-

based

search

Query processing

Results

Figure 2.1: VFerret system architecture

clips: we can first find some clips that look or sound similar to our memory of the

desired clips and then use content-based similarity search to find the clips of interest.

With these questions in mind, we built the video search system as shown in Fig-

ure 2.1. Once the continuously captured video is inserted into the system, it is first

segmented into short video clips. We extract capture time and other possible at-

tributes associated with the video clips and insert them into the attribute database.

Meanwhile, in order to do content-based similarity search, we also extract the visual

and audio features from the video clips so that we can index the clips based on their

content.

At the query processing time, the user can combine the content-based search with

attribute-based search to find the clips of interest. We believe these two processes

are complementary: Attribute-based search can help to bootstrap a content-based

search, while content-based search can search all the clips that have similar contents

so that the clips that are not labeled can be found conveniently.

18

Our preliminary experience shows that a user typically starts with an attribute-

based search with a time range; the resulting clips are then clustered based on visual

and audio features. For each cluster, only one representative video clip is shown, so

the user can quickly locate a video clip that is similar to the desired clip. Once a

similar clip is found (this usually is much easier than finding the precise desired clip),

the user can initiate the similarity search to find the clips of interest quickly. We will

describe the system in more details in section 4.

2.4 Content-Based Similarity Search

We use content-based search as the main retrieval method to handle the unlabeled

personal continuous archived video. The content-based search takes one video clip

as a query clip, and returns a collection of video clips similar to the query clip. For

example, using one meeting clip as a query object, one can find most other meeting

clips without annotations. Our content-based video search system combines visual

and audio features to determine the overall similarity of the video clips.

2.4.1 Video clip segmentation

The system first segments the continuous archived video into short video clips. This

is a necessary step since the lengths of the original recordings vary and each recording

can contain multiple activities.

We use a simple segmentation method to evenly split the video recordings into 5

minutes clips each. This is adequate for our search purpose since most of the video

clips of our interests last more than 5 minutes. Although a better video segmen-

tation tool would be more desirable, we leave this to future system improvements.

We have tried several available commercial and research video scene detection and

segmentation tools such as Handysaw [28], Microsoft movie maker, and the segmen-

19

tation tool from the authors [85]. These segmentation methods do not work well for

continuous archived data because they depend on camera or lens movements that

commercial videos tend to have for segmentation. We believe personal continuous

archived videos are inherently different from commercial videos in terms of segmen-

tations. Commercial videos have relatively clean shots and clear edited boundaries

between scenes, whereas personal continuous archived videos tend to have unclean

shots and no editing.

2.4.2 Visual feature extraction

For each segmented video clip, the system extracts a set of visual feature vectors

to represent the clip. These features are used in the similarity search to determine

whether two video clips look similar or not.

To extract the visual feature, we evenly sample 20 individual images from each

video clip. For the video clips segmented into 5 minutes each, we extract one frame

every 15 seconds. For each frame, we first convert them from RGB into HSV color

space since the HSV color space distance is better for measuring human perceptual

similarity. To compare images for similarity, the system uses the approach proposed

by Stricker [109] which uses 3 central moments of the color distribution. As shown

in Figure 2.2, the 3 moments are mean, standard deviation and skewness, which

describe the average, variance and the degree of asymmetry of the color distribution.

Ma [82] has shown that the color moments performs only slightly worse than the

much higher-dimensional color histogram.

In our system, we take 3 color moments of each channel of HSV space. This gives

us a compact 9 dimension feature vector for each image. With the training dataset, we

further normalize the feature vector with their mean and standard deviation. Finally,

we use L1 distance to calculate the distance between feature vectors.

20

H: Mean, Std, Skewness

S: Mean, Std, Skewness

V: Mean, Std, Skewness

<v
1
, …, v

9
>

Figure 2.2: Visual feature extraction

Figure 2.3: Audio feature extraction

2.4.3 Audio feature extraction

To extract audio features, the system evenly split the audio channel of each 5-minute

video clip into 20 individual 15-second segments.

For each 15-second audio segment, the system uses 154 audio features patterned

after those used by Ellis and Lee [37] to describe audio segments. Figure 2.3 shows

the extraction process. We begin by extracting several sets of short-time features

describing 10 ms windows calculated every 5 ms over the entire segment. Then, to

condense this information into a compact descriptor of the entire segment, we take the

means and standard deviations of these short-time features, normalizing the standard

deviations by their respective means.

The first set of 25 short-time features measures the energy in each of 25 Bark-scale

frequency bands of the window. The Bark scale divides the frequency spectrum into

bands that increase in width with frequency in a way that models the bandwidth of

our auditory system, as shown in Figure2.3. To measure the energy in one of these

bands for a given window, we take the short-time Fourier transform (STFT) of the

21

window and sum the energy in all frequency bins that fall within that band.

The next set of 25 short-time features further describe each Bark-scale band by

treating the energy spectra within those bands as probability distributions and calcu-

lating their entropies. If all of the energy in a band is concentrated within one bin, its

entropy will be very low, whereas if the energy is more evenly distributed the entropy

will be high.

For our last set of 25 short-time features, we again treat the energy spectrum

within each band as a probability distribution and calculate the Kullback-Leibler

divergence for each band between subsequent windows. This provides us with infor-

mation about how much the shape of the spectrum within each band is changing from

window to window.

Finally, we calculate the entropy and Kullback-Leibler divergence as above for the

entire short-time Bark-scale energy spectrum, yielding another 2 short-time features.

Taking the means and normalized standard deviations of each of these 25 + 25 +

25 + 2 features gives us our 154 long-time audio features:

• 50: Mean, std of energy in each of 25 Bark-scale band

• 50: Mean, std of entropy in each of 25 Bark-scale band

• 50: Mean, std of Kullback-Leibler divergence in each of 25 Bark-scale band

• 4: Mean, std of entropy and Kullback-Leibler divergence for the entire energy

spectrum

L1 distance is used to calculate the distance between feature vectors.

2.4.4 Combined feature vector

For each 15-second video segment, we combine the visual feature vector extracted

from the sample image and the audio feature vector extracted from the corresponding

22

audio segment to form a single feature vector. The proper weight assigned to visual

and audio features are derived from the training data set as described in section 5.1.

We use L1 distance to calculate the distance between the combined feature vectors.

2.4.5 Similarity search

Given a query video clip, the goal of the similarity search is to find all the clips that

are similar to the query video. In our system, we represent each video clip as a set of

visual and audio features. So given the query video clip X, we would like the system

to find all video clips Y in the collection such that the distance d(X,Y) is within a

small range (also referred to as k nearest neighbor problem). The similarity search

system will return a ranked list of video clips where the clip with smallest distance

to the query clip ranks first.

Since each video clip is represented by a set of combined feature vector rather

than a single combined feature vector, we need to find a proper distance between set

of feature vectors. In our implementation, we use the one-to-one best match method

to find the overall minimal distance between two sets of feature vectors.

As shown in Figure 2.4, query clip X is sampled into individual images and audio

clips. A set of feature vectors < Xi > are extracted from the clip, one from each

image and audio segment. Same applied to all the other clips in the collection. For a

particular candidate Y, the distance d(X,Y) is defined as the best one-to-one match

such that the sum of all distances between the underlying feature vectors is minimized:

d(X, Y) = min{
n∑

j=1

d(Xi, Yf(i))} (2.1)

Where f(i) is a function provide any permutation of [1, ..., n], d(Xi, Yj) is the distance

between the corresponding feature vectors.

During the similarity search, all the video clips in the collection are compared with

23

<X 1 >

<X 2 >

<Y 1 >

<Y 2 >

<X 1 >

<X 2 >

<Y 1 >

<Y 2 >

Visual feature

Audio feature

<X 20 >

. . .

<Y 20 >

. . .

Feature
vectors

Feature
vectors

Distance
calculation

<X 20 >

. . .

<Y 20 >

. . .

Feature
vectors

Feature
vectors

Distance
calculation

Figure 2.4: Illustration of distance computation

the query video clip. They will be ranked according to their distance to the query

video clip. To speed up the similarity search, our system uses sketches to represent

feature vectors, and perform filtering and indexing to speed up the search process. A

technical paper on the Ferret toolkit [79] provides more detailed information.

2.5 VFerret: Content Search for Continuous Cap-

tured Video

2.5.1 Video capture system

We adopt the commercial wearable camera [1] as shown in Figure 2.5. The DejaView

Camwear model 200 has a separate camera lens that can be attached to hat or eye-

glass, and a recording device that can record up to 3-4 hours of video with a single

charge of battery. It records 320*240 mpeg4 video clips with sound to the secure dig-

ital flash memory card. One hour of video will take about 0.5 GB of storage space.

24

Figure 2.5: DejaView Camwear model 200 system

One of the authors carried the camwear, and recorded on average of 1 hour of video

every day from May to June.

2.5.2 Video search system

The video storage and search system is built using the Ferret toolkit. Our system

leverages the existing Ferret infrastructure by configuring it with video segmentation,

visual and audio feature extraction components.

To fully utilize the content-based similarity search, it is important to start a

similarity search with a relevant query video clip. We have implemented attribute-

based search methods to help bootstrap the content-based search quickly. These

methods can reduce the number of video clips users need to browse through, but they

still present a challenge when many video clips remain to be checked. The role of

content-based similarity search is to bridge the gap between the results returned from

attribute-based search and the final results.

We will use an example to illustrate the search process. Consider the example

that someone wants to show a friend the clips where she saw several baby Canadian

25

geese with their family on her way home.

Timeline-based search step

The timeline-based search is the most natural method to search the personal con-

tinuous archived data. Since the time stamp comes for free and people naturally

anchor events with time, most systems for personal archive have this capability. In

our experience, the timeline based search is effective when the event has a distinctive

date (e.g.: Christmas) or is associated with some other context (e.g.: email, event

saved on calendar) that is searchable via other means. The Mylifebits system [49]

and the Lifelog system [111] leverage the context information and demonstrate the

effectiveness of using timeline and context to retrieve contents.

On the other hand, for old events or relatively insignificant events, it is difficult

to recall the exact time it occurred. In such cases, one must use a relatively wide

time range, yielding many candidate video clips. A time range can be used to reduce

the search range in the first step of our video search system. For our example, the

user recalls that the encounter happened early this summer. So the user can limit

the search from May 1st to Jun 1st, which will reduce the number of clips in the next

step.

Clustering step

After the timeline filtering, the candidate set may still be too large for a user to browse

through quickly. Our system uses a k-means clustering algorithm [3] to cluster the

filtered candidates into a small set of clusters. A representative video clip is found

from each cluster so that user can quickly browse the full collections.

The k-means algorithm uses the same visual and audio features as the similarity

search system. The only difference is that we use the average of the 20 feature vectors,

rather than using all of them. This reduces the size of the overall feature vector and

26

Figure 2.6: 20 video clusters presented after timeline and clustering steps

greatly speeds up the clustering speed to make it interactive. This design decision is

based on the observation that clustering is for users to choose candidates to perform

content-based search queries instead of final results. So long as the user can identify

one video clip that is similar to the desired clip, she will be able to start the similarity

search with that clip.

For our example, the video clip should be an outdoor scene and is on a trail with

lots of green trees. The user will look for a cluster with outdoor scenes. Figure 2.6

shows an example of clusters presented to the user.

Content-based similarity search step

The last step of the search is the content-based similarity search. Once user has a

query clip, she can initiate the similarity search and iteratively refine the search to

find the desired result. She can either use a new clip in the search result as the new

query, or use multiple similar clips to start a new search. This process will provide

27

Figure 2.7: Results after the content-based similarity search step

higher quality results iteratively and help the user quickly pinpoint the desired clips

without browsing through the entire candidate set.

For our example, the user would get a collection of similar trail video clips and

find the clips of interest. Figure 2.7 shows a snapshot of such search result.

2.6 Evaluation

We have done an initial evaluation of the system to answer two questions:

• How well does the content-based similarity search produce high-quality results?

• What is the systems resource overhead for the content-based search of contin-

uous archived video?

One of the authors recorded 6 weeks of his personal life using the Camwear gear.

The video clips involve activities such as work, drive, walk, meeting, shopping, etc.

28

Activity label Training set (Number of clips) Test set (Number of clips)
walking outside 5 2

meeting 9 7
shopping 6 5
driving 20 7
seminar 10 10
reading 4 4

Table 2.1: Similarity sets

The system segments the data into a total of 385 video clips, as described above.

2.6.1 Benchmark

We separate the video clips into two sets of about the same size: one for training

and one for testing. For each set, a similarity benchmark is manually defined. The

training set is used for training the system while the test set is used here to report

the benchmark result.

For the benchmark, we defined the similarity sets by manually reviewing the video

clips and grouping video clips together according to activity types to form similarity

sets. For example, one similarity set consists of several clips recorded while walking

on an outdoor trail while another similarity set consists of recordings made while

driving in a car. Within a similarity set, all the clips are believed to similar to each

other, thus no rank is given within the similarity set. Note that, the benchmark clips

are only a subset of all the video clips and all video clips are used in the similarity

search test.

We come up with 6 similarity sets for each case, labeled as in Table 2.1:

2.6.2 Evaluation metric

We have chosen to use average precision to measure the effectiveness of our similarity

search. Given a query q with k similar clips where query q is excluded from the

similarity set, let Ranki be the rank of the ith retrieved relevant clip (1 <= i <= k)

29

Feature vectors Average Precision
Visual 0.46
Audio 0.66

Visual + Audio 0.79

Table 2.2: System Results

returned by the system, then average precision is defined as follows:

average precision =
1

k

k∑
i=1

i

Ranki

Suppose similarity set is q1, q2, q3 and the query is q1. If the search results

returned by the system are r1, q2, q3, r4, the average precision is 1/2 ∗ (1/2 + 2/3) =

0.583. This measure provides a single-valued measure, simplifying comparison of the

effectiveness of different systems.

2.6.3 Results

We compared the average precision result of our search system using visual features

alone, audio features alone, visual and audio features together as shown in Table 2.2:

Our results on the benchmark suggest that the audio features are contributing

more to our search performance than the visual features. This is an interesting

result, and we believe that it comes from the fact that in our benchmark, audio

can capture more environmental features than visual. Although the camwear lens

provides 60 degree field of view, the captured video still varies a lot in the same

environment as head moves around. Meanwhile, audio captures relatively stable

features independent of the head position in the same environment. This gives audio

more power to distinguish different environments which are associated to the activities

in our benchmark.

Although audio feature works well in classifying activities, we still rely mostly

on visual part to present the search interface.. The current interface allows the user

30

to see a tile (8x8) of thumbnails created from the video clip to quickly grasp the

visual content of the clip. For audio part, we do not have such capability of fast-

forwarding or quick sampling of the full clip. As a result, the visual feature still plays

an important role in users search process.

2.6.4 System overhead

The similarity search system only needs to store extra feature vectors in addition to

the video clips for similarity search capability. Even if the user continuously record

the video 24 hours a day and 7 days a week, it will only need about 1.37 GBytes

extra storage space to store the feature vectors for one year worth of video.

For the search speed, the current system can return the similarity set within 600ms

for a collection of 385 clips. No indexing or filtering is used for the current search since

linear scan is fast enough for 385 clips. In order to search tens of years of continuous

archived video, we believe with timeline based search to reduce the search range and

Ferrets filtering and indexing capability to speed up search, the query should still be

answered in the order of seconds.

2.7 Summary

This chapter presents the design and implementation of VFerret, a system that pro-

vides content-based similarity search for unlabeled continuous archived video data.

Our initial evaluation with a simple benchmark shows that the system can perform

high-quality content-based similarity search. While using visual and audio features

individually can achieve 0.46 and 0.66 average precisions respectively, combining both

can achieve average precision of 0.79.

The metadata overhead of the system is small. The current implementation uses

about 1.4GB of metadata for content-based similarity search for one-year worth of

31

continuous archived video data. This implies that it is already practical to implement

content-based similarity search in a current computing device.

32

Chapter 3

Spam Detection with Multiple

Image Features

3.1 Introduction

Spam message volumes have doubled over the past year and now account for about

80% of the total messages on the Internet. A major reason for the increased prevalence

of spam is the recent emergence of image spam (i.e. spam embedded in images).

Image spam volumes nearly quadrupled in 2006, increasing from 10% to 35% of the

overall volume of spam; worse, the volume of image spam continues to rise[27, 110].

The situation has significantly frustrated end-users as many image spam messages

are able to defeat the commonly deployed anti-spam systems. In order to reduce the

impact of spam, it is crucial to understand how to effectively and efficiently filter out

image spam messages.

Spammers have recently begun developing image-based spam methods to circum-

vent current anti-spam technologies since existing anti-spam methods have proved

quite successful at filtering text-based spam email messages. Early image-based spam

simply embedded advertising text in images that linked to HTML formatted email so

33

that its content could be automatically displayed to end-users while being shielded

from text-based spam filters. As spam filters started using simple methods such as

comparing the hashes of image data and performing optical character recognition

(OCR) on images, spammers have quickly adapted their techniques. To combat com-

puter vision techniques such as OCR, spammers have begun applying CAPTCHA

(Completely Automated Public Turing Test to Tell Computers and Humans Apart)

techniques. These techniques distort the original image or add colorful or noisy back-

grounds so that only humans can identify the intended message [19]. Once spammers

have applied an image creation algorithm to make a message difficult to detect with

computer vision algorithms, they apply further randomization to construct a batch of

images for delivery. The additional randomization defeats hash-based detection mech-

anisms. The result is that current image spam methods present serious challenges for

anti-spam systems.

