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Abstract

An oblivious transfer (OT) protocol allows a receiver to obtain one of two bits held by a
sender without revealing its selection. An OT combiner securely implements OT by using oracle
access to n OT candidates of which at most t may be insecure. It is known that OT combiners
exist when t < n/2. However, known constructions either invoke each candidate multiple times
or alternatively require t to be a very small fraction of n, even in the semi-honest security model.

In this work we study the goal of maximizing the security level of single-use OT combiners
in the semi-honest model, namely OT combiners in which each candidate can only be invoked
once. This question is motivated by scenarios in which each OT instance is implemented via a
separate physical process that may leak information independent of other instances.

Our main result is a statistically secure single-use OT combiner which tolerates t = n/2 −
Õ(log n) bad instances. We complement this by a negative result, showing that it is impossible
to tolerate t = n/2 − O(1) bad instances in this setting. More generally, given n OT instances,
we construct single-use OT combiners where an adversary can corrupt the sender and tS OT
instances, or it can corrupt the receiver and tR OT instances, such that n−(tS +tR) = Õ(log n).

Finally, we apply our positive result and (re-prove) the semi-honest completeness of (p, q)-
Weak-OT [DKS99] (i.e. an OT which reveals the receiver choice bit to a corrupt sender with
probability p and reveals both sender bits to a corrupt receiver with probability q), where
p+ q < 1. We significantly reduce the total number of (p, q)-WOT copies needed to implement
one copy of OT.
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1 Introduction

Most non-trivial cryptography is impossible against information theoretic adversaries in the plain
model [IL89]; unless honest majority [BGW88, CCD88, RB89, DI06] or some trusted setup [IPS08,
GIS+10] is guaranteed. Trusted setups and computational assumptions can, thus, be interpreted
as denominations of non-trivial cryptography which can be morphed into other cryptographically
useful primitives.

One such widely used universal denomination of non-trivial cryptography is: 2-choose-1 bit-
Oblivious Transfer (OT) [EGL82]. Oblivious transfer allows a receiver with input b to (oblivious
to the sender) pick xb from a sender’s pair of inputs (x0, x1). This simple functionality is suffi-
ciently sophisticated to enable interesting cryptography, for example, secure multi-party computa-
tion [Yao86, GMW87, IPS08]. Existence of OT is entailed by a) computational assumptions, like
existence of enhanced/dense trapdoor permutations [Hai04] or hardness of factoring [RSA78], or
b) physical setups, like precomputed non-trivial correlations [Kil00, WW06, MPR12] or hardware
tokens [GIS+10].

Over time, security of each individual denomination can expire, for example computational
assumptions might be falsified, correlations might be leaked or hardware units may fall under
adversarial control. The security of cryptographic protocols should, therefore, be robust, i.e. immune
to failure of components’ security. Motivated by such concerns the formal study of combiners (and
its more general variant, like correlation extractors [IKOS09]) was recently initiated by [HKN+05,
Her05]. Intuitively, a combiner implements a non-trivial cryptographic task using cryptographically
non-trivial components which remains secure even when some of these components fail. One of the
earliest known examples of combiners is the construction of “universal” one-way function by [Lev87],
i.e. a fixed function which is one-way if there exists a one-way function.

To motivate our problem statement consider the following two settings. In the first setting,
each individual component implements arbitrarily many OTs; but failure of one component implies
insecurity of every OT implemented by it. For example, OTs implemented based on the “hardness of
factoring” computational assumption. In the second setting, each individual component implements
only a simple cryptographic object, say, exactly one OT, and its failure is independent of other
components. Thus, if a component gets compromised then only the OT implement by it becomes
insecure. Such a setting is motivated by implementation of OT by physical processes, where some
processes may fail independent of others with some probability. A combiner in the first setting
shall be referred to as multiple-use combiner, while a combiner in the second setting shall be called
single-use combiner.

Intuitively, the second setting provides more fine-grained corruption structure and, consequently,
higher robustness should be more difficult to achieve. Hence, we expect a tradeoff between “achiev-
able robustness” of combiners and “simplicity of components” it uses. In this work, we explore the
following problem:

“What is the maximal achievable robustness for a secure (2-party) OT protocol where each
component implements only one OT?”

As an additional optimization, we shall attempt to minimize the number of candidate OTs to
implement one secure copy of OT.
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1.1 Our Contribution

We construct a secure protocol in the clients-servers model, where there are two clients (sender and
receiver) and n servers. Each server implements exactly one copy of OT. We consider semi-honest
adversaries who can corrupt the sender and tS servers, or the receiver and tR servers. We show the
following positive result (here security parameter is κ):

Informal Theorem 1 (Formally proven as Theorem 1). There exists a secure OT protocol (see
Figure 1) in the clients-server model which is robust to (semi-honest) corruption of sender and tS
servers, or receiver and tR servers, such that tR + tS = n− ω(log κ).

We emphasize that the techniques of Damgard et. al [DKS99] can be used to obtain the above
mentioned result (see discussion in Section 1.3). But as discussed in Section 5 the number of
candidate OTs needed by our construction will be significantly lower than the one obtained by
“DKS-technique.”

We exhibit a close relation between single-use OT combiners and public-information secret-
sharing schemes with small share sizes. Using this relation, we show the following complementary
negative result:

Informal Theorem 2 (Formally proven as Theorem 3). It is impossible to have single-use OT
combiners which are robust to (semi-honest) corruption of sender and tS servers, or receiver and tR
servers, such that tR + tS = n−O(1).

Due to these two results, our construction is (nearly) optimal.

Finally, we use our positive result an show the semi-honest completeness of (p, q)-weak OT
(introduced in [DKS99]). We show that our construction is significantly efficient in the number of
copies of (p, q)-weak OT needed to implement one OT.

Informal Theorem 3 (Formally proven as Theorem 4). Our combiner can be used to construct
one OT from n = Θ(t) copies of (p, q)-weak OT, when p+ q < 1, with simulation error 2−t. On the
other hand, the construction of [DKS99] needs n = O(t8) copies of (p, q)-weak OT to achieve the
same simulation error.

We believe that the significant efficiency improvement achieved in the setting of (p, q)-WOT
illustrates how one can apply our one-time combiner result to obtain interesting new results in
information theoretic cryptography with improved efficiency.

1.2 Related Work

Combiners have been implicit in several works, for example [AB81, EG83, Lev87, MM93, DK05,
HL05]. Harnik et. al [HKN+05] construct multiple-use OT combiners. They also show that (trans-
parent) black-box construction of such an OT combiner robust to corruption of half of the compo-
nents is unlikely. The state of the art in multiple-use OT combiner is obtained by applying IPS-
technique [IPS08] to the efficient OT-combiner of Harnik et. al [HIKN08]. Based on n components,
each of which can be used to produce arbitrary number of OTs, this construction produces Θ(n)
independent OT copies and is secure if a majority of these components remain secure. Combiners
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for private-information retrieval were proposed by Meier and Przydatek [MP06]; and cross-primitive
combiners were also studied in [MPW07].

Single-use combiners are relatively new. Przydatek and Wullschleger [PW08] construct (error
tolerant) single-use combiners which produce one OT but each component implements a significantly
more complex cryptographic primitive: oblivious linear function evaluation over Fq, where q > 2.

Recently, a significantly more general notion of (correlation) extractors was introduced by Ishai
et. al [IKOS09]. They show that even if a (small) constant fraction of information is leaked about
the whole system (i.e. considering all components collectively) it is possible to extract secure copies
of OT. Note that the leakage need not be restricted to a small fraction of components.

1.3 Technical Overview

In the following paragraphs, we highlight the salient features of our technical contributions.

Combiner Construction. Before we proceed, let us provide an intuitive definition of combiners.
An (n, tS , tR)-single use OT combiner is a protocol in the clients-servers model, where there are two
clients sender and receiver and n servers (each implementing one OT), and is robust to semi-honest
corruption of sender and tS servers, or receiver and tR servers.

First, let us provide an OT combiner which is based on techniques introduced by Damgård
et. al [DKS99]. Suppose we are provided with n servers and each implements one copy of OT. Let
p = tS/n and q = tR/n; and suppose p and q are constants such that p + q < 1. Suppose an
adversary chooses to corrupt the servers indexed by S ⊆ [n] and one of the clients. Parties use the
servers to generated random OT correlations (ROT); and then generate a random permutation π
to permute the servers. So, effectively, we now have n instances of (p, q)-weak ROT;1 each server is
randomly corrupted with probability p (if the adversary chooses to corrupt the sender) or corrupted
with probability q (if the adversary chooses to corrupt the receiver). Now, we can use the protocol
by Damgård et. al [DKS99] to construct an OT using these servers. But note that even if p+q = 0.2
their protocol uses n = t8 servers to obtain one secure OT, with simulation error 2−t.

