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Preface

As its title suggests, this book investigates reasoning about knowledge, in particular,
reasoning about the knowledge of agents who reason about the world and each other’s
knowledge. This is the type of reasoning one often sees in puzzles orSherlock Holmes
mysteries, where we might have reasoning such as this:

If Alice knew that Bob knew that Charlie was wearing a red shirt, then Al-
ice would have known that Bob would have known that Charlie couldn’t
have been in the pantry at midnight. But Alice didn’t know this . . .

As we shall see, this type of reasoning is also important in a surprising number of
other contexts. Researchers in a wide variety of disciplines, from philosophy to
economics to cryptography, have all found that issues involving agents reasoning
about other agents’ knowledge are of great relevance to them. We attempt to provide
here a framework for understanding and analyzing reasoning about knowledge that
is intuitive, mathematically well founded, useful in practice, and widely applicable.

The book is almost completely self-contained. We do expect the reader to be
familiar with propositional logic; a nodding acquaintance with distributed systems
may be helpful to appreciate some of our examples, but it is not essential. Our hope
is that the book will be accessible to readers from a number of different disciplines,
including computer science, artificial intelligence, philosophy, and game theory.
While proofs of important theorems are included, the non-mathematically-oriented
reader should be able to skip them, while still following the main thrust of the book.

We have tried to make the book modular, so that, whenever possible, separate
chapters can be read independently. At the end of Chapter 1 there is a brief overview
of the book and a table of dependencies. Much of this material was taught a number
of times by the second author in one-quarter courses at Stanford University and
by the third author in one-semester courses at the Weizmann Institute of Science.
Suggestions for subsets of material that can be covered can also be found at the end
of Chapter 1.
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xii Preface

Many of the details that are not covered in the main part of the text of each
chapterare relegatedto the exercises. As well, the exercises cover material somewhat
tangential—but still of interest!—to the main thrust of the chapter. We recommend
that the reader at least look over all the exercises in each chapter. Far better, of
course, would be to do them all (or at least a reasonable subset). Problems that are
somewhat more difficult are marked with ∗, and even more difficult problems are
marked with ∗∗.

Each chapter ends with a section of notes. These notes provide references to
the material covered in each chapter (as well as the theorems that are stated but not
proved) and, occasionally, more details on some points not covered in the chapter.
The references appearing in the notes are to the latest version of the materialwe could
find. In many cases, earlier versions appeared in conference proceedings. The dates
of the references that appear in the notes therefore do not provide a chronological
account of the contributions to the field. While we attempt to provide reasonably
extensive coverage of the literature in these notes, the field is too large for ourcoverage
to be complete. We apologize for the inadvertent omission of relevant references.

The book concludes with a bibliography, an index, and a symbol index.
Many people helped us in many ways in the preparation of this book, and we

are thankful to all of them. Daphne Koller deserves a very special note of thanks.
She did a superb job of proofreading the almost-final draft of the book. Besides
catching many typographical errors, she gave us numerous suggestions on improving
the presentation in every chapter. We are very grateful to her. We would also
like to thank Johan van Benthem, Mike Fischer, Adam Grove, Vassos Hadzilacos,
Lane Hemaspaandra and the students of CS 487 at the University of Rochester, Wil
Janssen, Hector Levesque, Murray Mazer, Ron van der Meyden, Jan Pachl, Karen
Rudie, Ambuj Singh, Elias Thijsse, Mark Tuttle, and Lenore Zuck, for their useful
comments and criticisms; Johan van Benthem, Brian Chellas, David Makinson,
and Krister Segerberg for their help in tracking down the history of modal logic;
and T. C. Chen and Brian Coan for pointing out the quotations at the beginning of
Chapters 2 and 3, respectively. Finally, the second and third authors would like
to thank the students of CS 356 (at Stanford in the years 1984–1989, 1991–1992,
and 1994), CS 2422S (at Toronto in 1990) and the course on Knowledge Theory
(at the Weizmann Institute of Science in the years 1987–1995), who kept finding
typographical errors and suggesting improvements to the text (and wondering if
the book would ever be completed), especially Gidi Avrahami, Ronen Brafman,
Ed Brink, Alex Bronstein, Isis Caulder, Steve Cummings, John DiMarco, Kathleen
Fisher, Steve Friedland, Tom Henzinger, David Karger, Steve Ketchpel, Orit Kislev,
Christine Knight, Ronny Kohavi, Rick Kunin, Sherry Listgarten, Carlos Mendioroz,
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Andres Modet, Shahid Mujtaba, Gal Nachum, Leo Novik, Raymond Pang, Barney
Pell, Sonne Preminger, Derek Proudian, Omer Reingold, Tselly Regev, Gil Roth,
Steve Souder, Limor Tirosh-Pundak-Mintz, Maurits van der Veen, Orli Waarts, Scott
Walker, and Liz Wolf.

Finally, we wish to thank the institutions that supported this work for many
years; the work of the first, second, and fourth authors was done at the IBM Almaden
Research Center in San Jose, California, and the work of the third author was done at
the Weizmann Institute of Science in Rehovot, Israel, and while on sabbatical at the
Oxford University Computing Laboratory in Oxford, England. The work of the third
author was supported in part by a Sir Charles Clore Post-Doctoral Fellowship, by an
Alon Fellowship, and by a Helen and Milton A. Kimmelman Career Development
Chair.





Chapter 1

Introduction and Overview

An investment in knowledge pays the best interest.

Benjamin Franklin, Poor Richard’s Almanac, c. 1750

Epistemology, the study of knowledge, has a long and honorable tradition in philos-
ophy, starting with the early Greek philosophers. Questions such as “What do we
know?” “What can be known?” and “What does it mean to say that someone knows
something?” have been much discussed in the philosophical literature. The idea of a
formal logical analysis of reasoning about knowledge is somewhat more recent, but
goes back at least to von Wright’s work in the early 1950’s. The first book-length
treatment of epistemic logic—the logic of knowledge—is Hintikka’s seminal work
Knowledge and Belief, which appeared in 1962. The 1960’s saw a flourishing of
interest in this area in the philosophy community. The major interest was in try-
ing to capture the inherent properties of knowledge. Axioms for knowledge were
suggested, attacked, and defended.

More recently, researchers in such diverse fields as economics, linguistics, AI
(artificial intelligence), and theoretical computer science have become interested in
reasoning about knowledge. While, of course, some of the issues that concerned the
philosophers have been of interest to these researchers as well, the focus of attention
has shifted. For one thing, there are pragmatic concerns about the relationship
between knowledge and action. What does a robot need to know in order to open a
safe, and how does it know whether it knows enough to open it? At what point does
an economic agent know enough to stop gathering information and make a decision?
When should a database answer “I don’t know” to a query? There are also concerns
about the complexity of computing knowledge, a notion we can now quantify better

1



2 Chapter 1 Introduction and Overview

thanks to advances in theoretical computer science. Finally, and perhaps of most
interest to us here, is the emphasis on considering situations involving the knowledge
of a group of agents, rather than that of just a single agent.

When trying to understand and analyze the properties of knowledge, philosophers
tended to consider only the single-agent case. But the heart of any analysis of a
conversation, a bargaining session, or a protocol run by processes in a distributed
system is the interaction between agents. The focus of this book is on understanding
the process of reasoning about knowledge in a group and using this understanding
to help us analyze complicated systems. Although the reader will not go far wrong
if he or she thinks of a “group” as being a group of people, it is useful to allow a
more general notion of “group,” as we shall see in our applications. Our agents may
be negotiators in a bargaining situation, communicating robots, or even components
such as wires or message buffers in a complicated computer system. It may seem
strange to think of wires as agents who know facts; however, as we shall see, it is
useful to ascribe knowledge even to wires.

An agent in a group must take into account not only facts that are true about
the world, but also the knowledge of other agents in the group. For example, in a
bargaining situation, the seller of a car must consider what the potential buyer knows
about the car’s value. The buyer must also consider what the seller knows about
what the buyer knows about the car’s value, and so on. Such reasoning can get rather
convoluted. Most people quickly lose the thread of such nested sentences as “Dean
doesn’t know whether Nixon knows that Dean knows that Nixon knows that McCord
burgled O’Brien’s office at Watergate.” But this is precisely the type of reasoning
that is needed when analyzing the knowledge of agents in a group.

A number of states of knowledge arise naturally in a multi-agent situation that do
not arise in the one-agent case. We are often interested in situations in which everyone
in the group knows a fact. For example, a society certainly wants all drivers to know
that a red light means “stop” and a green light means “go.” Suppose we assume that
every driver in the society knows this fact and follows the rules. Will a driver then
feel safe? The answer is no, unless she also knows that everyone else knows and is
following the rules. For otherwise, a driver may consider it possible that, although
she knows the rules, some other driver does not, and that driver may run a red light.

Even the state of knowledge in which everyone knows that everyone knows is
not enough for a number of applications. In some cases we also need to consider the
state in which simultaneously everyone knows a factϕ, everyone knows that everyone
knows ϕ, everyone knows that everyone knows that everyone knows ϕ, and so on.
In this case we say that the group has common knowledge of ϕ. This key notion was
first studied by the philosopher David Lewis in the context of conventions. Lewis
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pointed out that in order for something to be a convention, it must in fact be common
knowledge among the members of a group. (For example, the convention that green
means “go” and red means “stop” is presumably common knowledge among the
drivers in our society.) John McCarthy, in the context of studying common-sense
reasoning, characterized common knowledge as what “any fool” knows; “any fool”
knows what is commonly known by all members of a society.

Common knowledge also arises in discourse understanding. Suppose Ann asks
Bob “What did you think of the movie?” referring to a showing of Monkey Business
they have just seen. Not only must Ann and Bob both know that “the movie” refers
to Monkey Business, but Ann must know that Bob knows (so that she can be sure
that Bob will give a reasonable answer to her question), Bob must know that Ann
knows that Bob knows (so that Bob knows that Ann will respond appropriately to
his answer), and so on. In fact, by a closer analysis of this situation, it can be shown
that there must be common knowledge of what movie is meant for Bob to answer
the question appropriately.

Finally, common knowledge also turns out to be a prerequisite for achieving
agreement. This is precisely what makes it such a crucial notion in the analysis of
interacting groups of agents.

At the other end of the spectrum from common knowledge is distributed knowl-
edge. A group has distributed knowledge of a fact ϕ if the knowledge of ϕ is
distributed among its members, so that by pooling their knowledge together the
members of the group can deduce ϕ, even though it may be the case that no member
of the group individually knows ϕ. For example, if Alice knows that Bob is in love
with either Carol or Susan, and Charlie knows that Bob is not in love with Carol,
then together Alice and Charlie have distributed knowledge of the fact that Bob is in
love with Susan, although neither Alice nor Charlie individually has this knowledge.
While common knowledge can be viewed as what “any fool” knows, distributed
knowledge can be viewed as what a “wise man”—one who has complete knowledge
of what each member of the group knows—would know.

Common knowledge and distributed knowledge are useful tools in helping us
understand and analyze complicated situations involving groups of agents. The
puzzle described in the next section gives us one example.

1.1 The Muddy Children Puzzle

Reasoning about the knowledge of a group can involve subtle distinctions between
a number of states of knowledge. A good example of the subtleties that can arise is
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given by the “muddy children” puzzle, which is a variant of the well known “wise
men” or “cheating wives” puzzles.

Imagine n children playing together. The mother of these children has
told them that if they get dirty there will be severe consequences. So,
of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the
children, say k of them, get mud on their foreheads. Each can see the mud
on others but not on his own forehead. So, of course, no one says a thing.
Along comes the father, who says, “At least one of you has mud on your
forehead,” thus expressing a fact known to each of them before he spoke
(if k > 1). The father then asks the following question, over and over:
“Does any of you know whether you have mud on your own forehead?”
Assuming that all the children are perceptive, intelligent, truthful, and
that they answer simultaneously, what will happen?

There is a “proof” that the first k − 1 times he asks the question, they
will all say “No,” but then the kth time the children with muddy foreheads
will all answer “Yes.”

The “proof” is by induction on k. For k = 1 the result is obvious:
the one child with a muddy forehead sees that no one else is muddy.
Since he knows that there is at least one child with a muddy forehead,
he concludes that he must be the one. Now suppose k = 2. So there
are just two muddy children, a and b. Each answers “No” the first time,
because of the mud on the other. But, when b says “No,” a realizes that
he must be muddy, for otherwise b would have known the mud was on
his forehead and answered “Yes” the first time. Thus a answers “Yes”
the second time. But b goes through the same reasoning. Now suppose
k = 3; so there are three muddy children, a, b, c. Child a argues as
follows. Assume I do not have mud on my forehead. Then, by the k = 2
case, both b and c will answer “Yes” the second time. When they do not,
he realizes that the assumption was false, that he is muddy, and so will
answer “Yes” on the third question. Similarly for b and c.

The argument in the general case proceeds along identical lines.

Let us denote the fact “at least one child has a muddy forehead” by p. Notice that
if k > 1, i.e., more than one child has a muddy forehead, then every child can see
at least one muddy forehead, and the children initially all know p. Thus, it would
seem that the father does not provide the children with any new information, and so
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he should not need to tell them that p holds when k > 1. But this is false! In fact, as
we now show, if the father does not announce p, the muddy children are never able
to conclude that their foreheads are muddy.

Here is a sketch of the proof: We prove by induction on q that, no matter what the
situation is, i.e., no matterhow many children have a muddy forehead, all the children
answer “No” to the father’s first q questions. Clearly, no matter which children have
mud on their foreheads, all the children answer “No” to the father’s first question,
since a child cannot tell apart a situation where he has mud on his forehead from one
that is identical in all respects except that he does not have a muddy forehead. The
inductive step is similar: By the inductive hypothesis, the children answer “No” to
the father’s first q questions. Thus, when the father asks his question for the (q +1)st

time, child i still cannot tell apart a situation where he has mud on his forehead from
one that is identical in all respects except that he does not have a muddy forehead,
since by the induction hypothesis, the children will answer “No” to the father’s first
q questions whether or not child i has a muddy forehead. Thus, again, he does not
know whether his own forehead is muddy.

So, by announcing something that the children all know, the father somehow
manages to give the children useful information! How can this be? Exactly what
is the role of the father’s statement? Of course, the father’s statement did enable
us to do the base case of the induction in the proof, but this does not seem to be
a terribly satisfactory answer. It certainly does not explain what information the
children gained as a result of the father’s statement.

We can answer these questions by using the notion of common knowledge de-
scribed in the previous section. Let us consider the case of two muddy children in
more detail. It is certainly true that before the father speaks, everyone knows p. But
it is not the case that everyone knows that everyone knows p. If Alice and Bob are the
only children with muddy foreheads, then before the father speaks, Alice considers
it possible that she does not have mud on her forehead, in which case Bob does not
see anyone with a muddy forehead and so does not know p. After the father speaks,
Alice does know that Bob knows p. After Bob answers “No” to the father’s first
question, Alice uses her knowledge of the fact that Bob knows p to deduce that her
own forehead is muddy. (Note that if Bob did not know p, then Bob would have said
“No” the first time even if Alice’s forehead were clean.)

We have just seen that if there are only two muddy children, then it is not the case
that everyone knows that everyone knows p before the father speaks. However, if
there are three muddy children, then it is the case that everyone knows that everyone
knows p before the father speaks. If Alice, Bob, and Charlie have muddy foreheads,
then Alice knows that Bob can see Charlie’s muddy forehead, Bob knows that Charlie
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can see Alice’s muddy forehead, etc. It is not the case, however, that everyone knows
that everyone knows that everyone knows p before the father speaks. In general, if we
let Ek p represent the fact that everyone knows that everyone knows . . . (k times) p,
and let Cp represent the fact that p is common knowledge, then we leave it to the
reader to check that if exactly k children have muddy foreheads, then Ek−1 p holds
before the father speaks, but Ek p does not. It turns out that when there are k muddy
children, Ek p suffices to ensure that the children with muddy foreheads will be able
to figure it out, while Ek−1 p does not. The father’s statement actually converts the
children’s state of knowledge from Ek−1 p to Cp. With this extra knowledge, they
can deduce whether their foreheads are muddy.

The careful reader will have noticed that we made a number of implicit assump-
tions in the preceding discussion over and above the assumption made in the story
that “the children are perceptive, intelligent, and truthful.” Suppose again that Alice
and Bob are the only children with muddy foreheads. It is crucial that both Alice
and Bob know that the children are intelligent, perceptive, and truthful. For example,
if Alice does not know that Bob is telling the truth when he answers “No” to the
father’s first question, then she cannot answer “Yes” to the second question (even if
Bob is in fact telling the truth). Similarly, Bob must know that Alice is telling the
truth. Besides its being known that each child is intelligent, perceptive, and truthful,
we must also assume that each child knows that the others can see, that they all hear
the father, that the father is truthful, and that the children can do all the deductions
necessary to answer the father’s questions.

