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Preface

Asitstitle suggests, thisbook investigates reasoning about knowledge, in particular,
reasoni ng about theknowledge of agentswho reason about theworld and each other’s
knowledge. Thisisthetypeof reasoning oneoften seesin puzzlesor Sherlock Holmes
mysteries, where we might have reasoning such asthis:

If Aliceknew that Bob knew that Charliewaswearingared shirt, then Al-
icewould have known that Bob would have known that Charlie couldn’t
have been in the pantry at midnight. But Alicedidn’t know this. ..

As we shall see, thistype of reasoning is also important in a surprising number of
other contexts. Researchersin a wide variety of disciplines, from philosophy to
economics to cryptography, have al found that issues involving agents reasoning
about other agents' knowledgeare of great relevanceto them. We attempt to provide
here a framework for understanding and analyzing reasoning about knowledge that
isintuitive, mathematically well founded, useful in practice, and widely applicable.

The book is amost completely self-contained. We do expect the reader to be
familiar with propositional logic; a nodding acquaintance with distributed systems
may be helpful to appreciate some of our examples, but it is not essential. Our hope
isthat the book will be accessibleto readersfrom a number of different disciplines,
including computer science, artificial intelligence, philosophy, and game theory.
While proofs of important theorems are included, the non-mathematically-oriented
reader should be able to skip them, while still following the main thrust of the book.

We have tried to make the book modular, so that, whenever possible, separate
chapterscan be read independently. At the end of Chapter 1 thereisabrief overview
of the book and atable of dependencies. Much of this material was taught a number
of times by the second author in one-quarter courses at Stanford University and
by the third author in one-semester courses at the Weizmann Institute of Science.
Suggestionsfor subsets of material that can be covered can also be found at the end
of Chapter 1.
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Xii Preface

Many of the details that are not covered in the main part of the text of each
chapter arerelegatedto theexercises. Aswell, theexercisescover material somewhat
tangential—but still of interest!—to the main thrust of the chapter. We recommend
that the reader at least look over all the exercises in each chapter. Far better, of
course, would be to do them all (or at |east areasonable subset). Problemsthat are
somewhat more difficult are marked with %, and even more difficult problems are
marked with .

Each chapter ends with a section of notes. These notes provide references to
the material covered in each chapter (as well as the theoremsthat are stated but not
proved) and, occasionally, more details on some points not covered in the chapter.
Thereferencesappearing inthe notesareto thelatest version of the material we could
find. In many cases, earlier versions appeared in conference proceedings. The dates
of the references that appear in the notes therefore do not provide a chronological
account of the contributions to the field. While we attempt to provide reasonably
extensive coverageof theliteratureinthese notes, thefieldistoolarge for our coverage
to be complete. We apologize for the inadvertent omission of relevant references.

The book concludes with a bibliography, an index, and a symbol index.

Many people helped us in many ways in the preparation of this book, and we
are thankful to all of them. Daphne Koller deserves a very special note of thanks.
She did a superb job of proofreading the amost-final draft of the book. Besides
catching many typographical errors, she gave us numerous suggestionson improving
the presentation in every chapter. We are very grateful to her. We would al so
like to thank Johan van Benthem, Mike Fischer, Adam Grove, Vassos Hadzilacos,
L ane Hemaspaandra and the students of CS 487 at the University of Rochester, Wil
Janssen, Hector Levesgue, Murray Mazer, Ron van der Meyden, Jan Pachl, Karen
Rudie, Ambuj Singh, Elias Thijsse, Mark Tuttle, and Lenore Zuck, for their useful
comments and criticisms;, Johan van Benthem, Brian Chellas, David Makinson,
and Krister Segerberg for their help in tracking down the history of modal logic;
and T. C. Chen and Brian Coan for pointing out the quotations at the beginning of
Chapters 2 and 3, respectively. Finaly, the second and third authors would like
to thank the students of CS 356 (at Stanford in the years 1984-1989, 1991-1992,
and 1994), CS 2422S (at Toronto in 1990) and the course on Knowledge Theory
(at the Weizmann Institute of Science in the years 1987-1995), who kept finding
typographical errors and suggesting improvements to the text (and wondering if
the book would ever be completed), especially Gidi Avrahami, Ronen Brafman,
Ed Brink, Alex Brongtein, Isis Caulder, Steve Cummings, John DiMarco, Kathleen
Fisher, Steve Friedland, Tom Henzinger, David Karger, Steve Ketchpel, Orit Kislev,
Christine Knight, Ronny Kohavi, Rick Kunin, Sherry Listgarten, Carlos Mendioroz,
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Andres Modet, Shahid Mujtaba, Gal Nachum, Leo Novik, Raymond Pang, Barney
Pell, Sonne Preminger, Derek Proudian, Omer Reingold, Tselly Regev, Gil Roth,
Steve Souder, Limor Tirosh-Pundak-Mintz, Mauritsvan der Veen, Orli Waarts, Scott
Walker, and Liz Wolf.

Finally, we wish to thank the ingtitutions that supported this work for many
years, thework of thefirst, second, and fourth authorswas done at the IBM Almaden
Research Center in San Jose, California, and thework of the third author was done at
the Weizmann I nstitute of Sciencein Rehovot, |srael, and while on sabbatical at the
Oxford University Computing L aboratory in Oxford, England. Thework of thethird
author was supported in part by a Sir Charles Clore Post-Daoctoral Fellowship, by an
Alon Fellowship, and by a Helen and Milton A. Kimmelman Career Devel opment
Chair.






Chapter 1

| ntroduction and Overview

An investment in knowl edge pays the best interest.
Benjamin Franklin, Poor Richard’s Almanac, c. 1750

Epistemol ogy, the study of knowledge, has along and honorabletradition in philos-
ophy, starting with the early Greek philosophers. Questions such as “What do we
know?’ “What can be known?’ and “What doesit mean to say that someone knows
something?’ have been much discussed in the philosophical literature. Theideaof a
formal logical analysis of reasoning about knowledge is somewhat more recent, but
goes back at least to von Wright's work in the early 1950's. The first book-length
treatment of epistemic logic—the logic of knowledge—is Hintikka's seminal work
Knowledge and Belief, which appeared in 1962. The 1960's saw a flourishing of
interest in this area in the philosophy community. The major interest was in try-
ing to capture the inherent properties of knowledge. Axioms for knowledge were
suggested, attacked, and defended.

More recently, researchers in such diverse fields as economics, linguistics, Al
(artificial intelligence), and theoretical computer science have become interested in
reasoning about knowledge. While, of course, some of the issuesthat concerned the
philosophershave been of interest to these researchersas well, thefocus of attention
has shifted. For one thing, there are pragmatic concerns about the relationship
between knowledge and action. What does a robot need to know in order to open a
safe, and how doesit know whether it knows enough to open it? At what point does
an economic agent know enough to stop gathering information and make adecision?
When should adatabase answer “| don’t know” to aquery? There are also concerns
about the complexity of computing knowledge, a notion we can now quantify better

1



2 Chapter 1 Introduction and Overview

thanks to advances in theoretical computer science. Finally, and perhaps of most
interest to ushere, isthe emphasi son considering situationsinvolving the knowledge
of agroup of agents, rather than that of just a single agent.

Whentrying to understand and anal yzethe propertiesof knowledge, philosophers
tended to consider only the single-agent case. But the heart of any analysis of a
conversation, a bargaining session, or a protocol run by processes in a distributed
systemistheinteraction between agents. Thefocusof thisbook ison understanding
the process of reasoning about knowledge in a group and using this understanding
to help us analyze complicated systems. Although the reader will not go far wrong
if he or she thinks of a“group” as being a group of people, it is useful to alow a
more general notion of “group,” aswe shall seein our applications. Our agents may
be negotiatorsin a bargai ning situation, communicating robots, or even components
such as wires or message buffers in a complicated computer system. It may seem
strange to think of wires as agents who know facts; however, as we shall seg, itis
useful to ascribe knowledge even to wires.

An agent in a group must take into account not only facts that are true about
the world, but also the knowledge of other agentsin the group. For example, in a
bargaining situation, the seller of acar must consider what the potential buyer knows
about the car's value. The buyer must also consider what the seller knows about
what the buyer knows about the car’ svalue, and so on. Such reasoning can get rather
convoluted. Most people quickly lose the thread of such nested sentencesas “Dean
doesn’t know whether Nixon knowsthat Dean knowsthat Nixon knowsthat McCord
burgled O'Brien's office at Watergate.” But thisis precisely the type of reasoning
that is needed when analyzing the knowledge of agentsin a group.

A number of statesof knowledge arise naturally in amulti-agent situation that do
not ariseinthe one-agent case. Weare ofteninterestedin situationsinwhich everyone
inthe group knowsafact. For example, asociety certainly wants all drivers to know
that ared light means“ stop” and agreen light means*“go.” Suppose we assume that
every driver in the society knows this fact and follows the rules. Will adriver then
feel safe? The answer is no, unless she also knows that everyone else knows and is
following the rules. For otherwise, adriver may consider it possible that, al though
she knows the rules, some other driver does not, and that driver may run ared light.

Even the state of knowledge in which everyone knows that everyone knows is
not enough for anumber of applications. In some caseswe also need to consider the
stateinwhich simultaneously everyoneknowsafact ¢, everyoneknowsthat everyone
knows ¢, everyone knows that everyone knows that everyone knows ¢, and so on.
In this case we say that the group has common knowledge of ¢. Thiskey notion was
first studied by the philosopher David Lewis in the context of conventions. Lewis
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pointed out that in order for something to be aconvention, it must in fact be common
knowledge among the members of agroup. (For example, the convention that green
means “go” and red means “stop” is presumably common knowledge among the
driversin our society.) John McCarthy, in the context of studying common-sense
reasoning, characterized common knowledge as what “any fool” knows; “any fool”
knows what is commonly known by all members of a society.

Common knowledge also arises in discourse understanding. Suppose Ann asks
Bob “What did you think of themovie?' referring to a showing of Monkey Business
they have just seen. Not only must Ann and Bob both know that “the movie” refers
to Monkey Business, but Ann must know that Bob knows (so that she can be sure
that Bob will give a reasonable answer to her question), Bob must know that Ann
knows that Bob knows (so that Bab knows that Ann will respond appropriately to
hisanswer), and so on. Infact, by acloser analysisof thissituation, it can be shown
that there must be common knowledge of what movie is meant for Bob to answer
the question appropriately.

Finally, common knowledge also turns out to be a prerequisite for achieving
agreement. Thisis precisely what makes it such a crucial notion in the analysis of
interacting groups of agents.

At the other end of the spectrum from common knowledgeis distributed know!-
edge. A group has distributed knowledge of a fact ¢ if the knowledge of ¢ is
distributed among its members, so that by pooling their knowledge together the
members of the group can deduce ¢, even though it may be the case that no member
of the group individually knows ¢. For example, if Alice knowsthat Bobisinlove
with either Carol or Susan, and Charlie knows that Bob is not in love with Carol,
then together Alice and Charlie have distributed knowledge of the fact that Bobisin
lovewith Susan, although neither Alice nor Charlieindividually hasthisknowledge.
While common knowledge can be viewed as what “any fool” knows, distributed
knowledge can be viewed as what a“ wise man”—onewho has complete knowledge
of what each member of the group knows—would know.

Common knowledge and distributed knowledge are useful tools in helping us
understand and analyze complicated situations involving groups of agents. The
puzzle described in the next section gives us one example.

1.1 TheMuddy Children Puzzle

Reasoning about the knowledge of a group can involve subtle distinctions between
anumber of states of knowledge. A good example of the subtletiesthat can ariseis
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given by the “muddy children” puzzle, which is a variant of the well known “wise
men” or “cheating wives’ puzzles.

Imagine n children playing together. The mother of these children has
told them that if they get dirty there will be severe consequences. So,
of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the
children, say k of them, get mud on their foreheads. Each can seethemud
on othersbut not on hisown forehead. So, of course, no one saysathing.
Along comes the father, who says, “At least one of you has mud on your
forehead,” thus expressing afact known to each of them before he spoke
(if k > 1). The father then asks the following question, over and over:
“Does any of you know whether you have mud on your own forehead?’
Assuming that all the children are perceptive, intelligent, truthful, and
that they answer simultaneously, what will happen?

Thereisa“proof” that thefirst k — 1 times he asksthe question, they
will all say “No,” but then the k™" timethe children with muddy foreheads
will all answer “Yes”

The “proof” is by induction on k. For k = 1 the result is obvious:
the one child with a muddy forehead sees that no one else is muddy.
Since he knows that there is at least one child with a muddy forehead,
he concludes that he must be the one. Now suppose k = 2. So there
are just two muddy children, a and b. Each answers“No” thefirst time,
because of the mud on the other. But, when b says “No,” a realizesthat
he must be muddy, for otherwise b would have known the mud was on
his forehead and answered “Yes’ the first time. Thus a answers “Yes’
the second time. But b goes through the same reasoning. Now suppose
k = 3; s0 there are three muddy children, a, b, c. Child a argues as
follows. Assumel do not have mud on my forehead. Then, by thek = 2
case, both b and c will answer “Yes’ the second time. When they do not,
he realizes that the assumption was false, that he is muddy, and so will
answer “Yes’ on the third question. Similarly for b and c.

The argument in the general case proceeds along identical lines.

L et usdenotethefact “at least one child hasamuddy forehead” by p. Noticethat
if kK > 1, i.e., more than one child has a muddy forehead, then every child can see
at least one muddy forehead, and the children initially all know p. Thus, it would
seem that the father does not provide the children with any new information, and so
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he should not need to tell them that p holdswhenk > 1. But thisisfalse! Infact, as
we now show, if the father does not announce p, the muddy children are never able
to conclude that their foreheads are muddy.

Hereisasketch of the proof: We prove by induction on g that, no matter what the
situationis, i.e., no matter how many childrenhaveamuddy forehead, all thechildren
answer “No” to thefather’sfirst q questions. Clearly, no matter which children have
mud on their foreheads, all the children answer “No” to the father’'sfirst question,
since achild cannot tell apart a situation where he has mud on his forehead from one
that isidentical in al respects except that he does not have a muddy forehead. The
inductive step is similar: By the inductive hypothesis, the children answer “No” to
thefather’sfirst q questions. Thus, when thefather asks hisquestionfor the (q + 1)
time, childi still cannot tell apart a situation where he has mud on his forehead from
one that isidentical in all respects except that he does not have a muddy forehead,
since by the induction hypothesis, the children will answer “No” to the father'sfirst
g questions whether or not child i has a muddy forehead. Thus, again, he does not
know whether his own forehead is muddy.

So, by announcing something that the children all know, the father somehow
manages to give the children useful information! How can this be? Exactly what
is the role of the father’s statement? Of course, the father’'s statement did enable
us to do the base case of the induction in the proof, but this does not seem to be
aterribly satisfactory answer. It certainly does not explain what information the
children gained as aresult of the father's statement.

We can answer these questions by using the notion of common knowledge de-
scribed in the previous section. Let us consider the case of two muddy childrenin
moredetail. Itiscertainly true that before the father speaks, everyone knows p. But
itisnot the casethat everyoneknowsthat everyoneknows p. If Aliceand Bob arethe
only children with muddy foreheads, then before the father speaks, Alice considers
it possible that she does not have mud on her forehead, in which case Bob does not
see anyone with amuddy forehead and so does not know p. After the father speaks,
Alice does know that Bob knows p. After Bob answers “No” to the father’'s first
guestion, Alice uses her knowledge of the fact that Bob knows p to deduce that her
own forehead ismuddy. (Notethat if Bob did not know p, then Bob would have said
“No” thefirst timeevenif Alice sforehead were clean.)

We have just seenthat if thereare only two muddy children, thenitisnot the case
that everyone knows that everyone knows p before the father speaks. However, if
there are three muddy children, then it isthe case that everyone knowsthat everyone
knows p before thefather speaks. If Alice, Bab, and Charlie have muddy foreheads,
then Aliceknowsthat Bob can see Charlie' smuddy forehead, Bob knowsthat Charlie



6 Chapter 1 Introduction and Overview

canseeAlice’smuddy forehead, etc. Itisnot the case, however, that everyoneknows
that everyoneknowsthat everyoneknows p beforethefather speaks. Ingeneral, if we
let EXp represent the fact that everyone knows that everyone knows . . . (k times) p,
and let Cp represent the fact that p is common knowledge, then we leave it to the
reader to check that if exactly k children have muddy foreheads, then EX~1p holds
before the father speaks, but EXp does not. It turns out that when there are k muddy
children, EX p sufficesto ensure that the children with muddy foreheadswill be able
to figure it out, while EK~1p does not. The father’s statement actually converts the
children’s state of knowledge from E*~1p to Cp. With this extra knowledge, they
can deduce whether their foreheads are muddy.

