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We undertake a study of the local propertiedbabriel meshes:

Hao Zhang
GrUVi Lab
School of Computing Science
Simon Fraser University, Canada

Torsten Moller
GrUVi Lab
School of Computing Science
Simon Fraser University, Canada

Gabriel meshes would serve as good representations of aral s
pled smooth surfaces [Amenta et al. 2000; Petitjean and Boye
2001]. We loosley define amooth meslas one in which the an-

manifold triangle meshes each of whose faces has an open Eu-gle between the normal vectors of two faces that share axvisrte

clidean diametric ball that contains no mesh vertices. \Wevghat,
under mild constraints on the dihedral angles, such meshd3e
launay meshes: the open geodesic circumdisk of each fataiten
no mesh vertex.

less than some appropriately small constant.

1.1 Motivation

The analysis is done by means of the Delaunay edge flipping al- Our work is inspired by the work of Cheng and Dey [2007], where

gorithm and it reveals the details of the distinction betwégese
two mesh structures. In particular we observe that the ottstns
which prohibit the existence of Gabriel meshes as homeohiorp
representatives of smooth surfaces do not hinder the catistn of
Delaunay meshes.
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1 Introduction

We examine and compare two triangle mesh structures foerepr

they describe an edge flipping algorithm that seeks to pmaduc
Gabriel mesh from a given mesh whose vertices are well sample
from a smooth surface. We provide an analysis of this aligarit
that reveals a close relationship with the Delaunay edgeifigp
algorithm we presented in [Dyer et al. 2007]. The local cidte
that are required of a Gabriel mesh are slightly stronger thiaat
is required of a Delaunay mesh, and this is important, becaus
closed Gabriel mesh does not exist in general [Chaine 2008].
fact, we show here that even when local uniformity constsaame
imposed on the sample set, obstructions to the existendesdd
Gabriel meshes may remain.

The authors of [Cheng and Dey 2007], which is a technicalntepo
have retracted their result, but the motivation behind Wk per-
sists. The appeal of the Gabriel mesh is that it isclly defined
surface representationThe connectivity of the vertices is con-
strained simply in terms of essentially local informatiaravith-

senting smooth surfaces: Gabriel meshes and Delaunay seshe Out the need for an independent reference surface. In phatiit
The definition of each of these structures adapts the Deyauna IS not necessary to construct the full Delaunay triangoirtf the

paradigm to apply to meshes that represent two dimensiamal n
Euclidean geometry. An appealing aspect of these strigisitbat
they do not depend on a separate reference surface for #feir d
nition. This is in contrast to theestricted Delaunay triangulation

[Edelsbrunner and Shah 1994], a structure which has seeh muc

more attention.

Delaunay meshes have been studied because they preseuta nat
compatibility with recently defined discrete different&tuctures
and operators [Bobenko and Springborn 2007; Desbrun e2@5]2
Wardetzky et al. [2007] identified four properties that wbhe de-
sirable to have in a discrete Laplacian operator. They themt @wn

to demonstrate that no discrete Laplacian operator cantaiaiall
four properties on arbitrary meshes. However, on Delaurneshes
the limitations imposed by that theorem do not apply; Laiplac
operators based on the cotan formula [Pinkall and Poltr8é8]L
enjoy all the properties identified by Wardetzky et al.

ambient three dimensional space in order to verify the looahec-
tivity. This characteristic is also shared by Delaunay reesiVe
present smooth Delaunay meshes as holding promise in fitieg
role that has previously been sought in Gabriel meshes. tHawe
the current work does not represent the completion of ttaagnam.

1.2 Contribution

Although it was not explicitly done, the tools needed to destmate
that closed Gabriel meshes will not exist in general, eveanibcal
uniformity constraints are imposed on the sample set weeady
provided in [Chaine 2003]. In Section 7 we explicitly constr
an obstruction which demonstrates this fact; but in thipeeswe
wish to draw attention to this implication of Chaine’s workther
than claim originality.