Although some research has been done to distinguish spam images from non-

spam images by using computer vision techniques including filtering noisy images

for recognizing embedded text or monitoring color saturations in an image[6], such

methods tend to have high false positive rates, labeling ham (non-spam) as spam.

This is because computer vision techniques have not been able to defeat CAPTCHA.

Furthermore, it is difficult to predict what spam images will look like as they are

constantly evolving to evade detection. In addition, sophisticated computer vision

techniques often require substantial CPU resources, making them less practical in

high-volume environments.

We believe that an effective image spam detection system should satisfy several

requirements. First, it should be accurate, detecting most image spams while main-

taining a low false positive rate. Second, it should be efficient, parsing incoming

emails with images at modern WAN speeds. Third, it should be extensible, allowing

new image spam filtering methods to be added to deal with quickly evolving image

34

spam techniques.

This chapter proposes an image spam detection system to satisfy the require-

ments above. The basic idea is to use traditional anti-spam methods to detect some

image-based spam messages and then use fast near-duplicate detection filters to de-

tect the variations of known spam images. The system we propose is based on two

observations. The first is that traditional spam detection methods such as honeypots,

message header analysis or human reporting mechanisms can detect some image spam

messages. The second is that image spam messages are typically sent in large batches

where the messages in each batch are visually similar, although the variations can

be sophisticated. For example, spammers often design a template image and apply

various randomized alterations or noise to the template before sending it out to each

end user. Figure 3.3 and 3.4 show some spam image samples. We believe that this

is because spammers still want to deliver clear information to end users and they

want to use efficient methods to generate millions of unique spam images while not

obscuring the template image too much.

Rather than studying the image itself to determine whether the particular image

is a spam image or not, our system adopts an alternative approach. We use very

efficient near-duplicate detection techniques to find spam images that are variations

of other spam images caught by traditional anti-spam methods. Thus our system is

complementary to the existing anti-spam system to help detect image spams missed

by the traditional system.

We have designed and implemented a prototype of the proposed image spam

detection system. The system supports the use of multiple image spam filters, allows

users to plug in new filters and to specify different aggregation methods among the

filters including AND (all filters agree), OR (one of the filters decides) and VOTE

(certain number of filters agree). We have implemented three image spam filters

using different near-duplicate detection techniques in our prototype system. Our

35

experiments with a suite of image spam benchmark and 10 million non-spam images

show that using VOTE method can effectively detect variations of most kinds of

image spam messages while maintaining the false positive rate to less than 0.001%.

3.2 Previous work

Nowadays, spam filters are widely deployed and various anti-spam techniques have

been developed. At the network layer, systems such as Mail Avenger [83] track source,

destination, network path, and software version information for analysis by spam fil-

ters. Many anti-spam systems also use a combination of whitelists, blacklists, and

so-called greylists that force legitimate clients to re-send messages since spammers

often do not bother doing so [73]. Other common techniques include block lists dis-

tributed via DNS that identify addresses assigned to dialup users or known open

relays and challenge-response systems that automatically build whitelists. Most sys-

tems such as Mail Avenger, Spam Assassin, and SpamGuru [83, 108, 98] use multiple

techniques, including multiple classifiers, to identify spam.

Filters for text-based spam, including plain text and HTML e-mail, have employed

a variety of statistical techniques, particularly Bayesian inference [95, 54]; these statis-

tical filters appear to classify text-based e-mail well. Another popular approach is the

use of so-called “fuzzy signatures” such as those employed by Vipul’s Razor [124] and

the Distributed Checksum Clearinghouse [32]. Fuzzy signatures are designed in such

a way that the signature for substantially different messages are unlikely to collide

but that the signature for very similar, although not necessarily identical, messages

will collide with high probability. Systems such as DCC allow users at different sites

to share fuzzy signatures for reported spam.

Although image-based spam has been around for some time, recent reports and

anecdotal evidence suggest that there has been significant growth both in the volume

36

of image-based spam and in the percentage of spam that uses image attachments

to convey its message [89, 110, 61]. Unlike earlier image-based spam, current image

spam is randomized to avoid signature based anti-spam techniques. Since the majority

of spam is now delivered through botnets [90], spammers have the bandwidth and

computational resources necessary to customize individual spam images extensively.

Although traditional spam filters that rely on analysis of sender, message header

and various other information can detect some of the image spams without looking

into the image itself, other image spams still pass through the spam filter since spam-

mers try hard to make everything except the spam image itself look innocent. Some

recent research studied the image classification using computer vision techniques. One

approach[6] is largely based on the extraction of text regions in the images of inter-

est and SVM. This method can achieve about 85% detection rate with about 15%

false positive rate. Wu et al. [132] have identified a number of useful visual features

including banner images, computer generated graphics and embedded-text, and use

SVM to train the classifier. Their approach can achieve about 81% detection rate

with about 1% false positive rate. Although the results are encouraging, we believe

that the misclassification rate of non-spam images needs to be dramatically lower in

order to make image spam detection practical.

Our image spam detection system utilizes content-based image similarity search

techniques. Much work has been done in this area [36, 94, 101, 121]. Recently,

researchers have used content-based image search techniques for near-duplicate image

detection [68, 138]. The image features they use are usually complex and slow to

compute and compare. Given the large number of image spams that are received

every day, our challenge is to achieve high effectiveness and high efficiency at the

same time.

37

detected

image spams

traditional anti-spam filters

incoming emails

image image image

other emails

with image

non-image

emails

non-spam

spam

non-spam image

spam

filter 1

image

spam

filter 2

image

spam

filter F

evaluator

non-spam

spam

non-spam

training

image

DB

Figure 3.1: Image spam detection system architecture.

3.3 Main Idea

Our image spam detection system takes advantage of the nature of spam messages:

they have to be sent in large quantity, and the machine generated spam images within

the same batch will look similar to each other. Since spam messages are sent in large

quantity, some of them can be detected using traditional spam detection methods such

as honeypots (dummy email accounts set up to attract spams) or sender analysis, as

well as those reported by end users. Once we have identified some of the spam images

via traditional spam detection methods, we can then detect their near-duplicates as

spams even if those emails evade traditional spam filters.

Figure3.1 shows the architecture of our image spam detection system: the tradi-

tional spam filters not based on image content analysis; a set of image spam filters

that detect near-duplicate images; and an evaluator to aggregate the results from

38

feature extraction unit

other emails

with image

detected

image spams

non-spam

training

image DB

non-spam

feature DB

spam

image

detection

image spam filter

spam

feature DB

training test

non-spam

spam

Figure 3.2: An image spam filter.

multiple image spam filters. Each image spam filter is made up by its feature extrac-

tion unit, non-spam feature DB, spam feature DB and spam image detection unit as

shown in Figure 3.2.

An important issue in designing a near-duplicate detection system is to figure out

how “near” when comparing two images with each other. In other words, we need

to figure out a distance threshold in the filter’s feature vector space of the images.

If a threshold is too small, the filter tend to achieve low false positive rates, but

low detection rates. Traditionally, threshold will be derived by training with a spam

image dataset. We took a different approach, deriving thresholds by training with

a non-spam image dataset. The idea is to learn what the “non-spam” images look

like and use the information to bound the threshold to achieve high detection rates

and low false positive rates. The intuition behind of this approach is that the look

of non-spam images are relatively stable over time, whereas image spam methods

39

are constantly evolving and new spams may have different looks. We collect a large

collection of known non-spam images and save it in the non-spam training image DB.

Each deployed image spam filter (or a new image spam filter plug-in) will extract

features from all the non-spam images offline and store them in the non-spam feature

DB for future use.

When deployed in real time, the image spam detection system will work together

with the traditional anti-spam filters. All incoming emails will go through the tra-

ditional anti-spam filters first. The emails without any embedded images will be

handled by traditional filter alone. The emails with embedded images will be filtered

and labeled first by the traditional spam filter (such as analyzing their headers) and

then passed to our image spam detection system.

All embedded images will be processed by all image spam filters. The feature

extraction unit of each individual image spam filter will extract a feature vector from

the image. If the image is labeled as spam by the traditional anti-spam filter, the

feature vector will be inserted into the spam feature DB. During the insertion, we will

calculate its distance from all the feature vectors stored in the non-spam feature DB

and set the smallest distance as the detection threshold associated with this particular

spam image. This step will essentially create a high dimensional sphere in the feature

space such that any other feature vector that falls into the sphere will be considered

as a spam.

An image spam filter then uses the spheres defined by the thresholds in the spam

feature DB to detect near-duplicates of the known spams. Conceptually, the image

spam filter will compare the feature vector of an image (not labeled by the traditional

spam filter) with all the feature vectors in the spam feature DB. If the feature vector

falls in any of the “sphere” of a known image spam, the email associated with this

image will be considered as a spam by this specific image spam filter.

We allow multiple image spam filters to work together to increase the coverage

40

of spam categories, improve the detection rate for each category while maintaining

low false positive rate. Our idea is to use an evaluator to aggregate the results from

multiple filters. We currently consider three methods:

• “AND”: an image is classified as spam if and only if all filters decide it is

spam. This method will lead to relatively low detection rates and very low false

positive rates.

• “OR”: an image is classified as spam if any filter decides it is spam. This

method will lead to high detection rates and relatively high false positive rates.

• “VOTE”: an image is classified as spam if a specified number of filters decide

it is spam. This method will provide balanced detection rates and false positive

rates between AND and OR.

By supporting multiple aggregation methods, our system provides users with more

flexibility.

3.4 Anti-Spam System: Image Spam Detection Sys-

tem

To evaluate our idea, we have implemented a prototype image spam detection system.

This section describes the implementation details of our system components.

We use Mail Avenger [83], a customizable SMTP server, together with SpamAs-

sassin mail filter [108] as the traditional spam filter in our system. Each incoming

message was annotated with the output available from Mail Avenger. Mail Avenger

was configured to deliver mail unconditionally but to log the TCP fingerprint and

results of a traceroute back to the mail relay as well as the results of DNSBL lookups

for about twenty different popular black lists. Once messages to the mail server were

spooled, they were run through the SpamAssassin mail filter. The real-time feedback

41

from Mail Avenger and SpamAssassin were used to determine how existing tools

would classify incoming spam at delivery time.

We store 100,000 legitimate images in our non-spam image DB. They are sampled

from two online photo sharing sites photo.net and pbase.com and from a COREL

stock photo collection. The images are stored in the database so that new image

spam filter can be trained when introduced into the system.

Image spam filters are designed to detect variations of image spams using different

image near-duplicate detection techniques. Our system supports multiple image spam

filters and allow users to plug in new filters for emerging image spam techniques.

Figure 3.2 shows the components of an image spam filter.

We have leveraged Ferret toolkit [79] to construct image spam filters, manage

spam feature DB, and perform near-duplicate detections. It is convenient to use

since it uses advanced indexing techniques to perform high-speed similarity searches.

To construct an image spam filter, all one needs is to plug in a feature extraction unit

and the definition of its distance function.

The feature extraction unit converts an image to a feature vector representation

for near-duplicate detection purpose. If two images are near-duplicates, their feature

vectors would be very close to each other in the feature vector space. The following

properties are highly desirable for the feature extraction unit:

• Efficient : The unit should be able to process incoming images efficiently in

order to match the throughput of targeted mail servers.

• Effective : Spammers typically add random “noises” to each spam image. For

effective detection, the unit should produce features that are relatively insensi-

tive to those added noises.

• Distinctive : To minimize false positive rate, the unit should generate features

that can distinguish spam images from non-spam images.

42

We have constructed three filters (see Section 6).

The system has a spam feature DB for each filter. The DB stores all feature

vectors extracted from all known spam images labeled by the traditional anti-spam

filter, and an associated threshold value for each feature vector. The threshold value

is the smallest distance between the feature vector of the spam image and the feature

vectors of all the 100,000 non-spam images. If a new known spam image is within

the threshold value distance away from an old known spam image, it will be treated

as the spam from the same batch and no new entry will be inserted into the spam

feature DB to save space. Older known spam feature could be retired if it had not

been able to detect spams for a while.

We have implemented three aggregation methods AND, OR, and VOTE in the

evaluator. See previous section for their aggregation functionalities.

3.4.1 Known Image Spam Techniques

Spam images are typically generated in two steps. The first step is template con-

struction, where a spam image template is constructed with the intended content

for end user. The main goal is to use different methods such as CAPTCHA to de-

feat computer vision (such as OCR-based) anti-spam techniques. The second step

is randomization, where a large number of spam images can be generated from the

template image using various randomization techniques, in order to defeat signature-

based anti-spam techniques. This section describes the template construction and

randomization methods used in the image spam datasets we have collected.

Construction methods: among the spam images we have collected, we have

identified four template construction methods:

• wave : See Figure 3.3 (a). This method uses wavy text to make it more difficult

for OCR recognition.

43

(a) wave (b) animate

(c) deform (d) rotate

Figure 3.3: Examples of spam construction techniques.

• animate : See Figure 3.3 (b), the URL in the web browser is animated. By using

animations in the GIF format, it is harder to detect the real spam content.

• deform : See Figure 3.3 (c). This method uses deformed text (such as irregular

handwritten fonts, different font colors) in order to defeat OCR.

• rotate : See Figure 3.3 (d). This method rotates the text to a certain angle

such that it is not horizontal and more difficult for OCR. Depending on the

number of different angles can be used, this technique can also be used as a

randomization technique (see below).

Randomization methods: The goal is to add random noises to a template

spam image in order to generate a large number of spam images to defeat traditional

signature-based anti-spam techniques. From the spam images we have collected, we

have observed 17 randomization techniques:

• shift : template image is shifted horizontally or vertically on the canvas. See

Figure 3.4 (1), (7).

44

(1) shift (2) crop

(3) crop,dots,shape (4) size,bar

(5) shift,fonttype,dots,frame (6) shift,linecolor,rotate

(7) shift,linecolor,fontcolor,fonttype (8) shift,content,fontcolor

(9) shift,url (10) size,fuzzy

(11) fontsize,dots,line (12) shift,dots,fontsize

(13) crop,dots (14) bits

Figure 3.4: Example spams belongs to different categories of spamming techniques.

45

• crop : template image is cropped differently (sometimes sacrificing part of con-

tent). See Figure 3.4 (2), (3) and (13).

• size : slight variations of the size (height and width) of the template. For

example, this can be achieved by writing the same template content on canvas

of different sizes or resizing an image. See Figure 3.4 (4), (10).

• dots : adds random dots (or speckles). See Figure 3.4 (5), (11), and (13).

• bar : adds a randomized bar (of pixels with similar colors) to the top, middle,

or end of a template image. See the blue bars in Figure 3.4 (4).

• frame : adds a frame (of randomized pixels and different thickness) to the

template image. See the frames in Figure 3.4 (5).

• fonttype : uses different font types for the text. See Figure 3.4 (5), (7).

• fontsize : uses different font sizes for the text. See Figure 3.4 (11), (12).

• fontcolor : uses different font colors for the text. see Figure 3.4 (8). Further

randomization is achieved by using different colors within each individual letter.

See Figure 3.4 (7).

• line : uses randomized lines in the background. See Figure 3.4 (11).

• linecolor : uses randomized lines of different colors in the background. See

Figure 3.4 (6), (7).

• shape : uses randomized shapes (such as polygons or ellipse) in the background.

See the pink shapes in Figure 3.4 (3).

• rotate : rotates the text to a random angle. See Figure 3.4 (6).

46

• bits : uses a few randomized bits either in the metadata or at pixel level, result-

ing in different image files but no noticeable different images. See Figure 3.4

(14).

• content : uses different wording (but of similar theme) for each line in a multi-

line message to achieve a combined high level of randomness. See Figure 3.4

(8).

• fuzzy : uses fuzzy text and lines. See the fuzzy text and discontinued lines in

Figure 3.4 (10).

• url : uses different URLs (pointing to the same products). See Figure 3.4 (9),

notice the only difference is the URL.

Figure 3.4 shows the samples of spam images, some of which use combinations of the

methods above1.

3.4.2 Image Spam Filters

Since spammers use different randomization methods to introduce noises to spam

images, a single feature might not be able to effectively detect all variations. In our

system, we have experimented with 3 filters based on color histogram, wavelet, and

orientation histogram.

Color Histogram Filter

The color histogram is a simple feature and can be calculated efficiently by one simple

pass of the whole image. We have used 64-dimensional color histogram based in the

RGB color space. Values in each of the three color channels (R,G,B) are divided

into 4 bins of equal size, resulting in 4 × 4 × 4 = 64 bins in total. For each bin,

1We did not collect enough of the “slice-and-dice” image spams (where the spammer randomly
slice the original spam image into several small pieces) mentioned in other report to form a batch.