The careful reader will have noticed that we made a number of implicit assump-
tions in the preceding discussion over and above the assumption made in the story
that “the children are perceptive, intelligent, and truthful.” Suppose again that Alice
and Bob are the only children with muddy foreheads. It is crucia that both Alice
and Bab know that the children areintelligent, perceptive, and truthful. For example,
if Alice does not know that Bob is telling the truth when he answers “No” to the
father’ sfirst question, then she cannot answer “Yes’ to the second question (even if
Bob isin fact telling the truth). Similarly, Bob must know that Alice is telling the
truth. Besidesits being known that each child isintelligent, perceptive, and truthful,
we must also assume that each child knows that the others can see, that they all hear
the father, that the father is truthful, and that the children can do all the deductions
necessary to answer the father’s questions.

Actually, even stronger assumptions need to be made. If there are k children
with muddy foreheads, it must be the case that everyone knowsthat everyoneknows
...(k — 1 times) that the children all have the appropriate attributes (they are per-
ceptive, intelligent, all hear the father, etc.). For example, if there are three muddy
children and Alice considers it possible that Bob considers it possible that Charlie
might not have heard the father's statement, then she cannot say “Yes' to the fa-
ther'sthird question (even if Charliein fact did hear the father’s statement and Bob
knowsthis). In fact, it seems reasonabl e to assume that all these attributes are com-
mon knowledge, and, indeed, this assumption seemsto be made by most people on
hearing the story.

To summarize, it seems that the role of the father's statement was to give the
children common knowledge of p (the fact that at least one child has a muddy
forehead), but the reasoning done by thechildren assumesthat agreat deal of common
knowledge already existed in the group. How does this common knowledge arise?
Even if we ignore the problem of how facts like “all the children can see” and “all
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the children are truthful” become common knowledge, thereis still the issue of how
the father's statement makes p common knowledge.

Notethat itisnot quite correctto say that p becomescommon knowledgebecause
al the children hear the father. Suppose that the father had taken each child aside
individually (without the others noticing) and said “At least one of you has mud on
your forehead.” The children would probably have thought it a bit strange for him
to be telling them a fact that they already knew. It is easy to see that p would not
become common knowledgein this setting.

Given this example, one might think that the common knowledge arose because
al the children knew that they all heard the father. Even thisis not enough. To see
this, suppose the children do not trust each other, and each child has secretly placed
a miniature microphone on all the other children. (Imagine that the children spent
the previous summer at a CIA training camp.) Again the father takes each child
asideindividually and says“At least one of you hasamuddy forehead.” In thiscase,
thanks to the hidden microphones, all the children know that each child has heard
the father, but they still do not have common knowledge.

A little more reflection might convince the reader that the common knowledge
arose here because of the publicnature of thefather'sannouncement. Roughly speak-
ing, the father’'s public announcement of p puts the children in a special situation,
one with the property that all the children know both that p is true and that they
are in this situation. We shall show that under such circumstances p is common
knowledge. Note that the common knowledge does not arise because the children
somehow deduce each of the facts EXp one by one. (If this were the case, then
arguably it would take an infinite amount of time to attain common knowledge.)
Rather, the common knowledge arises all at once, asaresult of the children being in
such a special situation. We return to this point in later chapters.

1.2 An Overview of the Book

The preceding discussion should convince the reader that the subtleties of reasoning
about knowledge demand a careful formal analysis. In Chapter 2, we introduce a
simple, yet quite powerful, formal semantic model for knowledge, and alanguagefor
reasoning about knowledge. The basic idea underlying the model isthat of possible
worlds. Theintuition is that if an agent does not have complete knowledge about
the world, she will consider a number of worlds possible. These are her candidates
for the way the world actually is. The agent is said to know afact ¢ if ¢ holdsat all
the worldsthat the agent considersto be possible. Using this semantic model allows
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usto clarify many of the subtletiesof the muddy children puzzlein quite an el egant
way. The analysis shows how the children’s state of knowledge changes with each
responseto the father's questions, and why, if there are k muddy children altogether,
itis only after the k" question that the children with muddy foreheads can deduce
thisfact.

We should emphasize here that we do not feel that the semantic model we present
in the next chapter is the unique “right” model of knowledge. We spend some time
discussing the propertiesof knowledgeinthismodel. A number of philosophershave
presented cogent arguments showing that some of these propertiesare “wrong.” Our
concernsin this book are more pragmatic than those of the philosophers. We do not
believethat thereisa“right” model of knowledge. Different notions of knowledge
areappropriatefor different applications. Themodel we presentinthenext chapter is
appropriatefor analyzingthe muddy children puzzleand for many other applications,
evenif it isnot appropriate for every application. One of our goalsin thisbook isto
show how the properties of “knowledge” vary with the application.

In Chapter 3, we give acompl ete characterization of the properties of knowledge
in the possible-worlds model. We describe two approaches to this characterization.
The first approach is proof-theoretic: we show that al the properties of knowledge
can be formally proved from the properties discussed in Chapter 2. The second
approach is algorithmic: we study algorithms that can determine whether a given
property holds under our definition of knowledge, and consider the computational
complexity of doing this.

One of the major applications we have in mind is using knowledge to analyze
multi-agent systems, bethey systemsof interactingagentsor systemsof computersin
anetwork. In Chapter 4 we show how we can use our semantic model for knowledge
to ascribe knowledge to agentsin a multi-agent system. The reason that we use the
word “ascribe” here is that the notion of knowledge we use in the context of multi-
agent systems can be viewed as an external notion of knowledge. Thereisno notion
of the agent computing his knowledge, and no requirement that the agent be able to
answer questions based on his knowledge. While this may seem to be an unusual
way of defining knowledge, we shall argue that it does capture one common usage
of the word “know.” Moreover, we give examples that show its utility in analyzing
multi-agent systems.

In Chapter 5 we extend the model of Chapter 4 to consider actions, protocols,
and programs. Thisallowsusto analyze more carefully how changes come about in
multi-agent systems. We also define the notion of a specification and consider what
it meansfor a protocol or program to satisfy a specification.
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In Chapter 6 we show how useful aknowledge-based analysis of systems can be.
Our focusin this chapter is common knowledge, and we show how fundamental it
isin various contexts. In particular, we show that it is a prerequisite for agreement
and simultaneous coordinated action.

In Chapter 7 we extend our notions of programs to consider knowl edge-based
programs, which allow explicit tests for knowledge. Knowledge-based programs
can be viewed as giving us a high-level language in which to program or specify
a system. We give a number of examples showing the usefulness of thinking and
programming at the knowledge level.

In Chapter 8 we consider the propertiesof knowledge and time, focusing on how
knowledge evolves over time in multi-agent systems. We show that small changes
in the assumptions we make about the interactions between knowledge and time in
a system can have quite subtle and powerful effectson the propertiesof knowledge.

As we show in Chapter 2, one property that seems to be an inherent part of
the possible-worlds model of knowledge is that agents are logically omniscient.
Roughly speaking, thismeansthey know all tautologiesand all logical consequences
of their knowledge. In the case of the muddy children puzzle we explicitly make
the assumption that each child can do all the reasoning required to solve the puzzle.
While this property may be reasonable for some applications, it certainly is not
reasonablein general. After all, we cannot really hope to build logically omniscient
robots. In Chapter 9 we describe several approachesfor constructing abstract models
that do not have the logical omniscience property.

As we have already discussed, our notion of knowledge in multi-agent systems
is best understood as an external one, ascribed by, say, the system designer to the
agents. We do not assume that the agents compute their knowledge in any way, nor
do we assume that they can necessarily answer questions based on their knowledge.
In a number of applications that we are interested in, agents need to act on their
knowledge. In such applications, external knowledge is insufficient; an agent that
hasto act on her knowledge has to be able to compute this knowledge. The topic of
knowledge and computation is the subject of Chapter 10.

In Chapter 11, we return to the topic of common knowledge. We suggested in
the previous section that common knowledge arose in the muddy children puzzle
because of the public nature of the father's announcement. In many practical set-
tings such a public announcement, whose contents are understood simultaneously
by many agents, isimpossibleto achieve. We show that, in aprecise sense, common
knowledge cannot be attained in these settings. This puts us in a somewhat para-
doxical situation, in that we claim both that common knowledgeis aprerequisitefor
agreement and coordinated action and that it cannot be attained. We examine this
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Figure1.1 Dependency diagram



Exercises 11

paradox in Chapter 11 and suggest a number of weaker notionsthat can be attained
in practice and that are often sufficient for acting in the real world.

Although aconsiderableamount of the material inthisbook isbased on previously
published work, anumber of elementsare new. Theseinclude much of the material
in Chapters5, 7, 10, and some of Chapter 11. Specifically, thenotionsof contextsand
programsin Chapter 5, and of knowledge-based programs and their implementation
in Chapter 7, are new. Moreover, they play a significant role in the way we model
and analyze knowledge and action in multi-agent systems.

We have tried as much as possible to write the book in a modular way, so that
material in the later chapters can be read without having to read all the preceding
chapters. Figure 1.1 describes the dependencies between chapters. An arrow from
one chapter to another indicatesthat it is necessary to read (at least part of) the first
chapter in order to understand (at least part of) the second. We have labeled the
arrow if it is not necessary to read all of the first chapter to understand all of the
second. For example, thelabel 9.1— 10, 9.3.3— 10.3 on the arrow from Chapter 9
to Chapter 10 indicates that the only sections in Chapter 9 on which Chapter 10
dependsare 9.1 and 9.3.3 and, moreover, the only section in Chapter 10 that depends
on Section 9.3.3 is Section 10.3. Similarly, the label 5 — 11.4 on the arrow from
Chapter 5 to Chapter 11 indicatesthat Section 11.4 isthe only sectionin Chapter 11
that depends on Chapter 5, but it depends on the whole chapter.

Certain material can be skipped without losing a broad overview of the area. In
particular, thisis the case for Sections 3.3, 3.4, 4.5, 6.7, and 7.7. The second author
covered asubstantial portion of theremaining material (moving at quitearapid pace)
in a one-quarter course at Stanford University. A course designed to focus on the
application of our approach to distributed systems could cover Chapters 1, 2, 4, 5,
6, 7, 10, and 11. Each chapter ends with exercises and bibliographic notes; these
could be useful in acourse based on this book. Aswe mentioned in the preface, we
strongly recommend that the reader at |east ook over the exercises.

Exercises

1.1 The aces and eights game is a smple game that involves some sophisticated
reasoning about knowledge. It is played with adeck consisting of just four acesand
four eights. Therearethree players. Six cards are dealt out, two to each player. The
remaining two cards are left face down. Without looking at the cards, each of the
players raises them up to his or her forehead, so that the other two players can see



12 Chapter 1 Introduction and Overview

them but he or she cannot. Then all of the players take turns trying to determine
which cards they’re holding (they do not have to name the suits). If a player does
not know which cards he or she is holding, the player must say so. Suppose Alice,
Bob, and you are playing the game. Of coursg, it is common knowledge that none
of you would ever lie, and that you are all perfect reasoners.

(@) Inthe first game, Alice, who goes first, holds two aces, and Bob, who goes
second, holdstwo eights. Both Alice and Bob say that they cannot determine
what cards they are holding. What cards are you holding? (Hint: consider
what would have happened if you held two aces or two eights.)

(b) In the second game, you go first. Alice, who goes second, holds two eights.
Bob, who goes third, holds an ace and an eight. No one is able to determine
what he or she holds at hisor her first turn. What do you hold? (Hint: by using
part (a), consider what would have happened if you held two aces.)

(c) Inthe third game, you go second. Alice, who goes first, holds an ace and an
eight. Bob, who goes third, also holds an ace and an eight. No oneis ableto
determinewhat he or she holds at his or her first turn; Alice cannot determine
her cards at her second turn either. What do you hold?

* 1.2 Show that in the aces and eights game of Exercise 1.1, someonewill always be
ableto determinewhat cards he or she holds. Then show that there exists a situation
where only one of the players will be able to determine what cards he or she holds,
and the other two will never be able to determine what cards they hold, no matter
how many rounds are played.

1.3 The wise men puzze is a well-known variant of the muddy children puzzle.
The standard version of the story goes as follows: There are three wise men. Itis
common knowledge that there are three red hats and two white hats. The king puts
ahat on the head of each of the three wise men, and asks them (sequentially) if they
know the color of the hat on their head. The first wise man says that he does not
know; the second wise man saysthat he does not know; then the third wise man says
that he knows.

(@) What color isthe third wise man’'s hat?

(b) Wehaveimplicitly assumed inthe story that the wise men can all see. Suppose
we assume instead that the third wise man is blind and that it is common
knowledge that the first two wise men can see. Can the third wise man still
figure out the color of his hat?
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Notes

Theideaof aforma logical analysisof reasoning about knowledge seemsto havefirst
beenraised by vonWright [1951]. Aswementionedinthetext, Hintikka[1962] gave
thefirst book-length treatment of epistemiclogic. Lenzen[1978] givesan overview of
thework in epistemiclogic doneinthe1960sand 1970s. Hebringsout thearguments
for and against various axioms of knowledge. The most famous of these arguments
isdueto Gettier [1963], who argued against the classical interpretation of knowledge
astrue, justified belief; hiswork inspired many others. Gettier’sargumentsand some
of the subsequent papersare discussed in detail by Lenzen[1978]. For recent reviews
of the subject, see the papers by Halpern [1986, 1987, 1993a], by Meyer, van der
Hoek, and Vreeswijk [1991a, 1991b], by Moses[1992], and by Parikh [1990].

As we mentioned, the original work on common knowledge was done by Lewis
[1969] in the context of studying conventions. Although McCarthy’snotion of what
“any fool” knows goes back to roughly 1970, it first appearsin a published paper in
[McCarthy, Sato, Hayashi, and I garishi 1979]. Thenation of knowledge and common
knowledge hasalso been of great interest to economi stsand gametheorists, ever since
the seminal paper by Aumann[1976]. K nowledgeand common knowledgewerefirst
appliedto multi-agent systemsby Hal pern and M oses[1990] and by L ehmann[1984].
The need for common knowledge in understanding a statement such as “What did
you think of the movie?’ is discussed by Clark and Marshall [1981]; a dissenting
view is offered by Perrault and Cohen [1981]. Clark and Marshall also present an
example of nested knowledge based on the Watergate scandal, mentioning Dean
and Nixon. The notion of distributed knowledge was introduced by Halpern and
Moses[1990]. They initially called it implicit knowledge, and the term “ distributed
knowledge” was suggested by Jan Pachl.

Themuddy children puzzleisavariant of the" unfaithful wives’ puzzlediscussed
by Gamow and Stern [1958]. Gardner [1984] a so presents a variant of the puzzle,
and a number of variants of the puzzle are discussed by Moses, Dolev, and Halpern
[1986]. The version given here is taken almost verbatim from [Barwise 1981]. The
acesand eights puzzlein Exercise 1.1 is taken from [Carver 1989]. Another rel ated
puzzle is the so-called “Conway paradox”, which was first discussed by Conway,
Paterson, and Moscow [1977], and later by Gardner [1977]. It was analyzed in an
epistemic framework by van Emde Boas, Groenendijk, and Stokhof [1980]. An
extension of this puzzle was considered by Parikh [1992].

See the bibliographic notesin later chapters for more references on the specific
subjects discussed in these chapters.






Chapter 2
A Modd for Knowledge

Chuangtse and Hueitse had strolled onto the bridge over the Hao, when
the former observed, “ See how the small fish are darting about! That is
the happiness of the fish” “ You are not a fish yourself,” said Hueitse.
“How can you know the happiness of the fish?” “ And you not being |’
retorted Chuangtse, “ how can you know that | do not know?”

Chuangtse, c. 300 B.C.

2.1 ThePossble-Worlds M oddl

Aswesaidin Chapter 1, our framework for modeling knowledgeisbased on possible
worlds. Theintuitiveidea behind the possible-worlds model is that besides the true
state of affairs, there are a number of other possible states of affairs, or “ worlds.”
Given his current information, an agent may not be able to tell which of a number
of possible worlds describes the actual state of affairs. An agent is then said to
know afact ¢ if ¢ istrue at al the worlds he considers possible (given his current
information). For example, agent 1 may be walking on the streetsin San Francisco
on a sunny day but may have no information at all about the weather in London.
Thus, in all the worldsthat the agent considerspossible, it issunny in San Franci sco.
(We are implicitly assuming here that the agent does not consider it possible that
he is hallucinating and in fact it is raining heavily in San Francisco.) On the other
hand, since the agent has no information about the weather in London, there are
worlds he considers possible in which it is sunny in London, and others in which
itisraining in London. Thus, this agent knows that it is sunny in San Francisco,

15
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but he does not know whether it is sunny in London. Intuitively, the fewer worlds
an agent considers possible, the less his uncertainty, and the more he knows. If the
agent acquires additional information—such as hearing from a reliable source that
it is currently sunny in London—then he would no longer consider possible any of
theworldsin which itisraining in London.