Actually, even stronger assumptions need to be made. If there are k children
with muddy foreheads, it must be the case that everyone knows that everyone knows
. . . (k − 1 times) that the children all have the appropriate attributes (they are per-
ceptive, intelligent, all hear the father, etc.). For example, if there are three muddy
children and Alice considers it possible that Bob considers it possible that Charlie
might not have heard the father’s statement, then she cannot say “Yes” to the fa-
ther’s third question (even if Charlie in fact did hear the father’s statement and Bob
knows this). In fact, it seems reasonable to assume that all these attributes are com-
mon knowledge, and, indeed, this assumption seems to be made by most people on
hearing the story.

To summarize, it seems that the role of the father’s statement was to give the
children common knowledge of p (the fact that at least one child has a muddy
forehead), but the reasoning done by the children assumes that a great deal of common
knowledge already existed in the group. How does this common knowledge arise?
Even if we ignore the problem of how facts like “all the children can see” and “all
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the children are truthful” become common knowledge, there is still the issue of how
the father’s statement makes p common knowledge.

Note that it is not quite correct to say that p becomes common knowledge because
all the children hear the father. Suppose that the father had taken each child aside
individually (without the others noticing) and said “At least one of you has mud on
your forehead.” The children would probably have thought it a bit strange for him
to be telling them a fact that they already knew. It is easy to see that p would not
become common knowledge in this setting.

Given this example, one might think that the common knowledge arose because
all the children knew that they all heard the father. Even this is not enough. To see
this, suppose the children do not trust each other, and each child has secretly placed
a miniature microphone on all the other children. (Imagine that the children spent
the previous summer at a CIA training camp.) Again the father takes each child
aside individually and says “At least one of you has a muddy forehead.” In this case,
thanks to the hidden microphones, all the children know that each child has heard
the father, but they still do not have common knowledge.

A little more reflection might convince the reader that the common knowledge
arose here because of the publicnature of the father’s announcement. Roughly speak-
ing, the father’s public announcement of p puts the children in a special situation,
one with the property that all the children know both that p is true and that they
are in this situation. We shall show that under such circumstances p is common
knowledge. Note that the common knowledge does not arise because the children
somehow deduce each of the facts Ek p one by one. (If this were the case, then
arguably it would take an infinite amount of time to attain common knowledge.)
Rather, the common knowledge arises all at once, as a result of the children being in
such a special situation. We return to this point in later chapters.

1.2 An Overview of the Book

The preceding discussion should convince the reader that the subtleties of reasoning
about knowledge demand a careful formal analysis. In Chapter 2, we introduce a
simple, yet quite powerful, formal semantic model for knowledge, and a language for
reasoning about knowledge. The basic idea underlying the model is that of possible
worlds. The intuition is that if an agent does not have complete knowledge about
the world, she will consider a number of worlds possible. These are her candidates
for the way the world actually is. The agent is said to know a fact ϕ if ϕ holds at all
the worlds that the agent considers to be possible. Using this semantic model allows
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us to clarify many of the subtleties of the muddy children puzzle in quite an elegant
way. The analysis shows how the children’s state of knowledge changes with each
response to the father’s questions, and why, if there are k muddy children altogether,
it is only after the kth question that the children with muddy foreheads can deduce
this fact.

We should emphasize here that we do not feel that the semantic model we present
in the next chapter is the unique “right” model of knowledge. We spend some time
discussing the properties of knowledge in this model. A number of philosophers have
presented cogent arguments showing that some of these properties are “wrong.” Our
concerns in this book are more pragmatic than those of the philosophers. We do not
believe that there is a “right” model of knowledge. Different notions of knowledge
are appropriate for different applications. The model we present in the next chapter is
appropriate for analyzing the muddy children puzzle and for many other applications,
even if it is not appropriate for every application. One of our goals in this book is to
show how the properties of “knowledge” vary with the application.

In Chapter 3, we give a complete characterization of the properties of knowledge
in the possible-worlds model. We describe two approaches to this characterization.
The first approach is proof-theoretic: we show that all the properties of knowledge
can be formally proved from the properties discussed in Chapter 2. The second
approach is algorithmic: we study algorithms that can determine whether a given
property holds under our definition of knowledge, and consider the computational
complexity of doing this.

One of the major applications we have in mind is using knowledge to analyze
multi-agent systems, be they systems of interactingagents or systems of computers in
a network. In Chapter 4 we show how we can use our semantic model for knowledge
to ascribe knowledge to agents in a multi-agent system. The reason that we use the
word “ascribe” here is that the notion of knowledge we use in the context of multi-
agent systems can be viewed as an external notion of knowledge. There is no notion
of the agent computing his knowledge, and no requirement that the agent be able to
answer questions based on his knowledge. While this may seem to be an unusual
way of defining knowledge, we shall argue that it does capture one common usage
of the word “know.” Moreover, we give examples that show its utility in analyzing
multi-agent systems.

In Chapter 5 we extend the model of Chapter 4 to consider actions, protocols,
and programs. This allows us to analyze more carefully how changes come about in
multi-agent systems. We also define the notion of a specification and consider what
it means for a protocol or program to satisfy a specification.
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In Chapter 6 we show how useful a knowledge-based analysis of systems can be.
Our focus in this chapter is common knowledge, and we show how fundamental it
is in various contexts. In particular, we show that it is a prerequisite for agreement
and simultaneous coordinated action.

In Chapter 7 we extend our notions of programs to consider knowledge-based
programs, which allow explicit tests for knowledge. Knowledge-based programs
can be viewed as giving us a high-level language in which to program or specify
a system. We give a number of examples showing the usefulness of thinking and
programming at the knowledge level.

In Chapter 8 we consider the properties of knowledge and time, focusing on how
knowledge evolves over time in multi-agent systems. We show that small changes
in the assumptions we make about the interactions between knowledge and time in
a system can have quite subtle and powerful effects on the properties of knowledge.

As we show in Chapter 2, one property that seems to be an inherent part of
the possible-worlds model of knowledge is that agents are logically omniscient.
Roughly speaking, this means they know all tautologies and all logical consequences
of their knowledge. In the case of the muddy children puzzle we explicitly make
the assumption that each child can do all the reasoning required to solve the puzzle.
While this property may be reasonable for some applications, it certainly is not
reasonable in general. After all, we cannot really hope to build logically omniscient
robots. In Chapter 9 we describe several approaches for constructing abstract models
that do not have the logical omniscience property.

As we have already discussed, our notion of knowledge in multi-agent systems
is best understood as an external one, ascribed by, say, the system designer to the
agents. We do not assume that the agents compute their knowledge in any way, nor
do we assume that they can necessarily answer questions based on their knowledge.
In a number of applications that we are interested in, agents need to act on their
knowledge. In such applications, external knowledge is insufficient; an agent that
has to act on her knowledge has to be able to compute this knowledge. The topic of
knowledge and computation is the subject of Chapter 10.

In Chapter 11, we return to the topic of common knowledge. We suggested in
the previous section that common knowledge arose in the muddy children puzzle
because of the public nature of the father’s announcement. In many practical set-
tings such a public announcement, whose contents are understood simultaneously
by many agents, is impossible to achieve. We show that, in a precise sense, common
knowledge cannot be attained in these settings. This puts us in a somewhat para-
doxical situation, in that we claim both that common knowledge is a prerequisite for
agreement and coordinated action and that it cannot be attained. We examine this
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Figure 1.1 Dependency diagram
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paradox in Chapter 11 and suggest a number of weaker notions that can be attained
in practice and that are often sufficient for acting in the real world.

Although a considerable amount of the material in this book is based on previously
published work, a number of elements are new. These include much of the material
in Chapters 5, 7, 10, and some of Chapter 11. Specifically, the notions of contexts and
programs in Chapter 5, and of knowledge-based programs and their implementation
in Chapter 7, are new. Moreover, they play a significant role in the way we model
and analyze knowledge and action in multi-agent systems.

We have tried as much as possible to write the book in a modular way, so that
material in the later chapters can be read without having to read all the preceding
chapters. Figure 1.1 describes the dependencies between chapters. An arrow from
one chapter to another indicates that it is necessary to read (at least part of) the first
chapter in order to understand (at least part of) the second. We have labeled the
arrow if it is not necessary to read all of the first chapter to understand all of the
second. For example, the label 9.1→10, 9.3.3→10.3 on the arrow from Chapter 9
to Chapter 10 indicates that the only sections in Chapter 9 on which Chapter 10
depends are 9.1 and 9.3.3 and, moreover, the only section in Chapter 10 that depends
on Section 9.3.3 is Section 10.3. Similarly, the label 5 → 11.4 on the arrow from
Chapter 5 to Chapter 11 indicates that Section 11.4 is the only section in Chapter 11
that depends on Chapter 5, but it depends on the whole chapter.

Certain material can be skipped without losing a broad overview of the area. In
particular, this is the case for Sections 3.3, 3.4, 4.5, 6.7, and 7.7. The second author
covered a substantial portion of the remaining material (moving at quite a rapid pace)
in a one-quarter course at Stanford University. A course designed to focus on the
application of our approach to distributed systems could cover Chapters 1, 2, 4, 5,
6, 7, 10, and 11. Each chapter ends with exercises and bibliographic notes; these
could be useful in a course based on this book. As we mentioned in the preface, we
strongly recommend that the reader at least look over the exercises.

Exercises

1.1 The aces and eights game is a simple game that involves some sophisticated
reasoning about knowledge. It is played with a deck consisting of just four aces and
four eights. There are three players. Six cards are dealt out, two to each player. The
remaining two cards are left face down. Without looking at the cards, each of the
players raises them up to his or her forehead, so that the other two players can see
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them but he or she cannot. Then all of the players take turns trying to determine
which cards they’re holding (they do not have to name the suits). If a player does
not know which cards he or she is holding, the player must say so. Suppose Alice,
Bob, and you are playing the game. Of course, it is common knowledge that none
of you would ever lie, and that you are all perfect reasoners.

(a) In the first game, Alice, who goes first, holds two aces, and Bob, who goes
second, holds two eights. Both Alice and Bob say that they cannot determine
what cards they are holding. What cards are you holding? (Hint: consider
what would have happened if you held two aces or two eights.)

(b) In the second game, you go first. Alice, who goes second, holds two eights.
Bob, who goes third, holds an ace and an eight. No one is able to determine
what he or she holds at his or her first turn. What do you hold? (Hint: by using
part (a), consider what would have happened if you held two aces.)

(c) In the third game, you go second. Alice, who goes first, holds an ace and an
eight. Bob, who goes third, also holds an ace and an eight. No one is able to
determine what he or she holds at his or her first turn; Alice cannot determine
her cards at her second turn either. What do you hold?

* 1.2 Show that in the aces and eights game of Exercise 1.1, someone will always be
able to determine what cards he or she holds. Then show that there exists a situation
where only one of the players will be able to determine what cards he or she holds,
and the other two will never be able to determine what cards they hold, no matter
how many rounds are played.

1.3 The wise men puzzle is a well-known variant of the muddy children puzzle.
The standard version of the story goes as follows: There are three wise men. It is
common knowledge that there are three red hats and two white hats. The king puts
a hat on the head of each of the three wise men, and asks them (sequentially) if they
know the color of the hat on their head. The first wise man says that he does not
know; the second wise man says that he does not know; then the third wise man says
that he knows.

(a) What color is the third wise man’s hat?

(b) We have implicitly assumed in the story that the wise men can all see. Suppose
we assume instead that the third wise man is blind and that it is common
knowledge that the first two wise men can see. Can the third wise man still
figure out the color of his hat?
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Notes

The idea of a formal logical analysis of reasoning about knowledge seems to have first
been raised by von Wright [1951]. As we mentioned in the text, Hintikka [1962] gave
the first book-length treatment of epistemic logic. Lenzen [1978] gives an overview of
the work in epistemic logic done in the 1960s and 1970s. He brings out the arguments
for and against various axioms of knowledge. The most famous of these arguments
is due to Gettier [1963], who argued against the classical interpretationof knowledge
as true, justified belief; his work inspired many others. Gettier’s arguments and some
of the subsequent papers are discussed in detail by Lenzen [1978]. For recent reviews
of the subject, see the papers by Halpern [1986, 1987, 1993a], by Meyer, van der
Hoek, and Vreeswijk [1991a, 1991b], by Moses [1992], and by Parikh [1990].

As we mentioned, the original work on common knowledge was done by Lewis
[1969] in the context of studying conventions. Although McCarthy’s notion of what
“any fool” knows goes back to roughly 1970, it first appears in a published paper in
[McCarthy, Sato, Hayashi, and Igarishi 1979]. The notion of knowledge and common
knowledge has also been of great interest to economists and game theorists, ever since
the seminal paper by Aumann [1976]. Knowledge and common knowledge were first
applied to multi-agent systems by Halpern and Moses [1990] and by Lehmann [1984].
The need for common knowledge in understanding a statement such as “What did
you think of the movie?” is discussed by Clark and Marshall [1981]; a dissenting
view is offered by Perrault and Cohen [1981]. Clark and Marshall also present an
example of nested knowledge based on the Watergate scandal, mentioning Dean
and Nixon. The notion of distributed knowledge was introduced by Halpern and
Moses [1990]. They initially called it implicit knowledge, and the term “distributed
knowledge” was suggested by Jan Pachl.

The muddy children puzzle is a variant of the “unfaithful wives” puzzle discussed
by Gamow and Stern [1958]. Gardner [1984] also presents a variant of the puzzle,
and a number of variants of the puzzle are discussed by Moses, Dolev, and Halpern
[1986]. The version given here is taken almost verbatim from [Barwise 1981]. The
aces and eights puzzle in Exercise 1.1 is taken from [Carver 1989]. Another related
puzzle is the so-called “Conway paradox”, which was first discussed by Conway,
Paterson, and Moscow [1977], and later by Gardner [1977]. It was analyzed in an
epistemic framework by van Emde Boas, Groenendijk, and Stokhof [1980]. An
extension of this puzzle was considered by Parikh [1992].

See the bibliographic notes in later chapters for more references on the specific
subjects discussed in these chapters.





Chapter 2

A Model for Knowledge

Chuangtse and Hueitse had strolled onto the bridge over the Hao, when
the former observed, “See how the small fish are darting about! That is
the happiness of the fish.” “You are not a fish yourself,” said Hueitse.
“How can you know the happiness of the fish?” “And you not being I,”
retorted Chuangtse, “how can you know that I do not know?”

Chuangtse, c. 300 B.C.

2.1 The Possible-Worlds Model

As we said in Chapter 1, our framework for modeling knowledge is based on possible
worlds. The intuitive idea behind the possible-worlds model is that besides the true
state of affairs, there are a number of other possible states of affairs, or “worlds.”
Given his current information, an agent may not be able to tell which of a number
of possible worlds describes the actual state of affairs. An agent is then said to
know a fact ϕ if ϕ is true at all the worlds he considers possible (given his current
information). For example, agent 1 may be walking on the streets in San Francisco
on a sunny day but may have no information at all about the weather in London.
Thus, in all the worlds that the agent considers possible, it is sunny in San Francisco.
(We are implicitly assuming here that the agent does not consider it possible that
he is hallucinating and in fact it is raining heavily in San Francisco.) On the other
hand, since the agent has no information about the weather in London, there are
worlds he considers possible in which it is sunny in London, and others in which
it is raining in London. Thus, this agent knows that it is sunny in San Francisco,

15
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but he does not know whether it is sunny in London. Intuitively, the fewer worlds
an agent considers possible, the less his uncertainty, and the more he knows. If the
agent acquires additional information—such as hearing from a reliable source that
it is currently sunny in London—then he would no longer consider possible any of
the worlds in which it is raining in London.

In a situation such as a poker game, these possible worlds have a concrete inter-
pretation: they are simply all the possible ways the cards could have been distributed
among the players. Initially, a player may consider possible all deals consistent with
the cards in her hand. Players may acquire additional information in the course of
the play of the game that allows them to eliminate some of the worlds they consider
possible. Even if Alice does not know originally that Bob holds the ace of spades,
at some point Alice might come to know it, if the additional information she obtains
allows her to eliminate all the worlds (distributions of cards among players) where
Bob does not hold the ace of spades.

Another example is provided by the muddy children puzzle we discussed in the
previous chapter. Suppose Alice sees that Bob and Charlie have muddy foreheads and
that all the other children do not have muddy foreheads. This allows her to eliminate
all but two worlds: one in which she, Bob, and Charlie have muddy foreheads, and
no other child does, and one in which Bob and Charlie are the only children with
muddy foreheads. In all (i.e., both) of the worlds that Alice considers possible, Bob
and Charlie have muddy foreheads and all the children except Bob, Charlie, and her
have clean foreheads. Alice’s only uncertainty is regarding her own forehead; this
uncertainty is reflected in the set of worlds she considers possible. As we shall see in
Section 2.3, on hearing the children’s replies to the father’s first two questions, Alice
will be able to eliminate one of these two possible worlds and will know whether or
not her own forehead is muddy.