Our principal contribution is the illumination of the closalation-

Gabriel meshes on the other hand have seen some attention irshiP between Delaunay meshes and Gabriel meshes. We show tha

the context of surface reconstruction. Their simple definit
ensures that they will be substructures of the three dimaasi
Delaunay tetrahedralization, which in turn implies thatosih

Gabriel meshes are Delaunay meshes. In Section 6 we de@tenstr
that the locally Delaunay property of an edge is a slight«aian

of what is locally demanded by a Gabriel mesh: the precigendis
tion is identified. Delaunay meshes are not hampered by the ob
structions that prevent the existence of closed Gabriehegghus
they hold promise as an alternative to Gabriel meshes asa#lyloc
defined surface representation. However, for Delaunay esesh
themselves there is still no existence proof on a fixed saswgile

We also introduce, in Section 4, a definition of the Gabrigheo
plexes that reveals a natural hierarchical decompositidheoDe-
launay triangulation, which we express in Theorem 1. To & b



of our knowledge, Theorem 1 is a new result. This description
the Gabriel complexes suggests they may hold promise asa sca
fold for a manifold reconstruction algorithm in a high dinsemal
ambient space, where the full Delaunay triangulation israuofical.

2 Background and related work

In this work, unless stated otherwise, all disks and baklscgren:
they do not contain their boundary.geodesic circumdiskf a face

t on a triangle mesh is a geodesic disk that has the vertices of
on its boundary and whose closure containgf ¢ has a geodesic
circumdisk empty of mesh vertices, then it is unique and Etoin

to a planar disk.

2.1 Definitions and planar equivalence

The termintrinsic is applied to properties and objects that can be
defined in terms of the surface itself, without any referetucés
embedding in the ambient space. D¥elaunay meshas defined

in [Dyer et al. 2007], is a manifold triangle mesh whose tgian
faces are Delaunay with respect to the intrinsic metric efrttesh.
This means that the open geodesic circumdisk of each teasg|
empty of mesh verticesGabriel meshesre defined by a more
explicit relationship with the ambient space. For a triangt R®

the smallest open Euclidean ball that has the vertices @f its
boundary is theliametric ballof ¢t. A Gabriel meshs a manifold
triangle mesh each of whose faces has a diametric ball enipty o
mesh vertices. We say the faces have Gabriel propertywith
respect to the vertex set.

The Gabriel property is defined as a global condition, bug ihis-
leading to emphasize this if we are dealing with points waaihpled
from a smooth surface. In this case the circumradii involaesla
small fraction of the distance to the medial axis: geoddlgichs-

tant points are irrelevant. What is at issue is the local eotivity

of the samples.

Consider set of sample points lying in a planeRh. A Gabriel
mesh on these samples is equivalent to a Delaunay triaraulait
the points because the restriction of the diametric balfiahglet
to the plane is just the circumdisk aflf the circumdisks are empty
then so will be the diametric balls, and vise versa. Likewtise cir-
cumdisks of the triangles are geodesic disks on the planahnse
for planar meshes, there is no distinction between a Gaimésh

and a Delaunay mesh. The distinction between Delaunay rmeshe [p,q] C M is e together with the

and Gabriel meshes arises when we consider general masifold
faces.

2.2 Related work on Gabriel meshes

Petitiean and Boyer [2001] defined the Gabriel complex ofvaryi
set of pointsP as consisting of those triangleslit? that have the
Gabriel property with respect t&. A reconstruction algorithm
was introduced which extracted a manifold triangle mesftoe
Gabriel complex. A heuristic argument, based on the planse c
mentioned above, was given for why there should be enough-tri
gles in the Gabriel complex to extract a closed manifold niegh

is well sampled from a smooth surface. The issue of near @egen
ate configurations was not mentioned, although it was razegn
to be a problem with an algorithm described earlier in thespap