Instead, we shall provide a significantly more efficient combiner. We intuitively explain one of
the first steps towards our combiner construction (details are provided in Section 3). Suppose the
sender picks a codeword cu ≡ (cu,0, . . . , cu,n)

$← C, where C is an (n, k, d) binary linear code. And
the receiver picks a codeword cx ≡ (cx,0, . . . , cx,n)

$←C⊥, where C⊥ is the (n, n−k, d⊥) binary linear
code which is dual of C. Note that the coordinate-wise dot-product of these two vectors have even
parity, so it can correct one erasure. For i ∈ [n], the receiver and sender feed cu,i and cx,i to server
Pi and it outputs cu,i · cx,i to the receiver. The receiver can compute the erased value cu,0 · cx,0 from
these.

Note that if the adversary corrupts the sender and a subset of servers indexed by S but the 0-th
column of H (the generator matrix of C⊥) is not in the span of columns of H indexed by S, then
the value cx,0 is perfectly hidden from the adversary. But if an adversary corrupts the receiver and

1 A (p, q)-weak OT, represented as (p, q)-WOT is an OT which with probability p provides the receiver choice bit
to the adversary (if the adversary has corrupted the sender of OT); or with probability q provides both the sender
bits to the adversary (if the adversary has corrupted the receiver). Damgård et. al [DKS99] show that (p, q)-OT is
semi-honest complete for every p+ q < 1.
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a subset of servers indexed by S then it is not evident whether cu,0 remains hidden when cx,0 = 0.

So, we do the following modification. The sender picks cu
$←C and cv

$←Cparity;2 and the sender
picks cx

$← C⊥. Consider the new codeword z, where zi = cu,i · cx,i ⊕ cv,i for i ∈ {0} ∪ [n]. It is a
uniform distribution over Cparity and can correct one erasure.

Now, we ask servers Pi to take (cu,i, cv,i) and cx,i as input from the clients and provide zi as
output to the receiver, for i ∈ [n]. The receiver can obtain z0 from (z1, . . . , zn).

When the server corrupts the sender and servers indexed by S the security of cx,0 is maintained
as before. Additionally, we also get that: If the adversary corrupts the receiver and servers indexed
by S but the 0-th column of G (the generator matrix of C) is not in the span of columns of G
indexed by S, then the value of cu,0 ⊕ cv,0 is perfectly hidden from the adversary.

So, if we use C with high distance and dual distance, then we can construct such robust com-
biners. But explicit construction of such binary linear codes is a great challenge in Coding Theory.
Though we show that existence of such codes with (moderately) good distance and dual distance is
guaranteed and they indeed help construct perfect combiners (see Lemma 1). To circumvent this
problem, we use the following trick. We consider a random binary linear code. Though such a code
might not have good distance and dual distance, it shall be guaranteed (with high probability) that
0-th column of G and 0-th column of H will be linearly independent of columns in G indexed by S
and columns in H indexed by S, respectively.

Our construction is provided in Figure 1 and our main result is stated as Theorem 1. We
compare our efficiency with the “[DKS99]-based-combiner” in Section 5.

Negative Result. For our negative result, we show that an (n = tS + tR + g, tS , tR)-single-use
combiner implies a public-information secret sharing schemes with short secrets.

A (n, t, r)-public information secret sharing scheme is a secret sharing scheme where parties [n]
receive shares X1, . . . , Xn and additionally there is a public information X0. The secret S is hidden
given the shares of any t parties and the public information. But any group of r parties can use
their respective shares and the public information to reconstruct the secret S.

Given a (n = tS + tR + g, tS , tR)-single-use combiner, we consider the following secret sharing
scheme. Consider a random execution of the combiner where clients’ inputs are chosen uniformly
at random. Receiver’s secret bit b is defined as the secret s. Shares of the i-th party Xi is the
choice bit received by the i-th server. Finally, the complete view of the sender is defined to be the
public-information X0.

The privacy of this scheme follows from the fact that the sender cannot have any advantage in
guessing the choice bit of the receiver even after corrupting tS servers. The shares of tS parties along
with the public information is identical to the view of the sender who corrupts those tS servers.

The reconstruction guarantee follows from the claim that the sender can figure out the receiver
choice bit in the (n = tS + tR + g, tS , tR)-single-use combiner by corrupting any (tS + g) servers.
Suppose for contradiction that there is some size (tS + g) subset of servers such that even after
corrupting them the sender cannot find the receiver choice bit. Then consider a two party protocol
where the sender simulates the (tS + g) servers and the receiver simulates the remaining tR servers.

2Binary linear code of length (n+ 1) strings with even parity.
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By privacy of the combiner, the receiver cannot violate the security of the sender. Thus, it must
be the case that the sender can find the the choice bit of the receiver with close to 1 probability
(otherwise, at the end of the protocol the two clients end up with correlated randomness which is
impossible in the information theoretic plain model).

Now, if we have a lower-bound on the threshold gap g of this secret sharing scheme in terms of
share-sizes (which are all 2) then we will be done. But this secret-sharing scheme only has statistical
privacy and reconstruction guarantees. So, first, we need to generalize the lower-bound on threshold
gaps by [PCX13] to the statistical setting. And then we can argue that the gap g cannot be O(1)
if share sizes are 2.

Efficiency of Reduction. We consider the efficiency of reducing OT to (p, q)-WOT. This func-
tionality was shown to be complete in [DKS99]; but the efficiency of the reduction was poor. We
show that our combiner can be directly applied to significantly improve the efficiency of the reduc-
tion.

Suppose we are provided with n copies of (p, q)-WOT. Then the number of server corruptions
when the adversary corrupts the sender is tS ≈ pn and the number of server corruptions when the
adversary corrupts the receiver is tR ≈ qn, with very high probability. To achieve 2−t simulation
error, we only need to use n = Θ(t) copies of (p, q)-WOT. This is significantly lower than the bound
of n = O(t8) provided by [DKS99].

2 Preliminaries

Given k ∈ N, we represent the set {1, . . . , k} by [k]. We represent the range [fa, a], for f ∈ [0, 1], as
a× [f, 1]. If b− ε ≤ a ≤ b+ ε, then we represent it as a = b± ε, for ε ≥ 0. For any set S, the set of

all size λ subsets of S is represented by
(
S
λ

)
; and the set of all subsets of S is represented by 2S . A

matrix M with m rows and n columns is said to be an m×n matrix. Given a set of indices I ⊆ [n]
and an m× n matrix M , the m× |I| matrix obtained by restricting M to the columns indexed by
I is represented by M (col,I), read as “column-restriction of M to I.” The binary-entropy function is
represented by: H2(x):=− x lg(x)− (1− x) lg(1− x). A sample s drawn according the distribution
D is represented by s ∼ D.

Next, we define the clients-servers model and a single-use OT combiner.

Definition 1 (Clients-Servers Model). The network consists of n + 2 parties: two clients, namely
S and R, and n servers P1, . . . , Pn. There are secure channels between the clients and between the
clients and the servers.

Functionality: The functionality F takes inputs from the clients S and R; and gives output only
to client R.

Adversarial Corruptions: The adversary can corrupt at most tS servers and the client S; or at
most tR servers and client R. We refer to a protocol secure against such an adversary as (tS , tR)-
secure protocol in the clients-servers model. If tS = tR, then we simply refer to it as t-secure protocol.
We shall consider semi-honest adaptive adversaries with unbounded computational power by default.

5



Definition 2 (Single-use OT-Combiner). A protocol in the clients-servers model is called an (n, tS , tR)-
single-use OT-combiner if:

1. It is a protocol between two clients and n servers,

2. Each server Pi implements a copy of OT; and is invoked exactly once, and

3. It is a (tS , tR)-secure protocol for FOT in the clients-servers model.

An (n, t, t)-single-use OT-combiner is referred to as (n, t)-single-use OT-combiner.

3 Single-use OT Combiner

The construction of our (n, tS , tR)-single-use OT-combiner is provided in Figure 1, where n− (tS +
tR) = ω(log κ). As a warmup proof, we begin by proving the security of (n, tS , tR)-single-use OT-
combiner against static corruption. Next, we modify the protocol (only in one step) to make is
secure against adaptive corruption with erasures.