47

the amount of color pixels that falls into that particular bin is counted. Finally it is

normalized so that the sum equals to one. We use L1 distance to calculate the distance

between two color histogram features. For images represented by D-dimensional real-

valued feature vectors, the L1 distance of the pair of points X = (X1, . . . , XD) and

Y = (Y1, . . . , YD) has the form:

d(X, Y) =
D∑

i=1

|Xi − Yi|

We adopt color histogram in our system for its simplicity and efficiency.

The color histogram is effective against randomly added noises and simple trans-

lational shift of the images. For the spam randomization techniques described in

section 3.4.1, the color histogram is designed to handle shift, size, dots, bar, frame,

fonttype, fontsize, line, rotate, bits, content, fuzzy, url.

Haar Wavelet Filter

2-D Haar wavelet transformation is popular in image analysis and can be calculated

efficiently in O(n) time. We convert the color image into a 256× 256 grayscale image

and apply 2-D Haar wavelet transformation on it. We then take the first 4 × 4

wavelet coefficients at low resolution end of the matrix. This essentially provides the

low resolution information about the original image. L1 distance measure is used to

calculate the feature distance.

The Harr wavelet feature is mainly targeted for these randomization techniques:

size, dots, bar, frame, fonttype, fontsize, line, shape, bits, content, fuzzy, url.

Orientation Histogram Feature

Orientation histogram feature provides the histogram of orientation of edges in the

image. It was shown to be effective in hand gesture recognition in [44] and can be

48

calculated by one simple pass of the image. We start by calculating the orientation

of each pixel, then bin the orientation of each pixel into 36 groups, each of which is

10 degrees. After that, we use a 1 4 6 4 1 filter to blur the orientation histogram.

The final histogram is normalized and L1 distance is used to calculate the feature

distance.

Orientation histogram is designed to work better with these randomization tech-

niques: shift, crop, size, fontsize, fontcolor, linecolor, bits, url.

3.5 Evaluation

We would like to answer the following questions:

• How effective is each image spam filter?

• How well do multiple image spam filters work together?

• What are the performance implications of these filters?

• How efficiently can we propagate spam image signatures for distributed spam

detection?

To answer these questions, we have conducted experiments with our prototype system

using a collection of spam images and non-spam images.

3.5.1 Evaluation Datasets

We use two different kinds of images in our evaluations: spam images and legitimate

(“ham” or non-spam) images. Since many new kinds of image spams have emerged

recently, the image spam techniques used a year ago are substantially different from

the current ones. We have decided to create an image spam dataset using image

spams collected during recent three months (Dec. 2006 to Feb. 2007) instead of

using an old public spam corpus.

49

Our spam images are collected from seven different email accounts. These are

personal email accounts including accounts from two popular online webmail service

providers, one IT company account, and three education accounts. All images in the

spam emails, including user identified ones, are collected. Duplicate spam images are

removed by using SHA-1 hash; some malformed images are also removed. All the

remaining images are manually classified into batches based on their content. We

also extract the time stamp at the receiver for each image to verify the batches or

further split the batches whenever necessary. We have removed batches that contain

only a single image for our benchmark. The resulting spam image dataset contains

1071 images in 178 different batches. The min, max, average and standard deviation

of the batch sizes are 2, 50, 6.02, 6.39 respectively. The full spam image benchmark

is available online [88].

In order to evaluate false positive rates, we have constructed a non-spam image

dataset. Since there are few publicly available non-spam email repositories (especially

for emails containing images) due to privacy concerns, we have used samples of photos

downloaded from popular photo sharing web sites as our non-spam images. We use

two sets of non-spam images, one for training and one for testing:

• Training non-spam dataset: 100,000 image randomly selected from over 600,000

images downloaded from PBase and Photonet, and the COREL stock photo

collection.

• Testing non-spam dataset: 10 million images downloaded randomly from the

Flickr web site.

We believe they are a good representation of non-spam images sent via email.

50

Category fpos% det%
dots 0 100.0
shift, fonttype, 0.00010 100.0
dots
shift, bar 0.00012 100.0
bits 0.00016 100.0
shift, fonttype, 0.00023 100.0
dots, frame
shift, dots, url 0.00044 100.0
fontsize, dots, 0.00046 100.0
line
shift, dots, line 0.00077 100.0
shift, fuzzy 0.00118 100.0
size, bar 0.00126 100.0
size 0.00126 100.0
shift, url 0.00128 100.0
size, dots 0.00161 100.0
shift 0.02401 99.1
shift, dots, 0.00259 97.7
fontsize
shift, dots 0.00617 97.4
size, fuzzy 0.00381 96.7

crop, dots, shape 0.00012 100.0
shift, linecolor, 0.00014 100.0
rotate
shift, linecolor, 0.00039 100.0
fontcolor
crop 0.00167 100.0
shift, linecolor 0.00390 92.8
shift, linecolor, 0.03452 42.8
fontcolor,fttype
shift, content, 0.00009 0.0
fontcolor
crop, dots 0.00027 0.0

overall 0.08655 84.7

Category fpos% det%
bits 0.00002 100.0
size, bar 0.00003 100.0
fontsize, dots, 0.00003 100.0
line
dots 0.00004 100.0
size 0.00012 100.0
size, fuzzy 0.00032 100.0
size, dots 0.00088 100.0

shift, dots, url 0 100.0
shift, fonttype, 0.00001 100.0
dots, frame
shift, fuzzy 0.00003 100.0
crop 0.00004 100.0
crop, dots 0.00005 100.0
shift, fonttype, 0.00009 100.0
dots
crop, dots, shape 0.00053 100.0
shift 0.01138 92.3
shift, dots, 0.00013 88.6
fontsize
shift, dots 0.00061 85.9
shift, linecolor, 0.00001 75.0
rotate
shift, linecolor, 0.00936 69.2
fontcolor,fttype
shift, url 0.00004 62.5
shift, content, 0.00001 60.0
fontcolor
shift, linecolor 0.00012 56.5
shift, dots, line 0 50.0
shift, linecolor, 0.00006 25.0
fontcolor
shift, bar 0.00002 0.0

overall 0.02393 82.3

Category fpos% det%
shift, linecolor, 0.00029 100.0
fontcolor
bits 0.00052 100.0
crop 0.00061 100.0
shift, url 0.00065 100.0
shift, linecolor 0.00179 94.2
shift 0.02089 88.2
size 0.00052 83.3

shift, linecolor, 0.00028 100.0
rotate
fontsize, dots, 0.00031 100.0
lint
shift, dots, url 0.00060 100.0
shift, bar 0.00065 100.0
dots 0.00073 100.0
shift, fonttype, 0.00077 100.0
dots
size, fuzzy 0.00106 100.0
shift, dots, 0.00081 89.8
fontsize
shift, dots 0.00286 89.1
shift, content, 0.00016 80.0
fontcolor
crop, dots, shape 0.00007 75.0
shift, linecolor, 0.02616 62.2
fontcolor,fttype
shift, dots, line 0.00011 50.0
shift, fuzzy 0.00075 50.0
crop, dots 0.00007 33.3
size, bar 0.00082 33.3
size, dots 0.00103 33.3
shift, fonttype, 0.00109 28.6
dots, frame

overall 0.06360 81.6

(a) Color Histogram (b) Haar Wavelet (c) Orientation Histogram

Table 3.1: Results using different image spam filters. The categories shown in bold
are the “targeted” group for each filter.

3.5.2 Individual Image Spam Filter Results

We begin by evaluating the effectiveness of each individual image spam filter in iso-

lation. To evaluate the effectiveness of a filter, we present the system with a single

marked spam image, the remaining unmarked spam images, and 10 million non-spam

images and see if our filter can detect the unmarked spam images in the same batch.

Table 3.1 shows the false positive and detection rates for each spam category using

different image spam filters. For each filter, the first group (shown in bold) contains

the categories that the particular filter is designed to handle while the second group

shows the remaining categories. The last row shows the overall false positive and

detection rate for all the categories.

The results show that all three filters did well in “targeted” categories in terms

of detection rates and false positive rates. The color histogram filter was able to

51

achieve perfect detection rates for 13 out of 17 targeted categories, and more than

96.7% for the remaining 4 categories. The false positive rates of all categories except

one (shift) are below 0.006%. The wavelet filter achieves perfect detection rates for

all targeted categories while keeping the false positive rates below 0.0009%. The

orientation histogram filter achieves perfect detection rates for 4 out of 7 targeted

categories, while keeping the false positive rates below 0.0007%. The detection rates

for the remaining 3 categories are 94.2%, 88.2% and 83.3% with false positive rates

0.00179%, 0.02089% and 0.00052% respectively.

The filters achieve good detection rates in more than half of the “un-targeted”

categories. The main reason is that although a filter is not designed specifically to

handle these categories, spammers tend to be conservative in randomizing images

since they must preserve the readability of the spam messages. This makes makes

some of the randomization techniques less effective. All individual filters achieve low

false positive rates.

3.5.3 Combined Image Spam Detection Results

To study the effect of aggregating multiple spam filters, we have experimented with

three simple aggregation methods: “AND”, “OR”, and “VOTE”. Table 3.2 shows

the results using all three methods to aggregate results from multiple spam filters.

The results are presented in two groups: the first group is the union of all “targeted”

categories from three spam filters, the second group shows the remainder of the cat-

egories. The last row shows the overall false positive and detection rates for all the

categories.

We can see that the “AND” method consistently achieves a false positive rate

of zero, but is effective in only about half of all spam image categories. Because

individual filters are focusing on different features of the images, when all filters agree

collectively, we expect a minimum false positive rate. The low false positive rate can

52

Evaluator AND OR VOTE
Category # spams fpos% det% fpos% det% fpos% det%
size,bar 23 0 33.3 0.00211 100.0 0 100.0
crop 15 0 100.0 0.00232 100.0 0 100.0
shift,dots,url 12 0 100.0 0.00104 100.0 0 100.0
size,dots 12 0 33.3 0.00352 100.0 0 100.0
dots 9 0 100.0 0.00077 100.0 0 100.0
size 9 0 83.3 0.00190 100.0 0 100.0
shift,linecolor,fontcolor 6 0 25.0 0.00074 100.0 0 100.0
shift,fonttype,dots 4 0 100.0 0.00096 100.0 0 100.0
shift,fuzzy 3 0 50.0 0.00196 100.0 0 100.0
bits 2 0 100.0 0.00070 100.0 0 100.0
fontsize,dots,line 2 0 100.0 0.00080 100.0 0 100.0
shift,url 26 0 62.5 0.00196 100.0 0.00001 100.0
shift,fonttype, 8 0 28.6 0.00132 100.0 0.00001 100.0
dots,frame
shift,bar 2 0 0.0 0.00078 100.0 0.00001 100.0
size,fuzzy 36 0 96.7 0.00517 100.0 0.00002 100.0
shift,dots,fontsize 100 0 78.4 0.00353 100.0 0 97.7
shift,dots 185 0 75.0 0.00963 100.0 0.00001 97.4
shift 276 0 83.3 0.05610 100.0 0.00018 96.4
shift,linecolor 76 0 55.1 0.00579 97.1 0.00002 91.3
shift,dots,line 3 0 50.0 0.00088 100.0 0 50.0
shift,linecolor,rotate 7 0 75.0 0.00043 100.0 0 100.0
crop,dots,shape 5 0 75.0 0.00072 100.0 0 100.0
shift,linecolor, 240 0 26.9 0.06958 83.6 0.00046 63.7
fontcolor,fonttype
shift,content,fontcolor 6 0 0.0 0.00026 100.0 0 40.0
crop,dots 4 0 0.0 0.00039 100.0 0 33.3
overall 1071 0 63.6 0.17336 96.1 0.00072 88.9

Table 3.2: Results using different evaluators to aggregate results from multiple image
spam filters.

be useful for certain use cases.

The “OR” method delivers the best spam detection rates at the cost of higher false

positive rates. It detects most of the spam images, including most of “un-targeted”

ones. For some use cases, a false positive rate of 0.17% is considered tolerable, but

other use cases require lower false positive rates.

The “VOTE” method provides a compromise between false positive and detec-

tion rates; it holds the false positive rates below 0.0002% for all targeted categories,

53

while achieving good detection rates. The only category that it didn’t do well is

shift.dots.line, which exhibits a 50% detection rate. For the un-targeted categories,

VOTE keeps false positive rates below 0.0005% and has good detection rates (63.7%,

100%, 43%, 100%, and 33%, respectively). We can understand effect of VOTE better

if we study one particular category closely, say “shift”. We get false positive rates

of about 0.024%, 0.011%, 0.021% and detection rates of about 99.1%, 92.3%, 88.2%

from three filters. After VOTE, we can achieve a false positive rate of 0.00018% and

a detection rate of 96.4%.

Our results show that multiple filters can work better than an individual filter.

For example, the VOTE method can deliver a better overall detection rate than each

individual filter, while reducing the overall false positive rate by almost two orders

of magnitude compared to each individual filter. This supports our design goal of

making the system extensible.

3.5.4 Image Spam Filter Speed

feature extraction training detection
time (ms) time (ms) time (ms)

Color histogram 20.9 19.8 2.0
Haar wavelet 5.4 9.4 1.1

Orientation histogram 14.5 14.4 1.5

Table 3.3: Image Spam Filter Speed.

In order to understand the performance implications of the image spam filters,

we have measured the processing time for the main components of our system on a

P4 3GHz test machine. Table 3.3 shows the processing time for each image filter:

image feature extraction time (assuming the image is rendered into memory ahead

of time), training time where a new “known” spam image is inserted into the system

and its threshold value is determined by comparing with 100,000 known non-spam

images, and detection time where an incoming image’s feature is compared with the

54

features in the spam image feature database (we assume there are 10,000 spams in

the database). Note that the training time is taken only for new kind of “known”

spam image, thus it does not occur every time a known spam image is inserted. On

average, a new image will take less than 50ms to be processed through all filters.

3.5.5 Image Spam Signature Size

Since the proposed image spam filters use feature vectors for near-duplicate detection,

it is possible to distribute new feature vectors to end mail server systems over the

Internet. Each participating email server can send its newly detected spam image

“signatures” to the central server which aggregate the spam image signatures and

periodically broadcast them back to email servers.

To see how practical our method is for supporting collaboration between peers, we

have calculated the network overhead for exchanging information about new spams.

In our approach, only the image feature and the associated threshold value generated

by the spam filter need to be exchanged over the network. The three spam filters

require (64 + 36 + 16 + 3)× 4 = 476 bytes per known image spam.

3.6 Summary

In this chapter, we present an image spam detection system. By examining the

content of new images contained in incoming emails and detecting images that are

near-duplicates of known spam images, our system can effectively detect image spams

while maintaining a low false positive rate. Rather than using computationally expen-

sive algorithms to detect new types of image spams designed to thwart conventional

computer vision algorithms, our system uses efficient algorithms to target random-

ization methods used to generate large number of unique but visually similar image

spams from template images. Our system is designed to be integrated with existing

55

anti-spam technologies to boost the detection rate of image spams. Our prototype

system has demonstrated high detection rates in most spam categories while achieving

a less than 0.001% false positive rate using the “VOTE” aggregation method.

56

Chapter 4

Product Navigation with Image

and Text Features

4.1 Introduction

A major challenge for an e-commerce system is enabling users to search for desired

products quickly. A popular approach taken by most existing systems is to arrange

products in a manually maintained tree of categories, and to index product tags

and descriptions with a text search engine. This allows a user to locate the desired

products by combining tree navigation and text search. However, as the number

of products grows larger, level-by-level navigation of the category tree becomes a

frustrating task. Further, it is non-trivial for users to identify appropriate keywords

to initiate a search for a product they have in mind such as a particular style of dress

or furniture.

With the popularity of smart phones with cameras, an emerging approach is to

allow users to search for products using images. However, computer vision techniques

for recognizing objects are effective only when the number of categories is relatively

small [33], and so far successful applications of image search are limited to a few special

57

types of products. For example, “Google Goggles” [51] only supports searching book

covers and wine labels which are essentially 2D images.

In this chapter, we present an approach to combine text search with image search

to implement a mechanism for customers to search for products of interest using both

text and images. The main idea is to leverage the existing manually labeled product

hierarchy tree and combine its navigation mechanism with a content-based image

search engine. The system uses the content-based image search results to help the

user predict the right branches of the tree. The user can correct the predictions at

any level. This will iteratively narrow the scope of the search and eventually zero in

on the products of interest. This method guarantees that the user makes predictable

progress toward the goal of finding the relevant product and improves the accuracy

of content-based image search by narrowing down the scope of the search.

Our contributions in this chapter are threefold. First, this is one of the first

papers to study various designs in combining text search and image search for large

e-commerce sites. Second, we propose a new system to use image search to assist the

user in navigating the product tree and locate the desired product quickly. Third, we

evaluate our system using a dataset from a large e-commerce site that contains more

than 30 million products and show that our system reduces the number of user clicks

needed to locate a particular product by about 60% over the traditional approach.

4.2 Previous work

Our system makes use of content-based image similarity search technique. For general

content-based image retrieval, readers are referred to Datta et al. [31] for a compre-

hensive survey. For the image near duplicate detection task (a special case of image

similarity where the objective is to detect whether or not a picture is derived from

the original picture with minor graphic modification such as cropping, blurring or

58

increasing contrast), the detection accuracy is good as demonstrated by commercial

web sites such as Tineye [116], and various research prototypes [68, 127].