To make these ideas precise, we first need a language that allows us to express
notions of knowledge in a straightforward way. As we have already seen, English is
not a particularly good language in which to carry out complicated reasoning about
knowledge. Instead we use the language of modal logic.

Suppose we have a group consisting of n agents, creatively named 1, . . . , n.
For simplicity, we assume these agents wish to reason about a world that can be
described in terms of a nonempty set 8 of primitive propositions, typically labeled
p, p′, q, q ′, . . . These primitive propositions stand for basic facts about the world
such as “it is sunny in San Francisco” or “Alice has mud on her forehead.” To
express a statement like “Bob knows that it is sunny in San Francisco,” we augment
the language by modal operators K1, . . . , Kn (one for each agent). A statement like
K1ϕ is then read “agent 1 knows ϕ.”
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Technically, a language is just a set of formulas. We can now describe the set
of formulas of interest to us. We start with the primitive propositions in 8 and
form more complicated formulas by closing off under negation, conjunction, and the
modal operators K1, . . . , Kn. Thus, if ϕ andψ are formulas, then so are ¬ϕ, (ϕ∧ψ),
and Kiϕ, for i = 1, . . . , n. For the sake of readability, we omit the parentheses in
formulas such as (ϕ ∧ ψ) whenever it does not lead to confusion. We also use
standard abbreviations from propositional logic, such as ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ),
ϕ ⇒ ψ for ¬ϕ ∨ ψ , and ϕ ⇔ ψ for (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). We take true to be an
abbreviation for some fixed propositional tautology such as p ∨ ¬p, and take false
to be an abbreviation for ¬true.

We can express quite complicated statements in a straightforward way using this
language. For example, the formula

K1 K2 p ∧ ¬K2 K1 K2 p

says that agent 1 knows that agent 2 knows p, but agent 2 does not know that agent 1
knows that agent 2 knows p.

We view possibility as the dual of knowledge. Thus, agent 1 considers ϕ possible
exactly if he does not know ¬ϕ. This situation can be described by the formula
¬K1¬ϕ. A statement like “Dean doesn’t know whether ϕ” says that Dean considers
both ϕ and ¬ϕ possible. Let’s reconsider the sentence from the previous chapter:
“Dean doesn’t know whether Nixon knows that Dean knows that Nixon knows that
McCord burgled O’Brien’s office at Watergate.” If we take Dean to be agent 1,
Nixon to be agent 2, and p to be the statement “McCord burgled O’Brien’s office at
Watergate,” then this sentence can be captured as

¬K1¬(K2 K1 K2 p) ∧ ¬K1¬(¬K2 K1K2 p).

Now that we have described the syntax of our language (that is, the set of well-
formed formulas), we need semantics, that is, a formal model that we can use to
determine whether a given formula is true or false. One approach to defining se-
mantics is, as we suggested, in terms of possible worlds, which we formalize in
terms of (Kripke) structures. (In later chapters we consider other approaches to
giving semantics to formulas.) A Kripke structure M for n agents over 8 is a tuple
(S, π,K1, . . . ,Kn), where S is a set of states or possible worlds,π is an interpretation
that associates with each state in S a truth assignment to the primitive propositions
of8 (i.e., π(s) : 8 → {true, false} for each state s ∈ S), and Ki is a binary relation
on S, that is, a set of pairs of elements of S. We tend to use “state” and “world”
interchangeably throughout the book.
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The truth assignment π(s) tells us whether p is true or false in state s. Thus,
if p denotes the fact “it is raining in San Francisco,” then π(s)(p) = true captures
the situation in which it is raining in San Francisco in state s of structure M . The
binary relationKi is intended to capture the possibility relation according to agent i:
(s, t) ∈ Ki if agent i considers world t possible, given his information in world s.
We think ofKi as a possibility relation, since it defines what worlds agent i considers
possible in any given world. Throughout most of the book (in particular, in this
chapter), we further require that Ki be an equivalence relation on S. An equivalence
relation K on S is a binary relation that is (a) reflexive, which means that for all
s ∈ S, we have (s, s) ∈ K, (b) symmetric, which means that for all s, t ∈ S, we
have (s, t) ∈ K if and only if (t, s) ∈ K, and (c) transitive, which means that for
all s, t, u ∈ S, we have that if (s, t) ∈ K and (t, u) ∈ K, then (s, u) ∈ K. We takeKi to be an equivalence relation since we want to capture the intuition that agent i
considers t possible in world s if in both s and t agent i has the same information
about the world, that is, the two worlds are indistinguishable to the agent. Making Ki

an equivalencerelation seems natural, and it turns out to be the appropriate choice for
many applications. For example, as we shall see in the next section, it is appropriate
in analyzing the muddy children puzzle, while in Chapters 4 and 6 we show that it
is appropriate for many multi-agent systems applications. We could equally well,
however, consider possibility relations with other properties (for example, reflexive
and transitive, but not symmetric), as we in fact do in Chapter 3.

We now define what it means for a formula to be true at a given world in a structure.
Note that truth depends on the world as well as the structure. It is quite possible that
a formula is true in one world and false in another. For example, in one world agent 1
may know it is sunny in San Francisco, while in another he may not. To capture
this, we define the notion (M, s) |= ϕ, which can be read as “ϕ is true at (M, s)” or
“ϕ holds at (M, s)” or “(M, s) satisfies ϕ.” We define the |= relation by induction
on the structure of ϕ. That is, we start with the simplest formulas—primitive
propositions—and work our way up to more complicated formulas ϕ, assuming that
|= has been defined for all the subformulas of ϕ.

The π component of the structure gives us the information we need to deal with
the base case, where ϕ is a primitive proposition:

(M, s) |= p (for a primitive proposition p ∈ 8) iff π(s)(p) = true.

For conjunctions and negations, we follow the standard treatment from proposi-
tional logic; a conjunction ψ ∧ ψ ′ is true exactly if both of the conjuncts ψ and ψ ′

are true, while a negated formula ¬ψ is true exactly if ψ is not true:
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(M, s) |= ψ ∧ ψ ′ iff (M, s) |= ψ and (M, s) |= ψ ′

(M, s) |= ¬ψ iff (M, s) 6|= ψ .

Note that the clause for negation guarantees that the logic is two-valued. For every
formula ψ , we have either (M, s) |= ψ or (M, s) |= ¬ψ , but not both.

Finally, we have to deal with formulas of the form Kiψ . Here we try to capture
the intuition that agent i knowsψ in world s of structure M exactly if ψ is true at all
worlds that i considers possible in s. Formally, we have

(M, s) |= Kiψ iff (M, t) |= ψ for all t such that (s, t) ∈ Ki .

These definitions are perhaps best illustrated by a simple example. One of the
advantages of a Kripke structure is that it can be viewed as a labeled graph, that
is, a set of labeled nodes connected by directed, labeled edges. The nodes are the
states of S; the label of state s ∈ S describes which primitive propositions are true
and false at s. We label edges by sets of agents; the label on the edge from s to t
includes i if (s, t) ∈ Ki . For example, suppose 8 = {p} and n = 2, so that our
language has one primitive proposition p and there are two agents. Further suppose
that M = (S, π,K1,K2), where S = {s, t, u}, p is true at states s and u but false
at t (so that π(s)(p) = π(u)(p) = true and π(t)(p) = false), agent 1 cannot
distinguish s from t (so that K1 = {(s, s), (s, t), (t, s), (t, t), (u, u)}), and agent 2
cannot distinguish s from u (so that K2 = {(s, s), (s, u), (t, t), (u, s), (u, u)}). This
situation can be captured by the graph in Figure 2.1. Note how the graph captures
our assumptions about the Ki relations. In particular, we have a self-loop at each
edge labeled by both 1 and 2 because the relations K1 and K2 are reflexive, and the
edges have an arrow in each direction because K1 and K2 are symmetric.rr r�
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Figure 2.1 A simple Kripke structure
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If we view p as standing for “it is sunny in San Francisco,” then in state s it is sunny
in San Francisco but agent 1 does not know it, since in state s he considers both s and t
possible. (We remark that we used the phrase “agent 1 cannot distinguish s from t .”
Of course, agent 1 realizes perfectly well that s and t are different worlds. After all,
it is raining in San Francisco in s, but not in t . What we really intend here is perhaps
more accurately described by something like “agent 1’s information is insufficient to
enable him to distinguish whether the actual world is s or t .” We continue to use the
word “indistinguishable” in the somewhat looser sense throughout the book.) On
the other hand, agent 2 does know in state s that it is sunny, since in both worlds that
agent 2 considers possible at s (namely, s and u), the formula p is true. In state t ,
agent 2 also knows the true situation, namely, that it is not sunny. It follows that in
state s agent 1 knows that agent 2 knows whether or not it is sunny in San Francisco:
in both worlds agent 1 considers possible in state s, namely, s and t , agent 2 knows
what the weather in San Francisco is. Thus, although agent 1 does not know the
true situation at s, he does know that agent 2 knows the true situation. By way of
contrast, although in state s agent 2 knows that it is sunny in San Francisco, she does
not know that agent 1 does not know this fact. (In one world that agent 2 considers
possible, namely u, agent 1 does know that it is sunny, while in another world agent 2
considers possible, namely s, agent 1 does not know this fact.) All of this relatively
complicated English discussion can be summarized in one mathematical statement:

(M, s) |= p ∧ ¬K1 p ∧ K2 p ∧ K1(K2 p ∨ K2¬p) ∧ ¬K2¬K1 p.

Note that in both s and u, the primitive proposition p (the only primitive propo-
sition in our language) gets the same truth value. One might think, therefore, that s
and u are the same, and that perhaps one of them can be eliminated. This is not true!
A state is not completely characterized by the truth values that the primitive propo-
sitions get there. The possibility relation is also crucial. For example, in world s,
agent 1 considers t possible, while in u he does not. As a consequence, agent 1 does
not know p in s, while in u he does.

We now consider a slightly more complicated example, which might provide a
little more motivation for making the Ki ’s equivalence relations. Suppose we have
a deck consisting of three cards labeled A, B, and C. Agents 1 and 2 each get one
of these cards; the third card is left face down. A possible world is characterized by
describing the cards held by each agent. For example, in the world (A, B), agent 1
holds card A and agent 2 holds card B (while card C is face down). There are clearly
six possible worlds: (A, B), (A,C), (B, A), (B,C), (C, A), and (C, B). Moreover,
it is clear that in a world such as (A, B), agent 1 thinks two worlds are possible:
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(A, B) itself and (A,C). Agent 1 knows that he has card A, but he considers it
possible that agent 2 could hold either card B or card C. Similarly, in world (A, B),
agent 2 also considers two worlds: (A, B) and (C, B). In general, in a world (x, y),
agent 1 considers (x, y) and (x, z) possible, and agent 2 considers (x, y) and (z, y)
possible, where z is different from both x and y.

From this description, we can easily construct the K1 and K2 relations. It is easy
to check that they are indeed equivalence relations, as required by the definitions.
This is because an agent’s possibility relation is determined by the information she
has, namely, the card she is holding. This is an important general phenomenon: in
any situation where an agent’s possibility relation is determined by her information
(and, as we shall see, there are many such situations), the possibility relations are
equivalence relations.

The structure in this example with the three cards is described in Figure 2.2,
where, since the relations are equivalence relations, we omit the self-loops and the
arrows on edges for simplicity. (As we have observed, if there is an edge from state s
to state t , there is bound to be an edge from t to s as well by symmetry.)
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Figure 2.2 The Kripke structure describing a simple card game

This example points out the need for having worlds that an agent does not consider
possible included in the structure. For example, in the world (A, B), agent 1 knows
that the world (B,C) cannot be the case. (After all, agent 1 knows perfectly well
that his own card is A.) Nevertheless, because agent 1 considers it possible that
agent 2 considers it possible that (B,C) is the case, we must include (B,C) in the
structure. This is captured in the structure by the fact that there is no edge from (A, B)
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to (B,C) labeled 1, but there is an edge labeled 1 to (A,C), from which there is an
edge labeled 2 to (B,C).

We still have not discussed the language to be used in this example. Since we are
interested in reasoning about the cards held by agents 1 and 2, it seems reasonable
to have primitive propositions of the form 1 A, 2A, 2B, and so on, which are to
be interpreted as “agent 1 holds card A,” “agent 2 holds card A,” “agent 2 holds
card B,” and so on. Given this interpretation, we define π in the obvious way, and
let Mc be the Kripke structure describing this card game. Then, for example, we
have (Mc, (A, B)) |= 1A ∧ 2B. We leave it to the reader to check that we also have
(Mc, (A, B)) |= K1(2B ∨ 2C), which expresses the fact that if agent 1 holds A,
then he knows that agent 2 holds either B or C. Similarly, we have (Mc, (A, B)) |=

K1¬K2(1A): agent 1 knows that agent 2 does not know that agent 1 holds A.
This example shows that our semantics does capture some of the intuitions we

naturally associate with the word “knowledge.” Nevertheless, this is far from a com-
plete justification for our definitions, in particular, for our reading of the formula Kiϕ

as “agent i knows ϕ.” The question arises as to what would constitute a reasonable
justification. We ultimately offer two justifications, which we hope the reader will
find somewhat satisfactory. The first is by further examples, showing that our defi-
nitions correspond to reasonable usages of the word “know.” One such example is
given in Section 2.3, where we analyze the muddy children puzzle and show that the
formula Kiϕ does capture our intuition regarding what child i knows. The second
justification can be found in Section 2.4, where we consider some of the properties
of this notion of knowledge and show that they are consistent with the properties
that the knowledge of a perfect reasoner with perfect introspection might have. Of
course, this does not imply that other reasonable notions of knowledge do not exist.
Some of these are considered in later chapters.

We have also restricted attention here to propositional modal logic. We do not
have first-order quantification, so that we cannot easily say, for example, that Alice
knows the governors of all states. Such a statement would require universal and
existential quantification. Roughly speaking, we could express it as ∀x(State(x) ⇒

∃y(KAliceGovernor(x, y)): for all states x, there exists y such that Alice knows that
the governor of x is y. We use only propositional modal logic throughout most of
this book because it is sufficiently powerful to capture most of the situations we shall
be interested in, while allowing us to avoid some of the complexities that arise in the
first-order case. We briefly consider the first-order case in Section 3.7.
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2.2 Adding Common Knowledge and Distributed Knowledge

The language introduced in the previous section does not allow us to express the no-
tions of common knowledge and distributed knowledge that we discussed in Chap-
ter 1. To express these notions, we augment the language with the modal operators
EG (“everyone in the group G knows”), CG (“it is common knowledge among the
agents in G”), and DG (“it is distributed knowledge among the agents in G”) for
every nonempty subset G of {1, . . . , n}, so that if ϕ is a formula, then so are EGϕ,
CGϕ, and DGϕ. We often omit the subscript G when G is the set of all agents. In
this augmented language we can make statements like K3¬C{1,2} p (“agent 3 knows
that p is not common knowledge among agents 1 and 2”) and Dq ∧ ¬Cq (“q is
distributed knowledge, but it is not common knowledge”).

We can easily extend the definition of truth to handle common knowledge and
distributed knowledge in a structure M . Since EGϕ is true exactly if everyone in the
group G knows ϕ, we have

(M, s) |= EGϕ iff (M, s) |= Kiϕ for all i ∈ G.

The formula CGϕ is true if everyone in G knows ϕ, everyone in G knows that
everyone in G knows ϕ, etc. Let E0

Gϕ be an abbreviation for ϕ, and let Ek+1
G ϕ be an

abbreviation for EG Ek
Gϕ. In particular, E1

Gϕ is an abbreviation for EGϕ. Then we
have

(M, s) |= CGϕ iff (M, s) |= Ek
Gϕ for k = 1, 2, . . .

Our definition of common knowledge has an interesting graph-theoretical inter-
pretation, which turns out to be useful in many of our applications. Define a state t
to be G-reachable from state s in k steps (k ≥ 1) if there exist states s0, s1, . . . , sk

such that s0 = s, sk = t and for all j with 0 ≤ j ≤ k − 1, there exists i ∈ G such
that (sj , sj+1) ∈ Ki . We say t is G-reachable from s if t is G-reachable from s in
k steps for some k ≥ 1. Thus, t is G-reachable from s exactly if there is a path in
the graph from s to t whose edges are labeled by members of G. In the particular
case where G is the set of all agents, we say simply that t is reachable from s. Thus,
t is reachable from s exactly if s and t are in the same connected component of the
graph.

Lemma 2.2.1

(a) (M, s) |= Ek
Gϕ if and only if (M, t) |= ϕ for all t that are G-reachable from s

in k steps.