In asituation such as a poker game, these possible worlds have a concrete inter-
pretation: they are ssimply all the possible ways the cards coul d have been distri buted
among the players. Initially, a player may consider possible all deals consistent with
the cards in her hand. Players may acquire additional information in the course of
the play of the game that allowsthem to eliminate some of the worldsthey consider
possible. Even if Alice does not know originally that Bob holds the ace of spades,
at some point Alice might cometo know it, if the additional information she obtains
alows her to eliminate all the worlds (distributions of cards among players) where
Bob does not hold the ace of spades.

Another exampleis provided by the muddy children puzzle we discussed in the
previouschapter. SupposeAliceseesthat Bob and Charliehave muddy foreheadsand
that all the other children do not have muddy foreheads. Thisallowsher to eliminate
al but two worlds: onein which she, Bob, and Charlie have muddy foreheads, and
no other child does, and one in which Bob and Charlie are the only children with
muddy foreheads. In al (i.e., both) of the worldsthat Alice considerspossible, Bob
and Charlie have muddy foreheadsand all the children except Bob, Charlie, and her
have clean foreheads. Alice'sonly uncertainty is regarding her own forehead; this
uncertainty isreflected in the set of worlds she considerspossible. Asweshall seein
Section 2.3, on hearing the children’ srepliesto the father’ sfirst two questions, Alice
will be able to eliminate one of these two possible worlds and will know whether or
not her own forehead is muddy.

To make these ideas precise, we first need a language that allows us to express
notionsof knowledgein a straightforward way. Aswe have already seen, Englishis
not a particularly good language in which to carry out complicated reasoning about
knowledge. Instead we use the language of modal logic.

Suppose we have a group consisting of n agents, creatively named 1, ..., n.
For simplicity, we assume these agents wish to reason about a world that can be
described in terms of a nonempty set ® of primitive propositions, typically labeled
p, P, q,q,... These primitive propositions stand for basic facts about the world
such as “it is sunny in San Francisco” or “Alice has mud on her forehead.” To
express a statement like “ Bob knowsthat it is sunny in San Francisco,” we augment
the language by modal operators K4, . .., K, (onefor each agent). A statement like
K1¢ isthenread “agent 1 knows ¢.”
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Technically, alanguage is just a set of formulas. We can now describe the set
of formulas of interest to us. We start with the primitive propositions in & and
form more complicated formulasby closing off under negation, conjunction, and the
modal operators Ky, ..., Ky. Thus, if ¢ and i areformulas, thenso are —¢, (¢ AY),
and Kjp, fori = 1, ..., n. For the sake of readability, we omit the parenthesesin
formulas such as (¢ A ) whenever it does not lead to confusion. We also use
standard abbreviations from propositional logic, such as ¢ v ¢ for =(—¢ A =),
@ = Yy for—p vy, ande < ¢ for (p = ¥) A (Y = ¢). Wetaketrueto bean
abbreviation for some fixed propositional tautology such as p v —p, and take false
to be an abbreviation for —true.

We can express quite complicated statementsin a straightforward way using this
language. For example, the formula

KiKop A =K2K1K2p

saysthat agent 1 knowsthat agent 2 knows p, but agent 2 does not know that agent 1
knows that agent 2 knows p.

We view possihility asthe dual of knowledge. Thus, agent 1 considers¢ possible
exactly if he does not know —¢. This situation can be described by the formula
—-K1—¢. A statement like“ Dean doesn’'t know whether ¢” saysthat Dean considers
both ¢ and —¢ possible. Let’s reconsider the sentence from the previous chapter:
“Dean doesn’'t know whether Nixon knows that Dean knows that Nixon knows that
McCord burgled O’ Brien's office at Watergate.” If we take Dean to be agent 1,
Nixon to be agent 2, and p to be the statement “McCord burgled O’ Brien's office at
Watergate,” then this sentence can be captured as

—K1=(K2K1Kz2p) A =K1=(=K2K1K2p).

Now that we have described the syntax of our language (that is, the set of well-
formed formulas), we need semantics, that is, a formal model that we can use to
determine whether a given formula is true or false. One approach to defining se-
mantics is, as we suggested, in terms of possible worlds, which we formalize in
terms of (Kripke) structures. (In later chapters we consider other approaches to
giving semanticsto formulas.) A Kripke structure M for n agents over ® isatuple
(S, m, Kq, ..., Kn), where Sisaset of statesor possibleworlds, 7 isaninterpretation
that associates with each state in S atruth assignment to the primitive propositions
of & (i.e., m(s) : & — {true, false} for each states € S), and K; isabinary relation
on S, that is, a set of pairs of elementsof S. We tend to use “state” and “world”
interchangeably throughout the book.
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The truth assignment 7 (s) tells us whether p istrue or falsein state s. Thus,
if p denotesthe fact “it israining in San Francisco,” then 7 (s)(p) = true captures
the situation in which it is raining in San Francisco in state s of structure M. The
binary relation K; isintended to capturethe possibility relation according to agent i :
(s,t) € K; if agent i considersworld t possible, given his information in world s.
Wethink of K; asapossibility relation, sinceit defineswhat worldsagent i considers
possible in any given world. Throughout most of the book (in particular, in this
chapter), we further requirethat K; be an equivalencerelationon S. An equivalence
relation £ on Sis a binary relation that is (a) reflexive, which means that for al
s € S, we have (s,s) € K, (b) symmetric, which means that for all s,t € S, we
have (s,t) € K if and only if (t,s) € K, and (c) transitive, which means that for
als t,u e S wehavethatif (s,t) € K and (t,u) € £, then (s,u) € K. We take
K to be an equivalence relation since we want to capture the intuition that agent i
considerst possiblein world s if in both s and t agent i has the same information
about theworld, that is, the two worlds areindistingui shableto theagent. Making K
an equivalencerel ation seemsnatural, and it turns out to be the appropriate choicefor
many applications. For example, aswe shall seein the next section, it is appropriate
in analyzing the muddy children puzzle, while in Chapters 4 and 6 we show that it
is appropriate for many multi-agent systems applications. We could equally well,
however, consider possihility relations with other properties (for example, reflexive
and transitive, but not symmetric), aswe in fact do in Chapter 3.

We now definewhat it meansfor aformulatobetrueat agivenworldinastructure.
Note that truth depends on the world aswell asthe structure. It is quite possible that
aformulaistruein oneworld and falsein another. For example, inoneworld agent 1
may know it is sunny in San Francisco, while in another he may not. To capture
this, we define the notion (M, s) = ¢, which canberead as“ ¢ istrueat (M, s)” or
“p holdsat (M, s)” or “(M, s) satisfies ¢.” We define the = relation by induction
on the structure of ¢.  That is, we start with the simplest formulas—primitive
propositions—and work our way up to more complicated formulas ¢, assuming that
= has been defined for all the subformulas of ¢.

The s component of the structure gives us the information we need to deal with
the base case, where ¢ is a primitive proposition:

(M, s) = p (for aprimitive proposition p € @) iff 7 (s)(p) = true.

For conjunctions and negations, we follow the standard treatment from proposi-
tional logic; a conjunction ¥ A ' istrue exactly if both of the conjuncts v and
aretrue, while anegated formula —y istrue exactly if v is not true:
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M. s) =y Ay'iff (M, s) =y and (M, s) =y
(M, s) | =y iff (M, 5) j= .

Note that the clause for negation guaranteesthat the logic is two-valued. For every
formula v, we have either (M, s) = ¢ or (M, s) &= —, but not both.

Finally, we have to deal with formulas of the form K. Here we try to capture
theintuition that agenti knows v inworld s of structure M exactly if i istrueat all
worldsthat i considerspossiblein s. Formally, we have

(M, s) = Kiy iff (M, t) = v foral t suchthat (s, t) € K;.

These definitions are perhaps best illustrated by a simple example. One of the
advantages of a Kripke structure is that it can be viewed as a labeled graph, that
is, a set of labeled nodes connected by directed, labeled edges. The nodes are the
states of S; the label of state s € S describes which primitive propositions are true
and false at s. We label edges by sets of agents; the label on the edge from s to t
includesi if (s, t) € K;. For example, suppose ® = {p} and n = 2, so that our
language has one primitive proposition p and there are two agents. Further suppose
that M = (S, 7, K1, K2), where S = {s,t, u}, pistrue at states s and u but false
at (sothat #(s)(p) = #(u)(p) = true and = (t)(p) = false), agent 1 cannot
distinguish s from t (so that K1 = {(s, s), (5, 1), (t, s), (t, 1), (u, u)}), and agent 2
cannot distinguish s from u (so that £, = {(s, S), (S, U), (t,1), (U, s), (u, w}). This
situation can be captured by the graph in Figure 2.1. Note how the graph captures
our assumptions about the K relations. In particular, we have a self-loop at each
edge labeled by both 1 and 2 because the relations K, and K, are reflexive, and the
edges have an arrow in each direction because K1 and K, are symmetric.

Figure2.1 A simpleKripke structure
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If weview passtandingfor “itissunny in San Francisco,” thenin statesitissunny
in San Francisco but agent 1 doesnot know it, sincein state s he considersboth sandt
possible. (We remark that we used the phrase “agent 1 cannot distinguish s fromt.”
Of course, agent 1 realizes perfectly well that s and t are different worlds. After al,
itisrainingin San Franciscoin s, but notint. What we really intend hereis perhaps
more accurately described by something like“ agent 1’sinformationisinsufficient to
enable him to distinguish whether the actual world iss or t.” We continueto use the
word “indistinguishable” in the somewhat looser sense throughout the book.) On
the other hand, agent 2 does know in state s that it is sunny, sincein both worlds that
agent 2 considers possible at s (namely, s and u), the formula p istrue. In statet,
agent 2 also knows the true situation, namely, that it is not sunny. It followsthat in
state s agent 1 knowsthat agent 2 knows whether or not it is sunny in San Francisco:
in both worlds agent 1 considers possible in state s, namely, s and t, agent 2 knows
what the weather in San Francisco is. Thus, although agent 1 does not know the
true Situation at s, he does know that agent 2 knows the true situation. By way of
contrast, althoughin state s agent 2 knowsthat it is sunny in San Francisco, she does
not know that agent 1 does not know thisfact. (In one world that agent 2 considers
possible, namely u, agent 1 doesknow that it issunny, whilein another world agent 2
considers possible, namely s, agent 1 does not know thisfact.) All of thisrelatively
complicated English discussion can be summarized in one mathematical statement:

M, s) = pA—=KipAKopAKi(KopV Ko=p) A =Ko=Kyp.

Note that in both s and u, the primitive proposition p (the only primitive propo-
sition in our language) gets the same truth value. One might think, therefore, that s
and u are the same, and that perhaps one of them can be eliminated. Thisis not true!
A stateis not completely characterized by the truth values that the primitive propo-
sitions get there. The possibility relation is also crucial. For example, in world s,
agent 1 considerst possible, whilein u he doesnot. Asa consequence, agent 1 does
not know p ins, whilein u he does.

We now consider a dlightly more complicated example, which might provide a
little more motivation for making the K;’s equivalencerelations. Suppose we have
adeck consisting of three cards labeled A, B, and C. Agents 1 and 2 each get one
of these cards; the third card is left face down. A possible world is characterized by
describing the cards held by each agent. For example, in theworld (A, B), agent 1
holdscard A and agent 2 holds card B (whilecard C isfacedown). Thereareclearly
six possibleworlds. (A, B), (A, C), (B, A), (B, C), (C, A), and (C, B). Moreover,
it is clear that in a world such as (A, B), agent 1 thinks two worlds are possible:
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(A, B) itself and (A, C). Agent 1 knows that he has card A, but he considers it
possiblethat agent 2 could hold either card B or card C. Similarly, inworld (A, B),
agent 2 al'so considerstwo worlds: (A, B) and (C, B). Ingeneral, inaworld (x, y),
agent 1 considers (x, y) and (X, z) possible, and agent 2 considers (x, y) and (z, y)
possible, where z is different from both x and y.

From this description, we can easily construct the X; and K, relations. It iseasy
to check that they are indeed equivalence relations, as required by the definitions.
Thisis because an agent’s possihility relation is determined by the information she
has, namely, the card she is holding. Thisis an important general phenomenon: in
any situation where an agent’s possibility relation is determined by her information
(and, as we shall see, there are many such situations), the possibility relations are
equivalencerelations.

The structure in this example with the three cards is described in Figure 2.2,
where, since the relations are equivalence relations, we omit the self-loops and the
arrowson edgesfor simplicity. (Aswe have observed, if thereisan edgefrom states
to statet, there is bound to be an edge from t to s aswell by symmetry.)

(C, B) 2 (A, B)
1 1
(C, A (A, O
2 2
(B7 A) M 1 b (B7 C)

Figure2.2 The Kripke structure describing a ssmple card game

Thisexampl e pointsout the need for having worl dsthat an agent doesnot consider
possible included in the structure. For example, intheworld (A, B), agent 1 knows
that the world (B, C) cannot be the case. (After al, agent 1 knows perfectly well
that his own card is A.) Nevertheless, because agent 1 considers it possible that
agent 2 considers it possible that (B, C) isthe case, we must include (B, C) in the
structure. Thisiscaptured inthestructure by thefact that thereisno edgefrom (A, B)
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to (B, C) labeled 1, but thereis an edge labeled 1 to (A, C), from which thereisan
edgelabeled 2 to (B, C).

We still have not discussed the language to be used in thisexample. Sincewe are
interested in reasoning about the cards held by agents 1 and 2, it seems reasonable
to have primitive propositions of the form 1A, 2A, 2B, and so on, which are to
be interpreted as “agent 1 holds card A" “agent 2 holds card A,” “agent 2 holds
card B,” and so on. Given thisinterpretation, we define r in the obvious way, and
let M. be the Kripke structure describing this card game. Then, for example, we
have (M, (A, B)) = 1A A 2B. Weleaveit to the reader to check that we also have
(Mg, (A, B)) E K1(2B Vv 2C), which expresses the fact that if agent 1 holds A,
then he knows that agent 2 holds either B or C. Similarly, we have (M, (A, B)) &
K1—K2(1A): agent 1 knowsthat agent 2 does not know that agent 1 holds A.

This example shows that our semantics does capture some of the intuitions we
naturally associatewith theword “knowledge.” Nevertheless, thisisfar from acom-
pletejustificationfor our definitions, in particul ar, for our reading of theformula K ¢
as“agenti knows¢.” The question arises asto what would constitute a reasonable
judtification. We ultimately offer two justifications, which we hope the reader will
find somewhat satisfactory. The first is by further examples, showing that our defi-
nitions correspond to reasonable usages of the word “know.” One such exampleis
givenin Section 2.3, where we analyze the muddy children puzzle and show that the
formula K¢ does capture our intuition regarding what child i knows. The second
justification can be found in Section 2.4, where we consider some of the properties
of this notion of knowledge and show that they are consistent with the properties
that the knowledge of a perfect reasoner with perfect introspection might have. Of
course, this does not imply that other reasonabl e notions of knowledge do not exist.
Some of these are considered in later chapters.

We have also restricted attention here to propositional modal logic. We do not
have first-order quantification, so that we cannot easily say, for example, that Alice
knows the governors of all states. Such a statement would require universal and
existential quantification. Roughly speaking, we could expressit as Vx(Sate(x) =
Ay (KaiceGovernor (x, y)): for all states x, there exists y such that Alice knows that
the governor of x isy. We use only propositional modal logic throughout most of
thisbook becauseit is sufficiently powerful to capture most of the situationswe shall
beinterestedin, while allowing usto avoid some of the complexitiesthat arisein the
first-order case. We briefly consider the first-order casein Section 3.7.
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2.2 Adding Common Knowledge and Distributed K nowledge

Thelanguageintroduced in the previous section does not alow usto express the no-
tions of common knowledge and distributed knowledge that we discussed in Chap-
ter 1. To express these notions, we augment the language with the modal operators
Ec (“everyonein the group G knows’), Cg (“it is common knowledge among the
agentsin G”), and D¢ (“it is distributed knowledge among the agentsin G”) for
every nonempty subset G of {1, ..., n}, sothat if ¢ isaformula, then so are Eg,
Cse, and Dge. We often omit the subscript G when G isthe set of all agents. In
this augmented |anguage we can make statementslike K3—C1 5 p (“agent 3 knows
that p is not common knowledge among agents 1 and 2") and Dg A =Cq (“q is
distributed knowledge, but it is not common knowledge”).