Below, we intuitively summarize our (n, t)-single-use OT-combiner, where t = n/2 − ω(log κ).
Since, OLE and OT are local renamings of each other, we explain how OLE-combiner can be
obtained where each server implements an OLE functionality. Client S has private inputs (u, v)
and client R has private input x.

Client S picks a codeword cu ≡ (cu,0 = u, cu,1, . . . , cu,n)
$← C; and a random codeword cv ≡

(cv,0 = v, cv,1, . . . , cv,n) with parity 0. And client R picks a codeword cx ≡ (cx,0 = x, cx,1, . . . , cx,n)
$←

C⊥. Note that component-wise dot-product of cu and cx has parity 0. Thus, we have: ⊕0≤i≤n(cu,i ·
cx,i ⊕ cv,i) = 0.

To communicate the output of OLE functionality z0 = u ·x⊕v to client R, it suffices to transfer
the vector (z1, . . . , zn) to client R, where zi = cu,i · cx,i ⊕ cv,i. Note that each zi is an OLE of client
S input (cu,i, cv,i) and client R input cx,i. Using each server once, client R obtains (z1, . . . , zn); and
outputs z = z1 ⊕· · · ⊕ zn.

To argue receiver privacy, assume that the adversary corrupts client S and servers indexed by

S ∈
(

[n]
t

)
. Let H be the generating matrix of the code C⊥. If the 0-th column of H is independent

of the columns of H indexed by S, then receiver privacy is maintained. Because, (if this is the case
then) cx,0 is a uniform bit even after conditioning on {cx,i : i ∈ S}.

Now suppose an adversary corrupts client R and t-servers indexed by S. Similarly, with a slightly
involved argument, it can be shown that sender privacy is ensured if G (the generator matrix of the
code C) has its 0-th column independent of the columns indexed by S. This step additionally uses
the property that z is uniformly distributed over length (n + 1) binary strings of even parity even
after fixing cu and cx.

We shall show that, for a randomly generated binary linear code C both these properties hold
with 1− negl(κ) probability.

Theorem 1. For any n, tS , tR such that n−(tS+tR) = ω(log κ), the protocol presented in Figure 1 is
an (n, tS , tR)-single-use OT-combiner secure against a semi-honest adversary who statically corrupts
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Combiner(n):
Inputs: The clients S and R have private inputs (s0, s1) ∈ {0, 1}2 and c ∈ {0, 1}, respectively.

1. Correlation Generation. For i ∈ [n], client S samples s0,i, s1,i
$← {0, 1} and sends them to

server Pi. Client R picks ci
$← {0, 1} and sends it to the server Pi; and receives sci,i from

the server. To make this protocol secure against adaptive corruption with erasures, server
Pi erases its state after delivering sci,i to client R.

2. Random Code Generation. The clients S and R use a coin tossing to generate a k × (n+ 1)
binary matrix G each of whose elements are picked independently and uniformly at random,
where k is any integer in the range [tR + ω(log κ), n− (tS + ω(log κ))]. If rank(G) < k then
abort. Otherwise, let C be the code corresponding to the generating matrix G. Let H be the
generating matrix corresponding to the code C⊥.

3. Combiner.

(a) Client S sets u = s0 ⊕ s1 and v = s0. Client R sets x = c.

(b) Client S picks cu ≡ (cu,0, cu,1, . . . , cu,n)
$←C, such that cu,0 = u. Let Cparity ⊆ {0, 1}n+1

be the (linear) code consisting of every length (n + 1) strings of even parity. S picks
cv ≡ (cv,0, cv,1, . . . , cv,n)

$←Cparity, such that cv,0 = v.

(c) Let C⊥ be the dual code of C. Client R picks cx ≡ (cx,0, cx,1, . . . , cx,n)
$←C⊥, such that

cx,0 = x.

(d) (In parallel) For each i ∈ [n], the clients use the (pre-computed) ROT correlations
to perform an OLE computationa where client R receives zi = cu,i · cx,i ⊕ cv,i (see
Appendix D.2.2). This takes two rounds.

(e) Client R outputs z = z1 ⊕· · · ⊕ zn.
aUsing the fact that OLE reduces to ROT correlations.

Figure 1: (n, tS , tR)-Single-Use OT-Combiner, where n− (tS + tR) = ω(log κ).

the clients and the servers. Moreover, if servers erase their state after producing their output, then
this combiner is semi-honest secure against adaptive corruption.

As a corollary, we obtain:

Corollary 2. For any n and t = n/2−ω(log κ), the protocol presented in Figure 1 is an (n, t)-single-
use OT-combiner secure against a semi-honest adversary who statically corrupts the clients and the
servers. Moreover, if servers erase their state after producing their output, then this combiner is
semi-honest secure against adaptive corruption.

3.1 Static Corruption

Below we provide the security proof for static corruption case. The security against adaptive
corruption with erasures is proven in Section 3.2. Let S ⊆ [n] be the indices of servers corrupted by
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the adversary. We shall show that conditioned on the the following events the protocol in Figure 1
perfectly securely realizes FOT.

1. G(col,{0}) does not lie in the span of
{
G(col,{i}) : i ∈ S

}
, and

2. H(col,{0}) does not lie in the span of
{
H(col,{i}) : i ∈ S

}
, where H is a generator matrix for the

code C⊥.

Finally, we shall show that these two events occur with negligible probability.

No Corruptions Case. This case considers the correctness of the protocol. Suppose the adver-
sary does not corrupt any client or server. The probability that the construction outputs abort is
at most: negl(κ), by Claim 1. Conditioned on the fact that the construction does not output abort,
the output of client R is:

z =
n
⊕
i=1

zi =
n
⊕
i=1

(cu,i · cx,i ⊕ cv,i)

= (u · x⊕ v)⊕
(

n
⊕
i=0

cu,i · cx,i
)
⊕
(

n
⊕
i=0

cv,i

)
= (u · x⊕ v) = (s0 ⊕ s1)c⊕ s0 = sc

Thus, the protocol is perfectly correct conditioned on the fact that G has full rank, which
happens with probability 1− negl(κ) (by Claim 1).

Corrupt Sender. Suppose the adversary corrupts client S and some tS-servers indexed by S ⊆
[n]. The simulator does the following: It samples c̃ $←{0, 1} and uniformly reverse samples a view of
client S based on sender input being (s0, s1) and receiver input being c̃. The adversary additionally
sees cx

(col,S), i.e. {cx,i : i ∈ S}. It suffices to show that the distribution (cx,0|cu, cv, cx(col,S))
is a uniform bit. Suppose, for contradiction, it is not a uniform bit. This implies that given
(cu, cv, cx

(col,S)), the value of cx,0 is deterministically 0 or 1 (by properties of binary linear codes).
Which is the case, if and only if H(col,{0}) is in the span of

{
H(col,{i}) : i ∈ S

}
. Let S∗ = S∪{0}. The

probability of this event is at most the probability of the event that: rank(H(col,S∗)) < |S∗| = tS +1.
This is negl(κ), by Corollary 5 (because, n− k = tS + ω(log κ)).

Thus, the protocol is perfectly secure against corruption of client S and tS-servers if G has
full rank and H(col,{0}) is not in the span of

{
H(col,{i}) : i ∈ S

}
. This happens with probability

1 − negl(κ) (by Claim 1 and Corollary 5). Note that the simulator, as explained above, seems to
need unbounded computational power. But observe that it only needs to solve linear equations and,
hence, is computationally efficient.

Corrupt Receiver. Suppose the adversary corrupts client R and tR-servers indexed by S ⊆ [n].
The simulator does the following: It samples s̃1−c and uniformly reverse samples a view of client R
based on client S private input being (sc, s̃1−c) and private input of client S being c. The adversary
additionally sees cu

(col,S) and cv
(col,S). Define z0 = z. It suffices to show that (s0 ⊕ s1) = cu,0

remains perfectly hidden given (cx, z, cu
(col,S), cv

(col,S)).
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First observe that cv,i is fixed given cu,i, cx,i and zi, for any i. Thus, it suffices to show that cu,0
remains perfectly hidden given (cx, z, cu

(col,S)). Consider the distribution (cu|cx, z, cu(col,S)).