(b) (M, s) |= CGϕ if and only if (M, t) |= ϕ for all t that are G-reachable from s.
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Proof Part (a) follows from a straightforward induction on k, while part (b) is
immediate from part (a). Notice that this result holds even if the Ki ’s are arbitrary
binary relations; we do not need to assume that they are equivalence relations.

A group G has distributed knowledge of ϕ if the “combined” knowledge of the
members of G implies ϕ. How can we capture the idea of combining knowledge in
our framework? In the Kripke structure in Figure 2.1, in state s agent 1 considers
both s and t possible but does not consider u possible, while agent 2 considers s and u
possible, but not t . Someone who could combine the knowledge of agents 1 and 2
would know that only s was possible: agent 1 has enough knowledge to eliminate u,
and agent 2 has enough knowledge to eliminate t . In general, we combine the
knowledge of the agents in group G by eliminating all worlds that some agent in G
considers impossible. Technically, this is accomplished by intersecting the sets of
worlds that each of the agents in the group considers possible. Thus we define

(M, s) |= DGϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ ∩i∈GKi .

Returning to our card game example, let G = {1, 2}; thus, G is the group
consisting of the two players in the game. Then it is easy to check (using
Lemma 2.2.1) that (Mc, (A, B)) |= CG(1A ∨ 1B ∨ 1C): it is common knowl-
edge that agent 1 holds one of the cards A, B, and C. Perhaps more interesting is
(Mc, (A, B)) |= CG(1B ⇒ (2A ∨ 2C)): it is common knowledge that if agent 1
holds card B, then agent 2 holds either card A or card C. More generally, it can be
shown that any fact about the game that can be expressed in terms of the propositions
in our language is common knowledge.

What about distributed knowledge? We leave it to the reader to check that, for
example, we have (Mc, (A, B)) |= DG(1A ∧ 2B). If the agents could pool their
knowledge together, they would know that in world (A, B), agent 1 holds card A
and agent 2 holds card B.

Again, this example does not provide complete justification for our definitions.
But it should at least convince the reader that they are plausible. We examine the
properties of common knowledge and distributed knowledge in more detail in Sec-
tion 2.4.

2.3 The Muddy Children Revisited

In our analysis we shall assume that it is common knowledge that the father is truthful,
that all the children can and do hear the father, that all the children can and do see
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which of the other children besides themselves have muddy foreheads, that none of
the children can see his or her own forehead, and that all the children are truthful and
(extremely) intelligent.

First consider the situation before the father speaks. Suppose there are n children
altogether. As before, we number them 1, . . . , n. Some of the children have muddy
foreheads, and the rest do not. We can describe a possible situation by an n-tuple of
0’s and 1’s of the form (x1, . . . , xn), where xi = 1 if child i has a muddy forehead,
and xi = 0 otherwise. Thus, if n = 3, then a tuple of the form (1, 0, 1)would say that
precisely child 1 and child 3 have muddy foreheads. Suppose the actual situation
is described by this tuple. What situations does child 1 consider possible before
the father speaks? Since child 1 can see the foreheads of all the children besides
herself, her only doubt is about whether she has mud on her own forehead. Thus
child 1 considers two situations possible, namely, (1, 0, 1) (the actual situation) and
(0, 0, 1). Similarly, child 2 considers two situations possible: (1, 0, 1) and (1, 1, 1).
Note that in general, child i has the same information in two possible worlds exactly
if they agree in all components except possibly the i th component.

We can capture the general situation by a Kripke structure M consisting of 2n

states, one for each of the possible n-tuples. We must first decide what propositions
we should include in our language. Since we want to reason about whether or not
a given child’s forehead is muddy, we take 8 = {p1, . . . , pn, p}, where, intuitively,
pi stands for “child i has a muddy forehead,” and p stands for “at least one child has
a muddy forehead.” Thus, we define π so that (M, (x1, . . . , xn)) |= pi if and only if
xi = 1, and (M, (x1, . . . , xn)) |= p if and only if xj = 1 for some j . Of course, p is
equivalent to p1 ∨ . . .∨ pn , so its truth value can be determined from the truth value
of the other primitive propositions. There is nothing to prevent us from choosing a
language where the primitivepropositions are not independent. Since it is convenient
to add a primitive proposition (namely p) describing the father’s statement, we do
so. Finally, we must define theKi relations. Since child i considers a world possible
if it agrees in all components except possibly the i th component, we take (s, t) ∈ Ki

exactly if s and t agree in all components except possibly the i th component. Notice
that this definition makesKi an equivalence relation. This completes the description
of M .

Although this Kripke structure may seem quite complicated, it actually has an
elegant graphical representation. Suppose we ignore self-loops and the labeling on
the edges for the moment. Then we have a structure with 2n nodes, each described
by an n-tuple of 0’s and 1’s, such that two nodes are joined by an edge exactly if
they differ in one component. The reader with a good imagination will see that this



26 Chapter 2 A Model for Knowledge

@@@@@@@ �������@@@@@@@��������������@@@@@@@
@@@@@@@
�������rrrr rr rr

(0, 0, 0)

(1, 0, 0)

(0, 0, 1)

(1, 1, 0)

(1, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 1, 1)

1

1

2

2

3

3

3 3

2 1

2 1

Figure 2.3 The Kripke structure for the muddy children puzzle with n = 3

defines an n-dimensional cube. The case n = 3 is illustrated in Figure 2.3 (where
again we omit self-loops and the arrows on edges).

Intuitively, each child knows which of the other children have muddy fore-
heads. This intuition is borne out in our formal definition of knowledge. For
example, it is easy to see that when the actual situation is (1, 0, 1), we have
(M, (1, 0, 1)) |= K1¬p2, since when the actual situation is (1, 0, 1), child 2 does
not have a muddy forehead in both worlds that child 1 considers possible. Similarly,
we have (M, (1, 0, 1)) |= K1 p3: child 1 knows that child 3’s forehead is muddy.
However, (M, (1, 0, 1)) |= ¬K1 p1. Child 1 does not know that her own forehead is
muddy, since in the other world she considers possible—(0,0,1)—her forehead is not
muddy. In fact, it is common knowledge that every child knows whether every other
child’s forehead is muddy or not. Thus, for example, a formula like p2 ⇒ K1 p2,
which says that if child 2’s forehead is muddy then child 1 knows it, is common
knowledge. We leave it to the reader to check that C(p2 ⇒ K1 p2) is true at every
state, as is C(¬p2 ⇒ K1¬p2).

In the world (1,0,1), in which there are two muddy children, every child knows
that at least one child has a muddy forehead even before the father speaks. And sure
enough, we have (M, (1, 0, 1)) |= E p. It follows, however, from Lemma 2.2.1 that
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(M, (1, 0, 1)) |= ¬E2 p, since p is not true at the world (0, 0, 0) that is reachable in
two steps from (1, 0, 1). The reader can easily check that in the general case, if we
have n children of whom k have muddy foreheads (so that the situation is described
by an n-tuple exactly k of whose components are 1’s), then Ek−1 p is true, but Ek p is
not, since each world (tuple) reachable in k − 1 steps has at least one 1 (and so there
is at least one child with a muddy forehead), but the tuple (0, . . . , 0) is reachable in
k steps.

Before we go on, the reader should note that there are a number of assumptions
implicit in our representation. The fact that we have chosen to represent a world as an
n-tuple in this way is legitimate if we can assume that all the information necessary
for our reasoning already exists in such tuples. If there were some doubt as to whether
child 1 was able to see, then we would have to include this information in the state
description as well. Note also that the assumption that it is common knowledge that
all the children can see is what justifies the choice of edges. For example, if n = 3
and if it were common knowledge that child 1 is blind, then, for example, in the
situation (1, 1, 1), child 1 would also consider (1, 0, 0) possible. He would not know
that child 2’s forehead is muddy (see Exercises 2.1 and 2.2).

In general, when we choose to model a given situation, we have to put into the
model everything that is relevant. One obvious reason that a fact may be “irrelevant”
is because it does not pertain to the situation we are analyzing. Thus, for example,
whether child 1 is a boy or a girl is not part of the description of the possible world.
Another cause of irrelevance is that a fact may be common knowledge. If it is
common knowledge that all the children can see, then there is no point in adding this
information to the description of a possible world. It is true at all the possible worlds
in the picture, so we do not gain anything extra by mentioning it. Thus, common
knowledge can help to simplify our description of a situation.

We remark that throughout the preceding discussion we have used the term “com-
mon knowledge” in two slightly different, although related, senses. The first is the
technical sense, where a formula ϕ in our language is common knowledge at a state s
if it is true at all states reachable from s. The second is a somewhat more informal
sense, where we say that a fact (not necessarily expressible in our language) is com-
mon knowledge if it is true at all the situations (states) in the structure. When we
say it is common knowledge that at least one child has mud on his or her forehead,
then we are using common knowledge in the first sense, since this corresponds to the
formula Cp. When we say that it is common knowledge that no child is blind, we
are using it in the second sense, since we do not have a formula q in the language that
says that no child is blind. There is an obvious relationship between the two senses
of the term. For example, if we enrich our language so that it does have a formula q
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saying “no child is blind,” then Cq actually would hold at every state in the Kripke
structure. Throughout this book, we continue to speak of common knowledge in
both senses of the term, and we hope that the reader can disambiguate if necessary.

Returning to our analysis of the puzzle, consider what happens after the father
speaks. The father says p, which, as we have just observed, is already known to all
the children if there are two or more children with muddy foreheads. Nevertheless,
the state of knowledge changes, even if all the children already know p. If n = 3,
in the world (1, 0, 1) child 1 considers the situation (0, 0, 1) possible. In that world,
child 3 considers (0, 0, 0) possible. Thus, in the world (1, 0, 1), before the father
speaks, although everyone knows that at least one child has a muddy forehead, child 1
thinks it possible that child 3 thinks it possible that none of the children has a muddy
forehead. After the father speaks, it becomes common knowledge that at least one
child has a muddy forehead. (This, of course, depends on our assumption that it
is common knowledge that all the children can and do hear the father.) We can
represent the change in the group’s state of knowledge graphically (in the general
case) by simply removing the point (0, 0, . . . , 0) from the cube, getting a “truncated”
cube. (More accurately, what happens is that the node (0, 0, . . . , 0) remains, but all
the edges between (0, 0, . . . , 0) and nodes with exactly one 1 disappear, since it is
common knowledge that even if only one child has a muddy forehead, after the father
speaks that child will not consider it possible that no one has a muddy forehead.)
The situation is illustrated in Figure 2.4.
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Figure 2.4 The Kripke structure after the father speaks
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We next show that each time the children respond to the father’s question with a
“No”, the group’s state of knowledge changes and the cube is further truncated. Con-
sider what happens after the children respond “No” to the father’s first question. We
claim that now all the nodes with exactly one 1 can be eliminated. (More accurately,
the edges to these nodes from nodes with exactly two 1’s all disappear from the graph.)
Nodes with one or fewer 1’s are no longer reachable from nodes with two or more 1’s.
The reasoning here parallels the reasoning in the “proof” given in the story. If the
actual situation were described by, say, the tuple (1, 0, . . . , 0), then child 1 would
initially consider two situations possible: (1, 0, . . . , 0) and (0, 0, . . . , 0). Once the
father speaks it is common knowledge that (0, 0, . . . , 0) is not possible, so he would
then know that the situation is described by (1, 0, . . . , 0), and thus would know
that his own forehead is muddy. Once everyone answers “No” to the father’s first
question, it is common knowledge that the situation cannot be (1, 0, . . . , 0). (Note
that here we must use the assumption that it is common knowledge that everyone is
intelligent and truthful, and so can do the reasoning required to show (1, 0, . . . , 0) is
not possible.) Similar reasoning allows us to eliminate every situation with exactly
one 1. Thus, after all the children have answered “No” to the father’s first question,
it is common knowledge that at least two children have muddy foreheads.

Further arguments in the same spirit can be used to show that after the children
answer “No” k times, we can eliminate all the nodes with at most k 1’s (or, more
accurately, disconnect these nodes from the rest of the graph). We thus have a
sequence of Kripke structures, describing the children’s knowledge at every step in
the process. Essentially, what is going on is that if, in some node s, it becomes
common knowledge that a node t is impossible, then for every node u reachable
from s, the edge from u to t (if there is one) is eliminated. (This situation is even
easier to describe once we add time to the picture. We return to this point in Chapter 7;
see in particular Section 7.2.)

After k rounds of questioning, it is common knowledge that at least k+1 children
have mud on their foreheads. If the true situation is described by a tuple with exactly
k +1 entries of 1, then before the father asks the question for the (k +1)st time, those
children with muddy foreheads will know the exact situation, and in particular will
know their foreheads are muddy, and consequently will answer “Yes.” Note that they
could not answer “Yes” any earlier, since up to this point each child with a muddy
forehead considers it possible that he or she does not have a muddy forehead.

There is actually a subtle point that should be brought out here. Roughly speaking,
according to the way we are modeling “knowledge” in this context, a child “knows”
a fact if the fact follows from his or her current information. But we could certainly
imagine that if one of the children were not particularly bright, then he might not
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be able to figure out that he “knew” that his forehead was muddy, even though
in principle he had enough information to do so. To answer “Yes” to the father’s
question, it really is not enough for it to follow from the child’s information whether
the child has a muddy forehead. The child must actually be aware of the consequences
of his information—that is, in some sense, the child must be able to compute that
he has this knowledge—in order to act on it. Our definition implicitly assumes that
all reasoners are logically omniscient, i.e., they are smart enough to compute all the
consequences of the information that they have.

Now consider the situation in which the father does not initially say p. We claim
that in this case the children’s state of knowledge never changes, no matter how many
times the father asks questions. It can always be described by the n-dimensional cube.
We have already argued that before the father speaks the situation is described by the
n-dimensional cube. When the father asks for the first time “Do any of you know
whether you have mud on your own forehead?,” clearly all the children say “No,”
no matter what the actual situation is, since in every situation each child considers
possible a situation in which he or she does not have a muddy forehead. Since it is
common knowledge before the father asks his question that the answer will be “No”,
no information is gained from this answer, so the situation still can be represented
by the n-dimensional cube. Now a straightforward induction on m shows that it is
common knowledge that the father’s m th question is also answered “No” (since at
the point when the father asks this question, no matter what the situation is, each
child will consider possible another situation in which he does not have a muddy
forehead), and the state of knowledge after the father asks the m th question is still
described by the cube.

This concludes our analysis of the muddy children puzzle.

2.4 The Properties of Knowledge

In the first part of this chapter we described a language with modal operators such
as Ki and defined a notion of truth that, in particular, determines whether a formula
such as Kiϕ is true at a particular world. We suggested that Kiϕ should be read
as “agent i knows ϕ.” But is this a reasonable way of reading this formula? Does
our semantics—that is, Kripke structures together with the definition of truth that we
gave—really capture the properties of knowledge in a reasonable way? How can we
even answer this question?

We can attempt to answer the question by examining what the properties of
knowledge are under our interpretation. One way of characterizing the properties



2.4 The Properties of Knowledge 31

of our interpretation of knowledge is by characterizing the formulas that are always
true. More formally, given a structure M = (S, π,K1, . . . ,Kn), we say that ϕ is
valid in M , and write M |= ϕ, if (M, s) |= ϕ for every state s in S, and we say that ϕ
is satisfiable in M if (M, s) |= ϕ for some state s in S. We say that ϕ is valid, and
write |= ϕ, if ϕ is valid in all structures, and that ϕ is satisfiable if it is satisfiable in
some structure. It is easy to check that a formula ϕ is valid (resp. valid in M) if and
only if ¬ϕ is not satisfiable (resp. not satisfiable in M).

We now list a number of valid properties of our definition of knowledge and
provide a formal proof of their validity. We then discuss how reasonable these
properties are. As before, we assume throughout this section that the possibility
relationsKi are equivalence relations.

One important property of our definition of knowledge is that each agent knows
all the logical consequences of his knowledge. If an agent knows ϕ and knows that ϕ
implies ψ , then both ϕ and ϕ ⇒ ψ are true at all worlds he considers possible.
Thus ψ must be true at all worlds that the agent considers possible, so he must also
know ψ . It follows that

|= (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ.

This axiom is called the Distribution Axiom since it allows us to distribute the Ki

operator over implication. It seems to suggest that our agents are quite powerful
reasoners.

Further evidence that our definition of knowledge assumes rather powerful agents
comes from the fact that agents know all the formulas that arevalid in a given structure.
If ϕ is true at all the possible worlds of structure M , then ϕ must be true at all the
worlds that an agent considers possible in any given world in M , so it must be the case
that Kiϕ is true at all possible worlds of M . More formally, we have the following
Knowledge Generalization Rule:

For all structures M , if M |= ϕ, then M |= Kiϕ.