We can easily extend the definition of truth to handle common knowledge and
distributed knowledgein astructure M. Since Eg g istrue exactly if everyoneinthe
group G knows ¢, we have

(M, s) = Egepiff (M, s) = Kjefordli e G.

The formula Cg ¢ istrue if everyonein G knows ¢, everyonein G knows that
everyonein G knows g, etc. Let qu) be an abbreviationfor ¢, and let E('fjl(p bean
abbreviationfor Eg qu). In particular, ES¢ is an abbreviationfor Eg¢. Thenwe
have

(M, s) = Cgpiff (M,s) = E pfork=1,2,...

Our definition of common knowledge has an interesting graph-theoretical inter-
pretation, which turns out to be useful in many of our applications. Define a state t
to be G-reachable from state s in k steps (k > 1) if there exist states s, sy, - . . , &
suchthat sy = s, sx = tandforal j with0 < j < k — 1, thereexistsi € G such
that (s, 5+1) € Kj. We say t is G-reachable from s if t is G-reachable from s in
k stepsfor somek > 1. Thus, t is G-reachable from s exactly if thereisapathin
the graph from s to t whose edges are labeled by members of G. In the particular
case where G isthe set of all agents, we say simply that t isreachablefroms. Thus,
t isreachablefrom s exactly if s and t are in the same connected component of the

graph.
LemmaZz2.2.1

@ (M,s) & Eégo ifand onlyif (M, t) = ¢ for all t that are G-reachablefroms
ink steps.

(b) (M, s) E=Cgepifandonlyif (M,t) = ¢ for all t that are G-reachablefroms.
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Proof Part (a) follows from a straightforward induction on k, while part (b) is
immediate from part (a). Notice that this result holds even if the K;’s are arbitrary
binary relations; we do not need to assume that they are equivalencerelations. i

A group G has distributed knowledge of ¢ if the “combined” knowledge of the
membersof G impliesg. How can we capture the idea of combining knowledgein
our framework? In the Kripke structurein Figure 2.1, in state s agent 1 considers
both sandt possible but does not consider u possible, whileagent 2 considerss and u
possible, but not t. Someone who could combine the knowledge of agents 1 and 2
would know that only s was possible: agent 1 has enough knowledgeto eliminate u,
and agent 2 has enough knowledge to eliminate t. In general, we combine the
knowledge of the agentsin group G by eliminating all worlds that some agent in G
considersimpossible. Technically, this is accomplished by intersecting the sets of
worlds that each of the agentsin the group considers possible. Thus we define

(M, s) = Dgo iff (M, t) = ¢ forall t suchthat (s,t) € NiccKi.

Returning to our card game example, let G = {1, 2}; thus, G is the group
consisting of the two players in the game. Then it is easy to check (using
Lemma 2.2.1) that (M, (A, B)) = Cg(1A v 1B v 1C): it is common knowl-
edge that agent 1 holds one of the cards A, B, and C. Perhaps more interesting is
(Mg, (A, B)) = Cc(1B = (2A v 20)): it is common knowledge that if agent 1
holds card B, then agent 2 holds either card A or card C. More generally, it can be
shown that any fact about the game that can be expressed intermsof the propositions
in our language is common knowledge.

What about distributed knowledge? We leave it to the reader to check that, for
example, we have (M, (A, B)) = Dg(1A A 2B). If the agents could pool their
knowledge together, they would know that in world (A, B), agent 1 holds card A
and agent 2 holds card B.

Again, this example does not provide complete justification for our definitions.
But it should at least convince the reader that they are plausible. We examine the
properties of common knowledge and distributed knowledge in more detail in Sec-
tion 2.4.

2.3 TheMuddy Children Revisited

Inour analysiswe shall assumethat it iscommon knowledgethat thefather istruthful,
that all the children can and do hear the father, that all the children can and do see
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which of the other children besides themselves have muddy foreheads, that none of
the children can see hisor her own forehead, and that all the children aretruthful and
(extremely) intelligent.

First consider the situation before the father speaks. Supposethereare n children
altogether. Asbefore, we number them 1, ..., n. Some of the children have muddy
foreheads, and the rest do not. We can describe a possible situation by an n-tuple of
O’'sand I'sof theform (xq, ..., Xn), where x;, = 1if childi has a muddy forehead,
andx; = Ootherwise. Thus, if n = 3, thenatupleof theform (1, 0, 1) would say that
precisely child 1 and child 3 have muddy foreheads. Suppose the actual situation
is described by this tuple. What situations does child 1 consider possible before
the father speaks? Since child 1 can see the foreheads of all the children besides
herself, her only doubt is about whether she has mud on her own forehead. Thus
child 1 considerstwo situationspossible, namely, (1, 0, 1) (the actual situation) and
(0, 0,1). Similarly, child 2 considerstwo situationspossible: (1,0, 1) and (1, 1, 1).
Notethat in general, childi hasthe sameinformationin two possible worlds exactly
if they agreein all components except possibly the i!" component.

We can capture the general situation by a Kripke structure M consisting of 2"
states, one for each of the possible n-tuples. We must first decide what propositions
we should include in our language. Since we want to reason about whether or not
agiven child’ sforehead is muddy, wetake ® = {py, ..., pn, P}, Where, intuitively,
p; standsfor “childi hasamuddy forehead,” and p standsfor “at least one child has
amuddy forehead.” Thus, we define r sothat (M, (X1, ..., X)) &= pi if and only if
Xi =1,and (M, (X1, ..., X)) = pifandonlyif x; = 1for some j. Of course, pis
equivalentto p; Vv ...V pn, SOitstruth value can be determined from the truth value
of the other primitive propositions. There is nothing to prevent us from choosing a
languagewherethe primitivepropositionsare not independent. Sinceit isconvenient
to add a primitive proposition (namely p) describing the father's statement, we do
so. Finally, we must definethe K relations. Sincechildi considersaworld possible
if it agreesin all components except possibly the it" component, we take (s, t) € K;
exactly if s and t agreein all components except possibly thei™ component. Notice
that this definition makes K an equivalencerelation. Thiscompletesthe description
of M.

Although this Kripke structure may seem quite complicated, it actually has an
elegant graphical representation. Suppose we ignore self-loops and the labeling on
the edges for the moment. Then we have a structure with 2" nodes, each described
by an n-tuple of 0's and 1's, such that two nodes are joined by an edge exactly if
they differ in one component. The reader with agood imagination will see that this
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(1,1, 1)
(1,0, 0,1, 1)
3
(1,0,0 0, 1,0)
1 2
(0,0, 0)

Figure2.3 The Kripke structure for the muddy children puzzlewithn = 3

defines an n-dimensional cube. The case n = 3isillustrated in Figure 2.3 (where
again we omit self-loops and the arrows on edges).

Intuitively, each child knows which of the other children have muddy fore-
heads. This intuition is borne out in our formal definition of knowledge. For
example, it is easy to see that when the actual situation is (1,0, 1), we have
(M, (1,0,1)) = Ki—pg, since when the actual situation is (1, 0, 1), child 2 does
not have amuddy forehead in both worldsthat child 1 considerspossible. Similarly,
we have (M, (1,0, 1)) &= Kips: child 1 knows that child 3's forehead is muddy.
However, (M, (1,0, 1)) = =K1 pz1. Child 1 does not know that her own forehead is
muddy, sincein the other world she considerspossible—(0,0,1)—her forehead is not
muddy. Infact, it is common knowledgethat every child knows whether every other
child’'sforehead is muddy or not. Thus, for example, aformulalike p, = Kipo,
which says that if child 2's forehead is muddy then child 1 knows it, is common
knowledge. We leave it to the reader to check that C(p, = Kipy) istrue at every
state, asisC(—px = Ki—po).

In the world (1,0,1), in which there are two muddy children, every child knows
that at |east one child has a muddy forehead even before the father speaks. And sure
enough, we have (M, (1, 0, 1)) = Ep. It follows, however, from Lemma 2.2.1 that
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(M, (1,0, 1)) = —E?p, since p isnot true at the world (0, 0, 0) that is reachablein
two steps from (1, 0, 1). The reader can easily check that in the general case, if we
have n children of whom k have muddy foreheads (so that the situation is described
by an n-tupleexactly k of whose componentsare1’s), then EX~!pistrue, but EXpis
not, since each world (tuple) reachablein k — 1 steps has at least one 1 (and so there
isat least one child with a muddy forehead), but thetuple (0, ..., 0) isreachablein
k steps.

Before we go on, the reader should note that there are a number of assumptions
implicitin our representation. Thefact that we have chosento represent aworld asan
n-tuplein thisway islegitimateif we can assume that all the information necessary
for our reasoning already existsin suchtuples. If therewere some doubt astowhether
child 1 was able to see, then we would have to include this information in the state
description aswell. Note also that the assumption that it is common knowledge that
all the children can see is what justifies the choice of edges. For example, if n = 3
and if it were common knowledge that child 1 is blind, then, for example, in the
situation (1, 1, 1), child 1 would also consider (1, 0, 0) possible. Hewould not know
that child 2'sforehead is muddy (see Exercises2.1 and 2.2).

In general, when we choose to model a given situation, we have to put into the
model everything that isrelevant. One obviousreason that afact may be“irrel evant”
is because it does not pertain to the situation we are analyzing. Thus, for example,
whether child 1 isaboy or agirl is not part of the description of the possible world.
Another cause of irrelevance is that a fact may be common knowledge. If it is
common knowledgethat al the children can see, then thereisno point in adding this
informationto the description of apossibleworld. Itistrueat all the possible worlds
in the picture, so we do not gain anything extra by mentioning it. Thus, common
knowledge can help to simplify our description of a situation.

We remark that throughout the preceding di scussion we have used theterm “ com-
mon knowledge” in two dlightly different, although related, senses. Thefirst isthe
technical sense, whereaformulag inour languageiscommon knowledge at astate s
if itistrue at al states reachablefrom s. The second is a somewhat more informal
sense, where we say that afact (not necessarily expressiblein our language) i s com-
mon knowledge if it is true at all the situations (states) in the structure. When we
say it is common knowledge that at least one child has mud on his or her forehead,
then we are using common knowledgein thefirst sense, sincethis correspondsto the
formula Cp. When we say that it is common knowledge that no child is blind, we
areusing it inthe second sense, sincewe do not have aformulaq in the languagethat
saysthat no child isblind. Thereisan obvious relationship between the two senses
of theterm. For example, if we enrich our language so that it does have aformula g
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saying “no child isblind,” then Cq actually would hold at every state in the Kripke
structure. Throughout this book, we continue to speak of common knowledge in
both senses of the term, and we hope that the reader can disambiguate if necessary.

Returning to our analysis of the puzzle, consider what happens after the father
speaks. The father says p, which, as we have just observed, is already known to all
the children if there are two or more children with muddy foreheads. Neverthel ess,
the state of knowledge changes, even if al the children already know p. If n = 3,
intheworld (1, 0, 1) child 1 considersthe situation (0O, O, 1) possible. In that world,
child 3 considers (0, 0, 0) possible. Thus, in the world (1, 0, 1), before the father
speaks, although everyoneknowsthat at |east onechild hasamuddy forehead, child 1
thinksit possiblethat child 3 thinksit possibl e that none of the children has amuddy
forehead. After the father speaks, it becomes common knowledge that at |east one
child has a muddy forehead. (This, of course, depends on our assumption that it
is common knowledge that al the children can and do hear the father.) We can
represent the change in the group’s state of knowledge graphically (in the general
case) by smply removingthepoint (0, O, .. ., 0) fromthe cube, gettinga“truncated”
cube. (More accurately, what happensisthat thenode (0, O, ..., 0) remains, but al
the edges between (0, 0, .. ., 0) and nodes with exactly one 1 disappear, sinceit is
common knowledgethat evenif only onechild hasamuddy forehead, after thefather
speaks that child will not consider it possible that no one has a muddy forehead.)
Thesituationisillustrated in Figure 2.4.

(1,1,1)
1,0, 0,1,1)
3
(1,0, 0) 1 2 0, 1,0)
(0,0, 1)

Figure2.4 TheKripke structure after the father speaks
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We next show that each time the children respond to the father's question with a
“No”, the group’sstate of knowledge changesand the cubeisfurther truncated. Con-
sider what happens after the children respond “No” to the father’sfirst question. We
claimthat now all the nodeswith exactly one 1 can be eliminated. (More accurately,
the edgesto thesenodesfrom nodeswith exactly two 1'sall disappear fromthegraph.)
Nodeswith one or fewer 1'sareno longer reachablefrom nodeswith two or more1’s.
The reasoning here parallels the reasoning in the “proof” given in the story. If the
actual situation were described by, say, the tuple (1,0, ..., 0), then child 1 would
initially consider two situations possible: (1,0, ...,0) and (0,0, ..., 0). Oncethe
father speaksit iscommon knowledgethat (0, O, .. ., 0) isnot possible, so hewould
then know that the situation is described by (1,0, ..., 0), and thus would know
that his own forehead is muddy. Once everyone answers “No” to the father's first
guestion, it is common knowledge that the situation cannot be (1, 0, ..., 0). (Note
that here we must use the assumption that it is common knowledge that everyoneis
intelligent and truthful, and so can do the reasoning requiredto show (1,0, ..., 0) is
not possible.) Similar reasoning allows us to eliminate every situation with exactly
one 1. Thus, after al the children have answered “No” to the father’ sfirst question,
it iscommon knowledge that at least two children have muddy foreheads.

Further argumentsin the same spirit can be used to show that after the children
answer “N0” k times, we can eliminate all the nodes with at most k 1's (or, more
accurately, disconnect these nodes from the rest of the graph). We thus have a
sequence of Kripke structures, describing the children’s knowledge at every step in
the process. Essentially, what is going on is that if, in some node s, it becomes
common knowledge that a hode t is impossible, then for every node u reachable
from s, the edge from u to t (if thereis one) is eliminated. (This situation is even
eas er to describe oncewe add timeto the picture. Wereturnto thispoint in Chapter 7;
seein particular Section 7.2.)

After k rounds of questioning, it iscommon knowledgethat at least k+ 1 children
have mud on their foreheads. If thetrue situation is described by atuplewith exactly
k+ Lentriesof 1, then beforethe father asksthe question for the (k4 1) time, those
children with muddy foreheads will know the exact situation, and in particular will
know their foreheads are muddy, and consequently will answer “ Yes.” Notethat they
could not answer “Yes’ any earlier, since up to this point each child with a muddy
forehead considersit possible that he or she does not have a muddy forehead.

Thereisactually asubtlepoint that should be brought out here. Roughly speaking,
according to the way we are modeling “knowledge” in this context, a child “knows’
afact if the fact followsfrom hisor her current information. But we could certainly
imagine that if one of the children were not particularly bright, then he might not
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be able to figure out that he “knew” that his forehead was muddy, even though
in principle he had enough information to do so. To answer “Yes' to the father's
guestion, it really is not enough for it to follow from the child’sinformation whether
the child hasamuddy forehead. The child must actually be aware of the consequences
of hisinformation—that is, in some sense, the child must be able to compute that
he has this knowledge—in order to act on it. Our definition implicitly assumes that
al reasoners are logically omniscient, i.e., they are smart enough to compute all the
consequences of the information that they have.

Now consider the situation in which the father does not initially say p. Weclaim
that in thiscasethe children’sstate of knowledge never changes, no matter how many
timesthefather asksquestions. It can alwaysbe described by the n-dimensional cube.
We have already argued that before the father speaksthe situationis described by the
n-dimensional cube. When the father asks for the first time “Do any of you know
whether you have mud on your own forehead?,” clearly all the children say “No,”
no matter what the actual situation is, since in every situation each child considers
possible a situation in which he or she does not have a muddy forehead. Sinceitis
common knowledge before the father asks his question that the answer will be“No”,
no information is gained from this answer, so the situation still can be represented
by the n-dimensional cube. Now a straightforward induction on m shows that it is
common knowledge that the father's mi" question is also answered “No” (since at
the point when the father asks this question, no matter what the situation is, each
child will consider possible another situation in which he does not have a muddy
forehead), and the state of knowledge after the father asks the m" question is still
described by the cube.

This concludes our analysis of the muddy children puzzle.