On the other hand, object categorization still poses a major challenge due to vari-

ations in objects, background and viewpoints. For the well-studied dataset Caltech

101 [64] with 101 categories, the classification accuracy had been improved to around

70-80%. However the object classification accuracy drops quickly as the number of

categories increases. A recent evaluation with Imagenet [33] showed that the classi-

fication accuracy is below 10% for 10,000 categories. An e-commerce site can easily

have tens of thousands of different product categories, which is beyond the capability

of today’s vision technique.

There have been few published results on image search of products (probably

due to potential commercial applications). Jing and Baluja [62] suggested using

the pagerank algorithm on product image search results generated by text search to

improve user experience. Goswami et al. [52] studied the impact of product images

on user clicks for online shopping. Our proposed research system is different from

previous research since it suggests a completely new method to navigate the product

hierarchy tree with the help of image search.

4.3 System Architecture

The goal of a product search system is to allow users to quickly locate products of

interest. We accomplish this goal by combining text search and image search. We

first discuss the design choice we made to properly combine the text based search

with image search.

The traditional content-based image search system typically uses an image as the

query and searches the whole dataset looking for similar images. In fact, most of the

current commercial content-based image search systems such as “Google Goggles”

59

1st level Clothing Jewelry Toys Sports Tools

2nd level Hetian Jade Jadeite Pearl

3rd level Black

Gold

Yellow Green

Jadeite

3rd level

Leaf level GuanYin Zodiac Animals

Pendant

BlackYellow Green

Bracelet Earring4th level

Buddha

Figure 4.1: Product Hierarchical Tree

and Amazon Mobile App [4] adopt such a method. When potential customers cannot

find the products they want from the similar product images returned by the system,

they give up the image search system and switch back to the traditional product

keyword based system. We consider this the naive way of combining the text based

search system with content-based image search system. The user basically tries to

use the image search system first, and uses the traditional text based system as a

fallback method. This is not an ideal solution since presumably, the reason the user

tried the image search in the first place was that the text based search is not very

effective for the kind of query the user is making.

When we designed our system, we took advantage of the following observation: For

most e-commerce sites, almost all of the products are already manually categorized

into a hierarchical product tree such as the one shown in Figure 4.1. We designed

our system to use the image search to assist navigation through this type of product

tree. After the user submits the query image, the system generates a list of candidate

product category labels for the user to choose from. The user can help choose the

60

Product Data Acquisition Web Interface

Search API

Text Based

Search Tool
Image Based Search Tool

Feature Extraction

Text Database

Feature Extraction

Image Feature

Database
Metadata

& Thumbnails

Result Aggregation and Presentation Layer

Figure 4.2: System Architecture

correct product category to narrow down the search scope iteratively until reaching

the correct product. There are several benefits of such an approach: first, the category

labels are usually the most useful tags for the products, since they are manually

designed by the site operator to minimize the effort required to navigate through

the products. Second, the search scope narrows as the user gets deeper into the

product tree, and consequently, the accuracy of the image search result is progressively

improved. Third, the user is guaranteed to get to the desired product category in a

limited number of steps.

Figure 4.2 is a functional block diagram that shows the relationship between the

main components:

• Product Data Acquisition collects the product data from an e-commerce site

and injects them into our system.

• Web Interface provides a web interface for the end user.

• Search API provides a thin layer API for inserting product data and searching.

61

• Text Based Search Tool implements a traditional searchable index on product

text tags. It can provide a subset of the full dataset such that the Image Based

Search Tool can continue to refine the results.

• Text Database is the data storage of product text information used by Text

Based Search Tool.

• Image Based Search Tool implements a content-based image search engine which

enables the search for similar images given a query image. It achieves such a

capability by extracting image features in such a way that similar images tend

to have similar image features. Thus performing nearest neighbor search in the

image feature space will find similar images to the query image.

• Image Feature Database is the data storage of image feature vectors used by

Image Based Search Tool.

• Metadata and Thumbnails contains the metadata and thumbnails of the prod-

ucts used to construct the search results page returned to the user.

• Result Aggregation and Presentation Layer aggregates the results from the Search

Tools and presents them to the end user.

4.4 Image Assisted Product Navigation System

In this section, we discuss the details of our system implementation.

4.4.1 System Workflow

We illustrate the system work flow in Figure 4.3. First, all the existing products

are indexed into the search engine databases. We extract product category label

information and store them in the text database. At the same time we also extract

62

Existing

Product Data

Objects

Image Feature

Extraction

Product

Category Labels

Text and Image Based

Search Tools

Text Database
Image Feature

Database

User Query

Product Image

Image Feature

Extraction

K Nearest

Neighbor Search

Results

Product

Category Label

Prediction

Iteratively navigates down the product

hierarchy tree until leaf level reached

Figure 4.3: Detailed System Flow Chart

image features from each product image associated with the product, and store them

in the image feature database. When a user submits an image of a new product to

start the search process, we will first extract image features from the query image,

and use these features to initiate a K-Nearest-Neighbor similarity search to find the

most visually similar product images in the image feature database. Since we already

know the product category label of these similar images, we can use that information

to predict the most likely first level product category label. We will create a candidate

list of product category labels with the most likely product category label on the top

of the list.

During the user interaction step, the list of the candidate product category labels

is presented to the user for confirmation. Since there are typically a limited number

of category labels at each level of the product category tree, even if our search system

makes a mistake in category label prediction, the user can still correct it by choosing

the right category label to continue the search. Once the first level category label is

selected, the system will do another round of K-Nearest-Neighbor image similarity

63

search in the reduced subset of product images where only the images under the

correct first level category will be considered. This significantly reduces the amount

of images to be searched and the process will continue until the leaf level category

label is correctly identified. The user will finally be presented with a list of products

in the leaf level category with the most similar product at the top.

4.4.2 Image Search Subsystem

For the image search subsystem, we have adopted three kinds of global image features,

which were selected for their simplicity and speed to satisfy the real time performance

requirements for our system:

• Color Histogram : We use a simple 64-dimensional color histogram based on

the RGB color space. Values in each of the three color channels are divided into

4 bins of equal size, resulting in 64 bins in total. The amount of pixels that falls

into each bin is counted to form a histogram.

• Edge Histogram : This is the standard MPEG-7 edge histogram descriptor.

Each image is divided into 4×4 subimages, and for each subimage, the detected

edges are divided into 5 bins: vertical, horizontal, 45 degree, 135 degree diagonal

and non-directional edges. This gives us a total of 16 × 5 = 80 bins. We used

the Lire [77] library to extract this image feature.

• Average Intensity Histogram: The image is first turned into gray scale and

divided into 8 × 8 subimages; then the average intensity of each subimage is

recorded. This actually gives us a tiny 8 × 8 “thumbnail” view of the original

image.

In our image search system, we normalize each histogram and concatenate them

to form a single 208 dimensional feature vector. We use L1 distance to calculate

64

the distance between the features. For images represented by D-dimensional feature

vectors, the L1 distance of the pair of points X = (X1, . . . , XD) and Y = (Y1, . . . , YD)

has the form:

d(X, Y) =
D∑

i=1

|Xi − Yi|

4.4.3 User Interface

An important component of our search system is the user interface to help a user

navigate the product tree with the assistance of image search. It should allow a

user to navigate the product tree intuitively and correct prediction error easily. We

adopt a multiple column user interface similar to the Mac OS X finder’s column view.

Figure 4.4 shows an illustration of our user interface. The columns show the product

labels from the product tree at different levels. The rows are grouped in two regions:

the first region lists the most likely candidate labels predicted by image search system,

and the second region lists all the remaining candidate labels.

When the user submits a product image as the query image, our system provides

a list of candidate first level category labels shown in the first column. To reduce the

number of user clicks needed to navigate to the leaf level category, we also automati-

cally fill the second column with candidate second level category labels assuming the

top choice of the first level category labels is correct. This process happens recursively

until it hits the leaf level category and the most similar product image from the top

leaf level category is shown as the candidate.

In the example shown in Figure 4.4, the user submits a photo of a pendant as

the query, and our system fills the multiple column interface with predicted category

labels. It predicts the category labels correctly at the first level, but makes a mistake

at the second level. As a result, all the subsequent category predictions are also

incorrect. Because the users know what they really want, they correct the category

65

Query

Product

Image

Candidate

Product

Image

Jewelry Hetian Jade Green Pendant Guanyin

Toys Jade Dark Green Earring Buddha

Tools Gold Light Green Bracelet Qilin

Automotives Amber Black Decorator Bat (Fu)

Baby Crystal Sugar Pin Dragon

Yellow YuanYang

Image

Search

Predictions

Book Jadeite Yellow YuanYang

Clothing Pearl White Others

Furniture Platinum

Gardening Ruby

Grocery

Home

…

Sports

Rest of

Product

Category

Labels

Product category labels at different levels

Figure 4.4: User Interface

Query

Product

Image

Candidate

Product

Image

Jewelry Hetian Jade Glass Style Pendant Guanyin

Toys Jade Ice Style Earring Buddha

Tools Gold Nuo Style Necklace Zodiac Animal

Automotives Amber Bean Style Bracelet Bat (Fu)

Baby Crystal FuRong Style Decorator Fu Fruit

Image

Search

Predictions

Book Jadeite Mixed Jade Pin Hulu (FuLu)

Clothing Pearl Glossy Jade PingAn Kou

Furniture Platinum White Jade Others

Gardening Ruby

Grocery

Home

…

Sports

Rest of

Product

Category

Labels

Product category labels at different levels

Figure 4.5: User Interface (After User’s Correction)

66

label at the second level. As shown in Figure 4.5, the user’s correction triggers

a refresh of subsequent columns and these columns are filled with new predictions

based on the user’s correction at the second level. After the user’s correction at the

second level, the third and fourth levels are correctly predicted. Although the fifth

column is not predicted correctly, one more user click fixes it and leads to the correct

leaf level category. As shown in this example, though the underlying image prediction

does not always work, the user only needs to click two times to correct the system

and reach the desired leaf category level.

4.5 Evaluation

We would like to answer the following key question by evaluating our system with

real data from a top e-commerce web site:

• How much improvement can our search system achieve compared with a tradi-

tional system?

4.5.1 Evaluation Dataset

We have taken a snapshot of the biggest Chinese e-commerce web site: Taobao [112]

during May 2010. The Taobao website is similar to Ebay, but is more heavily regulated

with detailed manual product categorization. It allows any vendor to sell almost

any products on its website. As a result, the leaf level category tends to have the

same products since lots of different small vendors are selling the same product while

competing for price and service. We remove the virtual product categories such as

prepaid game points card, service, insurance products from the dataset to focus on

product search for real physical products.

Our Taobao dataset contains about 30 million product images after removing

duplicate images. We only take one product image for each product. The dataset has

67

Product tree level 1st 2nd 3rd 4th 5th 6th 7th
Average number of categories 69 15.3 9.9 9.1 7.8 8.8 7.8

Table 4.1: Average Number of Categories at Different Levels in Product Hierarchy
Tree

69 first level categories and about 350,000 leaf level categories. The average number of

categories from the same parent category at different levels in the product hierarchy

tree is shown in Table 4.1. The average number of products at the leaf level is around

172 and the average depth to reach the leaf level category from the top is 5.1.

4.5.2 Experimental setup

We leverage the manually labeled product category labels for each product to create

our benchmark. From our Taobao dataset, we randomly sample 600 product images,

remove them from the dataset and use them as query images to initiate the search.

We use the existing category labels for the 600 products as the ground truth, and

compare them against the prediction made by our search system.

We use the average number of user clicks needed to navigate to the leaf level

category to evaluate the effect of using different systems on user experience. Unlike

Amazon which aggregates different vendors of the same product into the same product

page, Taobao organizes all these different vendors in the same leaf level product group.

Thus in most cases, the correct leaf level category will give the user the right product

in our Taobao dataset. We use the average number of user clicks to compare the

performance of the following systems:

Text Based System

The text based system is representative of how most existing e-commerce websites

work. The products are arranged in a hierarchical product tree, and the user is

greeted with the home page with the first level category labels to start the search.

68

The user will navigate through the product tree structure one level at a time until

they hit the leaf level category. We assume that each web page will be large enough

to display all category labels at that category level. We count one user click for each

category level traversed.

Since we do not have detailed log information about tag based search results, we

can not evaluate the effectiveness of a system that uses tag keyword search to locate

the products. It is possible that for some products with a distinctive name such as

“Canon 7D” camera, the keyword based search will work best. However for several

other products, the user simply does not know the exact product name and needs

alternate methods to find them.

Image Search plus Text System

The image search plus text system is the first system described in the “system archi-

tecture” section. Here we try to alleviate the problem where the pure image search

system can not help the user to find the desired product in the first several pages

of returned results. In our evaluation, we assume that the user is presented with 50

product leaf category labels as the result of the pure image search. If the users find

the correct leaf level category label for the product they want, they can just do one

click on that category label to get to the right products. If the users cannot find the

desired product, they need to spend one user click to navigate to the traditional text

based search system and continue from there.

Our Combined Search System

In our combined search system, we use the multiple column user interface designed

for the product hierarchy tree navigation. At each level, we conduct a K-Nearest-

Neighbor search for all images under that product tree node to find the top 30 images

that are visually similar to the query image provided by the user. The associated

69

System Avg user clicks
Text Based System 5.05

Image Search Plus Text System 3.99
Our Combined Search System 1.58

Table 4.2: Average number of user clicks for different systems

product category labels are collected from these 30 product images and sorted. Thus

the top candidate category label in the list receives the most votes from the product

images that are visually similar to the query image. In our experiment, our system

provides 10 predicted category labels at top of each column and lists the rest of the

category labels after them.

Comparison of different systems

Table 4.2 shows the average number of user clicks needed to navigate to the correct

leaf level product category for three different systems described above. As we can

see, the traditional text based system averages the largest number of user clicks. The

image search plus text system improves the amount of average user clicks by about

21%. The improvement is not significant due to the poor accuracy of image similarity

search in a large-scale system. For our combined search system, we achieve the best

user experience in terms of the user clicks with an additional 60% improvement over

the image search plus text system.

4.6 Summary

In this chapter, we presented the design and implementation of a search system that

uses content-based image search to assist user navigation of the product category

tree. The system leverages the existing product hierarchical structure to compensate

the weakness of state of the art computer vision technology on large datasets. Our

evaluation with a real e-commerce dataset shows a 60% improvement in the amount of

70

user clicks needed for the user to navigate to the correct product category compared

with traditional content-based image search approach.

We believe our system design can also benefit other systems beyond the field of e-

commerce. The idea of using content-based search to assist navigation of a hierarchical

dataset also has applications in general object recognition and classification.

71

Chapter 5

Rank-Based Model for Sketch

5.1 Introduction

Content-based similarity search for massive amounts of feature-rich (non-text) data

has been a challenging problem because feature-rich data objects such as images,

audio, and other sensor data is typically represented by many feature vectors with

tens to hundreds of dimensions each. As a result, the key challenge in designing a

content-based similarity search engine is solving the general high-dimensional search

problem for very large datasets. In other words, we must understand how to find

data objects similar to a query data object quickly with small data structures.

Although past research has made significant progress on the high-dimensional

search problem, there is still no satisfactory general solution. Tree data structures

such as R-tree [55], K-D tree [12], SR-tree [65], and more recently

navigating-nets [70] and cover-tree [13], have been proposed to solve the K-Nearest-

Neighbor (KNN) search problem in high-dimensional spaces. But they work well

only when the (intrinsic) dimensionality is relatively low. When the dimensionality is

beyond 15 or so, such approaches are typically slower than the brute-force approach

which scans through all data objects in the dataset. Recently, several indexing meth-

72

ods based on locality sensitive hashing (LSH) [60, 50, 30, 87] have been proposed

for approximate KNN search, but they are also limited to relatively low intrinsic di-

mensionality. When the intrinsic dimensionality is high, the LSH approach typically

requires hundreds of hash tables to achieve reasonably good search quality.

A promising approach is to use sketches as compact metadata for a similarity

search engine. Sketches, which are constructed from domain-specific feature vectors,

have two salient properties: their small size and the ability to estimate the distance

between two feature vectors from their sketches alone. At search time, sketches are

used to filter out unlikely answers, resulting in a much smaller candidate set which

is then ranked with a sophisticated distance function on the original feature vectors.

This approach is practical for two reasons: the first is that for feature-rich data with

high intrinsic dimensionality, filtering metadata is more efficient in both space and

time than other known approaches. The second is that content-based similarity search

capability is often integrated with traditional search tools based on attributes such

as time, location, and other annotations. A typical integration method is to perform

an attribute-based search to produce an intermediate dataset which can be filtered

on-the-fly efficiently into a small candidate set for final ranking.

Recent theoretical and experimental studies have shown that sketches constructed

based on random projections can be used to approximate `1 distance and that such

sketches can achieve good filtering accuracy while reducing the metadata space re-

quirement and speed up similarity searches by an order of magnitude[23, 79]. An

important advantage of this approach over other dimension reduction techniques is

that sketch construction based on random projections requires no prior knowledge

about the content of the datasets. The challenge of designing a real system using this

approach is to choose the sketch size wisely.