An umbrellaat a sample poinp is a collection of edge-adjacent
triangles that all sharg as a vertex and that are together homeo-
morphic to a closed disk. The umbrellafigdl if p is mapped to
the interior of the disk. In their surface reconstructiogaaithm
Adamy et al. [2000] also implicitly assumed that it was pblgsto
extract full umbrellas of Gabriel triangles around eacheser A

topological clean-up step filled holes in the extracted mesme
of which were produced by other topological reparation stde
Gabriel complex was defined as the simplices of codimensnen o
that had the Gabriel property and ambient dimensions twataee
were considered.

The surface reconstruction algorithm presented by Attem& a
Spagnuolo [2000] also exploited the Gabriel property.rggengly

it was not assumed that the Gabriel faces would form a closed s
face, but that holes would be limited to isolated missinartgies.

Then Chaine [2003] observed that a certain sliver tetraireifrthe
3D Delaunay tetrahedralization was sufficient to prevehtumn-
brellas of Gabriel faces at its vertices. We refer to suchrafe-
dron as detrahedral obstructiorio Gabriel meshes. The example
described has two vertices very close together and one migt
der whether uniformity constraints could be imposed on émepse
set so as to permit the construction of closed Gabriel meshes

3 Delaunay edge flips

In [Bobenko and Springborn 2007] the intrinsic Delaunagirtgu-
lation of a piecewise flat surface was carefully defined armivsh

to have similar properties to the planar Delaunay triartgpia A
Delaunay mesh is a manifold triangle mesh whose edges form an
intrinsic Delaunay triangulation of its vertices [Dyer &t2007].

Although the Delaunay mesh is defined in terms of its ownristd
metric and is independent of a reference surface, we engehtsit
itis not intrinsically defined. Rather, the definition derdaa mar-
riage of intrinsic and extrinsic triangulations. The edgéa mesh
can be interpreted as an artifact of the embedding of theepise
flat surface intdR*. A Delaunay mesh demands that this extrinsic
triangulation coincide with the intrinsic Delaunay triamation.

We review the edge flipping algorithm of [Dyer et al. 2007],igth
produces a Delaunay mesh from a given méshNote that this is
anextrinsic edge flipping algorithmthe actual edges of the mesh
triangles are flipped, resulting in a modification of the getm
of the mesh. This is in contrast to the intrinsic edge flippahg
gorithms studied elsewhere [Bobenko and Springborn 208HgF
et al. 2006; Glickenstein 2005], where the geodesic trikatun
changes, but the geometry remains fixed.

Thehingedefined by an edge =

two triangle faces adjacent to it.
Edgee is thepivot of the hinge.
The four vertices of a hinge de-
fine a tetrahedron that we call the
flip-tet Let a hinge ore be de-
fined by trianglest: = [u, p,q]
andt, = [v, q, p|, and lets be the
flip-tet defined by this hinge. The
edgee’ = [u,v] is the opposing
edgeto e and it defines, together
with its adjacent faces i, anopposing hingeo that ofe.

Flip-tet

Note that an empty geodesic disk on a mesh can be unfolded onto
the plane without metric distortion. lcally Delaunay edgés de-

fined as in the planar case:is locally Delaunay if the geodesic
circumdisk of one of its adjacent faces does not contain thero
adjacent face, otherwise it it locally Delaunay(niD). An edge

e is locally Delaunay if it is locally Delaunay by the usual péat
criteria when we unfold its hinge onto a plane. For our puescs
convenient characterization of a locally Delaunay edgas the

sum of the two face angles it subtends must not exeeekh par-
ticular, if e subtends two acute angles, then it is locally Delaunay



and if it subtends two obtuse angles, it is nID. The oppositmee

Proof If ¢ is Gabriel, the diametrid-ball of ¢ is empty and so its

to an nID edge is always locally Delaunay, and when an nlD edge centre must lie on the Voronoi edge duaktdut the centre of the

with a non-planar hinge is flipped the surface area of the nesh
reduced [Dyer et al. 2007]. It follows that the edge flippirigoa
rithm is sure to terminate. Analogously to the planar cakall i
the edges in a mesh are locally Delaunay, then they are &latijjo
Delaunay [Bobenko and Springborn 2007].