24 ThePropertiesof Knowledge

In the first part of this chapter we described a language with modal operators such
as K; and defined a notion of truth that, in particular, determineswhether aformula
such as K¢ istrue at a particular world. We suggested that K¢ should be read
as“agenti knows ¢.” But isthis a reasonable way of reading this formula? Does
our semantics—that is, Kripke structurestogether with the definition of truth that we
gave—really capture the properties of knowledgein areasonableway? How canwe
even answer this question?

We can attempt to answer the question by examining what the properties of
knowledge are under our interpretation. One way of characterizing the properties
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of our interpretation of knowledgeis by characterizing the formulasthat are al ways
true. More formally, given a structure M = (S, 7, K1, ..., Kn), We say that ¢ is
validin M, andwrite M = ¢, if (M, s) = ¢ for every statesin S, and we say that ¢
issatisfiablein M if (M, s) = ¢ for some states in S. We say that ¢ isvalid, and
write = ¢, if p isvalidin all structures, and that ¢ is satisfiableif it is satisfiablein
some structure. It is easy to check that aformula ¢ isvalid (resp. validin M) if and
only if —¢ isnot satisfiable (resp. not satisfiablein M).

We now list a number of valid properties of our definition of knowledge and
provide a formal proof of their validity. We then discuss how reasonable these
properties are. As before, we assume throughout this section that the possibility
relations K; are equivalencerelations.

Oneimportant property of our definition of knowledge is that each agent knows
al thelogical consequencesof hisknowledge. If an agent knows ¢ and knowsthat ¢
implies v, then both ¢ and ¢ =  are true at all worlds he considers possible.
Thus ¢ must be true at all worlds that the agent considers possible, so he must also
know . It followsthat

= (Kig A Kilg = ¥) = Kiy.

This axiom is called the Distribution Axiom since it allows us to distribute the K;
operator over implication. It seemsto suggest that our agents are quite powerful
reasoners.

Further evidencethat our definition of knowledge assumesrather powerful agents
comesfromthefact that agentsknow all theformulasthat arevalidinagiven structure.
If ¢ istrue at all the possible worlds of structure M, then ¢ must be true at all the
worldsthat an agent considerspossiblein any givenworldin M, so it must bethecase
that K¢ istrue at all possible worlds of M. More formally, we have the following
Knowledge Generalization Rule:

For all structures M, if M = ¢, then M & K.

Note that from this we can deduce that if ¢ isvalid, then sois Kjp. Thisruleis
very different from the formula ¢ = K;¢, which saysthat if ¢ istrue, then agent i
knowsit. An agent does not necessarily know all thingsthat aretrue. (For example,
in the case of the muddy children, it may be true that child 1 has a muddy forehead,
but he does not necessarily know this.) However, agentsdo know al valid formulas.
Intuitively, thesearetheformul asthat are necessarily true, asopposed totheformulas
that just happen to be true at a given world.
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Although an agent may not know factsthat are true, it is the case that if an agent
knows afact, thenitistrue. More formally, we have

= Kip = 0.

This property, occasionally called the Knowledge Axiom or the Truth Axiom (for
knowledge), has been taken by philosophers to be the major one distinguishing
knowledge from belief. Although you may have false beliefs, you cannot know
something that is false. This property follows because the actual world is always
one of theworlds that an agent considerspossible. If K;¢ holdsat a particular world
(M, s), then g istrueat al worldsthat i considerspossible, soin particularitistrue
a (M, s).

Thelast two propertieswe consider say that agentscan dointrospectionregardi ng
their knowledge. They know what they know and what they do not know:

E Kip = KiKjp,
E —Kip = Ki=Kjgp.

Thefirst of these propertiesistypically called the Positive Introspection Axiom, and
the second is called the Negative Introspection Axiom.

The following theorem provides us with formal assurance that all the properties
just discussed hold for our definition of knowledge.

Theorem 2.4.1 For all formulas ¢ and yr, all structures M where each possibility
relation K isan equivalencerelation, and all agentsi =1,...,n,

@ M E Kig AKilg = ¥) = Kiy,
(b) if M k= ¢, then M = Ko,
(©) M E Kig = o,
(d) M E Kig = KiKig,
(€) M E —Kip = Ki=Kijgp.
Proof

@ If (M, s) = Kip A Ki(p = ), thenfor all statest such that (s, t) € K, we
have both that (M, t) = ¢ and (M, t) = ¢ = . By the definition of =, we
havethat (M, t) =  for all sucht, and therefore (M, s) = K.
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(b) If M = ¢, then (M, 1) = ¢ for al statest in M. In particular, for any fixed
statesin M, it followsthat (M, t) &= ¢ for al t suchthat (s,t) € K. Thus,
(M, s) & Kjp for all statessin M, and hence M = K.

(c) If (M, s) &= Kjg, then for all t such that (s,t) € K, we have (M, t) &= ¢.
Since K isreflexive, it followsthat (s, s) € K, soin particular (M, s) = ¢.

(d) Suppose (M, s) = Kjp. Consider any t such that (s,t) € K and any u
such that (t,u) € Kj. Since K is transitive, we have (s,u) € Kj. Since
(M, s) &= Kjg, itfollowsthat (M, u) = ¢. Thus, forall t suchthat (s, t) € K,
we have (M, t) = Kjp. It now followsthat (M, s) &= K K;¢.

(e) Suppose (M, s) &= —Kjp. Then for some u with (s, u) € Kj, we must have
(M, u) &= —¢. Supposet issuchthat (s,t) € Kj. Since K is symmetric,
(t,s) € K, and since K istransitive, we must also have (t, u) € K. Thusit
followsthat (M, t) &= —Kj¢. Sincethisistruefor al t suchthat (s,t) € X,
weobtain (M, s) &= Ki—=Kjp. 1

Thecollection of propertiesthat we have considered so far—the Distribution Ax-
iom, the Knowledge Axiom, the Positive and Negative Introspection Axioms, and
the Knowledge Generalization Rule—has been studied in some depth in the litera-
ture. For historical reasons, these properties are sometimes called the b properties.
(Actually, S5 is an axiom system. We give amore formal definition of it in the next
chapter.) How reasonable are these properties? The proof of Theorem 2.4.1 shows
that, in a precise sense, the validity of the Knowledge Axiom follows from the fact
that K; is reflexive, the validity of the Positive Introspection Axiom follows from
the fact that K; is transitive, and the validity of the Negative Introspection Axiom
followsfrom the fact that i is symmetric and transitive. Although taking K; to be
an equivalencerel ation seems reasonabl e for many applicationswe havein mind, we
can certainly imagineother possibilities. Aswe show in Chapter 3, by modifying the
properties of the K; relations, we can get notions of knowledge that have different
properties.

Two propertiesthat seem forced on us by the possible-worlds approach itself are
the Distribution Axiom and the K nowledge Generalization Rule. No matter how we
modify the K; relations, these properties hold. (Thisis proved formally in the next
chapter.) These propertiesmay bereasonableif weidentify “ agent i knowse” with“ ¢
followsfrom agent i’sinformation,” as we implicitly did when modeling the muddy
children puzzle. To the extent that we think of knowledge as something acquired by
agentsthrough some reasoning process, these properties suggest that we must think
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in terms of agents who can do perfect reasoning. While this may be a reasonable
idealizationin certain circumstances(and is an assumption that isexplicitly madein
the description of the muddy children puzzle), it is clearly not so reasonablein many
contexts. In Chapters 9 and 10 we discuss how the possible-worlds model can be
modified to accommodate imperfect, “non-ideal” reasoners.

The reader might wonder at this point if there are other important properties of
our definition of knowledge that we have not yet mentioned. Although, of course,
anumber of additional properties follow from the basic S5 properties, in a precise
sense the S5 properties compl etely characterize our definition of knowledge, at | east
asfar asthe K; operatorsare concerned. Thispointisdiscussed in detail in Chapter 3.

We now turn our attention to the properties of the operators Eg, Cg, and Dg.
Since Egy istrue exactly if every agent in G knows ¢, we have

= Ecp & /\ Kig.
ieG

Recall that we said common knowledge could be viewed as what “any fool”
knows. Not surprisingly, it turns out that common knowledge has all the properties
of knowledge; axiomsanal ogousto the K nowledge Axiom, Distribution Axiom, Pos-
itive Introspection Axiom, and Negative I ntrospection Axiom all hold for common
knowledge (see Exercise 2.8). In addition, it is easy to see that common knowledge
among a group of agentsimplies common knowledge among any of its subgroups,
thatis, Ccp = Cao if G D G’ (again, see Exercise 2.8). It turns out that all these
properties follow from two other properties, which in a precise sense capture the
essence of common knowledge. We discuss these properties next.

Recall from Chapter 1 that the children in the muddy children puzzle acquire
common knowledge of the fact p (that at least one child has a muddy forehead) be-
causethefather’ sannouncement putsthemin asituation where all the children know
both that p istrue and that they arein this situation. This observationis generalized
in the following Fixed-Point Axiom, which saysthat ¢ is common knowledge among
the group G if and only if all the members of G know that ¢ istrue and is common
knowledge:

= Cep & Eg(p A Cso).

Thus, the Fixed-Point Axiom says that Cg¢ can be viewed as a fixed point of the
function f(x) = Eg(¢ A X), which maps a formula x to the formula Eg (¢ A X).
(We shall see aformalization of thisintuition in Section 11.5.)

The second property of interest givesusaway of deducing that common knowl-
edge holdsin a structure.

For al structures M, if M = ¢ = Eg(¥ A @), then M = ¢ = Cg.
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This rule is often caled the Induction Rule. The proof that it holds shows why:
the antecedent gives us the essential ingredient for proving, by induction on K, that
¢ = EX(y A @) isvalidfor all k.

We now prove formally that these propertiesdo indeed hold for the operators Eg
and Cs.

Theorem 2.4.2 For all formulas ¢ and , all structures M, and all nonempty
Gci{l....n}

(@ M E Egp & Aig Kio,
(b)) M = Cgop & Ec(p A Cgo),
© ifM £ ¢ = Eg(¥ A @), then M = ¢ = Cg .

Proof Part (a) followsimmediately from the semanticsof Eg. To prove the other
parts, we use the characteri zation of common knowledge provided by Lemma2.2.1,
namely, that (M, s) &= Cgg iff (M, 1) &= ¢ for al states t that are G-reachable
from s. We remark for future reference that the proof we are about to give does not
make use of the fact that the K;’s are equivalencerelations; it goes through without
change even if the K’s are arbitrary binary relations.

For part (b), suppose (M, s) &= Cge. Thus (M,t) E ¢ for dl statest that
are G-reachable from s. In particular, if u is G-reachable from s in one step, then
(M,u) = g and (M, t) = ¢ fordl t that are G-reachable from u. Thus (M, u) &=
¢ ACgo forall uthat are G-reachablefrom sinonestep, so (M, s) = Eg(¢ ACgo).
For the converse, suppose (M, s) &= Eg(¢ A Cep). Suppose that t is G-reachable
from s and s’ isthefirst node after s on apath from s tot whose edges are labeled by
membersof G. Since (M, s) &= Eg(¢ A Cge), it followsthat (M, ') = ¢ A Cgo.
Either s = t or t is reachable from s'. In the former case, (M,t) &= ¢ since
(M, 8 & ¢, whilein thelatter case, (M, t) = ¢ by Lemma2.2.1 and the fact that
(M, §') = Cgo. Because (M, t) = ¢ foral t that are G-reachablefrom s, it follows
that (M, s) = Cgo.

Finally, for part (c), suppose M = ¢ = Eg(¥ A ¢) and (M, s) = ¢. We
show by induction on k that for all k we have (M, t) = ¢ A ¢ for al t that are
G-reachablefrom sin k steps. Supposet is G-reachable from s in one step. Since
M E ¢ = Ec(¥ Ap),wehave(M, s) &= Eg(¥ A@). Sincet isG-reachablefrom s
in one step, by Lemma2.2.1, we have (M, t) &= ¢ A ¢ asdesired. If k = K + 1,
thenthereissomet’ that is G-reachablefrom sin k' stepssuch that t is G-reachable
from t’ in one step. By the induction hypothesis, we have (M, t') &= ¥ A ¢. Now
the same argument as in the base case showsthat (M, t) &= ¥ A ¢. Thiscompletes
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theinductiveproof. Since (M, t) = ¢ for all statest that are G-reachablefrom s, it
followsthat (M, s) &= Cgo. 1

Finally, we consider distributed knowledge. We mentioned in Chapter 1 that
distributed knowledge can be viewed as what a “wise man” would know. $o it
should not be surprising that distributed knowledge al so satisfies all the properti esof
knowledge. Distributed knowledge has two other propertiesthat we briefly mention
here. Clearly, distributed knowledge of agroup of size oneisthe same asknowledge,
so that we have

= Diye ¢ Kio.
The larger the subgroup, the greater the distributed knowledge of that subgroup:

': DG(p = DG/QD if G g G/.

The proof that all these properties of distributed knowledge are indeed valid is
similar in spirit to the proof of Theorem 2.4.1, so we leave it to the reader (Exer-
cise 2.10). We also show in Chapter 3 that these properties of common knowledge
and distributed knowledge in a precise sense compl etely characterizeall the relevant
properties of these notions.

2.5 An Event-Based Approach

The approach to modeling knowledge presented in Section 2.1 has two components.
It uses Kripke structures as a mathematical model for situations involving many
agents, and it uses alogical language to make assertions about such situations. This
languageis based on a set of primitive propositionsand is closed under logical oper-
ators. Thus, knowledgeis expressed syntactically, by modal operators on formulas.
We call thisthe logic-based approach. It isthe approach that traditionally has been
taken in philosophy, mathematical logic, and Al.

In this section, we describe an alternate approach to modeling knowledge, one
that is typically used in the work on knowledge in game theory and mathematical
economics. We call this the event-based approach. It differs from the logic-based
approach in two respects. First, rather than use Kripke structures as the underlying
mathematical model, the event-based approach uses closely related structures that
we call Aumann structures. Second, and more important, in the spirit of probability
theory, the event-based approach focuses on events, which are setsof possibleworlds,
and dispenses completely with logical formulas. Knowledge hereis expressed asan
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operator on events. We now review the event-based approach and discuss its close
relationship to the | ogic-based approach.

Asin the logic-based approach of Section 2.1, we start out with a universe S of
states. An eventisaset e C Sof states. We can talk, for example, about the event
of itsraining in London, which correspondsto the set of stateswhereitisrainingin
London. We say that event e holds at state s if s € e. Thus, if e_ isthe event of its
raining in London, then e holds at state s precisely if s isone of the stateswhere it
israining in London. The conjunction of two eventsis given by their intersection.
For example, the event of itsraining in London and being sunny in San Franciscois
the intersection of e with the event of its being sunny in San Francisco. Similarly,
the negation of an event is given by the complement (with respect to S).

Aswe have mentioned, Aumann structuresare used to provideaformal model for
the event-based approach. Aumann structures are like Kripke structures, with two
differences. Thefirstisthat thereisno analogueto the  function, sinceinthe event-
based approach, there are no primitive propositions. The second differenceis that,
rather than use abinary relation K; to define what worldsagent i considerspossible,
in Aumann structuresthere isa partition 7, of Sfor each agenti. (A partition of a
set Sisaset (S, ..., S} of subsets of Ssuch that the §’s are digoint and such that
the union of the §'sistheset S) If P = {S;, ..., S}, thenthe sets § are called
the cells of the partition 7, or the information sets of agent i. The intuition is that
if § isaninformation set of agent i, and if s € §, then the set of states that agent i
considers possible (which correspondsto the information of agent i) isprecisely §.

Formally, an Aumann structure A is a tuple (S, Py, ..., Pn), Where S is the
set of states of the world and 7; is a partition of S for every agent i. We denote
by P (s) the cell of the partition 7; in which s appears. Since P; is a partition, it
followsthat for every agent i and every pair s,t € Sof states, either P, (s) = P; (1)
or Pi(s) N Pi(t) = @. Intuitively, when s, t are in the same information set of
agent i, then in state s agent i considers the state t possible. As we have already
remarked, unlike a Kripke structure, in an Aumann structure there is no function
that associates with each state in S a truth assignment to primitive propositions.
(Using terminology we introduce in the next chapter, this means that an Aumann
structureisreally a frame.)