P(cu|cx, z, cu(col,S)) = P(cu|cu(col,S))× P(cx, z|cu, cu(col,S))

P(cx, z|cu(col,S))

= P(cu|cu(col,S))× P(cx, z|cu)

P(cx, z|cu(col,S))

= P(cu|cu(col,S))× P(cx|cu) P(z|cx, cu)

P(cx|cu(col,S)) P(z|cx, cu(col,S))

= P(cu|cu(col,S))

The last equality is due to the fact that z is uniform over Cparity even if cx and cu are fixed; and
from the fact that cx is independent of cu. Thus, cu,0 is perfectly hidden if and only if G(col,{0}) is
not in the span of

{
G(col,{i}) : i ∈ S

}
(this happens with 1 − negl(κ) probability, by Corollary 6, if

k = tR + ω(log κ)). Similar to the previous case, the simulator mentioned above is efficient.

No Corrupt Client and Only Corrupt Servers. Note that the view of each server is a ROT
correlation, so it can be simulated trivially. To argue privacy for this case, it is subsumed by the
case when, additionally, one of the clients in also corrupted.

3.2 Adaptive Security with Erasure

We now modify the protocol in Figure 1 so that it is secure against adaptive corruption with
erasures. The only additional step needed is for each server Pi to erase their internal state after
it has delivered its output sci,i to client R in Correlation Generation phase. Thus, without loss of
generality any server corruption can be assumed to happen before the Random Code Generation
phase of the combiner.

Next, we argue the security of this protocol. The crucial ingredient for this is the fact that
OLE protocol in ROT hybrid as described in Appendix D.2.2 is secure against adaptive corruption
of parties. Note that, since all server corruptions take place before the Random Code Generation
phase, with 1 − negl(κ) we have rank(G) = k, G(col,0) is not in the span of {G(col,i) : i ∈ S} and
H(col,0) is not in the span of {H(col,i) : i ∈ S}. We shall argue the security of the protocol conditioned
on the above mentioned event.

So, all that remains is to show the simulations for various points in time where corruption of
client S and R takes place.

Our simulator shall generate random ROT correlations as views of each server Pi, say (s0,i, s1,i)
and (ci, sci,i). And update them, if necessary, only during the simulation of Combiner phase. If a
server is corrupted prior to erasure of its state then its view is provided to the adversary; otherwise
it is provided with an empty view. The simulation of Random Code Generation phase is trivial.
Thus, it suffices to consider adaptive corruption of clients just at the completion of Correlation
Generation phase and the completion of Combiner phase.

1. Suppose all client corruptions happen by the end of Correlation Generation phase. The
simulator provides the set {(s0,i, s1,i) : i ∈ [n]} as view of client S and {(ci, sci) : i ∈ [n]}
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as view of client R. It obtains their respective private inputs and sends it to the external
functionality.

2. Suppose all client corrupts happen at the end of the Combiner phase. Suppose S is the set of
servers corrupted by the adversary. Note that at this point cu

(col,S), cv
(col,S) and cx

(col,S) are
all fixed.

When client S is corrupted, obtain the inputs (s0, s1) and send it to the external functionality.
Further, pick random codewords cu and cv consistent with cu

(col,S) and cv
(col,S), such that

cu,0 = u and cv,0 = v. This is possible because cu,0 and cv,0 are perfectly hidden given the
adversary’s view. Now resample {(s0,i, s1,i) : i 6∈ S} consistent with the adversary’s view
and the codewords cu and cv. This resampling is possible because OLE reduction to ROT-
correlation is secure against adaptive corruption of the parties [Lin09].

When client R is corrupted, obtain the input c and send it to the external functionality. Fur-
ther, pick random codewords cx consistent with cx

(col,S), such that cx,0 = x. This is possible
because cx,0 is perfectly hidden given the adversary’s view. Now resample {(ci, sci,i) : i 6∈ S}
consistent with the adversary’s view and codeword cx. This resampling is possible because
OLE reduction to ROT correlation is secure against adaptive corruption of the parties [Lin09].

3. Client S is corrupted at the end of Correlation Generation phase and client R is corrupted at
the end of Combiner phase. The view of client S is generated as in Step 1 and view of client
R is generated as in Step 2.

4. Client R is corrupted at the end of Correlation Generation phase and client S is corrupted at
the end of Combiner phase. The view of client R is generated as in Step 1 and view of client
S is generated as in Step 2.

3.3 Perfect Security

Note that if the distances d and d⊥, respectively, of the codes C and C⊥ are both > t, then an
adversary cannot corrupt any t servers and one of the clients to violate the security of the other
client. By Gilbert-Varshamov bound for linear matrices, we know that there exists a code (for
sufficiently large n and with probability 1− negl(κ)) which has H2(d/n) ≥ 1− (k/(n+ 1))− ε, for
every constant ε > 0 and k = bn/2c. By union bound, with probability 1− negl(κ), both C and C⊥
satisfy H2(min{d, d⊥}/n) ≥ 1

2 −
1

n+1 − ε. In particular, there exists a binary linear code C with
min{d, d⊥} ≥ 0.11n. So, our combiner in Figure 1 when instantiated with this code shall be robust
to semi-honest corruption of one client and at most 0.11n servers.

Lemma 1. There exists a binary (n, bn/2c , d)-linear code C such that min{d, d⊥} ≥ 0.11n; and there
exists a (n, 0.11n)-single use OT combiner with perfect security against semi-honest adversaries.

4 Tightness Result for Single-use OT-Combiners

In this section we shall show that existence of (n = tS+tR+g, tS , tR)-single-use OT-combiner implies
that g = ω(1). Assume, without loss of generality, that tS ≤ tR. We construct a public-information
secret-sharing scheme with binary shares which has tS-privacy and (tS +g)-reconstruction from any
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(n = tS + tR + g, tS , tR)-single-use OT-combiner. The impossibility is shown by exhibiting lower
bounds on the threshold gap g of secret sharing schemes in terms of share-sizes.

Note that when privacy and reconstruction in secret sharing scheme is perfect, then a lower
bound on the threshold gap as shown by [PCX13] suffices. But, since we shall consider combiners
which have statistical security, the public-information secret sharing scheme generated above cannot
be guaranteed to have perfect privacy or reconstruction. Therefore, we need to generalize the lower
bound on threshold gaps of secret sharing schemes to the case where privacy and reconstruction
guarantees hold statistically.

So, in Appendix B, we prove a lower bound (see Lemma 2) on the threshold gap of statistical
public-information secret sharing schemes. Finally, in Section 4.2 we construct a public-information
secret-sharing scheme from any single-use OT combiner. And conclude that it is impossible for to
have (n = tS + tR + g, tS , tR)-single-use OT-combiner if g = O(1). Further, for g = O(1), 1− o(1)
fraction of the servers need to be invoked at least ω(log tR) times.

4.1 Definition

First we define secret sharing schemes.

Definition 3 ((n, t, r)-Secret-sharing scheme with (ε, δ)-security). Consider alphabet sets [Λ], [Λ1], . . . , [Λn]
and a joint distribution S:=(S,X1, . . . ,Xn) over the space [Λ] × [Λ1]· · · × [Λn]. The random vari-
able S represents the secret being shared and Xi, for i ∈ [n], represents the i-th share. For s ∈ [Λ]
and a set T = {i1, . . . , ik} ⊆ [n], the conditional distribution (XT |S = s) is defined as the condi-
tional distribution over (Xi1 , . . . ,Xij ) as induced by S when S = s. The joint distribution S is an
(n, t, r)-Secret-sharing scheme with (ε, δ)-security if the following conditions are satisfied:

1. (1− ε) t-privacy: For any s, s′ ∈ [Λ] and T ⊆ [n], such that |T | ≤ t, we have:

∆
(
(XT |S = s), (XT |S = s′)

)
≤ ε

2. (1− δ) r-reconstruction: For any distinct s, s′ ∈ [Λ] and T ⊆ [n], such that |T | = r, we have:

∆
(
(XT |S = s), (XT |S = s′)

)
≥ 1− δ

Definition 4 ((n, t, r)-Public-Information Secret-sharing scheme with (ε, δ)-security). Consider a
joint distribution S:=(S,X0,X1, . . . ,Xn) over the space [Λ] × [Λ0] × [Λ1]· · · × [Λn]. The random
variable S represents the secret being shared and Xi, for i ∈ [n], represents the i-th share; and
X0 represents the public information. The joint distribution S is an (n, t, r)-Public-information
Secret-sharing scheme with (ε, δ)-security if the following conditions are satisfied:

1. (1− ε) t-privacy: For any s, s′ ∈ [Λ] and T ⊆ {0} ∪ [n], such that |T ∩ [n]| ≤ t, we have:

∆
(
(XT |S = s), (XT |S = s′)

)
≤ ε

2. (1 − δ) r-reconstruction: For any distinct s, s′ ∈ [Λ] and T ⊆ {0} ∪ [n], such that 0 ∈ T and
|T ∩ [n]| = r, we have:

∆
(
(XT |S = s), (XT |S = s′)

)
≥ 1− δ
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We shall show the following lower bound on the threshold gap of (n, t, r)-public-information
secret-sharing schemes:

Lemma 2 (Lower Bound for (n, t, r)-Public-information Secret Sharing schemes with (ε, δ)-security).
Let S = (S,X1, . . . ,Xn) be a (n, t, r)-Secret-sharing scheme with (ε, δ)-security. If ε + δ =

o

(
Λ−4

(
n− t+ 1
r − t+ 1

)−2
)
, then

(r − t) ≥ max
I⊆{0}∪[n]
∧ |I∩[n]|=t−1
∧ 0∈I

 ∑
i∈[n]\I

1

Λi

− (n− t+ 1)

(
ε

2
+

(
n− t+ 1
r − t+ 1

)√
ε+ δ

)

The proof of this lemma in included in Appendix B.3.