4 Gabriel complexes

We begin by defining the Gabriel complexes in arbitrary dimen
sions. LetP ¢ R? be a finite set of sample points in general posi-
tion. Letk < d and leto}, be ak-dimensional simplex with vertices
in P. Thediametricd-ball for o, denotedB,, , is the smallest
d-dimensional ball containing the vertices @f on its boundary.
We sayoy, is k-Gabriel if its diametricd-ball does not contain any
points of P. Thek-Gabriel complex ofP is the simplicial complex
formed by thek-Gabriel simplices and their faces.

Thus thel-Gabriel complex is the Gabriel graph &f and thed-
Gabriel complex is the Delaunay triangulation/f For complete-
ness, define the-Gabriel complex to be the sample points them-
selves. Denote b¢* the k-Gabriel complex. Then we have

Theorem 1 The Gabriel complexes form a nested hierarchy of sub-

complexes of the Delaunay triangulation®fc R<:

P=¢'cg'c---cgfc...cg

ThatG® C G' can be established by demonstrating that the Gabriel

graph contains the nearest neighbour graph. Our proof ob-The

rem 1 is an extension of this method. The edge to the nearest

neighbour of a poinp can be characterized as thesimplex on

p that has the smallest diametrkball. This ball is necessarily
empty of sample points. The extension to higher dimensiohs f
lows by showing that it is k-Gabriel, then thék + 1)-simplex
with the smallest diametrid-ball amongst those that have as a
face, must bgk + 1)-Gabriel. The technical demonstration of this
result is provided in a supplemental docmuent, and puldishe
technical report [Dyer et al. 2008].

According to Theorem 1, thie-Gabriel complex is a subcomplex of
the k’-Gabriel complex ift” > k. However not all the:-simplices
of thek’-Gabriel complex need belong to theGabriel complex. It
is this latter fact that motivates the introduction of thprefix.

Indeed, we will be interested in the edges of a substructiitieeo
2-Gabriel complex, but these edges need not belong to thegbabr
graph. Triangle faces containing an edgef the 1-Gabriel com-
plex cannot have an obtuse angle subtendee, byt the2-Gabriel
complex may well contain obtuse triangles. This propertyi-of
Gabriel edges implies that they will never be flipped by a De&y
edge flip, and so we anticipate their relevance in this cantéow-
ever, for the purposes of the current work an unspecified iorent
of the Gabriel property can be understood as a referencest®- th
Gabriel complex. We define @abriel meshas a manifold triangle
mesh that is a substructure of th&abriel complex.

In all that follows we will taked = 3 for convenience. Note,
however, that the ambient dimension has no bearing on tidtses
Local computations involving an isolated flip-tet may be fowed
to the affine hull of the tetrahedron. Since Gabriel triandiave
empty circumballs, they belong to the Delaunay tetrahéziibn
by definition. We have the following useful characterizatio

Lemmal A trianglet ¢ R?* is Gabriel iff its dual Voronoi edge
intersects the affine hull of

diametric ball also lies on the plane definedtbfonversely, if the
Voronoi edge dual te intersects the affine hull afat ¢;, then the
empty circumball oft centred at: is a diametric ball, and sbis
Gabiriel. a

4.1 Gabriel faces in a tetrahedron

In the next section we will prepare for a detailed examimatd
hinges. Every hinge has an associated flip-tet, and we make so
preliminary observations here about the Gabriel propedfdetra-
hedra. We will assume that the tetrahedron is non-degenerae
case where the affine hull of a flip-tet is a plane correspondset
usual case of planar Delaunay edge flips. More extreme degen-
eracies can be dealt with by the same arguments that perenit th
assumption of general position for planar point sets.