How do we define knowledge in the event-based approach? Since the objects
of interest in this approach are events, it should not be surprising that knowledgeis
defined in terms of events. Formally, given an Aumann structure (S, Ps, ..., Pn),
we define knowledge operatorsK; : 25 — 25 fori =1, ..., n, asfollows:

Ki(e) = {s e S|Pi(s) C€};
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K; (€) iscalled the event of i knowing e. Here 25 isthe set of all subsetsof S. (Note
that we use sans serif font for the knowledge operator K;, in contrast to the italic
font that we use for the modal operator K;, and the script font we use for the binary
relation K.) Itiseasy to seethat K; (e) isthe union of the information sets of agent i
that are contained in e. Theintuition isthat agent i knows e at state s if e holds at
every state that agent i considers possible at state s (namely, at all states of P (s)).
Thus, agent i knows that no matter what the actual stateis, the event e holdsthere.

The event of everyonein a group G knowing e is captured by an operator Eg :
25 — 25 defined as follows:

Ec(®) = )Ki(®).

ieG

We can iterate the Eg operator, defining E};(e) = Eg(e) and E'gl(e) = EG(E'(‘;(e))
fork > 1. Common knowledge of an event e among the agentsin agroup G, denoted
Ca(e), isthe event of the playersall knowing e, all knowing that all know it, and so
on ad infinitum. Formally, we define

Ca(e) =) E&(©).
k=1

Finally, distributed knowledge of an event e among the agents in a group G,
denoted D (€), isdefined by

Dg(e) = {s eS| (ﬂPi (s)) C e}.

ieG

Intuitively, event e isdistributed knowledgeif e holds at all of the statesthat remain
possible once we combine the information availableto all of the agents.

Giventwo partitions? and P’ of aset S, the partition P is said to be finer than P’
(and P’ to be coarser than P) if P(s) € P'(s) holdsfor all s € S. Intuitively, if
partition 7 isfiner than partition 7’, then theinformation setsgiven by P giveat |east
as much information as the information sets given by P’ (since considering fewer
states possible corresponds to having more information). The meet of partitions P
and P, denoted P 1 P/, isthe finest partition that is coarser than P and 7’; the join
of P and 7', denoted P LI P’, isthe coarsest partition finer than > and P’. In the next
proposition, we make use of the meet and the join to give nice characterizations of
common knowledge and distributed knowledge.
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Proposition25.1 Let A = (S, Py, ..., Py) be an Aumann structure, let G C
{1,...,n} beagroup of agents, and let e C S. Then

(@) se Cg(e)iff (MiecPi)(S) C e
(b) s e Dg(e) iff (WiecPi)(S) C €.
Proof SeeExercise2.15. 1

It follows that the meet of the agents partitions characterizes their common
knowledge, and thejoin of theagents' partitionscharacterizestheir distributed knowl-
edge. Notice that Proposition 2.5.1(a) implies that verifying whether an event e is
common knowledge at a given state s can be done by one simple check of inclusion
between two well-defined sets; it is unnecessary to use the definition of common
knowledge, which involves an infinitary intersection.

There is a close connection between the logic-based approach and the event-
based approach, which we now formalize. Thereis a natural one-to-one correspon-
dence between partitions on S and equivalence relationson S. Given a partition
P of S, the corresponding equivalence relation R is defined by (s,8) € R iff
P(s) = P(s). Similarly, given an equivalencerelation R on S, the correspond-
ing partition {S, ..., S} of Sisobtained by making each equivalence class of R
intoacell § of thepartition; that is, two statess, t areinthesame cell of the partition
precisalyif (s,t) € R. Itisthuseasy to convert back and forth between the partition
viewpoint and the equivalencerelations viewpoint (see Exercise 2.16).

Assumenow that wearegivenaKripkestructure M = (S, 7, K4, ..., Kn), where
each K; isan equivalencerelation. We define the corresponding Aumann structure
AM = (S, Py, ..., Py (withthe sameset Sof states) by taking P; to be the partition
corresponding to the equivalencerelation ;. We want to show that M and AM have
the same “semantics.” The semanticsin M is defined in terms of formulas. The
intension of a formula ¢ in structure M, denoted ¢M, is the set of states of M at
which ¢ holds, i.e., o™ = {s| (M, s) = ¢}. The semanticsin AM is defined in
terms of events. For each primitive proposition p, define eg" tobetheeventthat pis
true; that is, ep'V' = {s| (M, s) &= p}. We can now define an event ev (¢) for each
formula ¢ by induction on the structure of ¢:

o evu(p) = e}

o evVm(Y1 A Y2) =evm(YPr) Nevm(yz)
o evy(—Y) =S—evm(y)

e evm(Kiy) = Ki(evm(y))
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e evy(Coy) = Cg(evm(¥))

e eVy(Dgy) = Dg(evu(y))

Intuitively, ev v (¢) isthe event that ¢ holds. The following proposition shows that
this intuition is correct, that is, that the formula ¢ holds at state s of the Kripke
structure M iff ev v (¢) holds at state's of the Aumann structure AM.

Proposition 2.5.2 Let M beaKripke structurewhere each possibility relation K is
an equivalencerelation, and let AM be the corresponding Aumann structure. Then
for every formula ¢, we have ev y (¢) = M.

Proof SeeExercise2.17.1

We havejust shown how to go from aKripke structureto acorresponding Aumann
structure. What about the other direction? Let A = (S, P, ..., Pn) bean Aumann
structure. We want to define a corresponding Kripke structure (S, 7, K1, ..., Kn)
(with the same set S of states). Defining the Ki’s is no problem: we simply take
K to be the equivalencerelation corresponding to the partition 7. What about the
set @ of primitive propositionsand thefunction r that associateswith each statein S
atruth assignment to primitive propositions? Although an Aumann structure does
not presuppose the existence of aset of primitive propositions, in concrete examples
theretypically are namesfor basic eventsof interest, such as“Alicewinsthegame” or
“thedeal isstruck.” These names can be viewed as primitive propositions. It isalso
usually clear at which states these named events hold; this gives us the function .
To formalize this, assume that we are given not only the Aumann structure A but
aso an arbitrary set ® of primitive propositions and an arbitrary function = that
associateswith each statein Satruth assignment to primitive propositionsin ®. We
can now easily construct a Kripke structure M7, which correspondsto A and 7.
If A= (S, P, ..., Pn), then MAT = (S, 7, K1, ..., Kn), where K isthe partition
correspondingto P, fori = 1, ..., n. Itisstraightforward to show that the Aumann
structure correspondingto M A7 is A (see Exercise 2.18). Thus, by Proposition2.5.2,
the intensions of formulasin M7 and the events corresponding to these formulas
in A coincide.

Proposition 2.5.2 and the preceding discussion establish the close connection
between the logic-based and event-based approaches that we claimed previously.
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Exercises

2.1 Suppose it is common knowledge that all the children in the muddy children
puzzleareblind. What would the graphical representation be of the Kripke structure
describing the situation before the father speaks? What about after the father speaks?

* 2.2 Consider the following variant of the muddy children puzzle. Supposethatitis
common knowledgethat all the children except possibly child 1 are paying attention
when the father speaks. Moreover, suppose the children have played this game with
the father before, and it is common knowledge that when he speaks he says either
“At least one of you has mud on your forehead” or avacuous statement such as* My,
thisfield ismuddy.” (Thusit is common knowledgethat even if child 1 did not hear
the father, he knows that the father made one of those statements.)

(a) Describe the situation (i.e., the Kripke structure) after the father’s statement.
(Hint: each possible world can be characterized by an (n + 2)-tuple, wheren
isthe total number of children.) Draw the Kripke structurefor the case n = 2.

(b) Canthechildrenfigureout whether or not they aremuddy? (Hint: first consider
the case where child 1 is not muddy, then consider the case where heis muddy
and hearsthe father, and finally consider the case where heis muddy and does
not hear the father.)

(c) Can the children figure out whether or not they are muddy if the father says at
the beginning “ Two or more of you have mud on your forehead” ?

2.3 Hereisyet another variant of the muddy childrenpuzzle. Supposethat thefather
says “Child number 1 has mud on his forehead” instead of saying “At least one of
you has mud on your forehead.” 1t should not be too hard to convince yourself that
now the children (other than child 1) cannot deduce whether they have mud on their
foreheads. Explain why this should be so (i.e., why the children cannot solve the
puzzle in a situation where they apparently have more information). This example
shows that another assumption inherent in the puzzleisthat al relevant information
has been stated in the puzzle, and in particular, that the father said no more than “At
least one of you has mud on your forehead.”

* 2.4 Inthisexercise, we formalize the aces and eights game from Exercise 1.1.

(@) What are the possible worlds for this puzzle if the suit of the card matters?
How many possible worlds are there?
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(b) Now suppose weignore the suit (so, for example, we do not distinguish ahand
with the ace of clubs and the ace of hearts from a hand with the ace of spades
and the ace of hearts). How many possibleworlds are therein this case? Since
the suit does not matter in the puzzle, we still get an adequate representation
for the puzzle if we ignoreit. Since there are so many fewer possible worlds
to consider inthis case, it is certainly aworthwhile thing to do.

(c) Draw the Kripke structure describing the puzzle.

(d) Consider the situation described in part (a) of Exercise 1.1. Which edges
disappear fromthe structurewhen you hear that Aliceand Bob cannot determine
what cardsthey have? Explainwhy itisnow crucial to think of edges, not nodes,
as disappearing.

(e) Now consider thesituationdescribedin part (b) of Exercise1.1 and show which
edges disappear from the structure.

* 2.5 Inthisexercise, we formalize the wise men puzzle from Exercise 1.3.

() Considerthefirst version of the puzzle (asdescribedin part (a) of Exercise1.3).
Draw the Kripke structure describing theinitial situation. How doesthe struc-
ture change after thefirst wise man saysthat he does not know the color of the
hat on his head? How does it change after the second wise man says that he
does not know?

(b) How doestheinitial Kripke structure changeif the third wise man is blind?

2.6 Show that G-reachability is an equivalence relation if the K relations are re-
flexive and symmetric.

2.7 Show that if t is G-reachable from s, then (M, s) &= Cge iff (M, 1) & Cgo,
provided that the K; relation isreflexive and symmetric.

2.8 Show that the following properties of common knowledge are valid, using se-
mantic argumentsasin Theorems2.4.1 and 2.4.2:

(@ (Cep ACslp = ¥)) = Ca¥,
(b) Cop = ¢ (assuming that the K relations are reflexive),

(c) Cop = CsCqo,
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(d) =Cs¢ = Cs—Cg¢ (assuming that the K; relations are symmetric),
(€) Cop = CopifGDG.

Asisshown in Exercise 3.11, these properties are actually provable from the prop-
erties of knowledge and common knowledge described in this chapter.

2.9 Showthatif M = ¢ = v, then
@ M E Kig = Ky,
(b) M = Cey = Cey.
2.10 Show that the following properties of distributed knowledge are valid:
(@ (Deg A Dg(¢p = ¥)) = Dgv,
(b) Dge = ¢ (assuming that the K; relationsare reflexive),
(¢) Dy = DgDge (assuming that the K; relationsare transitive),

(d) =Dg¢ = Dg—Dgg (assuming that the K; relations are symmetric and tran-
sitive),

(e Diye ¢ Kig,
(f) D = DgoifGC G

2.11 Prove using semantic argumentsthat knowledge and common knowledge dis-
tribute over conjunction; i.e., prove that the following properties are valid:

@ Kilp AY) & (Kip A Kiy),
(b) Colp AY) & (Cop A Ca).

It can also be shown that these properties follow from the properties described for
knowledge and common knowledgein the text (Exercise 3.31).

2.12 Prove that the following formulas are valid assuming that the K; relationsare
equivalencerelations:

@ E—¢ = Ki—=Kijgp,
(b) E—¢ = Kij, ... Kj,—=Kj, ... Kj,¢ for any sequenceiq, ..., ix of agents,
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(©) E—Ki=Ki¢ < K.

These formulas are also provable from the S5 properties we discussed; see Exer-
cise3.14.

213 Let A = (S, Py, ..., Pn) bean Aumann structure, and let G C {1,...,n}.
If s, t are states, we say that t is G-reachable fromsin A if t isreachable from s
in aKripke structure MA" correspondingto A. Provethatt € (Miegi)(S) iff t is
G-reachablefrom s.

214 Let A = (S, Py, ..., Pn) bean Aumann structureand let G C {1,...,n}.
Provethatt € (LUj<gPi)(S) iff for every agent i we havet € P (S).

2.15 Prove Proposition 2.5.1. (Hint: you may either prove this directly, or use
Exercises2.13 and 2.14.)

2.16 Show that the correspondence we have given between partitions and equiva-
lence relations and the correspondence defined in the other direction are inverses.
That is, show that R isthe equivalencerelation that we obtain from a partition P iff
P isthe partition that we obtain from the equivalencerelation R.

2.17 Let M beaKripkestructurewhereeach possibility relation Kj isan equivalence
relation, and let A be the corresponding Aumann structure.

() Provethat

(i) s € Ki(ev(e)) haldsin Aiff (M, s) = K,
(ii) s € Dg(ev(p)) holdsin Aiff (M, s) &= Dge,
(iii) s € Cg(ev(p)) haldsin Aiff (M, s) &= Cge.

(b) Use part (a) to prove Proposition 2.5.2.

2.18 Show that the Aumann structure corresponding to the Kripke structure M A7
is A
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Notes

Modal logic was discussed by several authorsin ancient times, notably by Aristotle
in De Interpretatione and Prior Analytics, and by medieval logicians, but like most
work before the modern period, it was nonsymbolic and not particularly systematic
in approach. Thefirst symbolic and systematic approach to the subject appearsto be
the work of Lewis beginning in 1912 and culminating in the book Symbolic Logic
with Langford [1959]. Carnap [1946, 1947] suggested using possible worlds to
assign semanticsto modalities. Possible-worlds semanticswas further devel opedin-
dependently by several researchers, including Bayart [1958], Hintikka[1957, 1961],
Kanger[1957b], Kripke[1959], M eredith [ 1956], M ontague[1960], and Prior [1962]
(who attributed theideato P. T. Geach), reachingits current form (as presented here)
with Kripke[1963a]. Many of these authors also observed that by varying the prop-
ertiesof the K; relations, we can obtain different properties of knowledge.

Theinitial work on modal logic considered only the modalitiesof possibility and
necessity. As we mentioned in the bibliographic notes of Chapter 1, the idea of
capturing the semantics of knowledgein this way is due to Hintikka, who also first
observed the properties of knowledge discussed in Section 2.4.

The analysis of the muddy children puzzle in terms of Kripke structuresis due
to Halpern and Vardi [19914]. Aumann structures were defined by Aumann [1976].
Aumann defines common knowledge in terms of the meet; in particular, the obser-
vation made in Proposition 2.5.1(a) is due to Aumann. A related approach, also
defining knowledge as an operator on events, is studied by Orlowska[1989].






Chapter 3

Completeness and Complexity

There are four sorts of men:

He who knows not and knows not he knows not: heis a fool—shun him;
He who knows not and knows he knows not: he is simple—teach him;
He who knows and knows not he knows. he is aseep—wake him;

He who knows and knows he knows. he is wise—follow him.

Arabian proverb

In Chapter 2 we discussed the properties of knowledge (aswell asof common knowl-
edge and distributed knowledge). We attempted to characterize these propertiesin
terms of valid formulas. All we did, however, was to list some valid properties. It
is quite conceivable that there are additional properties of knowledge that are not
consequences of the propertieslisted in Chapter 2. In this chapter, we give a com-
plete characterization of the properties of knowledge. We describe two approaches
to this characterization. The first approach is proof-theoretic: we show that all the
properties of knowledge can be formally proved from the propertieslisted in Chap-
ter 2. The second approach is algorithmic: we study algorithms that recognize the
valid properties of knowledge. We also consider the computational complexity of
recognizing valid properties of knowledge. Doing so will give us some insight into
what makes reasoning about knowledge difficult.

When analyzing the properties of knowledge, it isuseful to consider a somewhat
more general framework than that of the previouschapter. Rather than restrict atten-
tion to the case where the possibility relations (the K;'s) are equivalence relations,
we consider other binary relationsaswell. Although our examples show that taking
the K;’sto be equivalencerelations s reasonably well-motivated, particularly when

47
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what an agent considers possibleisdeterminedby hisinformation, therearecertainly
other choices possible. The real question is what we mean by “in world s, agent i
considersworld t possible”

L et us now consider an example where reflexivity might not hold. We can easily
imaginean agent who refusesto consider certain situationspossible, even when they
are not ruled out by hisinformation. Thus, Fred might refuse to consider it possible
that hisson Harry istakingillegal drugs, evenif Harry is. Fred might claimto“know”
that Harry is drug-free, sincein all worlds Fred considers possible, Harry isindeed
drug-free. In that case, Fred's possibility relation would not be reflexive; inworld s
where Harry istaking drugs, Fred would not consider world s possible. To see why
symmetry might not hold, consider poor Fred again. Suppose in world s, Fred's
wife Harriet is out visiting her friend Alice and told Fred that she would be visiting
Alice. Fred, however, has forgotten what Harriet said. Without reflecting on it too
much, Fred considers the world t possible, where Harriet said that she was visiting
her brother Bob. Now, in fact, if Harriet had told Fred that she was visiting Bob,
Fred would have remembered that fact, since Harriet had just had a fight with Bob
the week before. Thus, in world t, Fred would not consider world s possible, since
inworld t, Fred would remember that Harriet said she was visiting Bab, rather than
Alice. Perhaps with some introspection, Fred might realize that t is not possible,
becauseint he would have remembered what Harriet said. But peopledo not always
do such introspection.