4.2 Lower Bound on (n, tS, tR)-single-use OT-combiners

Given a (n = tS + tR + g, tS , tR)-single-use OT-combiner we shall construct a (n, tS , tS + g)-public-
information secret-sharing scheme with (ν(t), ν(t))-security, where ν(·) is a negligible functions.
Assume that tS ≤ tR; otherwise swap the roles of client S and client R. To construct the secret
sharing scheme, we execute the combiner with random private inputs for the clients (with uniformly
chosen, respective, local random tapes for the clients). The secret s is the choice bit of client R.
The public-information is the complete view of client S. And the share Xi, where i ∈ [n], is the
choice bit sent to server Pi by client R.

We shall leverage security of the combiner to claim that the public-information along with the
choice bits of tS servers is insufficient to predict s with any advantage. Because the choice bit of
client R is hidden from any adversary who corrupts client S and any tS servers.

Next, we show that the public-information along with any (tS + g) shares suffice to reconstruct
the secret. Fix any (tS + g) subset of servers. Consider a two-party protocol in the plain model
where party A simulates the execution of party S and these (tS + g)-servers; and party B simulates
the execution of party R and the remaining tR-servers. By the security of the combiner, party B
has no advantage in predicting s0⊕ s1, where (s0, s1) are private inputs for client S. Since, there is
no two-party protocol for FOT in the plain model, party A must be able to predict the choice bit of
party B with (near) certainty. Thus, the public-information and any (tS + g) shares are sufficient
to predict the secret. Formally,

Theorem 3. Suppose π is a (n = tS + tR + g, tS , tR)-single-use OT-combiner. Then, g = ω(1).
Further, if g = O(1) then it is impossible to have ω(1) servers which are invoked only O(1) times.

Proof. Suppose π is a (n = tS + tR + g, tS , tR)-single-use OT-combiner. The generation of joint
distribution S is defined in Figure 2.

The remaining proof is provided in Appendix B.4.
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1. If tR < tS , swap the roles of client S and client R. Now the servers implement the TOR-
correlation (see Appendix D.2.1) which can be locally renamed to ROT correlation. The
received choice bit of a server Pi is the received choice bit in this renamed ROT correlation.

2. Execute the protocol π starting with client S local randomness rS
$←U and private input

(s0, s1)
$←{0, 1}2; and client R local randomness rR

$←U and private input c $←{0, 1}. Define
s = c. Define X0 = VS , where VS is the complete view of client S. For all i ∈ [n], define
Xi = ci, where ci is the choice bit sent to the server Pi by client R.

3. Output (s,X0, . . . , Xn).

Figure 2: Construction of Public-information Secret Sharing schemes from Single-use Combiners.

5 Completeness of Weak Oblivious Transfer

Definition 5 ((p, q) Weak Oblivious Transfer). A (p, q) Weak Oblivious Transfer (written as (p, q)-
WOT) is the following functionality. It takes two inputs (s0, s1) from the sender and a choice bit
c from the receiver and provides sc to the receiver. If the adversary has corrupted the sender then
with probability p it sends c to the adversary. If the adversary has corrupted the receiver then with
probability q it sends s1−c to the adversary.

A (p, q)-WROT is a (p, q)-WOT with random inputs.

Damgård et. al [DKS99] show that for any constant p, q ∈ (0, 1) such that p + q < 1, the
functionality (p, q)-WOT is semi-honest complete. We shall show the same result but with signifi-
cant efficiency improvement. The number of copies of (p, q)-WOT needed to semi-honest securely
implement one copy of OT with simulation error 2−t decreases significantly if we use the com-
biner provided in Figure 1 (each server shall implement one copy of (p, q)-WOT). These efficiency
improvements are summarized below:

Theorem 4 (Efficiency). Using the combiner in Figure 1, we can construct a secure OT protocol
with simulation error 2−t where every server implements a copy of (p, q)-WOT for a suitable choice
of n. The choice of n is explained below:

1. If p + q ≤ 0.2, then n = Θ(t) suffices for our combiner. Using the technique of [DKS99] we
need n = O(t8) to implement one OT with simulation error 2−t.

2. If p+ q = 1− 1/k, then n = Θ(kt) suffices for our combiner. Using the technique of [DKS99]
we need n� O(k7.6t8) to implement one OT with simulation error 2−t.

The proof is provided in Appendix C.

6 Conclusions and Open Problems

In this work we construct single-use OT combiners which exhibit optimal robustness. But there
are some interesting efficiency issues left open. Potential optimizations include: a) Reduction of
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communication complexity between the clients to O(n) (or even o(n)); and b) Generation of larger
number of (parallel and independent) OTs. Finally, it will be interesting to explore whether such
combiners can also be made error-tolerant.

One of the biggest open problems in the field of combiners is to explore the construction of an
OT protocol based on two different computational assumptions (each of which individually imply
secure OT protocols), which remains secure even if one of these two assumptions is falsified.
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A Semi-honest Combiner

In this section we prove two results which prove the security of the combiner provided in Figure 1.

Corrupt Sender Experiment. Consider the following two experiments:

Experiment1(n, k, λ,Λ):

Precondition: 0 < n, 1 ≤ k < n, 1 ≤ λ < n− k and Λ = {1} ∪ Λ′, where Λ′ ∈
(

[n] \ {1}
λ− 1

)
.

1. Pick a random k × n binary matrix G $←{0, 1}k×n.

2. If rank(G) < k then output abort1.

3. Else, i.e. rank(G) = k, let C be the [n, k] code corresponding to the generator matrix G; and
its dual code be C⊥. Pick H as a random (n− k)× n generator matrix for the code C⊥.

4. Let H(col,Λ) be the (n− k)× λ binary sub-matrix of H formed by the columns of H indexed
by Λ. Output (H, rank(H(col,Λ))).

Experiment2(n, k, λ,Λ):

Precondition: 0 < n, 1 ≤ k < n, 1 ≤ λ < n− k and Λ = {1} ∪ Λ′, where Λ′ ∈
(

[n] \ {1}
λ− 1

)
.

1. Pick a random (n− k)× λ binary matrix H̃.

2. Pick a random (n− k)× n binary matrix H such that H(col,Λ) = H̃.

3. If rank(H) < n− k output abort2.

4. Else, i.e. rank(H) = n− k, output (H, rank(H̃)).

We shall show that these two experiments produce outputs which are identical with probability
close to 1 for suitable choices of parameters k and λ, for every choice of Λ. When k = ω(log κ),
n− k = ω(log κ) and λ = (n− k)− ω(log κ), we have:

1. Probability of abort1 is small. The probability of abort1 is equal to the probability that k
random binary vectors of length n (which form the rows of G) are not all linearly independent.

Claim 1. The probability that k random binary vectors of length n are linearly dependent is
< 1

2n−k .

Proof. This probability is at most: 1
2n

(
1 + 2 +· · ·+ 2k−1

)
< 2−(n−k)

Therefore, probability of abort1 is negl(κ).

2. Conditioned on ¬abort1, the first coordinate of output of Experiment1 is identical to the dis-
tribution of random (n− k)× n binary matrices with rank (n− k). This is trivial to see.
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3. Probability of abort2 is small. The experiment simply samples a random H (by first sampling
H̃ = H(col,Λ); and then extending it). We know that the probability of abort2, thus, is at most
2−(n−(n−k)) = negl(κ) (by Claim 1).

4. Conditioned on ¬abort2, the first coordinate of output of Experiment2 is identical to the
distribution of random (n− k)× n binary matrices with rank (n− k). This is also trivial to
see.