Let o be a tetrahedron with circumsphe$g and circumcentre,,.
Theinterior half-spacewith respect tar of a triangle face C o is

the half space bounded by the supporting planeasfd containing
the fourth vertex otr. Likewise, theexterior half-spacef ¢ is the
one that does not contain the fourth vertex. We define thelfe ha
spaces to be closed: the intersection of the interior anesttexior
half spaces of is the affine hull of:.

The following two lemmas concern the Gabriel propertieshaf t
faces of an isolated tetrahedron. In other words we consider
sample set to be comprised solely of the four vertices ofeha-t
hedron.

Lemma?2 A facet in a tetrahedrong, is Gabriel iffc, lies in its
interior half-space.

Proof  Consider the Voronoi diagram of the verticesof A
Voronoi edge is supported by the line perpendicular to itd tace
and through its circumcentre. The Voronoi edges all extenid-t
finity in one direction and terminate at in the other. A Voronoi
edge dual ta must extend to infinity in the exterior half-space of
t: given a sufficiently large radius a ball centred in this fsgdéce
and with the vertices afon its boundary will not contain the fourth
vertex ofo. Thus the Voronoi edge dual toterminates at, and
always extends to the exterior half space.oT herefore it will in-
tersect the plane supportingdff ¢, lies in interior half-space of.
The result follows from Lemma 1. O

Lemma 2 is one of the two principal observational tools wetose
extract our results. This characterization of Gabriel $soea tetra-
hedron facilitates an understanding of the four point caméigons
that obstruct Gabriel meshes.

Lemma 3 Every tetrahedron has at least two Gabriel faces.

Proof  Supposes does not have two Gabriel faces. Lemma 2
implies thatc, lies in the intersection of the exterior half spaces of
three faces obr. Let v be the vertex common to the three faces.
Thenc, is contained within a space exteriordcand defined by a
solid angle opposite to (thus congruent to) the solid an§le at

v. Since the tetrahedron is convex, this solid angle is less 2
and it follows that a vector from, to v would point towards the
interior of o. But the direction of the exterior normal vector &f

atv coincides with that of the vector from to v, and cannot point
towards the interior of. Thus we have a contradiction. O

5 The anatomy of a hinge

We will examine the distinction between Gabriel meshes aad D
launay meshes by focusing on edges and their adjacent faces:



hinges. A mesh is not a Delaunay mesh if any of its edges iorot |
cally Delaunay. We will compare this local Delaunay criberivith
the natural corresponding condition that edges in a Gabrash
must possess. We say thabbtains aGabriel certificatefrom each
of its adjacent faces that is Gabriel in the associated dlipEdge:
will be locally Gabrielonly if it has two Gabriel certificates.

In all that follows, the hinge will consist of edge = [p, ¢] and
adjacent triangles, = [p, ¢, u] andts = [g, p, v]. Itis convenient
to work with spheres rather than balls. Denotediyyand S» the
boundaries of the diametric bali%, andB;,. The centres of these
spheres are denoted andc; respectively. The flip-tet associated
with the hinge iss. Its circumsphere i§, with centrec,.

Facest; andts haveconsistent normalg they are both oriented
towards their respective interior half-spaces, or bothatols their
exterior half-spaces with respectdo A hinge isnon-sharpif the
angle between the consistent normals is less théh In all that
follows we consider only non-sharp hinges. Since our iistegein
smooth meshes, this is not a limitation.

5.1 Equivalent hinges

To test the locally Delaunay property oit is sufficient to check the
sum of the angles it subtends. Two different hingeg ovill yield
the same result on the Delaunay test if their angles are the.sa
This reflects the fact that what is important is the circuies of
the triangles, not the triangles themselves.