Note that from this we can deduce that if ϕ is valid, then so is Kiϕ. This rule is
very different from the formula ϕ ⇒ Kiϕ, which says that if ϕ is true, then agent i
knows it. An agent does not necessarily know all things that are true. (For example,
in the case of the muddy children, it may be true that child 1 has a muddy forehead,
but he does not necessarily know this.) However, agents do know all valid formulas.
Intuitively, these are the formulas that are necessarily true, as opposed to the formulas
that just happen to be true at a given world.
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Although an agent may not know facts that are true, it is the case that if an agent
knows a fact, then it is true. More formally, we have

|= Kiϕ ⇒ ϕ.

This property, occasionally called the Knowledge Axiom or the Truth Axiom (for
knowledge), has been taken by philosophers to be the major one distinguishing
knowledge from belief. Although you may have false beliefs, you cannot know
something that is false. This property follows because the actual world is always
one of the worlds that an agent considers possible. If Kiϕ holds at a particular world
(M, s), then ϕ is true at all worlds that i considers possible, so in particular it is true
at (M, s).

The last two properties we consider say that agents can do introspection regarding
their knowledge. They know what they know and what they do not know:

|= Kiϕ ⇒ Ki Kiϕ,

|= ¬Kiϕ ⇒ Ki¬Kiϕ.

The first of these properties is typically called the Positive Introspection Axiom, and
the second is called the Negative Introspection Axiom.

The following theorem provides us with formal assurance that all the properties
just discussed hold for our definition of knowledge.

Theorem 2.4.1 For all formulas ϕ and ψ , all structures M where each possibility
relation Ki is an equivalence relation, and all agents i = 1, . . . , n,

(a) M |= (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ ,

(b) if M |= ϕ, then M |= Kiϕ,

(c) M |= Kiϕ ⇒ ϕ,

(d) M |= Kiϕ ⇒ Ki Kiϕ,

(e) M |= ¬Kiϕ ⇒ Ki¬Kiϕ.

Proof

(a) If (M, s) |= Kiϕ ∧ Ki(ϕ ⇒ ψ), then for all states t such that (s, t) ∈ Ki , we
have both that (M, t) |= ϕ and (M, t) |= ϕ ⇒ ψ . By the definition of |=, we
have that (M, t) |= ψ for all such t , and therefore (M, s) |= Kiψ .
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(b) If M |= ϕ, then (M, t) |= ϕ for all states t in M . In particular, for any fixed
state s in M , it follows that (M, t) |= ϕ for all t such that (s, t) ∈ Ki . Thus,
(M, s) |= Kiϕ for all states s in M , and hence M |= Kiϕ.

(c) If (M, s) |= Kiϕ, then for all t such that (s, t) ∈ Ki , we have (M, t) |= ϕ.
Since Ki is reflexive, it follows that (s, s) ∈ Ki , so in particular (M, s) |= ϕ.

(d) Suppose (M, s) |= Kiϕ. Consider any t such that (s, t) ∈ Ki and any u
such that (t, u) ∈ Ki . Since Ki is transitive, we have (s, u) ∈ Ki . Since
(M, s) |= Kiϕ, it follows that (M, u) |= ϕ. Thus, for all t such that (s, t) ∈ Ki ,
we have (M, t) |= Kiϕ. It now follows that (M, s) |= Ki Kiϕ.

(e) Suppose (M, s) |= ¬Kiϕ. Then for some u with (s, u) ∈ Ki , we must have
(M, u) |= ¬ϕ. Suppose t is such that (s, t) ∈ Ki . Since Ki is symmetric,
(t, s) ∈ Ki , and since Ki is transitive, we must also have (t, u) ∈ Ki . Thus it
follows that (M, t) |= ¬Kiϕ. Since this is true for all t such that (s, t) ∈ Ki ,
we obtain (M, s) |= Ki¬Kiϕ.

The collection of properties that we have considered so far—the Distribution Ax-
iom, the Knowledge Axiom, the Positive and Negative Introspection Axioms, and
the Knowledge Generalization Rule—has been studied in some depth in the litera-
ture. For historical reasons, these properties are sometimes called the S5 properties.
(Actually, S5 is an axiom system. We give a more formal definition of it in the next
chapter.) How reasonable are these properties? The proof of Theorem 2.4.1 shows
that, in a precise sense, the validity of the Knowledge Axiom follows from the fact
that Ki is reflexive, the validity of the Positive Introspection Axiom follows from
the fact that Ki is transitive, and the validity of the Negative Introspection Axiom
follows from the fact that Ki is symmetric and transitive. Although taking Ki to be
an equivalence relation seems reasonable for many applications we have in mind, we
can certainly imagine other possibilities. As we show in Chapter 3, by modifying the
properties of the Ki relations, we can get notions of knowledge that have different
properties.

Two properties that seem forced on us by the possible-worlds approach itself are
the Distribution Axiom and the Knowledge Generalization Rule. No matter how we
modify the Ki relations, these properties hold. (This is proved formally in the next
chapter.) These properties may be reasonable if we identify “agent i knowsϕ” with “ϕ
follows from agent i’s information,” as we implicitly did when modeling the muddy
children puzzle. To the extent that we think of knowledge as something acquired by
agents through some reasoning process, these properties suggest that we must think
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in terms of agents who can do perfect reasoning. While this may be a reasonable
idealization in certain circumstances (and is an assumption that is explicitly made in
the description of the muddy children puzzle), it is clearly not so reasonable in many
contexts. In Chapters 9 and 10 we discuss how the possible-worlds model can be
modified to accommodate imperfect, “non-ideal” reasoners.

The reader might wonder at this point if there are other important properties of
our definition of knowledge that we have not yet mentioned. Although, of course,
a number of additional properties follow from the basic S5 properties, in a precise
sense the S5 properties completely characterize our definition of knowledge, at least
as far as the Ki operators are concerned. This point is discussed in detail in Chapter3.

We now turn our attention to the properties of the operators EG , CG , and DG .
Since EGϕ is true exactly if every agent in G knows ϕ, we have

|= EGϕ ⇔
∧

i∈G

Kiϕ.

Recall that we said common knowledge could be viewed as what “any fool”
knows. Not surprisingly, it turns out that common knowledge has all the properties
of knowledge; axioms analogous to the Knowledge Axiom,Distribution Axiom,Pos-
itive Introspection Axiom, and Negative Introspection Axiom all hold for common
knowledge (see Exercise 2.8). In addition, it is easy to see that common knowledge
among a group of agents implies common knowledge among any of its subgroups,
that is, CGϕ ⇒ CG′ϕ if G ⊇ G ′ (again, see Exercise 2.8). It turns out that all these
properties follow from two other properties, which in a precise sense capture the
essence of common knowledge. We discuss these properties next.

Recall from Chapter 1 that the children in the muddy children puzzle acquire
common knowledge of the fact p (that at least one child has a muddy forehead) be-
cause the father’s announcement puts them in a situation where all the children know
both that p is true and that they are in this situation. This observation is generalized
in the following Fixed-Point Axiom, which says that ϕ is common knowledge among
the group G if and only if all the members of G know that ϕ is true and is common
knowledge:

|= CGϕ ⇔ EG(ϕ ∧ CGϕ).

Thus, the Fixed-Point Axiom says that CGϕ can be viewed as a fixed point of the
function f (x) = EG(ϕ ∧ x), which maps a formula x to the formula EG(ϕ ∧ x).
(We shall see a formalization of this intuition in Section 11.5.)

The second property of interest gives us a way of deducing that common knowl-
edge holds in a structure.

For all structures M , if M |= ϕ ⇒ EG(ψ ∧ ϕ), then M |= ϕ ⇒ CGψ .
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This rule is often called the Induction Rule. The proof that it holds shows why:
the antecedent gives us the essential ingredient for proving, by induction on k, that
ϕ ⇒ Ek(ψ ∧ ϕ) is valid for all k.

We now prove formally that these properties do indeed hold for the operators EG

and CG .

Theorem 2.4.2 For all formulas ϕ and ψ , all structures M, and all nonempty
G ⊆ {1, . . . , n},

(a) M |= EGϕ ⇔
∧

i∈G Kiϕ,

(b) M |= CGϕ ⇔ EG(ϕ ∧ CGϕ),

(c) if M |= ϕ ⇒ EG(ψ ∧ ϕ), then M |= ϕ ⇒ CGψ .

Proof Part (a) follows immediately from the semantics of EG . To prove the other
parts, we use the characterization of common knowledge provided by Lemma 2.2.1,
namely, that (M, s) |= CGϕ iff (M, t) |= ϕ for all states t that are G-reachable
from s. We remark for future reference that the proof we are about to give does not
make use of the fact that the Ki ’s are equivalence relations; it goes through without
change even if the Ki ’s are arbitrary binary relations.

For part (b), suppose (M, s) |= CGϕ. Thus (M, t) |= ϕ for all states t that
are G-reachable from s. In particular, if u is G-reachable from s in one step, then
(M, u) |= ϕ and (M, t) |= ϕ for all t that are G-reachable from u. Thus (M, u) |=

ϕ∧CGϕ for all u that are G-reachable from s in one step, so (M, s) |= EG(ϕ∧CGϕ).
For the converse, suppose (M, s) |= EG(ϕ ∧ CGϕ). Suppose that t is G-reachable
from s and s ′ is the first node after s on a path from s to t whose edges are labeled by
members of G. Since (M, s) |= EG(ϕ ∧ CGϕ), it follows that (M, s ′) |= ϕ ∧ CGϕ.
Either s ′ = t or t is reachable from s ′. In the former case, (M, t) |= ϕ since
(M, s ′) |= ϕ, while in the latter case, (M, t) |= ϕ by Lemma 2.2.1 and the fact that
(M, s ′) |= CGϕ. Because (M, t) |= ϕ for all t that are G-reachable from s, it follows
that (M, s) |= CGϕ.

Finally, for part (c), suppose M |= ϕ ⇒ EG(ψ ∧ ϕ) and (M, s) |= ϕ. We
show by induction on k that for all k we have (M, t) |= ψ ∧ ϕ for all t that are
G-reachable from s in k steps. Suppose t is G-reachable from s in one step. Since
M |= ϕ ⇒ EG(ψ∧ϕ), we have (M, s) |= EG(ψ∧ϕ). Since t is G-reachable from s
in one step, by Lemma 2.2.1, we have (M, t) |= ψ ∧ ϕ as desired. If k = k′ + 1,
then there is some t ′ that is G-reachable from s in k′ steps such that t is G-reachable
from t ′ in one step. By the induction hypothesis, we have (M, t ′) |= ψ ∧ ϕ. Now
the same argument as in the base case shows that (M, t) |= ψ ∧ ϕ. This completes
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the inductive proof. Since (M, t) |= ψ for all states t that are G-reachable from s, it
follows that (M, s) |= CGϕ.

Finally, we consider distributed knowledge. We mentioned in Chapter 1 that
distributed knowledge can be viewed as what a “wise man” would know. So it
should not be surprising that distributed knowledge also satisfies all the properties of
knowledge. Distributed knowledge has two other properties that we briefly mention
here. Clearly, distributed knowledge of a group of size one is the same as knowledge,
so that we have

|= D{i}ϕ ⇔ Kiϕ.

The larger the subgroup, the greater the distributed knowledge of that subgroup:

|= DGϕ ⇒ DG′ϕ if G ⊆ G ′.

The proof that all these properties of distributed knowledge are indeed valid is
similar in spirit to the proof of Theorem 2.4.1, so we leave it to the reader (Exer-
cise 2.10). We also show in Chapter 3 that these properties of common knowledge
and distributed knowledge in a precise sense completely characterize all the relevant
properties of these notions.

2.5 An Event-Based Approach

The approach to modeling knowledge presented in Section 2.1 has two components.
It uses Kripke structures as a mathematical model for situations involving many
agents, and it uses a logical language to make assertions about such situations. This
language is based on a set of primitive propositions and is closed under logical oper-
ators. Thus, knowledge is expressed syntactically, by modal operators on formulas.
We call this the logic-based approach. It is the approach that traditionally has been
taken in philosophy, mathematical logic, and AI.

In this section, we describe an alternate approach to modeling knowledge, one
that is typically used in the work on knowledge in game theory and mathematical
economics. We call this the event-based approach. It differs from the logic-based
approach in two respects. First, rather than use Kripke structures as the underlying
mathematical model, the event-based approach uses closely related structures that
we call Aumann structures. Second, and more important, in the spirit of probability
theory, the event-based approach focuses on events,which are sets of possible worlds,
and dispenses completely with logical formulas. Knowledge here is expressed as an
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operator on events. We now review the event-based approach and discuss its close
relationship to the logic-based approach.

As in the logic-based approach of Section 2.1, we start out with a universe S of
states. An event is a set e ⊆ S of states. We can talk, for example, about the event
of its raining in London, which corresponds to the set of states where it is raining in
London. We say that event e holds at state s if s ∈ e. Thus, if eL is the event of its
raining in London, then eL holds at state s precisely if s is one of the states where it
is raining in London. The conjunction of two events is given by their intersection.
For example, the event of its raining in London and being sunny in San Francisco is
the intersection of eL with the event of its being sunny in San Francisco. Similarly,
the negation of an event is given by the complement (with respect to S).

As we have mentioned, Aumann structures are used to provide a formal model for
the event-based approach. Aumann structures are like Kripke structures, with two
differences: The first is that there is no analogue to the π function, since in the event-
based approach, there are no primitive propositions. The second difference is that,
rather than use a binary relation Ki to define what worlds agent i considers possible,
in Aumann structures there is a partition Pi of S for each agent i. (A partition of a
set S is a set {S1, . . . , Sr} of subsets of S such that the Sj ’s are disjoint and such that
the union of the Sj ’s is the set S.) If Pi = {S1, . . . , Sr}, then the sets Sj are called
the cells of the partition Pi , or the information sets of agent i. The intuition is that
if Sj is an information set of agent i, and if s ∈ Sj , then the set of states that agent i
considers possible (which corresponds to the information of agent i) is precisely Sj .

Formally, an Aumann structure A is a tuple (S,P1, . . . ,Pn), where S is the
set of states of the world and Pi is a partition of S for every agent i. We denote
by Pi (s) the cell of the partition Pi in which s appears. Since Pi is a partition, it
follows that for every agent i and every pair s, t ∈ S of states, either Pi (s) = Pi(t)
or Pi (s) ∩ Pi (t) = ∅. Intuitively, when s, t are in the same information set of
agent i, then in state s agent i considers the state t possible. As we have already
remarked, unlike a Kripke structure, in an Aumann structure there is no function π
that associates with each state in S a truth assignment to primitive propositions.
(Using terminology we introduce in the next chapter, this means that an Aumann
structure is really a frame.)

How do we define knowledge in the event-based approach? Since the objects
of interest in this approach are events, it should not be surprising that knowledge is
defined in terms of events. Formally, given an Aumann structure (S,P1, . . . ,Pn),
we define knowledge operators Ki : 2S → 2S , for i = 1, . . . , n, as follows:

Ki(e) = {s ∈ S |Pi (s) ⊆ e};
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Ki(e) is called the event of i knowing e. Here 2S is the set of all subsets of S. (Note
that we use sans serif font for the knowledge operator Ki , in contrast to the italic
font that we use for the modal operator Ki , and the script font we use for the binary
relationKi .) It is easy to see that Ki(e) is the union of the information sets of agent i
that are contained in e. The intuition is that agent i knows e at state s if e holds at
every state that agent i considers possible at state s (namely, at all states of Pi(s)).
Thus, agent i knows that no matter what the actual state is, the event e holds there.

The event of everyone in a group G knowing e is captured by an operator EG :
2S → 2S defined as follows:

EG(e) =
⋂

i∈G

Ki(e).

We can iterate the EG operator, defining E1
G(e) = EG(e) and Ek+1

G (e) = EG(Ek
G(e))

for k ≥ 1. Common knowledge of an event e among the agents in a group G, denoted
CG(e), is the event of the players all knowing e, all knowing that all know it, and so
on ad infinitum. Formally, we define

CG(e) =

∞
⋂

k=1

Ek
G(e).

Finally, distributed knowledge of an event e among the agents in a group G,
denoted DG(e), is defined by

DG(e) =

{

s ∈ S
∣

∣

(

⋂

i∈G

Pi (s)
)

⊆ e

}

.

Intuitively, event e is distributed knowledge if e holds at all of the states that remain
possible once we combine the information available to all of the agents.

Given two partitionsP and P ′ of a set S, the partition P is said to be finer than P ′

(and P ′ to be coarser than P) if P(s) ⊆ P ′(s) holds for all s ∈ S. Intuitively, if
partitionP is finer than partitionP ′, then the information sets given by P give at least
as much information as the information sets given by P ′ (since considering fewer
states possible corresponds to having more information). The meet of partitions P
and P ′, denoted P ⊓ P ′, is the finest partition that is coarser than P and P ′; the join
of P and P ′, denoted P ⊔P ′, is the coarsest partition finer than P and P ′. In the next
proposition, we make use of the meet and the join to give nice characterizations of
common knowledge and distributed knowledge.
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Proposition 2.5.1 Let A = (S,P1, . . . ,Pn) be an Aumann structure, let G ⊆

{1, . . . , n} be a group of agents, and let e ⊆ S. Then

(a) s ∈ CG(e) iff (⊓i∈GPi )(s) ⊆ e.