Properly sized sketches can greatly reduce the storage requirement for metadata

and speed up similarity search while maintaining good search quality. An important

73

design decision is sketch size in bits, given the desired filtering quality and the dataset

size of a specific data type. Choose too few bits, and the distance estimates computed

from the sketches will be inaccurate. Choose too many bits, and the sketches will

needlessly waste storage space and CPU time. Ideally, a system designer can deter-

mine the sketch size and other parameters of the algorithm at system initialization

time when he knows only the targeted data type, dataset size, and perhaps a small

sample dataset. In order to achieve this goal, we need to model the relationship be-

tween the sketch size and other information and understand how to use the model in

real systems designs.

This chapter presents two analytical and experimental results to help systems de-

signers achieve the goal above. The first is a rank-based filtering model for the random

projection based sketching technique that uses Hamming distance to approximate `1

distance. We have validated the model with image, audio, and 3D shape datasets

and shown that the model can conservatively predict the required sketch size, given

desired filtering quality, target dataset size, and filtering result size.

The second is the result of investigating how to use the rank-based filtering model

to help systems designers make design decisions without the whole dataset. Exper-

imental results on three real datasets show that the rank-based filtering model per-

forms well, yielding useful, conservative predictions for larger datasets even though

the parameters of the model are set with a small sample dataset. This result allows

systems designers to build the model into a software tool.

We then show how to apply the analytical results to size sketches in configuring

a content-based similarity search tool for a 3D-shape dataset. The case study shows

that the analytical model is convenient to use.

74

5.2 Previous Work

Similarity search is typically formulated as a k nearest neighbor (KNN) search prob-

lem. The exact form of this problem suffers from the “curse of dimensionality” –

either the search time or the search space is exponential in dimension d [35, 84]. Pre-

vious study [128] has shown that when the dimensionality exceeds around 10, space

partition based KNN search methods (e.g. R-tree [55], K-D tree [12], SR-tree [65])

perform worse than simple linear scan. As a result, researchers have instead focused

on finding approximate nearest neighbors whose distances from the query point are

at most 1 + ε times the exact nearest neighbor’s distance.

Recent theoretical and experimental studies have shown that sketches constructed

based on random projections can effectively use Hamming distance to approximate `1

distance for several feature-rich datasets [23, 80, 79]. A recent work shows that such

sketches can be used as an efficient filter to create candidate sets for content-based

similarity search [78], which focused on efficient filtering methods of data objects each

represented by one or multiple feature vectors, and not on the rank-based analytical

model and experimental results.

Although recent theoretical and experimental research has made substantial progress

on sketch constructions for building large-scale search engines and data analysis tools

[43], not much work has been done on modeling sketches. Broder did an excellent

analytical analysis for sketches constructed based on min-wise permutations for near-

duplicate detection [17]. Since the application is for near-duplicate detection, his

method is based on probabilistic analysis for random distribution of data.

Several approximation-based filtering techniques for KNN search have been pro-

posed in the literature. For example, the Vector Approximation file (VA-file) [128]

method represents each vector by a compact, geometric approximation where each

dimension is represented by l bits. Other approximation techniques such as A-tree

method [96] and Active Vertice tree (AV-tree) method [9] were also proposed. Al-

75

though experimental results using different approximation sizes were reported for

these methods, no formal analysis on how to choose the approximation parameters

were given.

Most previous work on content-based similarity search of feature-rich data has

focused on segmentation and feature extraction methods. We are not aware of prior

work on modeling the Lp distance distributions of feature-rich data such as image,

audio and 3D-shape datasets. Previous work either assume uniform distribution of

feature vectors in high dimensional spaces, or present end results using the whole

dataset. The notions of doubling dimension and intrinsic dimensionality (see [70, 13])

have been used previously to capture the inherent complexity of data sets from the

point of view of several algorithmic problems including nearest neighbor search. How-

ever these notions do not provide a fine-grained model for distance distributions and

do not have enough information to accurately estimate the performance of filtering al-

gorithms for nearest neighbor search. By modeling distance distributions of a dataset,

our analytical model can be adapted to different data types, and only a small sample

dataset is needed for the analytical model to give good predictions for larger datasets.

5.3 Filtering for Similarity Search

This section describes the similarity search problem, sketching algorithm, and filtering

method using sketches that are considered in our analytical and experimental study.

5.3.1 Similarity Search

Informally, similarity search refers to searching a collection of objects to find objects

similar to a given query object. The objects we will be interested in are noisy, high-

dimensional objects such as images and audio recordings. Here, similarity between

objects refers to a human-perceived notion of similarity. This informal notion of simi-

76

larity search is made concrete as follows: objects are represented by high-dimensional

feature vectors and similarity is defined in terms of a distance metric on the under-

lying space of features. Given a query object, q, in this setting, the goal is to find

nearby objects, r, such that the distance d(q, r) is small. In particular, we may ask

for all objects r within some chosen distance of the query point, or more often, we

may ask for the k nearest neighbors of the query point. This latter formulation of the

search problem is commonly referred to as the k nearest neighbor (KNN) problem.

Although the choice of how to extract features and which distance function to use

are domain specific, in practice, it is frequently the case that objects are represented

by D-dimensional real-valued vectors and the perceptual distance between objects

is modeled by one of the `p norms. For a pair of points X = (X1, . . . , XD) and

Y = (Y1, . . . , YD), these distance functions have the form:

d(X, Y) =
(D∑

i=1

|Xi − Yi|p
)1/p

5.3.2 L1 Sketch Construction

In this chapter, we focus on a recently proposed sketching technique [80]. The sketches

constructed using this technique are bit vectors and the Hamming distance between

two bit vectors approximates the weighted `1 distance between the original feature

vectors. This sketching technique has proved useful in several application domains[79].

Briefly, the sketch construction algorithm works by randomly picking a threshold

in a particular dimension and checking if the vector’s value in that dimension is larger

(bit 1) or smaller (bit 0) than the threshold. Let B be the sketch size in bits, and H

be the XOR block size in bits. Each sketch is constructed by first generating B ×H

bits and then XORing every H consecutive bits, resulting in the final B-bit sketch.

By XORing H bits into 1 bit, this algorithm produces a dampening (or thresholding)

effect such that smaller distances are approximated with higher resolution, making it

77

suitable for nearest neighbor search1.

Let wi be the “weight” (or importance) assigned by the domain-specific feature

extraction algorithm to dimension i and let li and ui, respectively, be the minimum

and maximum values for the i-th coordinate over all observed feature vectors. Let

D be the dimension of the feature vector. At system startup time, B × H random

(i, ti) pairs are generated using Algorithm 1. At run time, the D-dimensional feature

vector x is converted into a B-bit bit vector using Algorithm 2. For further details

and a proof of correctness, we refer the reader to [80].

Algorithm 1 Generate B ×H Random (i, ti) Pairs

input: B, H, D, l[D], u[D], w[D]
output: p[D], rnd i[B][H], rnd t[B][H]

pi = wi × (ui − li); for i = 0, . . . , D − 1
normalize pi s.t. Σd−1

i=0 pi = 1.0

for (b = 0; b < B; b + +) do
for (h = 0; h < H; h + +) do

pick random number r ∈ [0, 1)
find i s.t. Σi−1

j=0 pi <= r < Σi
j=0 pi

rnd i[b][h] = i
pick random number ti ∈ [li, ui]
rnd t[b][h] = ti

end for
end for

5.3.3 Filtering using Sketches

Since sketches require little storage space and since the distance between query ob-

jects can be estimated from sketches efficiently, sketches can be used to implement a

filtering query processor for similarity search. A filtering query processor first con-

structs a candidate set of result objects for a given query object on the basis of sketch

distance. The candidate set size is chosen to be large enough such that it is likely

1See Formula 5.1 in Section 5.4 for details.

78

Algorithm 2 Convert Feature Vector to B-Bit Vector

input: v[D], B, H, rnd i[B][H], rnd t[B][H]
output: bits[B]

for (b = 0; b < B; b + +) do
x = 0
for (h = 0; h < H; h + +) do

i = rnd i[b][h]; ti = rnd t[b][h]
y = (vi < ti ? 0 : 1)
x = x

⊕
y

end for
bits[b] = x

end for

to contain the k-nearest neighbors under the original distance on feature vectors. In

effect, the construction of the candidate set “filters out” the vast majority of objects

in the system that are far from the query object while still capturing the objects close

to the query. Since sketches are small and distance estimation on sketches are very

efficient, a simple, yet practical approach for generating this candidate set is a linear

scan through the set of all sketches.

The second step in a filtering query processor is the ranking of the candidate set by

the original distance metric on the original feature vector. This exact computation

need only be carried out once for each point in the candidate set. The k-nearest

neighbors in the candidate set under the original distance metric is then taken as the

query result set. The underlying assumption in a filtering query processor is that

the k-nearest neighbors in the candidate set is an accurate estimate of the k-nearest

neighbors in the full data set. In practice, one must choose the candidate set to be

large enough that it captures a sufficiently large fraction of the k-nearest neighbors

under the original distance, but not so large that it adversely affects search engine

performance. If the candidate set is too small, the query processor will be fast, but

the search quality may be poor. On the other hand, if the candidate set is too big,

the processor will waste time and resources on unlikely candidates. We can capture

79

this inherent trade off between search quality and filter set size by asking what filter

ratio is necessary to achieve a particular quality goal. If k is the number of results to

return, a filter with filter ratio t will return a candidate set of size t× k. A filtering

query processor seeks to optimize t for a given fraction of the k-nearest neighbors in

the final result set.

A system designer who adopts the filtering approach to similarity search must

choose not only a particular domain-specific feature representation and distance func-

tion, but also an appropriate sketching algorithm and a set of parameters for sketching

and filtering. More specifically, we are mainly interested in answering the following

questions:

• What is an appropriate choice for the sketch size, B?

• How to size the sketch if the input data set grows over time?

We are also interested in other parameters involved for sketching such as the best H

value for XORing and best filter ratio t when constructing sketches as they are part of

the sketching parameters system designer need to decide at design phase. The rest of

the chapter presents our analytical and experiment results to answer these questions.

5.4 Analytical Model

We use the following notation:

• B: sketch size in bits

• k: number of similar objects to return

• t: filter ratio – i.e. filtered set size is k × t

• H: XOR block size in bits for sketching

• S: the set of domain-specific feature vectors

80

• D: the dimensionality of vectors in S

• d(x, y): the domain-specific distance on x, y ∈ S

• s0(x): the H ×B-bit sketch of x ∈ S before XORing

• s(x): the B-bit sketch of the feature vector x ∈ S

• ds(x, y): the sketch distance between x, y ∈ S

We now describe a simple analytical model for filtering using the `1 sketch of

Section 5.3.2. This model provides a basis for system designers to choose appropriate

parameter values for a sketch-based filtering similarity search query processor. In

particular, for a given data set size, N , and result set size, k, the model predicts

the relationship between recall, filter ratio (t), sketch size (B), and XOR block size

(H). Thus, the model allows a system designer to choose the system parameters in

anticipation of future growth.

In the following description let S be a set of N objects, each represented by a

D-dimension feature vector. Given objects q and r, let d(q, r) be the feature distance

between q and r, s(q) and s(r) be the sketches of q and r, respectively, and ds(q, r)

the sketch distance between q and r. We define the rank of r given q to be the number

of points in S that precede r when objects are ordered in increasing order of feature

distance from q. For a fixed query q, let ri denote the ith object in S in this ordering.

Similarly, we define the sketch rank of r to be the number of points in S that precede

r when objects are ordered in increasing order of sketch distance to q.

The goal is for the analytical model to answer the following question: Given N ,

k fixed, as a function of t, B, and H, what fraction of the points p ∈ S with rank at

most k have sketch rank at most k × t? We develop the model in a series of steps.

First, we describe how we model the distribution of feature distances in the data

set. Second, we obtain an expression for the distribution of the sketch distance as a

81

function of the feature distance. Next, we model the distribution of the sketch rank

of an object r ∈ S for a query q as a function of its feature distance from q. This

uses the distribution of feature distances in the data set and distribution of sketch

distances. Finally, we use this model for the sketch rank to estimate the recall for a

given filter ratio value. Each of these steps is described in the subsections that follow.

5.4.1 Distance Distribution

Since the sketch distance between two objects is related to the original feature vector

distance, we first study the distribution of feature vector distances. For one particular

query object, we calculate the feature vector distances of all the other objects in the

dataset to this query object. The histogram of all the object feature distances forms

the feature vector distance distribution for that particular query object. With the

feature distance distribution known, we will be able to predict the sketch distance

between the query object and rest of the objects using the analytic model described in

the next section. Note that in k-nearest neighbor search, objects that are nearby have

much more impact on the overall search quality than the ones that are further away.

When we model the distance distribution, we are mostly interested in the distance

distribution close to the k nearest neighbors.

One of the goals for our approach is to predict the sketch performance when the

dataset size changes. In order to do this, we predict the distribution of object distances

in a data set using the distribution of distances in a smaller sample. The basis for

this is the hypothesis that every data type is associated with an underlying object

distance distribution. The particular distances observed in a specific data set can be

viewed as a sample of the distribution associated with the data type. For example,

in Figure 5.1, we compare the average distance distribution of 100 query points with

the full dataset with that of a uniformly sampled dataset with only one-tenth of the

data points.

82

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (r/T)

Image

With 1/10 data points
With all data points

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (r/T)

Audio

With 1/10 data points
With all data points

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (r/T)

3D shape

With 1/10 data points
With all data points

Figure 5.1: Compare Distance Distribution of Full Dataset and 1/10 of Dataset.

One subtlety in modeling distances is that the distribution of distances from dif-

ferent query objects can be different and using a single distribution for them can lead

to errors. The distance distributions for different query objects have similar shapes

but are peaked at different points. Since our data objects have a natural bound on

each dimension, the objects are contained in a high dimensional rectangle. The lo-

cation of the query object in this high dimensional rectangle will affect the peak of

the feature distance distribution. In order to model this variation, we pick a random

sample of 100 query objects and use their distance distributions to approximate the

overall distance distributions. We compared this approach with using a single aver-

age distance distribution. The latter did not perform as well as the approach that

explicitly models the variation in object distance distributions.

Further, we approximate the empirical individual query object distance distribu-

tions by a distribution with a closed form expression. Due to the nature of k-nearest

neighbor search, we are not trying to approximate the full distance distribution. In-

stead, only the distance distribution close to k-nearest neighbors are considered during

fitting. The details of this appear in Section 5.6.1.

5.4.2 Sketch Distance Distribution

Given a dataset S, let wi, ui, li be the weight, upper bound and lower bound of the

i-th dimension, respectively. Let T =
∑

i wi × (ui − li). Using the sketch algorithm

of Section 5.3.2, for every object r ∈ S, we construct the initial bit vector s0(r) of

83

length B×H. For a fixed query point q, consider object r ∈ S and let x = d(q, r)/T .

The probability that s0(q) disagrees with s0(r) in the j-th bit is:

Pr[s0
j(q) 6= s0

j(r)] = d(q, r)/T = x

After XORing contiguous H-bit blocks of s0 to produce the final B-bit sketch, the

probability that the two sketches differ in bit j is:

Pr[sj(q) 6= sj(r)] = p(x) =
1

2

(
1− (1− 2x)H

)
(5.1)

Thus, the probability that the two B-bit sketches s(q) and s(r) differ in exactly b bits

is given by the binomial distribution:

Pr[ds(q, r) = b] = p(x, b) =

(
B

b

)
p(x)b (1− p(x))B−b (5.2)

where p(x) is given by equation (5.1). This formula gives the probability distribution

of the sketch distance as a function of the feature distance. The proof in detail can

be found [80].

5.4.3 Rank Distribution

Consider an object r ∈ S. We would like to estimate the sketch rank of r, i.e. the

number of objects that precede r when we order all objects in S in increasing order

of sketch distance to query object q. A key assumption in this calculation is that

the sketch distances are independent of each other. While this assumption is not

completely accurate, it is a reasonable approximation. As we discuss later, this leads

to a conservative estimate on the quality of the filtering results. We also assume that

in the ordering by sketch distances, objects with the same sketch distance are ordered

randomly, that is, for two objects with the same sketch distance, the probability that

84

one precedes the other is exactly 1/2.

The sketch rank of r is dependent on the sketch distance ds(q, r). Consider the

event ds(q, r) = b. Note that the probability of this event is a function of the feature

distance d(q, r) and is calculated in (5.2). Consider an object r′ ∈ S such that

d(q, r′)/T = x and let s = ds(q, r
′) be the sketch distance of r′. Let P (x, b) be the

probability that r′ is ranked lower (i.e. closer to q) than r when ds(q, r) = b. Note

that this is a function of x = d(q, r′)/T and the value b of ds(q, r).