By investigating the propertiesof knowledgein amore general framework, aswe
do here, we can see how these properties depend on the assumptions we make about
the possibility relations K. In addition, we obtain general proof techniques, which
in particular enable usto characterizein a precise sense the complexity of reasoning
about knowledge.

This chapter is somewhat more technical than the previous ones; we have high-
lighted the major ideasin the text, and have left many of the detailsto the exercises.
A reader interested just in the results may want to skip many of the proofs. However,
we strongly encourage the reader who wants to gain a deeper appreciation of the
techniques of modal logic to work through these exercises.

3.1 Completeness Results
As we said before, we begin by considering arbitrary Kripke structures, without

the assumption that the possibility relations K; are equivalence relations. Before
we go on, we need to define some additional notation. Let £,(®) be the set of
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formulas that can be built up starting from the primitive propositionsin @, using
conjunction, negation, and the modal operators Ko, ..., K,. Let L,?(CD) (resp.,
LS (®)) be the language that results when we allow in addition the modal operators
D¢ (resp., operators Eg and Cg), where G is anonempty subset of {1, ..., n}. In
addition, we consider the language £5P (@), where formulas are formed using all
the operators Cg, Dg, and Eg. Let M, (d) be the class of al Kripke structures
for n agents over ® (with no restrictions on the K relations). Later we consider
various subclasses of M, (P), obtained by restricting the K relations appropriately.
For example, we consider M (®), the Kripke structures where the K relation is
reflexive, symmetric, and transitive(i.e., an equivalencerelation); these are precisely
the structures discussed in the previous chapter. For notational convenience, wetake
the set @ of primitive propositionsto be fixed from now on and suppressit from the
notation, writing £, instead of £,(®), M, instead of M, (®P), and so on.

If Aisaset, define | Al to be the cardinality of A (i.e., the number of elements
in A). We define ||, thelength of aformulag e £5P, to be the number of symbols
that occur in ¢; for example, |p A Eq1,2ypl = 9. In general, the length of aformula
of theform Cgyr, Egyr, or Dgyr is2 + 2|G| + |y|, Since we count the elements
in G asdistinct symbols, aswell asthe commasand set bracesin G. We also define
what it meansfor y to be asubformula of ¢. Informally, ¢ isasubformulaof ¢ if it
isaformulathat isasubstring of ¢. Theformal definition proceeds by induction on
the structure of ¢: v isasubformulaof ¢ € £, if either (a) v = ¢ (sothat ¢ and
are syntactically identical), (b) ¢ is of the form —¢’, Kj¢’, Cg¢’, Dg¢’, of Eg¢’,
and ¢ isasubformulaof ¢’, or (¢) ¢ isof theform ¢’ A ¢” and ¢ isasubformula
of either ¢’ or ¢”. Let Sub(¢) be the set of all subformulasof ¢. We leaveit to the
reader to check that |Sub(e)| < |¢[; that is, the length of ¢ isan upper bound on the
number of subformulasof ¢ (Exercise3.1).

Although we have now dropped the restriction that the K;’s be equivalencerela-
tions, the definition of what it means for aformulag in £$P (or any of its sublan-
guages) to be true at a state s in the Kripke structure M € M, remains the same,
as do the notions of validity and satisfiability. Thus, for example, (M, s) = Kj¢
(i.e, agenti knows ¢ at state sin M) exactly if ¢ istrue at al the statest such that
(s,t) € Kj. We say that ¢ is valid with respect to M, and write M, = ¢, if ¢
isvaidin all the structuresin M,. More generaly, if M is some subclass of My,
we say that ¢ isvalid with respect to M, and write M = ¢, if ¢ isvalidin al the
structuresin M. Similarly, we say that ¢ is satisfiable with respect to M if ¢ is
satisfied in some structurein M.

We are interested in characterizing the properties of knowledge in Kripke struc-
turesintermsof theformulasthat are valid in Kripke structures. Note that we should
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expect fewer formulas to be valid than were valid in the Kripke structures consid-
ered in the previous chapter, for we have now dropped the restriction that the K;’s
are equivalencerelations. The class M of structuresis a proper subclass of M,,.
Therefore, aformulathat is valid with respect to M, is certainly valid with respect
to the more restricted class M. Aswe shall see, the converse does not hold.

We start by considering the language £,,; we deal with common knowledge and
distributed knowledge later on. We observed in the previous chapter that the Dis-
tribution Axiom and the Knowledge Generalization Rule hold no matter how we
modify the £ relations. Thus, the following theorem should not come as a great
surprise.

Theorem 3.1.1 For all formulas ¢, ¥ € L, structures M € M,, and agents
i=1...,n,

(@) if ¢ isaninstance of a propositional tautology, then M, & ¢,
(b)) ifMEpand M E ¢ = ¢ thenM = ¢,

(©) Mn & (Kig AKi(p = ¥)) = Kiy,

(d) if M = ¢ then M = Kjo.

Proof Parts (a) and (b) follow immediately from the fact that the interpretati on of
A and — in the definition of = isthe same asin propositional logic. The proofs of
part (c) and (d) are identical to the proofs of parts(a) and (b) of Theorem 2.4.1. i

We now show that in a preci se sense these properties compl etely characteri zethe
formulasof £, that are valid with respect to M. To do so, we have to consider the
notion of provability. An axiom system AX consists of a collection of axioms and
inferencerules. An axiom is aformula, and an inference rule has the form “from
@1, ..., ok infer ¢,” where ¢4, ..., ¢k, ¥ are formulas. We are actually interested
in (substitution) instances of axioms and inference rules (so we are really thinking
of axioms and inference rules as schemes). For example, the formula K;q v —K;q
is an instance of the propositional tautology p v —p, obtained by substituting K,q
for p. A proof in AX consists of a sequence of formulas, each of which is either
an instance of an axiomin AX or follows by an application of an inferencerule. (If
“from ¢1, ..., @k infer ¥ is an instance of an inference rule, and if the formulas
¢1, ..., ok have appeared earlier in the proof, then we say that + follows by an
application of an inferencerule.) A proof is said to be a proof of the formula ¢ if
the last formulain the proof is ¢. We say ¢ is provablein AX, and write AX F ¢,
if thereisaproof of ¢ in AX.
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Consider the following axiom system K,, which consists of the two axioms and
two inferencerules given below:

A1l. All tautologiesof propositional calculus

A2. (Kip AKi(p = ¥)) = Kjy,i =1,...,n (Distribution Axiom)
R1. From ¢ and ¢ = v infer ¢ (Modus ponens)

R2. From ¢ infer Kj¢ (Knowledge Generalization)

Recall that we are actually interested in instances of axiomsand inferencerules. For
example,
(Ki(pA Q) A Ki((p A Q) = —Kar)) = Ki=Kor

is a substitution instance of the Distribution Axiom.

Asatypical exampleof theuse of K, consider thefollowing proof of theformula
Ki(pA Q) = K;jp. We give the axiom used or the inference rule applied and the
linesit was applied to in parentheses at the end of each step:

L(pArg)=p (A)

2. Ki((pra) = p) (LR2)

3. (Ki(pArD) AKi((pAD) = p) = Kip (A2
4

- (Ki(pA @) AKi((PAQ) = p) = Kip)
= (Ki((pArq) = p) = (Ki(pArq) = Kip))
(A1, sincethisisan instance of the propositional tautology
((P1 A P2) = P3) = (P2 = (P1 = P3)))

5 Ki((prag) = p)= Ki(prg) = Kip (B4,R1)
6. Ki(pArg) = Kip (25R1)

This proof already shows how tedious the proof of even simpleformulas can be.
Typically wetend to combine several stepswhen writing up aproof, especially those
that involve only propositional reasoning (A1 and R1).

Thereader familiar with formal proofsin propositional or first-order logic should
be warned that one technique that works in these cases, namely, the use of the
deduction theorem, does not work for K,. To explain the deduction theorem, we
need one more definition. We generalize the notion of provability by defining ¢
to be provable from i in the axiom system AX, written AX, ¥ ¢, if thereisa
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sequence of steps ending with ¢, each of which is either an instance of an axiom
of AX, v itsdlf, or followsfrom previous steps by an application of aninferencerule
of AX. Thededuction theoremissaidto hold for AX if AX, ¢ F ¢ implies AX -
¥ = ¢. Although the deduction theorem holds for the standard axiomatizations of
propositional logic and first-order logic, it doesnot hold for K,,. To seethis, observe
that for any formula ¢, by an easy application of Knowledge Generalization (R2)
we have Ky, ¢ = Kjp. However, we do not in general have K, - ¢ = Kjg: itis
certainly not the case in general that if ¢ istrue, then agent i knows ¢. It turns out
that the Knowledge Generalization Rule is essentially the cause of the failure of the
deduction theorem for K,,. Thisissueisdiscussed in greater detail in Exercises 3.8
and 3.29.

We return now to our main goal, that of proving that K, characterizesthe set of
formulasthat are valid with respect to M,,. Anaxiom system AX issaidto be sound
for alanguage £ with respectto aclass M of structuresif every formulain £ provable
in AX isvalidwith respectto M. Thesystem AX iscompletefor £ with respectto M
if every formulain £ that is valid with respect to M isprovablein AX. We think of
AX ascharacterizingthe class M if it provides asound and compl ete axiomatization
of that class; notationally, this amounts to saying that for all formulas ¢, we have
AX + ¢ if and only if M E ¢. Soundness and completeness provide a tight
connection between the syntactic notion of provability and the semantic notion of
validity.

We plan to show that K, provides a sound and complete axiomatization for £y,
with respectto M. We need one moreround of definitionsin order to do this. Given
an axiom system AX, we say aformula ¢ is AX-consistent if —¢ is not provable
in AX. Afiniteset {¢1, ..., ¢k} of formulasis AX-consistent exactly if 1 A ... Ak
is AX-consistent, and an infinite set of formulas is AX-consistent exactly if all of
its finite subsets are AX-consistent. Recall that alanguage is a set of formulas. A
set F of formulasis a maximal AX-consistent set with respect to a language £ if
(1) it is AX-consistent, and (2) for al ¢ in £ but not in F, the set F U {¢} is not
AX-consistent.

Lemma3.1.2 Suppose thelanguage £ consists of a countable set of formulas and
is closed with respect to propositional connectives (so that if ¢ and y are in the
language, then so are ¢ A ¥ and —g). In any axiom system AX that includes every
instance of Al and R1 for the language £, every AX-consistent set F C £ can be
extended to a maximal AX-consistent set with respect to £. In addition, if F isa
maximal AX-consistent set, then it satisfies the following properties:
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(a) for everyformula ¢ € £, exactly oneof ¢ and —¢ isin F,
b)) oAy eFiffpe Fandy € F,

(c) ifp andp =  arebothin F, then v isin F,

(d) if p isprovablein AX, theng € F.

Proof Let F bean AX-consistent subset of formulasin £. To show that F can be ex-
tended to amaximal AX-consistent set, wefirst construct asequence Fo, F1, Fo, ...
of AX-consistent setsasfollows. Because £ isa countablelanguage, let v1, ¥, ...
be an enumeration of the formulasin £. Let Fp = F, and inductively construct
the rest of the sequence by taking Fiy 1 = F U {¥;,1} if this set is AX-consistent
and otherwise by taking Fi, 1 = Fi. Itiseasy to see that each set in the sequence
Fo, F1, ... is AX-consistent, and that this is a nondecreasing sequence of sets. Let
F = UX,Fi. Eachfinite subset of F must be contained in F; for some j, and thus
must be AX-consistent (since F; is AX-consistent). It followsthat F itself is AX-
consistent. We claim that in fact F isa maximal AX-consistent set. For suppose
Y e Landy ¢ F. Sincey isaformulain £, it must appear in our enumeration, say
as Y. If FcU {yy} were AX-consistent, then our construction would guarantee that
Yk € Fxy1, and hencethat vy € F. Becauseyx = ¢ ¢ F, it followsthat Fy U {1/}
isnot AX-consistent. Hence F U {1/} isalso not AX-consistent. It followsthat F is
amaximal AX-consistent set.

To see that maximal AX-consistent setshaveall the propertieswe claimed, let F
be amaximal AX-consistent set. If ¢ € £, we now show that one of F U {¢} and
F U {—¢}is AX-consistent. For assume to the contrary that neither of themis AX-
consistent. It isnot hard to seethat F U {9 v —¢} isthen also not AX-consistent
(Exercise 3.2). So F isnot AX-consistent, because ¢ v —¢ is a propositional tau-
tology. Thisgivesa contradiction. If F U {¢} is AX-consistent, then we must have
¢ € F since F isamaxima AX-consistent set. Similarly, if F U {—¢} is AX-
consistentthen—¢ € F. Thus, oneof ¢ or ~¢ isin F. Itisclear that we cannot have
both ¢ and —¢ in F, for otherwise F would not be AX-consistent. This proves (a).

Part (a) isenoughtolet usproveall the other propertieswe claimed. For exampl e,
if o Ay € F, thenwemust havey € F, for otherwise, aswe just showed, we would
have —¢ € F, and F would not be AX-consistent. Similarly, we must have ¢ € F.
Conversely, if ¢ and ¢ are bothin F, we must have ¢ A ¢ € F, for otherwise we
would have —=(¢ A ¥) € F, and, again, F would not be AX-consistent. We leave
the proof that F has properties(c) and (d) to the reader (Exercise 3.3). 1

We can now prove that K, is sound and complete.
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Theorem 3.1.3 K, isa sound and compl ete axiomati zation with respect to M, for
formulasin the language L.

Proof Using Theorem3.1.1,itisstraightforward to proveby inductiononthelength
of a proof of ¢ that if ¢ is provablein K, then ¢ is valid with respect to M,, (see
Exercise 3.4). It followsthat K, is sound with respect to Mj,.

To prove compl eteness, we must show that every formulain £, that isvalid with
respect to M, isprovablein K. It sufficesto prove that

Every K,-consistent formulain £, is satisfiable with respect to M. (%)

For suppose we can prove (x), and ¢ isavaidformulain £y. If ¢ isnot provablein
Ky, then neither is ——¢, so, by definition, —¢ is K,-consistent. It follows from (x)
that —¢ is satisfiablewith respect to M, contradicting the validity of ¢ with respect
to M.

We prove (x) using a general technique that works for a wide variety of modal
logics. We construct a special structure M¢ € M, called the canonical structure
for K,. M®hasastatesy correspondingto every maximal K ,-consistent set V. Then
we show

(M€, sy) =g iff p e V. (k%)

That is, we show that aformulaistrue at astate sy exactly if it isone of the formulas
in V. Notethat (xx) sufficesto prove (x), for by Lemma3.1.2, if ¢ isK-consistent,
then ¢ is contained in some maximal K,-consistent set V. From (xx) it follows that
(M€, sy) E ¢, and so ¢ issatisfiablein M€. Therefore, ¢ is satisfiable with respect
to M, asdesired.

Weproceedasfollows. Givenaset V of formulas, defineV/K; = {¢ | Kip € V}.
For example, if V = {K1p, KoKi1q, KiKzp A g, K1K3zq}, then V/K; = {p, K3q}.
Let M® = (S, m, Ky, ..., Kn), where

S = {sy |V isamaximal K,-consistent set}
| true ifpeV
7(s)(P) = {false if gV

Ki = {(sv,sw)|V/Ki € W}
We now show that for al V we have (M€, sy) & ¢ iff ¢ € V. We proceed

by induction on the structure of formulas. More precisely, assuming that the claim
holdsfor all subformulas of ¢, we also show that it holds for ¢.
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If ¢ isaprimitive proposition p, thisisimmediate from the definition of 7 (sy).
Thecaseswhere ¢ isaconjunctionor anegationare simpleand | eft to the reader (Ex-
ercise 3.5). Assume that ¢ is of the form K;y andthat ¢ € V. Then ¢ € V/K;
and, by definition of K, if (sy, sw) € Ki, theny¥ € W. Thus, using the induction
hypothesis, (M®, sy) &= v for all W such that (sy, sw) € K. By the definition of
=, it followsthat (M€, sy) = K.