(b) s ∈ DG(e) iff (⊔i∈GPi )(s) ⊆ e.

Proof See Exercise 2.15.

It follows that the meet of the agents’ partitions characterizes their common
knowledge,and the join of the agents’ partitions characterizes their distributed knowl-
edge. Notice that Proposition 2.5.1(a) implies that verifying whether an event e is
common knowledge at a given state s can be done by one simple check of inclusion
between two well-defined sets; it is unnecessary to use the definition of common
knowledge, which involves an infinitary intersection.

There is a close connection between the logic-based approach and the event-
based approach, which we now formalize. There is a natural one-to-one correspon-
dence between partitions on S and equivalence relations on S. Given a partitionP of S, the corresponding equivalence relation R is defined by (s, s ′) ∈ R iffP(s) = P(s ′). Similarly, given an equivalence relation R on S, the correspond-
ing partition {S1, . . . , Sr} of S is obtained by making each equivalence class of R
into a cell Sj of the partition; that is, two states s, t are in the same cell of the partition
precisely if (s, t) ∈ R. It is thus easy to convert back and forth between the partition
viewpoint and the equivalence relations viewpoint (see Exercise 2.16).

Assume now that we are given a Kripke structure M = (S, π,K1, . . . ,Kn), where
each Ki is an equivalence relation. We define the corresponding Aumann structure
AM = (S,P1, . . . ,Pn) (with the same set S of states) by takingPi to be the partition
corresponding to the equivalence relation Ki . We want to show that M and AM have
the same “semantics.” The semantics in M is defined in terms of formulas. The
intension of a formula ϕ in structure M , denoted ϕM , is the set of states of M at
which ϕ holds, i.e., ϕM = {s | (M, s) |= ϕ}. The semantics in AM is defined in
terms of events. For each primitive proposition p, define eM

p to be the event that p is

true; that is, eM
p = {s | (M, s) |= p}. We can now define an event evM (ϕ) for each

formula ϕ by induction on the structure of ϕ:

• evM(p) = eM
p

• evM(ψ1 ∧ ψ2) = evM (ψ1) ∩ evM(ψ2)

• evM(¬ψ) = S − evM (ψ)

• evM(Kiψ) = Ki(evM(ψ))
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• evM(CGψ) = CG(evM(ψ))

• evM(DGψ) = DG(evM(ψ))

Intuitively, evM(ϕ) is the event that ϕ holds. The following proposition shows that
this intuition is correct, that is, that the formula ϕ holds at state s of the Kripke
structure M iff evM(ϕ) holds at state s of the Aumann structure AM .

Proposition 2.5.2 Let M be a Kripke structure where each possibility relationKi is
an equivalence relation, and let AM be the corresponding Aumann structure. Then
for every formula ϕ, we have evM(ϕ) = ϕM .

Proof See Exercise 2.17.

We have just shown how to go from a Kripke structure to a corresponding Aumann
structure. What about the other direction? Let A = (S,P1, . . . ,Pn) be an Aumann
structure. We want to define a corresponding Kripke structure (S, π,K1, . . . ,Kn)

(with the same set S of states). Defining the Ki ’s is no problem: we simply takeKi to be the equivalence relation corresponding to the partition Pi . What about the
set8 of primitive propositions and the function π that associates with each state in S
a truth assignment to primitive propositions? Although an Aumann structure does
not presuppose the existence of a set of primitive propositions, in concrete examples
there typicallyare names for basic events of interest, such as “Alice wins the game” or
“the deal is struck.” These names can be viewed as primitive propositions. It is also
usually clear at which states these named events hold; this gives us the function π .
To formalize this, assume that we are given not only the Aumann structure A but
also an arbitrary set 8 of primitive propositions and an arbitrary function π that
associates with each state in S a truth assignment to primitive propositions in 8. We
can now easily construct a Kripke structure M A,π , which corresponds to A and π .
If A = (S,P1, . . . ,Pn), then M A,π = (S, π,K1, . . . ,Kn), where Ki is the partition
corresponding to Pi , for i = 1, . . . , n. It is straightforward to show that the Aumann
structure corresponding to M A,π is A (see Exercise 2.18). Thus, by Proposition 2.5.2,
the intensions of formulas in M A,π and the events corresponding to these formulas
in A coincide.

Proposition 2.5.2 and the preceding discussion establish the close connection
between the logic-based and event-based approaches that we claimed previously.
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Exercises

2.1 Suppose it is common knowledge that all the children in the muddy children
puzzle are blind. What would the graphical representation be of the Kripke structure
describing the situation before the father speaks? What about after the father speaks?

* 2.2 Consider the following variant of the muddy children puzzle. Suppose that it is
common knowledge that all the children except possibly child 1 are paying attention
when the father speaks. Moreover, suppose the children have played this game with
the father before, and it is common knowledge that when he speaks he says either
“At least one of you has mud on your forehead” or a vacuous statement such as “My,
this field is muddy.” (Thus it is common knowledge that even if child 1 did not hear
the father, he knows that the father made one of those statements.)

(a) Describe the situation (i.e., the Kripke structure) after the father’s statement.
(Hint: each possible world can be characterized by an (n + 2)-tuple, where n
is the total number of children.) Draw the Kripke structure for the case n = 2.

(b) Can the children figure out whether or not they are muddy? (Hint: first consider
the case where child 1 is not muddy, then consider the case where he is muddy
and hears the father, and finally consider the case where he is muddy and does
not hear the father.)

(c) Can the children figure out whether or not they are muddy if the father says at
the beginning “Two or more of you have mud on your forehead”?

2.3 Here is yet anothervariant of the muddy children puzzle. Suppose that the father
says “Child number 1 has mud on his forehead” instead of saying “At least one of
you has mud on your forehead.” It should not be too hard to convince yourself that
now the children (other than child 1) cannot deduce whether they have mud on their
foreheads. Explain why this should be so (i.e., why the children cannot solve the
puzzle in a situation where they apparently have more information). This example
shows that another assumption inherent in the puzzle is that all relevant information
has been stated in the puzzle, and in particular, that the father said no more than “At
least one of you has mud on your forehead.”

* 2.4 In this exercise, we formalize the aces and eights game from Exercise 1.1.

(a) What are the possible worlds for this puzzle if the suit of the card matters?
How many possible worlds are there?
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(b) Now suppose we ignore the suit (so, for example, we do not distinguish a hand
with the ace of clubs and the ace of hearts from a hand with the ace of spades
and the ace of hearts). How many possible worlds are there in this case? Since
the suit does not matter in the puzzle, we still get an adequate representation
for the puzzle if we ignore it. Since there are so many fewer possible worlds
to consider in this case, it is certainly a worthwhile thing to do.

(c) Draw the Kripke structure describing the puzzle.

(d) Consider the situation described in part (a) of Exercise 1.1. Which edges
disappear from the structure when you hear that Alice and Bob cannot determine
what cards they have? Explain why it is now crucial to think of edges,not nodes,
as disappearing.

(e) Now consider the situation described in part (b) of Exercise 1.1 and show which
edges disappear from the structure.

* 2.5 In this exercise, we formalize the wise men puzzle from Exercise 1.3.

(a) Consider the first version of the puzzle (as described in part (a) of Exercise 1.3).
Draw the Kripke structure describing the initial situation. How does the struc-
ture change after the first wise man says that he does not know the color of the
hat on his head? How does it change after the second wise man says that he
does not know?

(b) How does the initial Kripke structure change if the third wise man is blind?

2.6 Show that G-reachability is an equivalence relation if the Ki relations are re-
flexive and symmetric.

2.7 Show that if t is G-reachable from s, then (M, s) |= CGϕ iff (M, t) |= CGϕ,
provided that the Ki relation is reflexive and symmetric.

2.8 Show that the following properties of common knowledge are valid, using se-
mantic arguments as in Theorems 2.4.1 and 2.4.2:

(a) (CGϕ ∧ CG(ϕ ⇒ ψ)) ⇒ CGψ ,

(b) CGϕ ⇒ ϕ (assuming that the Ki relations are reflexive),

(c) CGϕ ⇒ CG CGϕ,
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(d) ¬CGϕ ⇒ CG¬CGϕ (assuming that the Ki relations are symmetric),

(e) CGϕ ⇒ CG′ϕ if G ⊇ G ′.

As is shown in Exercise 3.11, these properties are actually provable from the prop-
erties of knowledge and common knowledge described in this chapter.

2.9 Show that if M |= ϕ ⇒ ψ , then

(a) M |= Kiϕ ⇒ Kiψ ,

(b) M |= CGϕ ⇒ CGψ .

2.10 Show that the following properties of distributed knowledge are valid:

(a) (DGϕ ∧ DG(ϕ ⇒ ψ)) ⇒ DGψ ,

(b) DGϕ ⇒ ϕ (assuming that the Ki relations are reflexive),

(c) DGϕ ⇒ DG DGϕ (assuming that the Ki relations are transitive),

(d) ¬DGϕ ⇒ DG¬DGϕ (assuming that the Ki relations are symmetric and tran-
sitive),

(e) D{i}ϕ ⇔ Kiϕ,

(f) DGϕ ⇒ DG′ϕ if G ⊆ G ′.

2.11 Prove using semantic arguments that knowledge and common knowledge dis-
tribute over conjunction; i.e., prove that the following properties are valid:

(a) Ki(ϕ ∧ ψ) ⇔ (Kiϕ ∧ Kiψ),

(b) CG(ϕ ∧ ψ) ⇔ (CGϕ ∧ CGψ).

It can also be shown that these properties follow from the properties described for
knowledge and common knowledge in the text (Exercise 3.31).

2.12 Prove that the following formulas are valid assuming that the Ki relations are
equivalence relations:

(a) |= ¬ϕ ⇒ Ki¬Kiϕ,

(b) |= ¬ϕ ⇒ Ki1 . . . Kik ¬Kik . . . Ki1ϕ for any sequence i1, . . . , ik of agents,
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(c) |= ¬Ki¬Kiϕ ⇔ Kiϕ.

These formulas are also provable from the S5 properties we discussed; see Exer-
cise 3.14.

2.13 Let A = (S,P1, . . . ,Pn) be an Aumann structure, and let G ⊆ {1, . . . , n}.
If s, t are states, we say that t is G-reachable from s in A if t is reachable from s
in a Kripke structure M A,π corresponding to A. Prove that t ∈ (⊓i∈GPi )(s) iff t is
G-reachable from s.

2.14 Let A = (S,P1, . . . ,Pn) be an Aumann structure and let G ⊆ {1, . . . , n}.
Prove that t ∈ (⊔i∈GPi )(s) iff for every agent i we have t ∈ Pi (s).

2.15 Prove Proposition 2.5.1. (Hint: you may either prove this directly, or use
Exercises 2.13 and 2.14.)

2.16 Show that the correspondence we have given between partitions and equiva-
lence relations and the correspondence defined in the other direction are inverses.
That is, show thatR is the equivalence relation that we obtain from a partition P iffP is the partition that we obtain from the equivalence relation R.

2.17 Let M be a Kripke structure where each possibility relationKi is an equivalence
relation, and let A be the corresponding Aumann structure.

(a) Prove that

(i) s ∈ Ki(ev(ϕ)) holds in A iff (M, s) |= Kiϕ,

(ii) s ∈ DG(ev(ϕ)) holds in A iff (M, s) |= DGϕ,

(iii) s ∈ CG(ev(ϕ)) holds in A iff (M, s) |= CGϕ.

(b) Use part (a) to prove Proposition 2.5.2.

2.18 Show that the Aumann structure corresponding to the Kripke structure M A,π

is A.
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Notes

Modal logic was discussed by several authors in ancient times, notably by Aristotle
in De Interpretatione and Prior Analytics, and by medieval logicians, but like most
work before the modern period, it was nonsymbolic and not particularly systematic
in approach. The first symbolic and systematic approach to the subject appears to be
the work of Lewis beginning in 1912 and culminating in the book Symbolic Logic
with Langford [1959]. Carnap [1946, 1947] suggested using possible worlds to
assign semantics to modalities. Possible-worlds semantics was further developed in-
dependently by several researchers, including Bayart [1958], Hintikka [1957, 1961],
Kanger [1957b], Kripke [1959], Meredith [1956], Montague [1960], and Prior [1962]
(who attributed the idea to P. T. Geach), reaching its current form (as presented here)
with Kripke [1963a]. Many of these authors also observed that by varying the prop-
erties of the Ki relations, we can obtain different properties of knowledge.

The initial work on modal logic considered only the modalities of possibility and
necessity. As we mentioned in the bibliographic notes of Chapter 1, the idea of
capturing the semantics of knowledge in this way is due to Hintikka, who also first
observed the properties of knowledge discussed in Section 2.4.

The analysis of the muddy children puzzle in terms of Kripke structures is due
to Halpern and Vardi [1991a]. Aumann structures were defined by Aumann [1976].
Aumann defines common knowledge in terms of the meet; in particular, the obser-
vation made in Proposition 2.5.1(a) is due to Aumann. A related approach, also
defining knowledge as an operator on events, is studied by Orlowska [1989].





Chapter 3

Completeness and Complexity

There are four sorts of men:
He who knows not and knows not he knows not: he is a fool—shun him;
He who knows not and knows he knows not: he is simple—teach him;
He who knows and knows not he knows: he is asleep—wake him;
He who knows and knows he knows: he is wise—follow him.

Arabian proverb

In Chapter 2 we discussed the properties of knowledge (as well as of common knowl-
edge and distributed knowledge). We attempted to characterize these properties in
terms of valid formulas. All we did, however, was to list some valid properties. It
is quite conceivable that there are additional properties of knowledge that are not
consequences of the properties listed in Chapter 2. In this chapter, we give a com-
plete characterization of the properties of knowledge. We describe two approaches
to this characterization. The first approach is proof-theoretic: we show that all the
properties of knowledge can be formally proved from the properties listed in Chap-
ter 2. The second approach is algorithmic: we study algorithms that recognize the
valid properties of knowledge. We also consider the computational complexity of
recognizing valid properties of knowledge. Doing so will give us some insight into
what makes reasoning about knowledge difficult.

When analyzing the properties of knowledge, it is useful to consider a somewhat
more general framework than that of the previous chapter. Rather than restrict atten-
tion to the case where the possibility relations (the Ki ’s) are equivalence relations,
we consider other binary relations as well. Although our examples show that taking
the Ki ’s to be equivalence relations is reasonably well-motivated, particularly when
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what an agent considers possible is determinedby his information, there are certainly
other choices possible. The real question is what we mean by “in world s, agent i
considers world t possible.”

Let us now consider an example where reflexivity might not hold. We can easily
imagine an agent who refuses to consider certain situations possible, even when they
are not ruled out by his information. Thus, Fred might refuse to consider it possible
that his son Harry is taking illegaldrugs, even if Harry is. Fred might claim to “know”
that Harry is drug-free, since in all worlds Fred considers possible, Harry is indeed
drug-free. In that case, Fred’s possibility relation would not be reflexive; in world s
where Harry is taking drugs, Fred would not consider world s possible. To see why
symmetry might not hold, consider poor Fred again. Suppose in world s, Fred’s
wife Harriet is out visiting her friend Alice and told Fred that she would be visiting
Alice. Fred, however, has forgotten what Harriet said. Without reflecting on it too
much, Fred considers the world t possible, where Harriet said that she was visiting
her brother Bob. Now, in fact, if Harriet had told Fred that she was visiting Bob,
Fred would have remembered that fact, since Harriet had just had a fight with Bob
the week before. Thus, in world t , Fred would not consider world s possible, since
in world t , Fred would remember that Harriet said she was visiting Bob, rather than
Alice. Perhaps with some introspection, Fred might realize that t is not possible,
because in t he would have remembered what Harriet said. But people do not always
do such introspection.

By investigating the properties of knowledge in a more general framework, as we
do here, we can see how these properties depend on the assumptions we make about
the possibility relations Ki . In addition, we obtain general proof techniques, which
in particular enable us to characterize in a precise sense the complexity of reasoning
about knowledge.

This chapter is somewhat more technical than the previous ones; we have high-
lighted the major ideas in the text, and have left many of the details to the exercises.
A reader interested just in the results may want to skip many of the proofs. However,
we strongly encourage the reader who wants to gain a deeper appreciation of the
techniques of modal logic to work through these exercises.