P (x, b) = Pr[s < b] +
1

2
Pr[s = b]

=
b−1∑
i=0

Pr[s = i] +
1

2
Pr[s = b] (5.3)

=
b−1∑
i=0

p(x, i) +
1

2
p(x, b) (5.4)

Let rank (r) denote the sketch rank of r. rank (r) is the sum of indicator random

variables Y (ri, r), one for every object ri ∈ S. The indicator variable Y (ri, r) for ri ∈

S corresponds to the event that ri precedes r in the ordering by sketch distance. Our

independence assumption implies that given a value for ds(q, r), all these variables are

independent. Let xi = d(q, ri)/T . Note that Pr[Y (ri, r) = 1|ds(q, r) = b] = P (xi, b)

computed in (5.4). The expected value and variance of rank (r) are given by

E[rank (r) |ds(q, r) = b] =
N∑

i=1

P (xi, b)

Var[rank (r) |ds(q, r) = b] =
N∑

i=1

P (xi, b)− [P (xi, b)]
2

When we use the feature distance distribution model, let f(x) to be the probability

density function for the distances, i.e.
∫ x2

x1
f(x)dx is the fraction of points r′ ∈ S such

that d(q, r′)/T ∈ [x1, x2]. We can replace the summation over all data points with an

85

integration over the distance distribution:

E[rank (r) |ds(q, r) = b] = N

∫ 1

0

P (x, b)f(x)dx

Var[rank (r) |ds(q, r) = b] =

N

∫ 1

0

(P (x, b)− P (x, b)2)f(x)dx

Given the fact that N is usually on the order of hundreds of thousands, the distri-

bution of rank (r) (for a specific value of ds(q, r)) is approximately normal by the

Central Limit Theorem. The normal distribution parameters can be determined by

E[rank (r) |ds(q, r) = b] and Var[rank (r) |ds(q, r) = b]. Thus the probability that

rank (r) is at most M can be expressed as:

Pr[rank (rk) ≤ M |ds(q, r) = b] =

∫ M

0

f(y; µb, σb)dy

where

µb = E[rank (r) |ds(q, r) = b]

σb =
√

Var[rank (r) |ds(q, r) = b]

f(y; µ, σ) =
1

σ
√

2π
e−(y−µ)2/2σ2

Now, we can write the distribution of rank (r) as a mixture of normal distributions,

one for each value of ds(q, r). The distribution for b is weighted by Pr[ds(q, r) = b].

This gives us the distribution of rank (r) and allows us to calculate the probability

that rank (r) is at most M as follows:

Pr[rank (r) ≤ M] =
B∑

b=0

Pr[ds(q, r) = b]

∫ M

0

f(y; µb, σb)dy

We overload the notation somewhat and use rank (x) for x ∈ [0, 1] to denote the

sketch rank of an object r ∈ S such that ds(q, r)/T = x. Note that Pr[ds(q, r) = b] =

86

p(x, b). Using the previous expression for Pr[rank (r) ≤ M], we get

Pr[rank (x) ≤ M] =
B∑

b=0

p(x, b)

∫ M

0

f(y; µb, σb)dy

Given this expression for the rank distribution, we can now estimate search quality

for a given filter set size, M .

5.4.4 Search Quality Estimation

Once we have an expression for the rank distribution for objects r ∈ S, for a given

filter set size M , the expected fraction of the k nearest neighbors being included in

the filtered set (i.e. the recall) can be computed as:

Recall =
1

k

k∑
j=1

Pr[rank (rj) ≤ M]

When the feature distance distribution is used, the recall can be calculated as:

Recall =
N

k

∫ x0

0

Pr[rank (x) ≤ M]f(x)dx

where x0 can be derived from:

k = N

∫ x0

0

f(x)dx

Note that the sketch distributions and rank distributions are computed based on a

single query object q. As a result, the search quality estimate (recall) may vary for

different query points. To ensure that the results are representative of the entire data

set, we use multiple representative query objects to model the distance distribution.

To estimate overall search quality, we average the recall value computed using the

distance distributions for each of these query objects.

87

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (dist/T)

Image

Real distance distribution
Lognormal distribution

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (dist/T)

Audio

Real distance distribution
Lognormal distribution

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ilit

y
Di

st
rib

ut
io

n

Distance (dist/T)

3D shape

Real distance distribution
Lognormal distribution

Figure 5.2: Compare the Real Distance Distribution with Lognormal Distribution:
We only fit the initial part of real distribution for k-nearest neighbor search.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300

Re
ca

ll

Sketch size in bits

Image (dataset size = 662,317)

Real distance distribution
Lognormal distribution model

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350 400 450

Re
ca

ll

Sketch size in bits

Audio (dataset size = 54,387)

Real distance distribution
Lognormal distribution model

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300

Re
ca

ll

Sketch size in bits

3D shape (dataset size = 28,755)

Real distance distribution
Lognormal distribution model

Figure 5.3: Filter Quality with Different Distribution Models (H = 3): Lognormal
distribution gives conservative filtering quality prediction.

5.5 Evaluation

We have employed three kinds of feature-rich datasets to validate our models. To

evaluate the filtering quality, we have used average recall in which the “gold standard”

for comparison is the results computed with the original distance function.

5.5.1 Datasets

We have studied three kinds of data: images, audio, and 3D shapes. Table 5.1 provides

a summary of the dataset sizes and the number of dimensions in the domain-specific

feature vector representations.

Dataset Number of Feature Vectors Dimension

image 662,317 14
audio 54,387 192

3D shape 28,775 544

Table 5.1: Dataset Sizes and Dimensions.

88

Image Data

The image dataset used in our study is drawn from the Corel Stock Photo Library,

which contains about 60,000 images. The main reason to choose this dataset is

that it has become a standard dataset for evaluating content-based image retrieval

algorithms.

We used the JSEG [34] image segmentation tool to segment each image into mul-

tiple homogeneous regions based on color and texture. On average, each image is

segmented into 10 regions, resulting in about 660,000 regions in total. The image

region representation we use is similar to the one proposed in [80], where each region

is represented by a 14-dimensional feature vector: nine dimensions for color moments

and five dimensions for bounding box information. The bounding box is the mini-

mum rectangle covering a segment and is characterized by five features: aspect ratio

(width/height), bounding box size, area ratio (segment size/bounding box size), and

region centroids. The similarity between two regions is determined by weighted `1

distance on their 14-dimensional feature vectors.

Audio Data

Our audio dataset is drawn from the DARPA TIMIT collection [46]. The TIMIT

collection is an audio speech database that contains 6,300 English sentences spoken

by 630 different speakers with a variety of regional accents. We chose this dataset

also because it is available to the research community.

We break each sentence into smaller segments and extract features from each

segment. For each audio segment, we use the Marsyas library [119] to extract feature

vectors. We begin by using a 512-sample sliding window with variable stride to obtain

32 windows for each segment and then extract the first six MFCC (Mel Frequency

Cepstral Coefficients) parameters from each window to obtain a 192 dimensional

feature vector for each segment. We use weighted `1 distance on the 192-dimensional

89

feature vectors to determine similarity. As a result, the sentences of the dataset are

partitioned into about 54,000 word segments, and we extract one feature vector per

word segment.

3D Shape Models

The third dataset we use in our study contains about 29,000 3D shape models, which

is a mixture of 3D polygonal models gathered from commercial viewpoint models, De

Espona Models, Cacheforce models and from the Web. Each model is represented by

a single feature vector, yielding about 29,000 feature vectors in total.

To represent the 3D shape models, we use the Spherical Harmonic Descriptor

(SHD) [66], which has been shown to provide good search quality for similarity search

of 3D shape models. The models are first normalized, then placed on a 64× 64× 64

axial grid. Thirty-two spheres of different diameters are used to decompose each

model. Up to order 16 spherical harmonic coefficients are derived from the intersection

of model with each of the 32 spherical shells. By concatenating all the spherical

descriptors of a 3D model in a predefined order, we get a 32× 17 = 544-dimensional

shape descriptor for each 3D model. Although the original SHD algorithms used

`2 distance as the similarity metric, we have found that `1 distance delivers similar

search quality. As a result, in this study we use `1 distance on the 544-dimensional

feature vector.

5.5.2 Evaluation Metrics and Method

We have conducted two types of experimental studies in this chapter: distribution

model fitting and filtering model validation.

For distribution model fitting, we use some common distribution functions to

fit the distance distribution and compare the fitted distance function with the real

distribution. In order to validate the fit, we compare the residuals after the least

90

squared fitting and also plot the result for visual inspection. Moreover, we put each

fitted distribution function into our model and compare their results with the result

using real distance distribution to determine the best distribution function.

For filtering model validation, we compare the filtering results predicted by the

model with those by an implementation of the sketch-based filtering algorithm. The

filtering qualities are measured against the gold standard of each dataset, which are

computed by a brute-force approach over the entire dataset using the original distance

function. Specifically, we compare the recall value at filter ratio t predicted by our

model with that computed experimentally. The recall at filter ratio t is the fraction

of the k nearest neighbors to the query point that appear in the first t × k objects

found by the filtering search algorithm. An ideal filtering algorithm will have a recall

value of 1.0 at a filter ratio of 1. In practice, a good filter is one that achieves a

satisfactory recall with a small filter ratio. Since re-ranking of the candidate objects

filter using the original feature vectors is done after filtering, we do not need to report

the precision of our filtering method here.

The method used in our experimental evaluation is to pick one hundred objects

uniformly at random from each dataset as queries. For each query object, we use the

domain-specific feature vector distance to compute the k nearest neighbors. We then

fix the size of the sketch produced by the sketching algorithm and for each object in

the dataset generate a sketch of that size, and use the sketches to compute the filtered

candidate set of t × k objects and calculate the fraction of the k nearest neighbors

appearing in this set. Since the sketching algorithm is itself randomized, we take

the average recall over ten instances of the sketch algorithm. Finally, for each sketch

size, we report the average recall value at a fixed filter ratio t over the one hundred

randomly chosen query objects and compare that recall to the recall predicted by our

model.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

Re
ca

ll

Sketch size in bits

Image (dataset size = 662,317)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450

Re
ca

ll

Sketch size in bits

Audio (dataset size = 54,387)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

Re
ca

ll

Sketch size in bits

3D shape (dataset size = 28,755)

Real experiment
Rank-based model

Figure 5.4: Filter Quality vs Sketch Size (H = 3): Model gives conservative estimate,
and the estimate is closer when recall value is high

5.6 Experimental Results

We are interested in answering the following three questions:

• How shall we model the distance distribution of real datasets to be used in the

analytical model?

• How well can the analytical model help system designers choose design param-

eters such as sketch size?

• How well can the analytical model predict for large dataset if its parameters are

set with a small sample dataset?

This section reports the experimental answers to these questions.

5.6.1 Distance Distribution Model

In this section, we explore the possibility of using a simple distribution – with closed

form expression – to model the real data distance distribution. This allows us to

model the system with fewer parameters (typically two) rather than the full distance

distribution. Furthermore, we can reuse the distribution model when the dataset size

grows.

We have investigated several common distance distributions which may be used to

model the observed real distance distribution from the dataset and decided to choose

92

lognormal distribution in our experiments. Note that in k-nearest neighbor search,

objects that are much further away than the k-th nearest neighbor have much less

impact on the overall search quality than the ones that are closer. As a result, the

distance distribution close to the k nearest neighbors are the most important in the

overall result.

Based on this observation, we use the distance values of the 2 × k × t closest

data points to fit the statistical models, and then use the models to extrapolate to

the full set of distances. We use GNU Scientific Library [39]’s nonlinear least-square

fitting library to find fitting parameters. We only use initial part of the distance

distribution corresponding to the 2 × k × t closest data to do the fitting. It tries

to minimize the error between the real distance distribution and the corresponding

portion of lognormal distance distribution. As shown in Figure 5.2, the lognormal

distribution fits the data, even when extrapolated to the full dataset. Since this

shows the distance distribution of just a single query point, we can see the distance

distribution is not as smooth as in Figure 5.1 where the average distance distribution

of 100 query points is used.

To model the real dataset, we use 100 randomly chosen query points to generate

100 distance distributions. After that, each distance distribution is fitted with the

lognormal distribution. We then use these 100 sets of lognormal distribution param-

eters to model the distance distribution of the whole dataset. This helps us to model

the variation of distance distributions as seen from different data points in the real

dataset.

We have also validated the choice of the distribution model by comparing the fil-

tering result generated from the real distance distribution with that generated by the

model distribution. Figure 5.3 shows the filtering results using lognormal distribution

model, together with the filtering results when the real distance distribution is used2.

2The real distance distribution is directly computed from the dataset and no parameter fitting is
performed.

93

We can see that the lognormal distribution generates close trend to the real distance

distribution. It is important to note that using lognormal distribution gives a con-

servative estimate of the recall compared to the real distribution. From the system

designer’s perspective, this is desirable behavior since the recall is bounded by the

model at a small cost in sketch size.

5.6.2 Sizing Sketches

The goal of the analytical model is to help systems designers choose design parameters

properly. The following reports our experimental results to see how well the model

can help systems designers choose sketch size B and the related parameter XOR Bits

H properly. In our experiments, we set the result set size k to be 100 and filter ratio

t to be 10.

Choosing sketch size B Sketch size in bits B is perhaps the most crucial parame-

ter in a sketch-based filtering mechanism for similarity search. Finding a good sketch

size for a real system with a given expected dataset size will deliver high filter quality

with minimal storage requirement.

Figure 5.4 shows the trend of filtering quality for different sketch sizes. The recall

at a filter ratio of 10 is used to compare the experimental result with our analytical

model. As expected, using more bits in a sketch leads to higher filtering quality.

Suppose we wish to build a system that achieves a recall of 0.9. Our results show

that the sketch sizes must be about 160 bits, 256 bits and 128 bits for the image,

audio, and 3D shape datasets, respectively. The amount of storage required for sketch

storage are substantially smaller than the feature vector storage requirement. We use

these sketch sizes in the following experiments.

Notice that our analytical model conservatively predicts the average recall in all

cases and the predicted trend is consistent with the experimental results. This implies

94

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Re
ca

ll

H (XOR bits)

Image (dataset size = 662,317, B = 160)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Re
ca

ll

H (XOR bits)

Audio (dataset size = 54,387, B = 256)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Re
ca

ll

H (XOR bits)

3D shape (dataset size = 28,755, B = 128)

Real experiment
Rank-based model

Figure 5.5: Filter Quality vs XOR Block Size H: Model shows same trend as real
experiments, quality is good around H=3 and is not sensitive beyond that

 0

 0.2

 0.4

 0.6

 0.8

 1

600k500k400k300k200k100k

Re
ca

ll

Dataset size

Image (B = 160)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

50k40k30k20k10k

Re
ca

ll

Dataset size

Audio (B = 256)

Real experiment
Rank-based model

 0

 0.2

 0.4

 0.6

 0.8

 1

25k20k15k10k

Re
ca

ll

Dataset size

3D shape (B = 128)

Real experiment
Rank-based model

Figure 5.6: Filter Quality vs Dataset Size (H = 3): Model gives consistent and
conservative prediction of quality as dataset grows

that the model is appropriate for conservative estimates for real systems designs. We

will discuss the reasons for the consistent underestimation in Section 5.6.4.

Choosing XOR Bits H Choosing the H judiciously is important because a good

choice of H may give better filtering quality without increasing the sketch size and

thus the storage requirement. Although the best H value is data type dependent, our

analytical model can help choose the value without experimenting with full original

dataset. We found that the best H value is relatively stable when the sketch size B

changes, so in practice we will choose the best H value first.

Figure 5.5 shows that our analytical model predicts similar H values to the ex-

perimental results. For the image dataset, both predicted and experimental results

indicate the the best H value is 3. For audio dataset, the model predicts that the

best H value is 3 and the experimental results show that the best is 2. For 3D shape

data both indicate that the best H value is 4.

95

5.6.3 Extrapolating to Larger Dataset Size

When building a real system, it is common not to have the full dataset available

at the initial deployment. It is important to be able to choose system parameters

with only a small sample dataset, and have some performance and quality guarantees

as the dataset size grows. Our analytical model is useful in this scenario since the

system designer cannot conduct full-scale experiments to figure out the parameters

to be used.

In order to validate our model’s prediction, we conducted an experiment that

simulates dataset growth. For each dataset, we used a small subset of the full dataset

to configure our model: that is, we only use one tenth of the total data objects to

model the distance distributions and then use the model parameters derived from

small dataset to predict the filter quality when dataset size grows. The result is

compared with the experimental results, where more and more data points in the

dataset are included in each experiment to simulate the growing dataset.

Figure 5.6 shows the filtering quality with different dataset sizes. In each plot,

the first data point corresponds to the small sample dataset that we use to derive our

model parameters; the following data points labeled as “rank-based model” are the

projected results using the model. The experimental results are also shown in the

same plot.

The results show that the filtering quality degrades gradually as the dataset grows

larger. The model can give a good prediction on the degree of quality degradation

as the dataset size grows. The prediction works better when the sample dataset size

is reasonably large as seen in the image dataset. For other datasets, the degradation

prediction is more conservative, but conservative estimates are more acceptable than

optimistic in real systems designs.

96

5.6.4 Discussion

For all the figures showing the recall value, we noticed a consistent underestimate of

the model result compared with the experimental result. In fact the underestimate of

the model is largely due to the simplified independence assumption of the model – i.e.

the assumption the sketch distances of objects are independent of the k-th nearest

neighbor’s sketch distance.