For theother direction, assume (M€, sy) &= K;y. Itfollowsthat theset (V/K;)U
{—} isnot Ky-consistent. For suppose otherwise. Then, by Lemma3.1.2, it would
have a maximal Kn-consistent extension W and, by construction, we would have
(sv,Sw) € K. By the induction hypothesis we have (M€, sy) & —v, and sO
(M€, sy) &= =K, contradicting our original assumption. Since (V/K;) U {—=v}is
not K,-consistent, there must be some finite subset, say {¢1, ..., ¢k, =¥}, whichis
not K,-consistent. Thus, by propositional reasoning (Exercise 3.6), we have

KnkFo1= (2= (.. = (k= ¥)..0)).
By R2, we have
KnFKi(p1= (2= (.. = (gk = ¥)..).

By inductiononk, together with axiom A2 and propositional reasoning, we can show
(Exercise 3.7)

KnFKi(pr= (2= (..= (o= 9)...) =
(Kigr = (Kigz = (... = Kigk = Kiy)...).

Now from R1, we get

Kn - Kigr = (Kigz = (.. = (Kigk = Kiy)..).
By part (d) of Lemma3.1.2, it followsthat

Kigr = (Kigz = (... = (Kigk = Kjy)..)) e V.

Because ¢1, ..., ok € V/Kj, we must have K¢, ..., Kigk € V. By part (c) of
Lemma3.1.2, applied repeatedly, it followsthat K € V, asdesired. I

We have thus shown that K,, completely characterizesthe formulasin £, that are
valid with respect to My, where there are no restrictions on the K relations. What
happens if we restrict the K relations? In Chapter 2, we observed that we do get
extrapropertiesif we takethe K relationsto be reflexive, symmetric, and transitive.
These properties are the following:
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A3. Kip = ¢, i=1,...,n (Knowledge Axiom)
Ad. Kip = KiKjp, 1 =1,...,n (Postivelntrospection Axiom)
A5. =Kjp = Ki=Kjp, i =1,...,n (Negativelntrospection Axiom)

We remarked earlier that axiom A3 has been taken by philosophersto capturethe
differencebetween knowledge and belief. From thispoint of view, the manwe spoke
of at the beginning of the chapter who “knew” his son was drug-free should really
be said to believe his son was drug-free, but not to know it. If we want to model such
anotion of belief, then (at least according to some philosophers) we ought to drop
A3, but add an axiom that says that an agent does not believe false:

A6. —Kj(false), i =1,...,n (Consistency Axiom)

Itiseasy to seethat A6 is provablefrom A3, Al, and R1 (see Exercise 3.9).

Historically, axiom A2 has been called K, A3 has been called T, A4 has been
called 4, A5 has been called 5, and A6 has been called D. We get different modal
logics by considering various subsets of these axioms. In the case of one agent, the
systemwithaxiomsand rulesAl, A2, R1, and R2 hasbeen calledK. Oneapproachto
naming these logicsis to name them after the significant axiomsused. For example,
the axiom system KD45 is the result of combining the axioms K, D, 4, and 5 with
A1l, R1, and R2, while KT4 isthe result of combining the axiomsK, T, and 4 with
A1, R1, and R2. Some of the axiom systems are commonly called by other names
aswell. TheK is quite often omitted, so that KT becomes T, KD becomes D, and
so on; KT4 has traditionally been called $4 and KT45 has been called S5. (The
axiomsK, T, 4, and 5, together with rule R2, are what we called the S5 propertiesin
Chapter 2.) We stick with the traditional names here for those logicsthat have them,
since they arein common usage, except that we use the subscript n to emphasizethe
fact that we are considering systemswith n agentsrather than only one agent. Thus,
for example, we speak of thelogics T, or S5,,. We occasionally omit the subscript
if n = 1, in linewith more traditional notation.

Philosophers have spent yearsarguing which of these axioms, if any, best captures
the knowledge of an agent. We do not believe that there is one “true” notion of
knowledge; rather, the appropriate notion depends on the application. As we said
in Chapter 2, for many of our applicationsthe axioms of S5 seem most appropriate
(although philosophers have argued quite vociferously against them, particularly
axiomAb). Rather thanjustify theseaxiomsfurther, wefocushere ontherel ati onship
between these axioms and the properties of the K; relation, and on the effect of this
relationship on the difficulty of reasoning about knowledge. (Somereferencesonthe
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issueof justification of the axiomscan befoundin the bibliographic notesat theend of
thechapter.) Sincewe do not havethe spaceto do an exhaustivestudy of al thelogics
that can be formed by considering all possible subsets of the axioms, we focus on
somerepresentativecaseshere, namely K, T, $4n, Sbn, and KD45,,. Theseprovide
asampl eof thelogicsthat havebeen consideredintheliterature and demonstratesome
of the flexibility of thisgeneral approach to modeling knowledge. K, isthe minimal
system, and it enablesusto study what happenswhen there arein some sense asfew
restrictions as possible on the K; operator, given our possible-worlds framework.
The minimal extension of K, that requires that what is known is necessarily trueis
the system T,,. Researchers who have accepted the arguments against A5 but have
otherwise been happy with the axioms of S5, have tended to focus on $4,. On
the other hand, researchers who were willing to accept the introspective properties
embodied by A4 and A5, but wanted to consider belief rather than knowledge have
tended to consider KD45 or K45. For definiteness, we focus on KD45 here, but all
our results for KD45 carry over with very little change to K45.

Theorem 3.1.3 implies that the formulas provable in K, are precisely those that
arevalid with respect to M,. We want to connect the remaining axiomswith various
restrictions on the possibility relations ;. We have aready considered one possi-
ble restriction on the K relations (namely, that they be reflexive, symmetric, and
transitive). We now consider others. We say that a binary relation £ onaset Sis
Euclideanif, forall s, t,u € S, whenever (s,t) € K and (s, u) € K,then(t,u) € K;
we say that K isserial if, for all s € S, thereissomet such that (s, t) € K.

Some of the relationships between various conditions we can place on binary
relations are captured in the following lemma, whose proof is left to the reader
(Exercise 3.12).

Lemma3.1.4
(a) If K isreflexiveand Euclidean, then K is symmetric and transitive.
(b) If K issymmetric and transitive, then K is Euclidean.
(c) Thefollowing are equivalent:

(i) K isreflexive, symmetric, and transitive.
(if) K issymmetric, transitive, and serial.

(iii) K isreflexiveand Euclidean.
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Let M (resp., M M™S; M8t bethe class of all structuresfor n agents where
the possibility relations are reflexive (resp., reflexive and transitive; reflexive, sym-
metric, and transitive; Euclidean, serial, and transitive). As we observed earlier,
sincean equivalencerelationis one that is reflexive, symmetric, and transitive, M/
isprecisely the class of structureswe considered in Chapter 2.

The next theorem shows a close connection between various combinations of
axioms, on the one hand, and various restrictions on the possibility relations K,
on the other hand. For example, axiom A3 (the Knowledge Axiom Kijp = ¢)
correspondsto reflexivity of K. To demonstrateone part of this correspondence, we
now show that axiom A3isvalidinall structuresin Mj,. If sisaworldin astructure
M e M, thenagent i must consider s to be oneof hispossibleworldsin s. Thus, if
agenti knows g ins, then ¢ must betrueins;i.e., (M, s) = Kjg = ¢. Therefore,
Ty issound with respect to M|,. We might hope that, conversely, every structurethat
satisfies all instances of axiom A3 isin M],. Unfortunately, thisis not the case (we
returnto thispoint alittlelater). Neverthel ess, aswe shall seein the proof of the next
theorem, axiom A3 forces the possibility relationsin the canonical structure to be
reflexive. Aswe shall see, thisis sufficient to prove that T,, is complete with respect
to Mj,.

Theorem 3.1.5 For formulasin the language £,:
(a) T, isasound and complete axiomatization with respect to M,
(b) 4, isasound and complete axiomatization with respect to M,
(c) S5, isasound and complete axiomati zation with respect to M2,

(d) KD45;, isa sound and complete axiomatization with respect to M8t

Proof Wefirst consider part (a). We already showed that T, is sound with respect
to M;,. For completeness, weneed to show that every T-consistent formul ais sati sfi-
ablein some structurein Mj,. Thisisdoneexactly asin the proof of Theorem 3.1.3.
We define a canonical structure M€ for T, each of whose states corresponds to a
maximal Tp-consistent set V of formulas. The K; relations are defined as in the
proof of Theorem 3.1.3, namely, (sy, sw) € K in M® exactly if V/K; € W, where
V/Ki ={¢ | Kjp € V}. A proof identical to that of Theorem 3.1.3 can now be used
toshow that ¢ € V iff (M®, sy) | ¢, for al maximal T,-consistent setsV. Further-
more, itiseasy to seethat every maximal T,-consistent set V containsevery instance
of axiom A3. Therefore, all instances of axiom A3 aretrue at sy. It followsimme-
diately that V/K; C V. So by definition of K, it followsthat (sy, sy) € Kj. So K
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is indeed reflexive, and hence M® e AM]. Assume now that ¢ is a T,-consistent
formula. Asin the proof of Theorem 3.1.3, it follows that ¢ is satisfiable in M°€.
Since, aswejust showed, M€ € M, it followsthat ¢ is satisfiablein some structure
in M}, asdesired. Thiscompletesthe proof of part ().

To prove part (b), we show that just as axiom A3 corresponds to reflexivity,
similarly axiom A4 corresponds to transitivity. It is easy to see that A4 isvalidin
al structures where the possibility relation is transitive. Moreover, A4 forces the
possibility relationsin the canonical structure to be transitive. To see this, suppose
that (sy, sw), (Sw, Sx) € Kj and that all instances of A4 are true at sy. Then if
Kip € V, by A4 we have KjKj¢ € V, and, by the construction of M€, we have
Kip e Wand ¢ € X. Thus, V/K; € X and (sy, Sx) € K, asdesired. The proof is
now very similar to that of part (a).

The proof of parts(c) and (d) go in the same way. Here the key correspondences
are that axiom A5 corresponds to a Euclidean possibility relation and axiom A6
correspondsto a serial relation (Exercise 3.13). 1

We say that astructure M isamodel of K, if every formulaprovablein K, isvalid
in M. We can similarly say that a structureisamodel of T,,, $4n, S5,, and KD45,,.
The soundness part of Theorem 3.1.5 shows that every structurein M', (resp., MY,
M, M8Y isamodel of T, (resp., $4n, S5n, KD45,). We might be tempted to
conjecturethat the converse also holds, so that, for example, if astructureisamodel
of S5y, thenitisin M. Thisis not quite true, as the following example shows.
Supposen = 1 and ® = {p}, and let M be the structure consisting of two states s
and t, such that 7 (s)(p) = 7(t)(p) = trueand K1 = {(s, 1), (t, 1)}, asshown in
Figure 3.1.

p P
S )
Figure3.1 A model of S5; that isnot in MY

The structure M is not in M/, let alone M ¥, but it is easy to see that it is a
model of S5; and a fortiori amodel of S4, and T, (Exercise3.15). Nevertheless, the
intuition behind the conjecture is almost correct. In fact, it is correct in two senses.
If sisastatein aKripke structure M, and s’ isa statein aKripke structure M’, then
we say that (M, s) and (M’, §') are equivalent, and write (M, s) = (M, §), if they
satisfy exactly the same formulasin the language £,,. Thatis, (M, s) = (M’, §) if,
forall formulasg € £,, wehave (M, s) = g if andonly if (M’, §') = ¢. One sense
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in which the previous conjectureis correct is that every model M of T, (resp., $4n,
S5n, KD45y,) can effectively be converted to astructure M’ in MF, (resp., M, M,
MEY) with the same state space, such that (M, s) = (M’, s) for every state s (see
Exercise 3.16).

Thesecond sensein which the conjectureiscorrect invol vesthe notion of aframe.
We defineaframefor n agentstobeatuple(S, K, ..., Kn), Wwhere Sisaset of states
and K1, ..., Kn are binary relationson S. Thus, aframeis like a Kripke structure
without thefunction . Noticethat the Aumann structuresdefinedin Section 2.5 can
be viewed as frames. We say that the Kripke structure (S, 7, K4, ..., Ky) is based
ontheframe (S, K1, ..., Kn). A formulag isvalid inframe F if itisvalidin every
Kripke structure based on F. It turnsout that if we look at the level of framesrather
than at thelevel of structures, then we get what can be viewed asapartial converseto
Theorem 3.1.5. For example, the Kj'sinaframe F arereflexiveif and only if every
instance of the Knowledge Axiom A3 isvalidin F. This suggests that the axioms
aretied more closely to framesthan they areto structures. Although we have shown
that, for example, we can find astructure that isamodel of S5, but isnot in M [F (or
even M), thisis not the case at the level of frames. If aframeisamodel of S5,
then it must be in 7. Conversely, if aframeisin %, then it is amodel of S5y.
See Exercise 3.17 for more details.

The previous results show the connection between various restrictions on the
K; relations and properties of knowledge. In particular, we have shown that A3
corresponds to reflexive possibility relations, A4 to transitive possibility relations,
A5 to Euclidean possibility relations, and A6 to serial possibility relations.

Up to now we have not considered symmetric relations. It is not hard to check
(using arguments similar to those used previoudy) that symmetry of the possibility
relations corresponds to the following axiom:

A7. (p=>Ki—'Ki—'(p, i=1...,n

Axiom A7 can also easily be shown to be a consequence of A3 and A5, together
with propositional reasoning (Exercise 3.18). This corresponds to the observation
made in Lemma 3.1.4 that a reflexive Euclidean relation is also symmetric. Since
a reflexive Euclidean relation is also transitive, the reader may suspect that A4 is
redundant in the presence of A3 and A5. Thisis essentially true. It can be shown
that A4 isaconsequenceof Al, A2, A3, A5, R1, and R2 (see Exercise 3.19). Thus
we can obtainan axiom system equival entto S5, by eliminating A4; indeed, by using
the observations of Lemma 3.1.4, we can obtain a number of axiomatizations that
are equivalent to S5,, (Exercise 3.20).
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Axiom Property of K
A3. Kip = ¢ reflexive

Ad. Kip = KiKjp transitive
Ab. =Kj¢ = Ki—=Kj¢ | Euclidean
AG6. —K;false serial

A7. ¢ = Ki=Kj—p symmetric

Table3.1 The correspondence between axioms and properties of K

The preceding discussion is summarized by Table 3.1, which describes the cor-
respondence between the axioms and the properties of the K relations.

We concludethis section by taking acloser |ook at the single-agent case of S5and
KD45. Thefollowing result shows that in the case of S5 we can further restrict our
attention to structures where the possibility relationis universal; i.e., in every state,
al statesare considered possible. Intuitively, thismeansthat in the case of S5wecan
talk about the set of worlds the agent considers possible; this set isthe samein every
state and consists of all the worlds. Similarly, for KD45 we can restrict attention to
structures with one distinguished state, which intuitively is the “real” world, and a
set of states (which does not in general include the real world) corresponding to the
worlds that the agent thinks possible in every state.

Proposition 3.1.6

(@) Assume that M € M7 and s is a state of M. Then there is a structure
M’ = (S, n’, K7), where Kj isuniversal, i.e, K7 = {(s,t)|s,t € S}, anda
state s’ of M’ such that (M, s) = (M’, §).

(b) Assume that M € Mﬁ“ and s is a state of M. Then there is a structure
M’ = ({sp}US, 7/, K7), where S isnonemptyand £} = {(s, 1) : se€ {$}US
andt € S}, and astates’ of M’ suchthat (M, s) = (M’, ).

Proof We first consider part (b). Assumethat M = (S, 7, K1) € M‘ft and that
S € S LetKi(s) = {t| (S0, t) € K1}. SinceKy isserial, K1(Sp) must be nonempty.
It is also easy to check that since K; is Euclidean, we have (s,t) € K; for al
s, t € Ki(s). Findly, since K; istrangitive, if s € K1(S) and (s,t) € Ky, then
t € Ki(s). Let M' = ({so} U K1(S0), 7', K}, where n’ is the restriction of «
to {so} U K1(s0), and K7 = {(s,1) s € {s} U K1(s0) andt € Ki(s0)}. By the
previous observations, K] is the restriction of K1 to {S} U K1(S). Note that £} is