5. Outputs of Experiment1 conditioned on ¬abort1 and Experiment2 conditioned on ¬abort2 are
identically distributed. Alternately, (Experiment1|¬abort1) ≡ (Experiment2|¬abort2). This
follows from the fact that the second output coordinate is the same function of the first
output coordinate in both experiments.

We want to claim the following:

Claim 2. If k = ω(log κ), n− k = ω(log κ) and (n− k)− λ = ω(log κ), then:

P
[
rank

(
H(col,Λ)

)
= λ

]
= 1− negl(κ)

Proof. Note that, in Experiment2 the probability of rank(H̃) < λ is 2−((n−k)−λ) = negl(κ), by
Claim 1. Consider the following manipulation:

P
[
rank(H̃) = λ

]
= 1− negl(κ)

=⇒ P
[
rank(H̃) = λ ∧ ¬abort2

]
= 1− negl(κ), ∵ P[abort2] = negl(κ)

=⇒ P
[
rank(H̃) = λ|¬abort2

]
= 1− negl(κ), ∵ P[abort2] = negl(κ)

=⇒ P
[
rank(H(col,Λ)) = λ|¬abort1

]
= 1− negl(κ), ∵ (Experiment1|¬abort1)

≡ (Experiment2|¬abort2)

=⇒ P
[
rank(H(col,Λ)) = λ ∧ ¬abort1

]
= 1− negl(κ), ∵ P[abort1] = negl(κ)

=⇒ P
[
rank(H(col,Λ)) = λ

]
= 1− negl(κ)

We clarify that, in the above mentioned expressions, whenever events H(col,Λ) and abort1 occur
in the probability expression, it is implicit that the underlying distribution over the sample space
is the one induced by the output of Experiment1. Similarly, when the events H̃ and abort2 occur in
the probability expression, it is implicit that the underlying distribution over the sample space is
the one induced by the output of Experiment2.

In particular:

Corollary 5. For k ∈ [tR + ω(log κ), n − (tS + ω(log κ))], |Λ| = λ = tS + 1, the probability that
rank(H(col,Λ)) = λ is at least 1− negl(κ).
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Corrupt Receiver Experiment. We consider two experiments:

Experiment1(n, k, λ,Λ): Precondition: 0 < n, 1 ≤ k < n, 1 ≤ λ < n − k and Λ = {1} ∪ Λ′, where

Λ′ ∈
(

[n] \ {1}
λ− 1

)
.

1. Pick a random k × n binary matrix G $←{0, 1}k×n.

2. If rank(G) < k then output abort1.

3. Else, i.e. rank (G)=k, output (G, rank(G(col,Λ))).

Experiment2(n, k, λ,Λ): Precondition: 0 < n, 1 ≤ k < n, 1 ≤ λ < n − k and Λ = {1} ∪ Λ′, where

Λ′ ∈
(

[n] \ {1}
λ− 1

)
.

1. Pick a random k × λ binary matrix G̃.

2. Pick a random k × n binary matrix G such that G(col,Λ) = G̃.

3. If rank(G) < k output abort2.

4. Else, i.e. rank(G) = k, output (G, rank(G̃)).

We shall show that these two experiments produce outputs which are identical with probability
1 − negl(κ), when k = ω(log κ) and n − k = ω(log κ). The argument is similar to the argument
presented in previous section.

1. Probability of abort1 is 1− negl(κ), by Claim 1.

2. Probability of abort2 is 1− negl(κ), by Claim 1.

3. Conditioned on ¬abort1, the first coordinate of output of Experiment1 is identical to the
distribution of random (k, n) binary matrices with rank k. And, conditioned on ¬abort2, the
first coordinate of output of Experiment2 is identical to the distribution of random (k, n) binary
matrices with rank k. Thus, (Experiment1|¬abort1) ≡ (Experiment2|¬abort2) because the
second output coordinate is identical function of the first coordinate in both these experiments.

We want to claim the following:

Claim 3. If k = ω(log κ), n− k = ω(log κ) and λ = k − ω(log κ), then:

P
[
rank

(
G(col,Λ) = λ

)]
= 1− negl(κ)

19



Proof. Note that P[rank(G̃) = λ] = 1− negl(κ), by Claim 1. Consider the following manipulation:

P
[
rank

(
G̃
)

= λ
]

= 1− negl(κ)

=⇒ P
[
rank

(
G̃
)

= λ ∧ ¬abort2
]

= 1− negl(κ), ∵ P[abort2] = negl(κ)

=⇒ P
[
rank

(
G̃
)

= λ|¬abort2
]

= 1− negl(κ), ∵ P[abort2] = negl(κ)

=⇒ P
[
rank

(
G(col,Λ)

)
= λ|¬abort1

]
= 1− negl(κ), ∵ (Experiment1|¬abort1)

≡ (Experiment2|¬abort2)

=⇒ P
[
rank

(
G(col,Λ)

)
= λ ∧ ¬abort1

]
= 1− negl(κ), ∵ P[abort1] = negl(κ)

=⇒ P
[
rank

(
G(col,Λ)

)
= λ

]
= 1− negl(κ)

In particular:

Corollary 6. For k ∈ [tR + ω(log κ), n − (tS + ω(log κ))], |Λ| = λ = tR + 1, the probability that
rank(G(col,Λ)) = λ is at least 1− negl(κ).

B Threshold Gap in Secret-sharing Schemes

In this section we shall prove some lower bounds on threshold gap of secret sharing schemes. First,
we shall show a lower bound on threshold gap of (n, 1, r)-secret-sharing schemes in Lemma 3. Next,
we reduce the lower bound on threshold gap of (n, t, r)-secret sharing schemes to Lemma 3 in
Lemma 4. Finally, we prove Lemma 2 by using the same proof as Lemma 4 but using some special
set of indices.

B.1 Lower bound on (n, 1, r)-Secret-sharing schemes

Lemma 3 (Lower Bound for (n, 1, r)-Secret-sharing schemes with (ε, δ)-security). Let S:=(S,X1, . . . ,Xn)
be a (n, 1, r)-Secret-sharing scheme with (ε, δ)-security. Then,

r ≥

∑
i∈[n]

1

Λi

+ 1− n
(
ε2

2
+

(
n
r

)
δ

)

Proof. Recall that, the joint distribution over the shares of all parties conditioned on S = s is
represented by (X[n]|S = s). For brevity, we shall denote (X{i}|S = s) by (Xi|S = s).

Since the secret sharing scheme is (1− ε) 1-private, we get that:

∆
(
(Xi|S = s), (Xi|S = s′)

)
≤ ε

Therefore, by Lemma 6,

P
(u,u′)∼(Xi|S=s)×(Xi|S=s′)

[u = u′] ≥ 1

Λi
− ε2

2
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Let u,v ∈ [Λ1]×· · · × [Λn]. Define Intersect(u,v) = {i : i ∈ [n] and ui = vi} ; and Size(u,v) =
|Intersect(u,v)|. Consider the following expectation:

E:= E
(u,v)∼(X[n]|S=s)×(X[n]|S=s′)

[Size(u,v)] ≥

∑
i∈[n]

1

Λi

− nε2

2
(1)

Let I ⊆ [n] be any set of size r. Recall that ∆ ((XI |S = s), (XI |S = s′)) ≥ 1 − δ, because of
r-reconstruction. For u,v ∈ [Λ1]×· · · × [Λn], consider the following event: IDr(I, Intersect(u,v)) is
true if and only if I ⊆ Intersect(u,v). Note that if IDr(I, Intersect(u,v)) holds then the shares of all
r parties indexed by I are identical in u and v. Using Lemma 7, we have the following bound for
any r-subset I:

P
(u,v)∼(X[n]|S=s)×(X[n]|S=s′)

[IDr(I, Intersect(u,v))] ≤ δ

Now, we claim that:

P
(u,v)∼(X[n]|S=s)×(X[n]|S=s′)

[f(u,v) ≥ r] ≤ δ′ =
(
n
r

)
δ (2)

Otherwise, there exists an r-subset I ⊆ [n] such that the probability of R(I, I(u,v)) is > δ, which
is a contradiction. Let:

Ethresh = E − nδ′, and
pthresh = P

(u,v)∼(X[n]|S=s)×(X[n]|S=s′)
[f(u,v) ≥ Ethresh]

Note that f(u,v) < Ethresh with probability (1 − pthresh) and in the range [Ethresh, n] with
probability pthresh. So, we have:

E < (1− pthresh)Ethresh + pthreshn

< 1 · (E − nδ′) + pthreshn

= E + n(pthresh − δ′)
=⇒ pthresh > δ′

If pthresh > δ′ then it must be the case that: Ethresh ≤ r − 1; otherwise it will contradict with
Equation 2.