In section 5.4.3, we assumed that the sketch distances for different objects r ∈ S

are independent This assumption simplifies the model, but in reality, there is some

dependency that the model ignores. In fact, when r’s sketch distance is large, the

other sketch distances are also likely to be large and vice versa. In other words, there

is a small positive correlation between sketch distances. In order to understand how

such a correlation arises, it is instructive to consider the 1-dimensional case. Consider

objects r and r′ such that d(q, r) ≤ d(q, r′). The algorithm to generate the bit vector

sketch picks random thresholds for a dimension and checks if the coordinate in that

dimension is above or below the threshold. The bit thus generated for q and r is

different if the random threshold separates q and r. If this happens, it also likely to

separate q and r′. If the sketch distance of r is large, then q and r must have been

separated by several such randomly picked thresholds. But then it is likely that q

and r′ are also separated by these thresholds. Thus, the sketch distance of r′ is likely

to be large.

The positive correlation between sketch distances results in the rank of rk being

lower than that predicted by the independent model. In order to understand this,

consider the extreme situation where the positive correlation is of the following form:

for i randomly chosen in [0, 100], each sketch distance is equal to the value at the

i-th percentile of its individual distribution. In this case, objects with higher feature

distance than the kth nearest neighbor rk will never have their sketch distance lower

than the sketch distance of rk. The effect of positive correlation is similar, but less

97

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

Av
er

ag
e

of
 d

s(q
,r)

: s

sk

Experimental results
Independent model results

Figure 5.7: Dependence of s to sk

extreme than the situation described above. In other words, the positive correlation

lowers the probability that objects further than the kth nearest neighbor will have

their sketch distance lower than the sketch distance of rk.

We conducted an experiment with the real dataset which clearly demonstrates

such a dependence. In the experiment, we repeated the sketch construction 100,000

times and observed the relationship between sketch distance s of a particular data

point r and the sketch distance sk of the kth nearest neighbor rk. Figure 5.7 shows

the result. The points show the average value of s when sk takes different values and

the dashed line shows the constant s value expected with independent model. We

can see that there is a small positive correlation between r’s sketch distance s and

rk’s sketch distance sk. Figure 5.8 further shows the experimental result where the

(empirically observed) probability distributions of r’s sketch distance is plotted for

two different values of sk.

This data dependence affects the expected probability of r overtaking rk. The

experimental result shows that the probability of that particular data point r over-

taking rk is 0.125 while our independent model’s prediction is 0.167 according to

98

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 5 10 15 20 25 30 35

Pr
ob

ab
ilit

y

r’s Sketch Distance: s

sk = 13
sk = 17

Figure 5.8: Probability Distribution of s with Different sk

Equation 5.4. The higher rank prediction of rk’s sketch distance of our model will

generate lower recall value in the quality score at filter ratio t and cause a consistent

underestimate to the experimental results.

In order to accurately model the dependence of data object r’s sketch distance r

on rk’s sketch distance rk, much more information about the data set is needed: value

distributions on each dimension, data value dependence between different objects on

each dimensions, etc. While this might give more accurate predictions, it is much

harder to obtain reliable estimates of such fine grained information about the data

set. Also it is unclear how well a model that incorporates such detailed information

can be extrapolated to larger data set sizes. We have decided to adopt a simpler model

that captures the essence of the experiment. Although our model gives a consistently

low estimate of recall, it matches the general trend of the experimental results well.

99

5.7 Case Study

In this section, we use the 3D shape dataset as an example to illustrate how to use

the rank-based analytical model to decide the parameters for sketching.

The sample dataset consists of 10,000 3D shape models, each represented by a 544-

dimensional feature vector. The first step is to compute the feature vector distance

distribution by randomly picking a number of query vectors, for instance 100 of them,

and computing their `1 distances to the feature vectors in the sample dataset. As

shown in Figure 5.1, the feature distance distribution of the sample dataset is similar

to that of the larger dataset.

Next, we use nonlinear least-squares curve fitting to find the parameters of the

lognormal distribution that best approximate the feature distance distribution we

have computed. The results are shown in Figure 5.2 and Figure 5.3. This gives us

a closed form distance distribution which we can then use in the rank-based filtering

model.

Next, using the analytical model of Section 5.4, we can compute the estimated

filtering quality for a target dataset size – in this case 28,755 objects – using different

sketch sizes B (Figure 5.4) and different XOR block size H (Figure 5.5).

Based on the estimations of the analytical model, we can then decide the sketching

parameters. For example, suppose we want to design a system with a target recall

value of around 0.8. Then the model predicts a sketch size of 128 bits and a XOR

block size of 3 bits. Given that the analytical model’s predictions are conservative, we

know that a similarity search system using B = 128 and H = 3 will be able to achieve

recall value greater than 0.8 in practice and the sketches are 544×32/128 = 136 times

smaller than the original shape descriptors3. If we want to design a system with recall

value around 0.9, we can also consult the model to pick a sketch size of 256 bits and

3We assume each of the 544-dimensions of a shape descriptor is represented by a 32-bit floating
point number.

100

XOR block size of 3 to achieve the desired quality. The sketches are 544×32/256 = 68

times smaller than the original shape descriptors.

5.8 Summary

This chapter reports the results of modeling the parameters of using sketches to filter

data for similarity search. The goal of our study is to help systems designers choose

key design parameters such as sketch size. We validated our model with three feature-

rich datasets including images, audio recordings, and 3D shape models. Our study

shows two main results for sketches that use Hamming distance to approximate `1

norm distance:

• We have proposed a rank-based filtering model for the sketch construction to

use Hamming distance to approximate `1 distance. We have shown, by exper-

imenting with image, audio, and 3D shape datasets, that this model can con-

servatively predict the required sketch size for required recall, given the dataset

size and its filtering candidate set size.

• Using the distance distribution with its parameters derived from a small sample

dataset, we show that the rank-based filtering model can be used to perform

good predictions of sketch sizes for a large dataset.

Our experimental studies show that the rank-based filtering model predicts results

close to experimental results. Although there are noticeable gaps between the pre-

dicted and experimental results for certain systems parameters, the predicted trends

are consistent with the experimental results. Furthermore, the predictions from the

model are consistently conservative in all cases.

101

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, I studied the complex problem of how to leverage multimodal data

exhibited from non-text data in order to improve similarity search system. I used

three similarity search systems to study this problem. With these systems, I studied

different ways of combining multiple features from multimodal data. I also introduced

a rank-based model to help system builders to construct large-scale multimodal sim-

ilarity search systems. Here is a list of my contributions:

• With VFerret system, I showed how to combine visual and audio features to

perform effective personal video searches. VFerret system improved search ac-

curacy from an average precision of 0.66 to 0.79.

• With Image Anti-Spam System, I explored several aggregation methods to inte-

grate multiple image spam filters to detect image spams. The prototype system

achieved a detection rate of 89% similar to traditional computer vision methods,

while substantially reducing the false positive rate from around 1% to less than

0.001%. The system is also extensible, and can incorporate new image filters to

counter new kinds of image spam threats.

102

• With Product Navigation System, I studied how to combine text search with

image similarity search to help users find desired products. By allowing users to

iteratively navigate down the product tree hierarchy with the aid of combined

text and image similarity search, the system can reduce the number of user

clicks by 60% compared to traditional methods.

• I also studied a rank-based model to help system designers construct more

efficient large-scale multimodal systems. By modeling the dataset using a small

subset of sample data, my algorithm can help system designers not only to

determine the best parameters to create sketch, but also to predict the accuracy

of similarity search results for large systems.

Although we have not found the general solution to using multimodal data in a

similarity search system, this dissertation shows that it is possible to substantially

improve search accuracy and efficiency by combining domain specific knowledge of

multimodal data. When the similarity search system is designed carefully and case

by case, it can take full advantage of multiple modalities that are intrinsic in all kinds

of multimedia non-text data. My results are encouraging and point us to further

research in this area.

6.2 Future work

The content-based similarity search with multimodal data is a relatively young field.

Yet we have seen significant improvements in the past ten years. With new user

generated digital multimedia data growing exponentially, there will be even more real

world applications emerging for daily use.

The future work for large-scale similarity search systems with multimodal data

are summarized in the following three directions.

103

• We need to improve the quality of the individual features, i.e., to close the

“semantic gap”: Our constructed systems need to better “recognize” which

contents are similar from a human’s perspective. Conceptual similarity as per-

ceived by human beings can be very different from similarity at lower data

representation level (e.g. pixel level). The community needs to investigate

better high quality features.

• We need to gain experience by designing more similarity search systems in

order to better understand how to effectively use multiple features together:

for example, emerging features such as location based features, social network

based features and user generated tag features may help the overall search

process generate more relevant results to satisfy user needs.

• We need to research new methods to handle large-scale multimodal data. It

is a challenge to optimally combine multimodal features together using large

training datasets. The current state of art training methods can only be used

on small training data. As the amount of data grows exponentially, we gain

access to huge amounts of training data. How to leverage such data in designing

multimodal search systems is still an open question.

Content based similarity search with multimodal data is a very exciting field and

I expect there will be major breakthroughs in the next ten years. Meanwhile, the real

world applications for similarity search systems with multimodal data will flourish

and start to impact every day life soon. These systems will help people to organize,

search and benefit from the enormous amount of digital data available.

104

Bibliography

[1] The DEJA VIEW CAMWEAR. http://www.mydejaview.com/.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-

imating the frequency moments. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, STOC ’96, pages 20–29, New York,

NY, USA, 1996. ACM.

[3] Khaled Alsabti. An efficient k-means clustering algorithm. In In Proceedings of

IPPS/SPDP Workshop on High Performance Data Mining, 1998.

[4] Amazon Inc. Amazon Mobile App. http://www.amazon.com/gp/anywhere/

sms/bbapp.

[5] J. andalic and, N. Campbell, S. Dasiopoulou, and Y. Kompatsiaris. An overview

of multimodal video representation for semantic analysis. In Integration of

Knowledge, Semantics and Digital Media Technology, 2005. EWIMT 2005. The

2nd European Workshop on the (Ref. No. 2005/11099), pages 39 –45, 30 2005-

dec. 1 2005.

[6] Hrishikesh B. Aradhye, Gregory K. Myers, and James A. Herson. Image analysis

for efficient categorization of image-based spam e-mail. In Eighth International

Conference on Document Analysis and Recognition (ICDAR’05), 2005.

105

[7] Stefania Ardizzoni, Ilaria Bartolini, and Marco Patella. Windsurf: Region-based

image retrieval using wavelets. In DEXA Workshop, pages 167–173, 1999.

[8] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel

learning, conic duality, and the smo algorithm. In Proceedings of the twenty-first

international conference on Machine learning, ICML ’04, pages 6–, New York,

NY, USA, 2004. ACM.

[9] Sören Balko, Ingo Schmitt, and Gunter Saake. The active vertice method: A

performance filtering approach to high-dimensional indexing. Elsevier Data and

Knowledge Engineering (DKE), 51(3):369–397, 2004.

[10] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.

Counting distinct elements in a data stream. In Proceedings of the 6th Interna-

tional Workshop on Randomization and Approximation Techniques, RANDOM

’02, pages 1–10, London, UK, 2002. Springer-Verlag.

[11] Régis Behmo, Paul Marcombes, Arnak Dalalyan, and Véronique Prinet. To-

wards optimal naive bayes nearest neighbor. In Proceedings of the 11th European

conference on Computer vision: Part IV, ECCV’10, pages 171–184, Berlin, Hei-

delberg, 2010. Springer-Verlag.

[12] J. L. Bentley. K-D trees for semi-dynamic point sets. In Proc. of the 6th Annual

ACM Symposium on Computational Geometry (SCG), pages 187–197, 1990.

[13] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest

neighbor. In Proceedings of the 23rd International Conference on Machine Lea

rning (ICML), pages 97–104, Pittsburgh, PA, USA, June 2006.

[14] Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting

methods for mixture of kernels. In Proceedings of the tenth ACM SIGKDD

106

international conference on Knowledge discovery and data mining, KDD ’04,

pages 521–526, New York, NY, USA, 2004. ACM.

[15] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor

based image classification. Computer Vision and Pattern Recognition, IEEE

Computer Society Conference on, 0:1–8, 2008.

[16] Paolo Bolettieri, Andrea Esuli, Fabrizio Falchi, Claudio Lucchese, Raffaele

Perego, Tommaso Piccioli, and Fausto Rabitti. CoPhIR: a test collection for

content-based image retrieval. CoRR, abs/0905.4627v2, 2009.

[17] A. Z. Broder. Identifying and filtering near-duplicate documents. In Proceedings

of the 11th Annual Symp. on Combinatorial Pattern Matching, pages 1–10.

Springer-Verlag, 2000.

[18] A. J. Butte and I. S. Kohane. Mutual information relevance networks: Func-

tional genomic clustering using pairwise entropy measurements. Pac. Symp.

Biocomput, pages 418–29, 2000.

[19] The CAPTCHA Project, 2000. http://captcha.net.

[20] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jiten-

dra Malik. Blobworld: A system for region-based image indexing and retrieval.

In Proc. of the 3rd Int. Conf. on Visual Information and Information Systems,

pages 509–516, 1999.

[21] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney.

Content-based music information retrieval: Current directions and future chal-

lenges. Proceedings of the IEEE, 96(4):668 –696, april 2008.

107

[22] Amit Chakrabarti and Graham Cormode. A near-optimal algorithm for com-

puting the entropy of a stream. In In ACM-SIAM Symposium on Discrete

Algorithms, pages 328–335, 2007.

[23] M. Charikar. Similarity estimation techniques from rounding algorithms. In

Proc. of the 34th Annual ACM Symp. on Theory of Computing, pages 380–388,

2002.

[24] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data

streams. Theoretical Computer Science, 312(1):3–15, 2004.

[25] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms

for clustering problems. In Proc. of the 35th Annual ACM Symp. on Theory of

Computing, pages 30–39, 2003.

[26] Yizong Cheng and George M. Church. Biclustering of expression data. In Pro-

ceedings of the International Conference Intelligent System Molecular Biology,

2000.

[27] Commtouch Inc. 2006 spam trends report: Year of the zom-

bies. http://www.commtouch.com/documents/Commtouch 2006 Spam Trends

Year of the Zombies.pdf.

[28] D. Sinitsyn. Davis Handysaw software. http://www.davisr.com/.

[29] Sarat C. Dass, Karthik N, and Anil K. Jain. A principled approach to score

level fusion in multimodal biometric systems. pages 1049–1058, 2005.

[30] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of the

20th Annual Symposium on Computational Geometry(SCG), pages 253–262,

2004.

108

[31] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval:

Ideas, influences, and trends of the new age. ACM Comput. Surv., 40:5:1–5:60,

May 2008.

[32] Distributed checksum clearinghouse, march 2007. http://www.rhyolyte.com/

dcc.

[33] Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What does classifying

more than 10,000 image categories tell us? In Proceedings of the 11th Euro-

pean conference on Computer vision: Part V, ECCV’10, pages 71–84, Berlin,

Heidelberg, 2010. Springer-Verlag.

[34] Yining Deng and B. S. Manjunath. Unsupervised segmentation of color-texture

regions in images and video. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 2001.

[35] D. Dobkin and R. Lipton. Multidimensional search problems. SIAM J. Com-

puting, 5:181–186, 1976.

[36] John P. Eakins and Margaret E. Graham. Content-based image retrieval: A

report to the jisc technology applications programme. Technical report, Uni-

versity of Northumbria at newcastle, Institute for Image Data Research, 1999.

[37] Daniel P. W. Ellis and Keansub Lee. Features for segmenting and classifying

long-duration recordings of personal audio. In In Workshop on Statistical and

Perceptual Audio Processing, 2004.

[38] Daniel P.W. Ellis and Keansub Lee. Minimal-impact audio-based personal

archives. In Proceedings of the the 1st ACM workshop on Continuous archival

and retrieval of personal experiences, CARPE’04, pages 39–47, New York, NY,

USA, 2004. ACM.

109

[39] M. Galassi et al. Gnu scientific library.

[40] Facebook Inc. Facebook twitter message. http://techcrunch.com/2011/01/

03/facebook-users-uploaded-a-record-750-million-photos-over-new-years/.

[41] J. Fierrez-aguilar, J. Ortega-garcia, D. Garcia-romero, and J. Gonzalez-

rodriguez. A comparative evaluation of fusion strategies for multimodal biomet-

ric verification. In In Springer LNCS-2688, 4th l. Conf. Audio- and Video-Based

Biometric Person Authentication (AVBPA 2003, pages 830–837, 2003.

[42] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian

Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin

Petkovic, David Steele, and Peter Yanker. Query by image and video content:

The qbic system. Computer, 28:23–32, September 1995.

[43] Imola K. Fodor. A survey of dimension reduction techniques. Technical Report

UCRL-ID-148494, Lawrence Livermore National Laboratory, 2002.

[44] W. T. Freeman and M. Roth. Orientation histograms for hand gesture recog-

nition. pages 296–301, 1995.

[45] Shih fu Chang, William Chen, Horace J. Meng, Hari Sundaram, and Di Zhong.

Videoq: An automated content based video search system using visual cues. In

In Proceedings of ACM Multimedia, pages 313–324, 1997.

[46] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L.

Dahlgren. DARPA TIMIT acoustic-phonetic continuous speech corpus, 1993.