3.1 Completeness Results

As we said before, we begin by considering arbitrary Kripke structures, without
the assumption that the possibility relations Ki are equivalence relations. Before
we go on, we need to define some additional notation. Let Ln(8) be the set of
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formulas that can be built up starting from the primitive propositions in 8, using
conjunction, negation, and the modal operators K1, . . . , Kn. Let LD

n (8) (resp.,LC
n (8)) be the language that results when we allow in addition the modal operators

DG (resp., operators EG and CG), where G is a nonempty subset of {1, . . . , n}. In
addition, we consider the language LC D

n (8), where formulas are formed using all
the operators CG , DG , and EG . Let Mn(8) be the class of all Kripke structures
for n agents over 8 (with no restrictions on the Ki relations). Later we consider
various subclasses of Mn(8), obtained by restricting the Ki relations appropriately.
For example, we consider Mrst

n (8), the Kripke structures where the Ki relation is
reflexive, symmetric, and transitive (i.e., an equivalence relation); these are precisely
the structures discussed in the previous chapter. For notational convenience, we take
the set 8 of primitive propositions to be fixed from now on and suppress it from the
notation, writing Ln instead of Ln(8), Mn instead of Mn(8), and so on.

If A is a set, define |A| to be the cardinality of A (i.e., the number of elements
in A). We define |ϕ|, the length of a formula ϕ ∈ LC D

n , to be the number of symbols
that occur in ϕ; for example, |p ∧ E{1,2} p| = 9. In general, the length of a formula
of the form CGψ , EGψ , or DGψ is 2 + 2 |G| + |ψ|, since we count the elements
in G as distinct symbols, as well as the commas and set braces in G. We also define
what it means for ψ to be a subformula of ϕ. Informally,ψ is a subformula of ϕ if it
is a formula that is a substring of ϕ. The formal definition proceeds by induction on
the structure of ϕ: ψ is a subformula of ϕ ∈ Ln if either (a) ψ = ϕ (so that ϕ and ψ
are syntactically identical), (b) ϕ is of the form ¬ϕ′, Kiϕ

′, CGϕ
′, DGϕ

′, or EGϕ
′,

and ψ is a subformula of ϕ′, or (c) ϕ is of the form ϕ′ ∧ ϕ′′ and ψ is a subformula
of either ϕ′ or ϕ′′. Let Sub(ϕ) be the set of all subformulas of ϕ. We leave it to the
reader to check that |Sub(ϕ)| ≤ |ϕ|; that is, the length of ϕ is an upper bound on the
number of subformulas of ϕ (Exercise 3.1).

Although we have now dropped the restriction that the Ki ’s be equivalence rela-
tions, the definition of what it means for a formula ϕ in LC D

n (or any of its sublan-
guages) to be true at a state s in the Kripke structure M ∈ Mn remains the same,
as do the notions of validity and satisfiability. Thus, for example, (M, s) |= Kiϕ

(i.e., agent i knows ϕ at state s in M) exactly if ϕ is true at all the states t such that
(s, t) ∈ Ki . We say that ϕ is valid with respect to Mn , and write Mn |= ϕ, if ϕ
is valid in all the structures in Mn . More generally, if M is some subclass of Mn ,
we say that ϕ is valid with respect to M, and write M |= ϕ, if ϕ is valid in all the
structures in M. Similarly, we say that ϕ is satisfiable with respect to M if ϕ is
satisfied in some structure in M.

We are interested in characterizing the properties of knowledge in Kripke struc-
tures in terms of the formulas that are valid in Kripke structures. Note that we should
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expect fewer formulas to be valid than were valid in the Kripke structures consid-
ered in the previous chapter, for we have now dropped the restriction that the Ki ’s
are equivalence relations. The class Mrst

n of structures is a proper subclass of Mn .
Therefore, a formula that is valid with respect to Mn is certainly valid with respect
to the more restricted class Mrst

n . As we shall see, the converse does not hold.
We start by considering the language Ln; we deal with common knowledge and

distributed knowledge later on. We observed in the previous chapter that the Dis-
tribution Axiom and the Knowledge Generalization Rule hold no matter how we
modify the Ki relations. Thus, the following theorem should not come as a great
surprise.

Theorem 3.1.1 For all formulas ϕ,ψ ∈ Ln, structures M ∈ Mn , and agents
i = 1, . . . , n,

(a) if ϕ is an instance of a propositional tautology, thenMn |= ϕ,

(b) if M |= ϕ and M |= ϕ ⇒ ψ then M |= ψ ,

(c) Mn |= (Kiϕ ∧ Ki (ϕ ⇒ ψ)) ⇒ Kiψ ,

(d) if M |= ϕ then M |= Kiϕ.

Proof Parts (a) and (b) follow immediately from the fact that the interpretation of
∧ and ¬ in the definition of |= is the same as in propositional logic. The proofs of
part (c) and (d) are identical to the proofs of parts (a) and (b) of Theorem 2.4.1.

We now show that in a precise sense these properties completely characterize the
formulas of Ln that are valid with respect to Mn . To do so, we have to consider the
notion of provability. An axiom system AX consists of a collection of axioms and
inference rules. An axiom is a formula, and an inference rule has the form “from
ϕ1, . . . , ϕk infer ψ ,” where ϕ1, . . . , ϕk, ψ are formulas. We are actually interested
in (substitution) instances of axioms and inference rules (so we are really thinking
of axioms and inference rules as schemes). For example, the formula K1q ∨ ¬K1q
is an instance of the propositional tautology p ∨ ¬p, obtained by substituting K1q
for p. A proof in AX consists of a sequence of formulas, each of which is either
an instance of an axiom in AX or follows by an application of an inference rule. (If
“from ϕ1, . . . , ϕk infer ψ” is an instance of an inference rule, and if the formulas
ϕ1, . . . , ϕk have appeared earlier in the proof, then we say that ψ follows by an
application of an inference rule.) A proof is said to be a proof of the formula ϕ if
the last formula in the proof is ϕ. We say ϕ is provable in AX , and write AX ⊢ ϕ,
if there is a proof of ϕ in AX .
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Consider the following axiom system Kn, which consists of the two axioms and
two inference rules given below:

A1. All tautologies of propositional calculus

A2. (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ , i = 1, . . . , n (Distribution Axiom)

R1. From ϕ and ϕ ⇒ ψ infer ψ (Modus ponens)

R2. From ϕ infer Kiϕ (Knowledge Generalization)

Recall that we are actually interested in instances of axioms and inference rules. For
example,

(K1(p ∧ q) ∧ K1((p ∧ q) ⇒ ¬K2r)) ⇒ K1¬K2r

is a substitution instance of the Distribution Axiom.
As a typical example of the use of Kn , consider the following proof of the formula

Ki(p ∧ q) ⇒ Ki p. We give the axiom used or the inference rule applied and the
lines it was applied to in parentheses at the end of each step:

1. (p ∧ q) ⇒ p (A1)

2. Ki((p ∧ q) ⇒ p) (1,R2)

3. (Ki(p ∧ q) ∧ Ki ((p ∧ q) ⇒ p)) ⇒ Ki p (A2)

4. ((Ki (p ∧ q) ∧ Ki((p ∧ q) ⇒ p)) ⇒ Ki p)
⇒ (Ki((p ∧ q) ⇒ p) ⇒ (Ki (p ∧ q) ⇒ Ki p))
(A1, since this is an instance of the propositional tautology
((p1 ∧ p2) ⇒ p3) ⇒ (p2 ⇒ (p1 ⇒ p3)) )

5. Ki((p ∧ q) ⇒ p) ⇒ (Ki (p ∧ q) ⇒ Ki p) (3,4,R1)

6. Ki(p ∧ q) ⇒ Ki p (2,5,R1)

This proof already shows how tedious the proof of even simple formulas can be.
Typically we tend to combine several steps when writing up a proof, especially those
that involve only propositional reasoning (A1 and R1).

The reader familiar with formal proofs in propositional or first-order logic should
be warned that one technique that works in these cases, namely, the use of the
deduction theorem, does not work for Kn . To explain the deduction theorem, we
need one more definition. We generalize the notion of provability by defining ϕ
to be provable from ψ in the axiom system AX , written AX, ψ ⊢ ϕ, if there is a
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sequence of steps ending with ϕ, each of which is either an instance of an axiom
of AX , ψ itself, or follows from previous steps by an application of an inference rule
of AX . The deduction theorem is said to hold for AX if AX, ψ ⊢ ϕ implies AX ⊢

ψ ⇒ ϕ. Although the deduction theorem holds for the standard axiomatizations of
propositional logic and first-order logic, it does not hold for Kn . To see this, observe
that for any formula ϕ, by an easy application of Knowledge Generalization (R2)
we have Kn, ϕ ⊢ Kiϕ. However, we do not in general have Kn ⊢ ϕ ⇒ Kiϕ: it is
certainly not the case in general that if ϕ is true, then agent i knows ϕ. It turns out
that the Knowledge Generalization Rule is essentially the cause of the failure of the
deduction theorem for Kn . This issue is discussed in greater detail in Exercises 3.8
and 3.29.

We return now to our main goal, that of proving that Kn characterizes the set of
formulas that are valid with respect toMn . An axiom system AX is said to be sound
for a languageLwith respect to a classM of structures if every formula in L provable
in AX is valid with respect toM. The system AX is complete forLwith respect toM
if every formula in L that is valid with respect to M is provable in AX . We think of
AX as characterizing the classM if it provides a sound and complete axiomatization
of that class; notationally, this amounts to saying that for all formulas ϕ, we have
AX ⊢ ϕ if and only if M |= ϕ. Soundness and completeness provide a tight
connection between the syntactic notion of provability and the semantic notion of
validity.

We plan to show that Kn provides a sound and complete axiomatization for Ln

with respect toMn . We need one more round of definitions in order to do this. Given
an axiom system AX , we say a formula ϕ is AX-consistent if ¬ϕ is not provable
in AX . A finite set {ϕ1, . . . , ϕk} of formulas is AX-consistent exactly if ϕ1 ∧ . . .∧ϕk

is AX-consistent, and an infinite set of formulas is AX-consistent exactly if all of
its finite subsets are AX-consistent. Recall that a language is a set of formulas. A
set F of formulas is a maximal AX-consistent set with respect to a language L if
(1) it is AX-consistent, and (2) for all ϕ in L but not in F , the set F ∪ {ϕ} is not
AX-consistent.

Lemma 3.1.2 Suppose the language L consists of a countable set of formulas and
is closed with respect to propositional connectives (so that if ϕ and ψ are in the
language, then so are ϕ ∧ψ and ¬ϕ). In any axiom system AX that includes every
instance of A1 and R1 for the language L, every AX-consistent set F ⊆ L can be
extended to a maximal AX-consistent set with respect to L. In addition, if F is a
maximal AX-consistent set, then it satisfies the following properties:
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(a) for every formula ϕ ∈ L, exactly one of ϕ and ¬ϕ is in F,

(b) ϕ ∧ ψ ∈ F iff ϕ ∈ F and ψ ∈ F,

(c) if ϕ and ϕ ⇒ ψ are both in F, then ψ is in F,

(d) if ϕ is provable in AX, then ϕ ∈ F.

Proof Let F be an AX-consistent subset of formulas inL. To show that F can be ex-
tended to a maximal AX-consistent set, we first construct a sequence F0, F1, F2, . . .

of AX-consistent sets as follows. Because L is a countable language, letψ1, ψ2, . . .

be an enumeration of the formulas in L. Let F0 = F , and inductively construct
the rest of the sequence by taking Fi+1 = Fi ∪ {ψi+1} if this set is AX-consistent
and otherwise by taking Fi+1 = Fi . It is easy to see that each set in the sequence
F0, F1, . . . is AX-consistent, and that this is a nondecreasing sequence of sets. Let
F = ∪∞

i=0 Fi . Each finite subset of F must be contained in Fj for some j , and thus
must be AX-consistent (since Fj is AX-consistent). It follows that F itself is AX-
consistent. We claim that in fact F is a maximal AX-consistent set. For suppose
ψ ∈ L andψ /∈ F . Sinceψ is a formula in L, it must appear in our enumeration, say
asψk . If Fk ∪ {ψk} were AX-consistent, then our construction would guarantee that
ψk ∈ Fk+1, and hence that ψk ∈ F . Because ψk = ψ /∈ F , it follows that Fk ∪ {ψ}

is not AX-consistent. Hence F ∪ {ψ} is also not AX-consistent. It follows that F is
a maximal AX-consistent set.

To see that maximal AX-consistent sets have all the properties we claimed, let F
be a maximal AX-consistent set. If ϕ ∈ L, we now show that one of F ∪ {ϕ} and
F ∪ {¬ϕ} is AX-consistent. For assume to the contrary that neither of them is AX-
consistent. It is not hard to see that F ∪ {ϕ ∨ ¬ϕ} is then also not AX-consistent
(Exercise 3.2). So F is not AX-consistent, because ϕ ∨ ¬ϕ is a propositional tau-
tology. This gives a contradiction. If F ∪ {ϕ} is AX-consistent, then we must have
ϕ ∈ F since F is a maximal AX-consistent set. Similarly, if F ∪ {¬ϕ} is AX-
consistent then ¬ϕ ∈ F . Thus, one of ϕ or ¬ϕ is in F . It is clear that we cannot have
both ϕ and ¬ϕ in F , for otherwise F would not be AX-consistent. This proves (a).

Part (a) is enough to let us prove all the other properties we claimed. For example,
if ϕ∧ψ ∈ F , then we must have ϕ ∈ F , for otherwise, as we just showed, we would
have ¬ϕ ∈ F , and F would not be AX-consistent. Similarly, we must have ψ ∈ F .
Conversely, if ϕ and ψ are both in F , we must have ϕ ∧ ψ ∈ F , for otherwise we
would have ¬(ϕ ∧ ψ) ∈ F , and, again, F would not be AX-consistent. We leave
the proof that F has properties (c) and (d) to the reader (Exercise 3.3).

We can now prove that Kn is sound and complete.
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Theorem 3.1.3 Kn is a sound and complete axiomatization with respect to Mn for
formulas in the language Ln .

Proof Using Theorem 3.1.1, it is straightforward to prove by induction on the length
of a proof of ϕ that if ϕ is provable in Kn , then ϕ is valid with respect to Mn (see
Exercise 3.4). It follows that Kn is sound with respect to Mn .

To prove completeness, we must show that every formula in Ln that is valid with
respect to Mn is provable in Kn . It suffices to prove that

Every Kn-consistent formula in Ln is satisfiable with respect to Mn . (∗)

For suppose we can prove (∗), and ϕ is a valid formula in Ln . If ϕ is not provable in
Kn, then neither is ¬¬ϕ, so, by definition, ¬ϕ is Kn-consistent. It follows from (∗)
that ¬ϕ is satisfiable with respect toMn , contradicting the validity of ϕ with respect
toMn .

We prove (∗) using a general technique that works for a wide variety of modal
logics. We construct a special structure Mc ∈ Mn , called the canonical structure
for Kn . Mc has a state sV corresponding to every maximal Kn-consistent set V . Then
we show

(Mc, sV ) |= ϕ iff ϕ ∈ V . (∗∗)

That is, we show that a formula is true at a state sV exactly if it is one of the formulas
in V . Note that (∗∗) suffices to prove (∗), for by Lemma 3.1.2, if ϕ is Kn-consistent,
then ϕ is contained in some maximal Kn-consistent set V . From (∗∗) it follows that
(Mc, sV ) |= ϕ, and so ϕ is satisfiable in Mc. Therefore, ϕ is satisfiable with respect
toMn , as desired.

We proceed as follows. Given a set V of formulas, define V/Ki = {ϕ | Kiϕ ∈ V }.
For example, if V = {K1 p, K2K1q, K1 K3 p ∧ q, K1K3q}, then V/K1 = {p, K3q}.
Let Mc = (S, π,K1, . . . ,Kn), where

S = {sV | V is a maximal Kn-consistent set}

π(sV )(p) =

{

true if p ∈ V
false if p /∈ VKi = {(sV , sW ) | V/Ki ⊆ W }.

We now show that for all V we have (Mc, sV ) |= ϕ iff ϕ ∈ V . We proceed
by induction on the structure of formulas. More precisely, assuming that the claim
holds for all subformulas of ϕ, we also show that it holds for ϕ.
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If ϕ is a primitive proposition p, this is immediate from the definition of π(sV ).
The cases where ϕ is a conjunction or a negation are simple and left to the reader (Ex-
ercise 3.5). Assume that ϕ is of the form Kiψ and that ϕ ∈ V . Then ψ ∈ V/Ki

and, by definition of Ki , if (sV , sW ) ∈ Ki , then ψ ∈ W . Thus, using the induction
hypothesis, (Mc, sW ) |= ψ for all W such that (sV , sW ) ∈ Ki . By the definition of
|=, it follows that (Mc, sV ) |= Kiψ .