B.2 Lower bound on (n, t, r)-Secret-sharing schemes

Lemma 4 (Lower Bound for (n, t, r)-Secret Sharing schemes with (ε, δ)-security). Let S = (S,X1, . . . ,Xn)

be a (n, t, r)-Secret-sharing scheme with (ε, δ)-security. If ε+ δ = o

(
Λ−4

(
n− t+ 1
r − t+ 1

)−2
)
, then

(r − t) ≥ max
I⊆[n] ∧ |I|=t−1

 ∑
i∈[n]\I

1

Λi

− (n− t+ 1)

(
ε

2
+

(
n− t+ 1
r − t+ 1

)√
ε+ δ

)
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Proof. Pick any t− 1 subset I of [n].

Consider the following sampling procedure R(i): Sample x ∼ (XI |S = 1) and y ∼ (X[n]\I |S =

i,XI = x). Output (x ◦ y) ≡ (X̃1, . . . , X̃n). We can use this sampling procedure to define a secret
sharing scheme S̃ as the joint distribution of (s,x) sampled as: s ∼ S and x ∼ R(s). The new
secret-sharing scheme’s joint distribution shall be represented by (S, X̃1, . . . , X̃n).

Since S is a (n, t, r) secret-sharing scheme with (ε, δ) privacy, and |I| = t − 1, we have:
∆
(

(X̃I |S = 1), (X̃I |S = i)
)
≤ ε, for all i ∈ [n]. Therefore, the new secret sharing scheme S̃ is

a (n, t, r) secret-sharing scheme with (2ε, ε+ δ) privacy.

Part One. Let T be any t subset of [n] such that I ⊆ T . Therefore, we have: ∆
(

(X̃T |S = i), (X̃T |S = j)
)
≤

2ε.

Note that ∆
(

(X̃T |S = i), (X̃T |S = j)
)
is expectation of ∆

(
(X̃T |S = i, X̃I = x), (X̃T |S = j, X̃I = x)

)
when x ∼ (X̃I |S = 1). Thus, ∆

(
(X̃T |S = i, X̃I = x), (X̃T |S = j, X̃I = x)

)
≤
√
ε with probability

at least 1− 2
√
ε. By union bound, for every i, j ∈ [Λ] and ` ∈ [n] \ I,

∆
(

(X̃T |S = i, X̃I = x), (X̃T |S = j, X̃I = x)
)
≤
√
ε, (3)

with probability at least 1− 2(n− t+ 1)Λ2√ε, where T = I ∪ {`}.

Part Two. Let T be any r subset of [n] such that I ⊆ T . Therefore, we have: ∆
(

(X̃T |S = i), (X̃T |S = j)
)
≥

1− (ε+ δ).

By averaging argument, we can conclude that: ∆
(

(X̃T |S = i, X̃I = x), (X̃T |S = j, X̃I = x)
)
≥

1−
√
ε+ δ with probability at least 1−

√
ε+ δ.

There are µ =

(
n− t+ 1
r − t+ 1

)
r-subsets T which contain I. By union bound, for every i, j ∈ [Λ]

and r-subset T which contains I,

∆
(

(X̃T |S = i, X̃I = x), (X̃T |S = j, X̃I = x)
)
≥ 1−

√
ε+ δ, (4)

with probability at least 1− µΛ2
√
ε+ δ.

Putting Things Together. If ε+δ = o(1/µ2Λ4), then with positive probability both Equation 3
and Equation 4 are satisfied. Thus, there exists a fixing X̃I = x∗ such that both conditions are
satisfied. Now consider the new (n − t + 1, 1, r − t + 1) secret-sharing scheme with (

√
ε,
√
ε+ δ)-

security. Consider the joint distribution (s,x) obtained by sampling s ∼ S and then x ∼ (X̃[n]\I |S =

s, X̃I = x∗).
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By using Lemma 3, we have:

r − t+ 1 ≥

 ∑
i∈[n]\I

1

Λi

+ 1− (n− t+ 1)

(
ε

2
+

(
n− t+ 1
r − t+ 1

)√
ε+ δ

)

=⇒ (r − t) ≥

 ∑
i∈[n]\I

1

Λi

− (n− t+ 1)

(
ε

2
−
(
n− t+ 1
r − t+ 1

)√
ε+ δ

)

Note that the same argument also holds for every (t − 1) subset I ⊆ [n]; and hence the result
follows.

B.3 Proof of Lemma 2

The result follows immediately by using the proof of Lemma 4 with an index set I such that 0 ∈ I.

B.4 Proof of Theorem 3

We shall show that S is a (n = tS + tR + g, tS , tS + g)-public-information secret-sharing scheme
with (ν(t), ν(t))-security, where ν(·) is a negligible function.

tS-Privacy. For the privacy guarantee, assume that 0 ∈ S without loss of generality. Consider
the security of π against an adversary who corrupts the client S and the servers indexed by S ∩ [n].
Note that the view of the adversary is identical to the random variable XS . By security guarantee
of the combiner, we have:

E
XS∼XS

[∆
(
(S|XS),U{0,1}

)
] ≤ negl(n)

Using the contrapositive of Lemma 5, the privacy guarantee follows.

(tS+g)-Reconstruction. Now, for the reconstruction guarantee, consider the following two-party
protocol π′ in the plain model between party A and party B:

1. Party A simulates client S and the servers indexed by S ∩ [n]; and party B simulates client
R and the servers indexed by [n] \ S.

By the security of the combiner π it is clear that party B cannot predict s0⊕ s1 with non-negligible
advantage.

Note that the view of party A is identical to the distribution XS . If there exists a polynomial
p(·) such that:

E
XS∼XS

[∆
(
(S|XS),U{0,1}

)
] ∈
[

1

p(n)
,
1

2
− 1

p(n)

]
,

then we can amplify this “weak-OT” into OT using techniques in [DKS99]. So, either the above
mentioned quantity is < 1

p(n) or > 1
2 −

1
p(n) , for every polynomial p(·).
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Claim 4.
E

XS∼XS
[∆
(
(S|XS),U{0,1}

)
] ≥ 1/4− negl(n)

Proof. Let (T′|(s0, s1), c) be the transcript distribution of protocol π′ when party A’s private input
is (s0, s1) and party B’s private input is c. We know that the distribution (T′|(0, 0), 1) is negl(n)
close to the distribution (T′|(1, 0), 1) (because of the privacy guarantee of combiner π proven above).
But, by correctness of the protocol π′, the distribution (T′|(0, 0), 0) is at least 1− negl(n) far from
the distribution (T′|(1, 0), 0).

Thus, by triangle inequality, we can conclude that:

∆
(
(T′|(0, 0), 0), (T′|(0, 0), 1)

)
+ ∆

(
(T′|(1, 0), 0), (T′|(1, 0), 1)

)
≥ 1− 2negl(n)

Similarly, we also have: ∆ ((T′|(0, 1), 0), (T′|(0, 1), 1))+∆ ((T′|(1, 1), 0), (T′|(1, 1), 1)) ≥ 1−2negl(n).
Consequently, we have:

∆ ((XS |S = 0), (XS |S = 1)) ≥ 1/2− negl(n)

The claim follows from Lemma 5.

Therefore, it must me the case that:

E
XS∼XS

[∆
(
(S|XS),U{0,1}

)
] >

1

2
− negl(n)

The reconstruction property follows due to the contrapositive of Lemma 5.

Putting things together. Next, by Lemma 2:

r − t = g ≥ tR + 1 + g

2
− (tR + g)gnegl(κ)

⇐⇒ g ≥ (tR + 1)− (tR + g)gnegl(κ)

If g = O(1), this results in a contradiction, and hence (n = tS + tR + g, tS , tR)-single-use-OT
combiner is impossible. If g = O(1), it is impossible to have ω(1) servers with O(1) share size.

C Proof of Theorem 4

First Efficiency Calculation. Even when p + q ≤ 0.2, then need 44 copies of (p, q)−WOT to
obtain one copy of (p′, q′)-WOT, where p′+q′ = (p+q)2. So, starting with p+q = 0.2 and applying
their transformation N times, they reach simulation error:

(0.2)2N = 2−t

⇐⇒ 2N =
t

lg 5

Note that applying the DKS-operation N times implies that 44N copies of (p, q) −WOT are
needed. This implies that to obtain simulation error of 2−t, the number of servers needed is O(t8).
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On the other hand, our construction uses only n = Θ(t) servers implementing (p, q)-ROT. This
follows from a direct observation that: if n = Θ(t) servers are used then with 2−t/2 probability
we shall have tS + tR ≤ n × (1 − p − q − δ), for a suitable constant δ. By choosing n suitably,
we can insure that: tS + tR ≤ n − Θ(t) and the overall simulation error in our combiner is 2−t/2
(by Theorem 1). Thus, we use Θ(t) instances of (p, q)-WROT and achieve 2−t (overall) simulation
error.