[47] P. Geetha and Vasumathi Narayanan. A survey of content-based video retrieval.

Journal of Computer Science, 4, 2008.

110

[48] Peter Gehler and Sebastian Nowozin. On feature combination for multiclass

object classification. In Computer Vision, 2009 IEEE 12th International Con-

ference on, pages 221 –228, 29 2009-oct. 2 2009.

[49] Jim Gemmell, Gordon Bell, Roger Lueder, Steven Drucker, and Curtis Wong.

Mylifebits: Fulfilling the memex vision, 2002.

[50] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In Proc. of the 25th Int. Conf. on Very Large Data Bases (VLDB),

pages 518–529, 1999.

[51] Google Inc. Google Goggles: Use pictures to search the web. http://www.

google.com/mobile/goggles.

[52] Anjan Goswami, Naren Chittar, and Chung H. Sung. A study on the impact

of product images on user clicks for online shopping. In Proceedings of the

20th international conference companion on World wide web, WWW ’11, pages

45–46, New York, NY, USA, 2011. ACM.

[53] Liang Gou, Hung-Hsuan Chen, Jung-Hyun Kim, Xiaolong (Luke) Zhang, and

C. Lee Giles. Sndocrank: a social network-based video search ranking frame-

work. In Proceedings of the international conference on Multimedia information

retrieval, MIR ’10, pages 367–376, New York, NY, USA, 2010. ACM.

[54] Paul Graham. A plan for spam, august 2002. http://www.paulgraham.com/

spam.html.

[55] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.

of ACM SIGMOD Conf. on Management of Data, pages 47–57, 1984.

111

[56] Xian-Sheng Hua, Lie Lu, and Hong-Jiang Zhang. Optimization-based auto-

mated home video editing system. Circuits and Systems for Video Technology,

IEEE Transactions on, 14(5):572 – 583, may 2004.

[57] IDC Inc. The 2011 Digital Universe Study. http://www.emc.com/collateral/

demos/microsites/emc-digital-universe-2011/index.htm.

[58] Idee Inc. Piximilar Visual Search. http://www.ideeinc.com/products/

piximilar/.

[59] Incogna Inc. Incogna Visual Search Engine. http://www.incogna.com/.

[60] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In Proc. of the 30th Annual ACM Symposium on

Theory of Computing, pages 604–613, 1998.

[61] Iron Port Inc. Image Spam: The E-Mail Epidemic of 2006. http://ironport.

com/pdf/ironport image spam datasheet.pdf.

[62] Yushi Jing and Shumeet Baluja. Pagerank for product image search. In Pro-

ceeding of the 17th international conference on World Wide Web, WWW ’08,

pages 307–316, New York, NY, USA, 2008. ACM.

[63] Alexis Joly and Olivier Buisson. A posteriori multi-probe locality sensitive

hashing. In Proceeding of the 16th ACM international conference on Multimedia,

MM ’08, pages 209–218, New York, NY, USA, 2008. ACM.

[64] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Gaus-

sian processes for object categorization. International Journal of Computer

Vision, 88(2):169–188, 2010.

112

[65] N. Katayama and S. Satoh. The SR-tree: An index structure for high-

dimensional nearest neighbor queries. In Proc. of ACM SIGMOD Int. Conf. on

Management of Data, pages 369–380, 1997.

[66] Michael Kazhdan, Thomask Funkhouser, and Szymon Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3D shape descriptors. In Proc.

of the Eurographics Symposium on Geometry Processing, 2003.

[67] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for

local image descriptors. In CVPR (2)’04, pages 506–513, 2004.

[68] Yan Ke, Rahul Sukthankar, and Larry Huston. An efficient parts-based near-

duplicate and sub-image retrieval system. In MULTIMEDIA ’04: Proceedings of

the 12th annual ACM international conference on Multimedia, pages 869–876,

2004.

[69] Josef Kittler, Ieee Computer Society, Mohamad Hatef, Robert P. W. Duin, and

Jiri Matas. On combining classifiers. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20:226–239, 1998.

[70] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proxim-

ity search. In Proc. of the 15th ACM Symposium on Discrete Algorithms, pages

798–807, 2004.

[71] Julien Law-To, Li Chen, Alexis Joly, Ivan Laptev, Olivier Buisson, Valerie

Gouet-Brunet, Nozha Boujemaa, and Fred Stentiford. Video copy detection:

a comparative study. In Proceedings of the 6th ACM international conference

on Image and video retrieval, CIVR ’07, pages 371–378, New York, NY, USA,

2007. ACM.

113

[72] Sunil Lee and C.D. Yoo. Robust video fingerprinting for content-based video

identification. Circuits and Systems for Video Technology, IEEE Transactions

on, 18(7):983 –988, july 2008.

[73] John Levine. Experiences with greylisting. In Second Conference on E-mail

and Anti-Spam, 2005.

[74] Xirong Li, Dong Wang, Jianmin Li, and Bo Zhang. Video search in concept

subspace: a text-like paradigm. In Proceedings of the 6th ACM international

conference on Image and video retrieval, CIVR ’07, pages 603–610, New York,

NY, USA, 2007. ACM.

[75] B. Logan and A. Salomon. A music similarity function based on signal analysis.

In Multimedia and Expo, 2001. ICME 2001. IEEE International Conference on,

pages 745 – 748, aug. 2001.

[76] H. Luo, J. Fan, S. Satoh, J. Yang, and W. Ribarsky. Integrating multi-modal

content analysis and hyperbolic visualization for large-scale news video retrieval

and exploration. Signal Processing: Image Communication, 23(7):538 – 553,

2008. Special Issue on Semantic Analysis for Interactive Multimedia Services.

[77] Mathias Lux and Savvas A. Chatzichristofis. Lire: lucene image retrieval: an

extensible java cbir library. In Proceeding of the 16th ACM international con-

ference on Multimedia, MM ’08, pages 1085–1088, New York, NY, USA, 2008.

ACM.

[78] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Efficient filtering

with sketches in the ferret toolkit. In Workshop on Multimedia Information

Retrieval, 2006.

114

[79] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A Toolkit for

Content-Based Similarity Search of Feature-Rich Data. In Proceedings of the

ACM SIGOPS EuroSys Conf., 2006.

[80] Qin Lv, Moses Charikar, and Kai Li. Image similarity search with compact data

structures. In Proc. of the 13th ACM Conf. on Information and Knowledge

Management, pages 208–217, 2004.

[81] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-

probe lsh: efficient indexing for high-dimensional similarity search. In VLDB

’07: Proceedings of the 33rd international conference on Very large data bases,

pages 950–961. VLDB Endowment, 2007.

[82] Wei-Ying Ma and Hong Jiang Zhang. Benchmarking of image features for

content-based retrieval. In Signals, Systems Computers, 1998. Conference

Record of the Thirty-Second Asilomar Conference on, volume 1, pages 253 –

257 vol.1, nov 1998.

[83] Mail Avenger, 2006. http://www.mailavenger.org.

[84] S. Meiser. Point location in arrangements of hyperplanes. Information and

Computation, 106(2):286–303, 1993.

[85] C. W. Ngo, T. C. Pong, and H. J. Zhang. Motion analysis and segmentation

through spatio-temporal slices processing. In IEEE Trans. on Image Processing,

vol. 12, no 3, 2003.

[86] Paul Over, Tzveta Ianeva, Wessel Kraaij, and Alan F. Smeaton. Trecvid 2005

- an overview. In In Proceedings of TRECVID 2005, 2005.

115

[87] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1186–1195, Miami, Florida, USA, Jan 2006.

[88] Princeton Spam Image Benchmark. http://www.cs.princeton.edu/cass/

spam.

[89] Calton Pu and Steve Webb. Observed trends in spam construction techniques:

A case study of spam evolution. 2006.

[90] A. Ramachandran and N. Feamster. Unerstanding the nework-level behavior of

spammers. ACM SIGCOMM Computer Communication Review, 36(4), October

2006.

[91] Riya Inc. Riya’s like.com. http://www.like.com/.

[92] Arun Ross and Anil Jain. Information fusion in biometrics. Pattern Recognition

Letters, 24(13):2115 – 2125, 2003. Audio- and Video-based Biometric Person

Authentication (AVBPA 2001).

[93] Y. Rubner, L. J. Guibas, and C. Tomasi. The earth movers distance, high-

dimensional scaling, and color-based image retrieval. In Proc. of the DARPA

Image Understanding Workshop, pages 661–668, 1997.

[94] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image retrieval: Current

techniques, promising directions and open issues. Journal of Visual Communi-

cation and Image Representation, 10(4):39–62, 1999.

[95] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A

bayesian approach to filtering junk E-mail. In Learning for Text Categorization:

Papers from the 1998 Workshop. AAAI Technical Report WS-98-05, 1998.

116

[96] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, and Haruhiko Ko-

jima. The a-tree: An index structure for high-dimensional spaces using relative

approximation. In Proceedings of the 26th International Conference on Very

Large Data Bases (VLDB), pages 516–526, 2000.

[97] Using Large Scale and George Tzanetakis. Marsyas3d: A prototype audio

browser-editor. In In Proc. International Conference on Auditory Display, 2001.

[98] Richard Segal, Jason Crawford, Jeff Kephart, and Barry Leiba. Spamguru:

An enterprise anti-spam filtering system. In First Conference on Email and

Anti-Spam (CEAS)”, 2004.

[99] Shazam Inc. Shazam music. http://www.shazam.com/.

[100] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and

trecvid. In MIR ’06: Proceedings of the 8th ACM International Workshop on

Multimedia Information Retrieval, pages 321–330, New York, NY, USA, 2006.

ACM Press.

[101] Arnold W.M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,

and Ramesh Jain. Content-base image retrieval at the end of the early years.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(12), 2000.

[102] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-

based image retrieval at the end of the early years. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 22(12):1349 –1380, dec 2000.

[103] J.R. Smith, S. Basu, Ching-Yung Lin, M. Naphade, and B. Tseng. Interactive

content-based retrieval of video. In Image Processing. 2002. Proceedings. 2002

International Conference on, volume 1, pages I–976 – I–979 vol.1, 2002.

117

[104] Robert Snelick, Umut Uludag, Alan Mink, Michael Indovina, and Anil Jain.

Large-scale evaluation of multimodal biometric authentication using state-of-

the-art systems. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 27:450–455, 2005.

[105] Cees G. M. Snoek and Marcel Worring. Concept-based video retrieval. Found.

Trends Inf. Retr., 2:215–322, April 2009.

[106] Cees G.M. Snoek and Marcel Worring. Multimodal video indexing: A re-

view of the state-of-the-art. Multimedia Tools and Applications, 25:5–35, 2005.

10.1023/B:MTAP.0000046380.27575.a5.

[107] Soundhound Inc. Soundhound. http://www.soundhound.com/.

[108] SpamAssassin, 2007. http://spamassassin.apache.org.

[109] M. Stricker and M. Orengo. Similarity of color images. In In SPIE Conference

on Storage and Retrieval for Image and Video Databases III, volume 2420, pages

381-392,, 1995.

[110] Symantec Inc. The State of Spam, A Monthly Report - January

2007. http://www.symantec.com/avcenter/reference/Symantec Spam

Report - January 2007.pdf.

[111] Datchakorn Tancharoen, Toshihiko Yamasaki, and Kiyoharu Aizawa. Practical

experience recording and indexing of life log video. In Proceedings of the 2nd

ACM workshop on Continuous archival and retrieval of personal experiences,

CARPE ’05, pages 61–66, New York, NY, USA, 2005. ACM.

[112] Taobao Inc. Taobao Network Limited. http://www.taobao.com/.

[113] H. Terasawa, M. Slaney, and J. Berger. Perceptual distance in timbre space.

pages 61–68, Limerick, Ireland, 2005. Department of Computer Science and

118

Information Systems, University of Limerick, Department of Computer Science

and Information Systems, University of Limerick.

[114] M. B. Eisen et al. Cluster analysis and display of genome-wide expression

patterns. Proc. of National Academy of USA, 95(25):14863–8, 1998.

[115] P. Tamayo et al. Interpreting patterns of gene expression with self-organizing

maps: Methods and application to hematopoietic differentiation. Proc. of Na-

tional Academy of Sciences of USA, 96(6):2907–12, 1999.

[116] Tineye Inc. Tineye Reverse Image Search. http://www.tineye.com/.

[117] Antonio Torralba, Rob Fergus, and Yair Weiss. Small codes and large image

databases for recognition. Computer Vision and Pattern Recognition, IEEE

Computer Society Conference on, 0:1–8, 2008.

[118] Twitter Inc. Twitter Blog. http://blog.twitter.com/2011/03/numbers.

html.

[119] G. Tzanetakis and P. Cook. MARSYAS: A Framework for Audio Analysis.

Cambridge University Press, 2000.

[120] B. Vanneva. As we may think. The Atlantic Monthly, 176(1), 1945.

[121] Remco C. Veltkamp and Mirela Tanase. Content-base image retrieval systems:

A survey. Technical Report US-CS-2000-34, Utrecht University, Information

and Computer Sciences, 2000.

[122] Patrick Verlinde, Gerard Chollet, and Marc Acheroy. Multi-modal identity

verification using expert fusion. Information Fusion, 1:17–33, 2000.

[123] Fabio Vignoli and Steffen Pauws. A music retrieval system based on user-driven

similarity and its evaluation. In In Proc. International Symposium on Music

Information Retrieval, pages 272–279, 2005.

119

[124] Vipul’s Razor, 2007. http://razor.sourceforge.net.

[125] James Z. Wang, Jia Li, and Gio Wiederhold. SIMPLIcity: Semantics-sensitive

integrated matching for picture libraries. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 23(9):947–963, 2001.

[126] Zhe Wang, Wei Dong, William Josephson, Qin Lv, Moses Charikar, and Kai

Li. Sizing sketches: a rank-based analysis for similarity search. SIGMETRICS

Perform. Eval. Rev., 35:157–168, June 2007.

[127] Zhe Wang, William Josephson, Qin Lv, Moses Charikar, and Kai Li. Filtering

image spam with near-duplicate detection. In In Proceedings of the Fourth

Conference on Email and AntiSpam, 2007.

[128] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional spaces. In

Proceedings of the 24th International Conference on Very Large Data Bases

(VLDB), pages 194–205, 1998.

[129] Shikui Wei, Yao Zhao, Zhenfeng Zhu, and Nan Liu. Multimodal fusion for video

search reranking. IEEE Transactions on Knowledge and Data Engineering,

22:1191–1199, 2010.

[130] Xiao-Yong Wei, Yu-Gang Jiang, and Chong-Wah Ngo. Concept-driven multi-

modality fusion for video search. Circuits and Systems for Video Technology,

IEEE Transactions on, 21(1):62 –73, jan. 2011.

[131] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. Spatio-temporal features

for robust content-based video copy detection. In Proceeding of the 1st ACM

international conference on Multimedia information retrieval, MIR ’08, pages

283–290, New York, NY, USA, 2008. ACM.

120

[132] Ching-Tung Wu, Kwang-Ting Cheng, Qiang Zhu, and Yi-Leh Wu. Using visual

features for anti-spam filtering. In IEEE International Conference on Image

Processing, volume 3, pages 509–512, 2005.

[133] Si Wu, Yu-Fei Ma, and Hong-Jiang Zhang. Video quality classification based

home video segmentation. In Multimedia and Expo, 2005. ICME 2005. IEEE

International Conference on, page 4 pp., july 2005.

[134] Xiao Wu, Alexander G. Hauptmann, and Chong-Wah Ngo. Practical elimi-

nation of near-duplicates from web video search. In Proceedings of the 15th

international conference on Multimedia, MULTIMEDIA ’07, pages 218–227,

New York, NY, USA, 2007. ACM.

[135] Yi Wu, Edward Y. Chang, Kevin Chen-Chuan Chang, and John R. Smith. Op-

timal multimodal fusion for multimedia data analysis. In ACM Multimedia’04,

pages 572–579, 2004.

[136] Youtube Inc. Youtube Blog. http://youtube-global.blogspot.com/2010/

03/oops-pow-surprise24-hours-of-video-all.html.

[137] Vojtěch Zavřel, Michal Batko, and Pavel Zezula. Visual video retrieval system

using mpeg-7 descriptors. In Proceedings of the Third International Conference

on SImilarity Search and APplications, SISAP ’10, pages 125–126, New York,

NY, USA, 2010. ACM.

[138] Dong-Qing Zhang and Shih-Fu Chang. Detecting image near-duplicate by

stochastic attributed relational graph matching with learning. In MULTIME-

DIA ’04: Proceedings of the 12th annual ACM international conference on Mul-

timedia, pages 877–884, 2004.

121

[139] Hong Jiang Zhang, Jianhua Wu, Di Zhong, and Stephen W. Smoliar. An inte-

grated system for content-based video retrieval and browsing. Pattern Recogni-

tion, 30(4):643 – 658, 1997. Image Databases.

[140] Ming Zhao, Jiajun Bu, and Chun Chen. Audio and video combined for home

video abstraction. In Acoustics, Speech, and Signal Processing, 2003. Proceed-

ings. (ICASSP ’03). 2003 IEEE International Conference on, pages 1520–6149,

2003.

122