For the other direction, assume (Mc, sV ) |= Kiψ . It follows that the set (V/Ki)∪

{¬ψ} is not Kn-consistent. For suppose otherwise. Then, by Lemma 3.1.2, it would
have a maximal Kn-consistent extension W and, by construction, we would have
(sV , sW ) ∈ Ki . By the induction hypothesis we have (Mc, sW ) |= ¬ψ , and so
(Mc, sV ) |= ¬Kiψ , contradicting our original assumption. Since (V/Ki )∪ {¬ψ} is
not Kn-consistent, there must be some finite subset, say {ϕ1, . . . , ϕk,¬ψ}, which is
not Kn-consistent. Thus, by propositional reasoning (Exercise 3.6), we have

Kn ⊢ ϕ1 ⇒
(

ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .)
)

.

By R2, we have

Kn ⊢ Ki
(

ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))
)

.

By induction on k, togetherwith axiom A2 and propositional reasoning, we can show
(Exercise 3.7)

Kn ⊢ Ki
(

ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))
)

⇒
(

Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .))
)

.

Now from R1, we get

Kn ⊢ Kiϕ1 ⇒
(

Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)
)

.

By part (d) of Lemma 3.1.2, it follows that

Kiϕ1 ⇒
(

Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)
)

∈ V .

Because ϕ1, . . . , ϕk ∈ V/Ki , we must have Kiϕ1, . . . , Kiϕk ∈ V . By part (c) of
Lemma 3.1.2, applied repeatedly, it follows that Kiψ ∈ V , as desired.

We have thus shown that Kn completely characterizes the formulas in Ln that are
valid with respect to Mn , where there are no restrictions on the Ki relations. What
happens if we restrict the Ki relations? In Chapter 2, we observed that we do get
extra properties if we take the Ki relations to be reflexive, symmetric, and transitive.
These properties are the following:
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A3. Kiϕ ⇒ ϕ, i = 1, . . . , n (Knowledge Axiom)

A4. Kiϕ ⇒ Ki Kiϕ, i = 1, . . . , n (Positive Introspection Axiom)

A5. ¬Kiϕ ⇒ Ki¬Kiϕ, i = 1, . . . , n (Negative Introspection Axiom)

We remarked earlier that axiom A3 has been taken by philosophers to capture the
differencebetween knowledge and belief. From this point of view, the man we spoke
of at the beginning of the chapter who “knew” his son was drug-free should really
be said to believe his son was drug-free, but not to know it. If we want to model such
a notion of belief, then (at least according to some philosophers) we ought to drop
A3, but add an axiom that says that an agent does not believe false:

A6. ¬Ki(false), i = 1, . . . , n (Consistency Axiom)

It is easy to see that A6 is provable from A3, A1, and R1 (see Exercise 3.9).
Historically, axiom A2 has been called K, A3 has been called T, A4 has been

called 4, A5 has been called 5, and A6 has been called D. We get different modal
logics by considering various subsets of these axioms. In the case of one agent, the
system with axioms and rules A1, A2, R1, and R2 has been called K. One approach to
naming these logics is to name them after the significant axioms used. For example,
the axiom system KD45 is the result of combining the axioms K, D, 4, and 5 with
A1, R1, and R2, while KT4 is the result of combining the axioms K, T, and 4 with
A1, R1, and R2. Some of the axiom systems are commonly called by other names
as well. The K is quite often omitted, so that KT becomes T, KD becomes D, and
so on; KT4 has traditionally been called S4 and KT45 has been called S5. (The
axioms K, T, 4, and 5, together with rule R2, are what we called the S5 properties in
Chapter 2.) We stick with the traditional names here for those logics that have them,
since they are in common usage, except that we use the subscript n to emphasize the
fact that we are considering systems with n agents rather than only one agent. Thus,
for example, we speak of the logics Tn or S5n. We occasionally omit the subscript
if n = 1, in line with more traditional notation.

Philosophers have spent years arguing which of these axioms, if any, best captures
the knowledge of an agent. We do not believe that there is one “true” notion of
knowledge; rather, the appropriate notion depends on the application. As we said
in Chapter 2, for many of our applications the axioms of S5 seem most appropriate
(although philosophers have argued quite vociferously against them, particularly
axiom A5). Rather than justify these axioms further,we focus here on the relationship
between these axioms and the properties of the Ki relation, and on the effect of this
relationship on the difficulty of reasoning about knowledge. (Some references on the
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issue of justification of the axioms can be found in the bibliographic notes at the end of
the chapter.) Since we do not have the space to do an exhaustive study of all the logics
that can be formed by considering all possible subsets of the axioms, we focus on
some representativecases here, namely Kn , Tn, S4n , S5n , and KD45n . These provide
a sample of the logics that havebeen considered in the literature and demonstrate some
of the flexibility of this general approach to modeling knowledge. Kn is the minimal
system, and it enables us to study what happens when there are in some sense as few
restrictions as possible on the Ki operator, given our possible-worlds framework.
The minimal extension of Kn that requires that what is known is necessarily true is
the system Tn. Researchers who have accepted the arguments against A5 but have
otherwise been happy with the axioms of S5n have tended to focus on S4n. On
the other hand, researchers who were willing to accept the introspective properties
embodied by A4 and A5, but wanted to consider belief rather than knowledge have
tended to consider KD45 or K45. For definiteness, we focus on KD45 here, but all
our results for KD45 carry over with very little change to K45.

Theorem 3.1.3 implies that the formulas provable in Kn are precisely those that
are valid with respect toMn . We want to connect the remaining axioms with various
restrictions on the possibility relations Ki . We have already considered one possi-
ble restriction on the Ki relations (namely, that they be reflexive, symmetric, and
transitive). We now consider others. We say that a binary relation K on a set S is
Euclidean if, for all s, t, u ∈ S, whenever (s, t) ∈ K and (s, u) ∈ K, then (t, u) ∈ K;
we say that K is serial if, for all s ∈ S, there is some t such that (s, t) ∈ K.

Some of the relationships between various conditions we can place on binary
relations are captured in the following lemma, whose proof is left to the reader
(Exercise 3.12).

Lemma 3.1.4

(a) If K is reflexive and Euclidean, then K is symmetric and transitive.

(b) If K is symmetric and transitive, then K is Euclidean.

(c) The following are equivalent:

(i) K is reflexive, symmetric, and transitive.

(ii) K is symmetric, transitive, and serial.

(iii) K is reflexive and Euclidean.
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LetMr
n (resp., Mrt

n ; Mrst
n ;Melt

n ) be the class of all structures for n agents where
the possibility relations are reflexive (resp., reflexive and transitive; reflexive, sym-
metric, and transitive; Euclidean, serial, and transitive). As we observed earlier,
since an equivalence relation is one that is reflexive, symmetric, and transitive,Mrst

n
is precisely the class of structures we considered in Chapter 2.

The next theorem shows a close connection between various combinations of
axioms, on the one hand, and various restrictions on the possibility relations Ki ,
on the other hand. For example, axiom A3 (the Knowledge Axiom Kiϕ ⇒ ϕ)
corresponds to reflexivity of Ki . To demonstrate one part of this correspondence, we
now show that axiom A3 is valid in all structures inMr

n . If s is a world in a structure
M ∈ Mr

n , then agent i must consider s to be one of his possible worlds in s. Thus, if
agent i knows ϕ in s, then ϕ must be true in s; i.e., (M, s) |= Kiϕ ⇒ ϕ. Therefore,
Tn is sound with respect toMr

n . We might hope that, conversely, every structure that
satisfies all instances of axiom A3 is in Mr

n . Unfortunately, this is not the case (we
return to this point a little later). Nevertheless, as we shall see in the proof of the next
theorem, axiom A3 forces the possibility relations in the canonical structure to be
reflexive. As we shall see, this is sufficient to prove that Tn is complete with respect
toMr

n .

Theorem 3.1.5 For formulas in the language Ln:

(a) Tn is a sound and complete axiomatization with respect to Mr
n ,

(b) S4n is a sound and complete axiomatization with respect to Mrt
n ,

(c) S5n is a sound and complete axiomatization with respect toMrst
n ,

(d) KD45n is a sound and complete axiomatization with respect toMelt
n .

Proof We first consider part (a). We already showed that Tn is sound with respect
toMr

n. For completeness, we need to show that every Tn-consistent formula is satisfi-
able in some structure inMr

n . This is done exactly as in the proof of Theorem 3.1.3.
We define a canonical structure Mc for Tn each of whose states corresponds to a
maximal Tn-consistent set V of formulas. The Ki relations are defined as in the
proof of Theorem 3.1.3, namely, (sV , sW ) ∈ Ki in Mc exactly if V/Ki ⊆ W , where
V/Ki = {ϕ | Kiϕ ∈ V }. A proof identical to that of Theorem 3.1.3 can now be used
to show that ϕ ∈ V iff (Mc, sV ) |= ϕ, for all maximal Tn-consistent sets V . Further-
more, it is easy to see that every maximal Tn-consistent set V contains every instance
of axiom A3. Therefore, all instances of axiom A3 are true at sV . It follows imme-
diately that V/Ki ⊆ V . So by definition of Ki , it follows that (sV , sV ) ∈ Ki . So Ki
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is indeed reflexive, and hence Mc ∈ Mr
n . Assume now that ϕ is a Tn-consistent

formula. As in the proof of Theorem 3.1.3, it follows that ϕ is satisfiable in Mc.
Since, as we just showed, Mc ∈ Mr

n , it follows that ϕ is satisfiable in some structure
inMr

n , as desired. This completes the proof of part (a).
To prove part (b), we show that just as axiom A3 corresponds to reflexivity,

similarly axiom A4 corresponds to transitivity. It is easy to see that A4 is valid in
all structures where the possibility relation is transitive. Moreover, A4 forces the
possibility relations in the canonical structure to be transitive. To see this, suppose
that (sV , sW ), (sW , sX ) ∈ Ki and that all instances of A4 are true at sV . Then if
Kiϕ ∈ V , by A4 we have Ki Kiϕ ∈ V , and, by the construction of Mc, we have
Kiϕ ∈ W and ϕ ∈ X . Thus, V/Ki ⊆ X and (sV , sX ) ∈ Ki , as desired. The proof is
now very similar to that of part (a).

The proof of parts (c) and (d) go in the same way. Here the key correspondences
are that axiom A5 corresponds to a Euclidean possibility relation and axiom A6
corresponds to a serial relation (Exercise 3.13).

We say that a structure M is a model of Kn if every formula provable in Kn is valid
in M . We can similarly say that a structure is a model of Tn, S4n , S5n , and KD45n .
The soundness part of Theorem 3.1.5 shows that every structure in Mr

n (resp., Mrt
n ,Mrst

n , Melt
n ) is a model of Tn (resp., S4n , S5n , KD45n). We might be tempted to

conjecture that the converse also holds, so that, for example, if a structure is a model
of S5n , then it is in Mrst

n . This is not quite true, as the following example shows.
Suppose n = 1 and 8 = {p}, and let M be the structure consisting of two states s
and t , such that π(s)(p) = π(t)(p) = true and K1 = {(s, t), (t, t)}, as shown in
Figure 3.1. r r-O�
��s

p

t

p

Figure 3.1 A model of S51 that is not in Mrst
1

The structure M is not in Mr
1, let alone Mrst

1 , but it is easy to see that it is a
model of S51 and a fortiori a model of S41 and T1 (Exercise 3.15). Nevertheless, the
intuition behind the conjecture is almost correct. In fact, it is correct in two senses.
If s is a state in a Kripke structure M , and s ′ is a state in a Kripke structure M ′, then
we say that (M, s) and (M ′, s ′) are equivalent, and write (M, s) ≡ (M ′, s ′), if they
satisfy exactly the same formulas in the language Ln . That is, (M, s) ≡ (M ′, s ′) if,
for all formulas ϕ ∈ Ln , we have (M, s) |= ϕ if and only if (M ′, s ′) |= ϕ. One sense
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in which the previous conjecture is correct is that every model M of Tn (resp., S4n ,
S5n, KD45n) can effectively be converted to a structure M ′ inMr

n (resp.,Mrt
n ,Mrst

n ,Melt
n ) with the same state space, such that (M, s) ≡ (M ′, s) for every state s (see

Exercise 3.16).
The second sense in which the conjecture is correct involves the notion of a frame.

We define a frame for n agents to be a tuple (S,K1, . . . ,Kn), where S is a set of states
and K1, . . . ,Kn are binary relations on S. Thus, a frame is like a Kripke structure
without the functionπ . Notice that the Aumann structures defined in Section 2.5 can
be viewed as frames. We say that the Kripke structure (S, π,K1, . . . ,Kn) is based
on the frame (S,K1, . . . ,Kn). A formula ϕ is valid in frame F if it is valid in every
Kripke structure based on F . It turns out that if we look at the level of frames rather
than at the level of structures, then we get what can be viewed as a partial converse to
Theorem 3.1.5. For example, the Ki ’s in a frame F are reflexive if and only if every
instance of the Knowledge Axiom A3 is valid in F . This suggests that the axioms
are tied more closely to frames than they are to structures. Although we have shown
that, for example, we can find a structure that is a model of S5n but is not inMrst

n (or
even Mr

n), this is not the case at the level of frames. If a frame is a model of S5n ,
then it must be in F rst

n . Conversely, if a frame is in F rst
n , then it is a model of S5n .

See Exercise 3.17 for more details.
The previous results show the connection between various restrictions on theKi relations and properties of knowledge. In particular, we have shown that A3

corresponds to reflexive possibility relations, A4 to transitive possibility relations,
A5 to Euclidean possibility relations, and A6 to serial possibility relations.

Up to now we have not considered symmetric relations. It is not hard to check
(using arguments similar to those used previously) that symmetry of the possibility
relations corresponds to the following axiom:

A7. ϕ ⇒ Ki¬Ki¬ϕ, i = 1, . . . , n

Axiom A7 can also easily be shown to be a consequence of A3 and A5, together
with propositional reasoning (Exercise 3.18). This corresponds to the observation
made in Lemma 3.1.4 that a reflexive Euclidean relation is also symmetric. Since
a reflexive Euclidean relation is also transitive, the reader may suspect that A4 is
redundant in the presence of A3 and A5. This is essentially true. It can be shown
that A4 is a consequence of A1, A2, A3, A5, R1, and R2 (see Exercise 3.19). Thus
we can obtain an axiom system equivalent to S5n by eliminatingA4; indeed, by using
the observations of Lemma 3.1.4, we can obtain a number of axiomatizations that
are equivalent to S5n (Exercise 3.20).
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Axiom Property of Ki

A3. Kiϕ ⇒ ϕ reflexive
A4. Kiϕ ⇒ Ki Kiϕ transitive
A5. ¬Kiϕ ⇒ Ki¬Kiϕ Euclidean
A6. ¬Ki false serial
A7. ϕ ⇒ Ki¬Ki¬ϕ symmetric

Table 3.1 The correspondence between axioms and properties of Ki

The preceding discussion is summarized by Table 3.1, which describes the cor-
respondence between the axioms and the properties of the Ki relations.

We conclude this section by taking a closer look at the single-agent case of S5 and
KD45. The following result shows that in the case of S5 we can further restrict our
attention to structures where the possibility relation is universal; i.e., in every state,
all states are considered possible. Intuitively, this means that in the case of S5 we can
talk about the set of worlds the agent considers possible; this set is the same in every
state and consists of all the worlds. Similarly, for KD45 we can restrict attention to
structures with one distinguished state, which intuitively is the “real” world, and a
set of states (which does not in general include the real world) corresponding to the
worlds that the agent thinks possible in every state.

Proposition 3.1.6

(a) Assume that M ∈ Mrst
1 and s is a state of M. Then there is a structure

M ′ = (S ′, π ′,K′
1), where K′

1 is universal, i.e., K′
1 = {(s, t) | s, t ∈ S ′}, and a

state s ′ of M ′ such that (M, s) ≡ (M ′, s ′).

(b) Assume that M ∈ Melt
1 and s is a state of M. Then there is a structure

M ′ = ({s0}∪ S ′, π ′,K′
1), where S ′ is nonempty andK′

1 = {(s, t) : s ∈ {s0}∪ S ′

and t ∈ S ′}, and a state s ′ of M ′ such that (M, s) ≡ (M ′, s ′).

Proof We first consider part (b). Assume that M = (S, π,K1) ∈ Melt
1 and that

s0 ∈ S. LetK1(s0) = {t | (s0, t) ∈ K1}. SinceK1 is serial, K1(s0)must be nonempty.
It is also easy to check that since K1 is Euclidean, we have (s, t) ∈ K1 for all
s, t ∈ K1(s0). Finally, since K1 is transitive, if s ∈ K1(s0) and (s, t) ∈ K1, then
t ∈ K1(s0). Let M ′ = ({s0} ∪ K1(s0), π

′,K′
1}, where π ′ is the restriction of π

to {s0} ∪ K1(s0), and K′
1 = {(s, t) | s ∈ {s0} ∪ K1(s0) and t ∈ K1(s0)}. By the

previous observations, K′
1 is the restriction of K1 to {s0} ∪ K1(s0). Note that K′

1 is