Second Efficiency Calculation. Now suppose we have p + q = 1 − 1/k, for some parameter k;
and we are interested in implementing one OT with simulation error 2−t.

According to the technique in [DKS99], their reduction first converts a (p, q)-WOT into a (p′, q′)-
WOT where 1− (p′+ q′) ≥ 1.2× (1− (p+ q)). And each step uses 22 copies of (p, q)-WOT. So, the
number of iterations N needed to reach (p′ + q′) = 0.2.

(1.2)N × 1

k
= 0.8

⇐⇒ 2N = (0.8k)
1/lg 1.2

So, the number of (p, q)-WOT needed to build (p′, q′)-WOT (with p′ + q′ ≤ 0.2) is 22N =
(0.8k)2/lg 1.2.

From previous calculation, we get that: Θ(k2/lg 1.2 × t8) � Θ(k7.6t8) copies of (p, q)-WOT are
needed to implement one copy of OT with simulation error 2−t, where p+ q = 1− 1/k.

In our case, by using n = Θ(kt) we get overall simulation error 2−t.

D Technical Results

D.1 Probability Basics

Lemma 5. Over a sample space [n], the distribution D0 is defined by the probabilities {p1, . . . , pn};
and the distribution D1 is defined by the probabilities {q1, . . . , qn}. Consider the following experi-
ment: Pick b $←{0, 1} and output i ∼ Db.

If ∆ (D0,D1) = δ then the advantage of guessing b is δ/2.

Proof. Suppose the sample is i and suppose that pi > qi. Thus, the best strategy to guess b given i
is to output b̃ = 0. The advantage of this guess is: pi

pi+qi
− 1

2 = 1
2
|pi−qi|
pi+qi

.

Thus, the overall advantage of guessing b is:
∑

i∈[n]
1
2
|pi−qi|
pi+qi

× pi+qi
2 = δ/2.

Lemma 6 (Collision probability for Similar distributions). Let a = {ai, . . . , an} and b = {b1, . . . , bn}
be two probability distributions over sample space [n] such that ∆ (a,b) = ε. Then,

∑
i∈[n]

aibi ≥
1

n
− ε2

2
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Proof. Let A ⊆ [n] be the set of all indices i ∈ [n] such that bi ≥ ai; and define B = [n] \A, i.e. all
i ∈ [n] such that bi < ai. Suppose bi = ai + εi for all i ∈ A; and bi = ai− εi for all i ∈ B. It is clear
that

∑
i∈A εi = ε =

∑
i∈B εi.

Consider the following manipulation:∑
i∈[n]

aibi =
∑
i∈A

ai(ai + εi) +
∑
i∈B

ai(ai − εi)

=
∑
i∈A

(
ai +

εi
2

)2
+
∑
i∈B

(
ai −

εi
2

)2
− 1

4

∑
i∈[n]

ε2
i

≥
∑

i∈A
(
ai + εi

2

)
+
∑

i∈B
(
ai − εi

2

)
n

− 1

4

∑
i∈[n]

ε2
i , by Chauchy-Schwarz

=
1

n
−

(
∑

i∈A εi)
2

4
−

(
∑

i∈B εi)
2

4
=

1

n
− ε2

2
, by:

∑
i∈[n]

ai = 1 and
∑
i∈A

εi =
∑
i∈B

εi = ε

And one can easily show that this inequality is tight for every n ∈ N.

Lemma 7 (Collision probability for Separate distributions). Let a = {ai, . . . , an} and b = {b1, . . . , bn}
be two probability distributions over sample space [n] such that ∆ (a,b) = 1− δ. Then,∑

i∈[n]

aibi ≤ δ

Proof. Let A ⊆ [n] be the set of all indices such that bi ≥ ai and B = [n]\A. If
∑

i∈A ai = u ∈ [0, δ],
then: ∑

u∈B
ai = (1− u),

∑
i∈A

bi = (1− δ + u), and
∑
i∈B

bi = (δ − u)

Given these, consider the following manipulation:∑
i∈[n]

aibi =
∑
i∈A

aibi +
∑
i∈B

aibi

≤

(∑
i∈A

ai

)(∑
i∈A

bi

)
+

(∑
i∈B

ai

)(∑
i∈B

bi

)
= u(1− δ + u) + (1− u)(δ − u)

= 2u(u− δ) + δ ≤ δ

And it is easy to see that this inequality is tight for n = 2 and the left-hand side could be
arbitrarily close to (but less than) δ for n > 2.

D.2 Some Protocols

In this section we present some simple reduction among primitives.
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D.2.1 Some Local Renaming Schemes

Some Representative Correlations. We present some representative correlated randomness
which shall be useful in our paper.

1. Random OLE-Correlation: Party A receives (u, v)
$←{0, 1}2 and party B receives (x, ux⊕ v),

for x $←{0, 1}.

2. Random ELO-Correlation: This is identical to OLE-correlation except that the roles of party
A and party B are reversed.

3. ROT-Correlation: Party A receives (s0, s1)
$←{0, 1}2 and party B receives (c, sc), for c

$←{0, 1}.

4. TOR-Correlation: This is identical to ROT-correlation except that the roles of party A and
party B are reversed.

Reduction of ROT to Random OLE correlation. Suppose parties have the following corre-
lations: (u, v) with party A and (x, y) with party B such that y = ux⊕ v, where u, v, x, y ∈ {0, 1}
and u, v, x $←{0, 1}.

Consider the following renaming of variables: (s0, s1) ≡ (v, u⊕ v) by party A and (c, z) ≡ (x, y)
by party B. Note that: z = sc if y = ux⊕ v. Hence, under this local renaming of variables Random
OLE-correlation can be converted into ROT correlations.

Reduction of Random OLE to ROT correlation. Suppose parties have the following cor-
relations: (s0, s1) with party A and (c, z = sc) with party B, where s0, s1, c

$← {0, 1}. Consider
the following renaming of variables: (u, v) ≡ (s0 ⊕ s1, s0) by party A and (x, y) ≡ (c, z). Note
that: z = ux⊕ v if z = sc. Hence, under this local renaming of variables ROT correlations can be
converted into Random OLEL correlations.

Reduction between Random OLE and Random ELO correlations. Suppose party A has
(u, v) and party B has (x, y = ux ⊕ v), where u, v, x $← {0, 1}. Consider the following renaming
scheme: party B defines (a′, b′) ≡ (x, y) and party B defines (x′, y′) ≡ (u, v). Note that y′ = a′x′⊕b′

and a′, b′, x′ $←{0, 1}. Thus, OLE and ELO generate identical correlations.

Between ROT and TOR. Consider the following sequence of local renaming schemes: ROT →
OLE → ELO → TOR.

More concretely, suppose party A has (s0, s1) and party B has (c, sc), where s0, s1, c
$← {0, 1}.

Then we define: (c′, z′) ≡ (s0 ⊕ s1, s0) for party A and (s′0, s
′
1) ≡ (sc, c⊕ sc) for party B. It is easy

to verify that z′ = s′c′ , for all s
′
0, s
′
1, c
′ ∈ {0, 1}.

D.2.2 Some useful Protocols

OLE reduction to ROT correlation. Suppose party A has (s0, s1) and party B has (c, z = sc),
where s0, s1, c

$←{0, 1}. Suppose they want to implement an OLE where party A has inputs (u∗, v∗)
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and party B has input x∗ and receives y∗ = u∗x∗ ⊕ v∗.

First they locally rename ROT correlation into Random OLE correlation. Now party A has
(u, v) and party B has (x, y = ux ⊕ v). Now party A sends ũ = u∗ ⊕ u and ṽ = v∗ ⊕ v. Party B
outputs: y ⊕ (ũx⊕ ṽ).

This protocol is perfectly UC-secure implementation of OLE in ROT-hybrid. Correctness triv-
ially follows. The security trivially follows from: Note that u is perfectly hidden from party B.
And, thus, u∗ is perfectly hidden from party B. Further this is secure against adaptive corruption
of parties as well [Lin09].

OLE reduction to TOR correlation. Locally rename TOR correlation into ROT correlation
and use the previous reduction.
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