For the Gabriel property,
not only are the angles
subtended by important,
but also the dihedral angle
betweent, andt,. Given
two circumcircles on pivot
e, the dihedral angle will
affect S, and the relative
position of ¢,. We say
two hinges,(¢1, e, t2) and
(t1,e,t3) on e are equiv-
alentif the dihedral angle
betweent; andts is the
same as that betweetj
andt5 and the angle subtended byin ¢; is equal to that in,
i=1,2.

Equivalent hinges

Thus equivalent hinges have the safe and the affine hulls of
their faces coincide. The circumcircles (intersectionshef affine
hulls with S,) are the same, as are the interior and exterior half-
spaces. Equivalent hinges yield the same Gabriel cergficand
have the same locally Delaunay status. Note that this ddespty

use the same symbol for both. Thus, for examplenay be a seg-
ment in the diagram or a triangle in the hinge: we rely on cdante
to resolve the ambiguity.

Refer to Figure 1. The circumsphere of the hinflg, is depicted as
the large solid circle. Trianglg is depicted as a solid segment be-
tweenu and pointe. The latter point is the centre of the pivot edge
of the hinge. The circumcircle df is represented by its diameter,
the segmenfu,, u*]. The portion of this diameter that does not con-
taint; is drawn with a dashed line and denotgdIf e subtends an
acute angle iy, then|ti| > |¢1]in the diagram. The other triangle
in the hinge¢,, is represented in the same way.

Figure 1is used as a visual aid to the proof of Lemma 6 whick say
that if e has two Gabiriel certificates, then it is locally Delaunay.
Appealing to Lemma 2, we see that the hinge drawn in the figure
has two Gabiriel certificates becauselies in the intersection of
the interior half-spaces af; andt¢2. Indeed, it follows directly
from the definition that the interior half-space #afis represented

in our diagram by the half-plane bounded by the affine huli;of
and containing..

The Delaunay condition of a hinge can be checked by unfoliiag
faces into a common plane and determining if the circumeiag!
one triangle contains the other triangle. In terms of ougdie,
Figure 1, we could rotat& clockwise ore until it lies in the affine
hull of ¢t; and then check it in this new position lies outside of
Ss. In other wordse will be locally Delaunay ifu* lies inside the
circle of radius|t2| centred at. This is just a check on the relative
lengths oft; andt;. Thus, an equivalent check is to test whether
itself liesoutsidethe circle of radiugti| centred at. Since this is
the case in Figure 1, the edgshown there is locally Delaunay.

This leads to another observation we can make from the dizgyra
When we draw a hinggti, e, t2), in this fashion we at the same
time draw another hingéty, e, t3) represented with dotted lines.
We call this hinge theomplementary hingelhe dihedral angle of
a hinge is the same as that of its complementary hinge.isfacute,
thent] will be obtuse (it has the complementary angle subtended
by e). Also, if t; yields a Gabriel certificate te, thent] will not,
and vise versa. I¢ is locally Delaunay with respect t@1, e, t2),
then it will be not locally Delaunay with respect (6, e, t5), and
vise versa. Thus results about the former hinge directlgy®om-
plementary results” about the latter.

So, for example, the first part of Lemma 5 says that it is imibdess
to draw a non-sharp hinge with andt, acute without having.,
contained in the intersection of their interior half-spac&his im-
mediately gives us the complementary result that it is irejtids to
draw a non-sharp hinge witti andt5 obtuse and such that is
contained in either of their interior half-spaces.

equivalent consequences if we were to perform an edge flip. We 6 Relating Gabriel and Delaunay properties

will not be concerned with the flip-tet itself until Section 7

5.2 Cross-sectional diagrams

Having established that we only need to consider equivalenc
classes of hinges, we choose the most convenient reprégenta
from each class for the purposes of visualization and aisalys
hinge one is thecanonical representativef its equivalence class if

u andv lie on the perpendicular bisector planecof

This bisector plane defines a cross-section of the hingetarui
cumsphere. Aross-sectional diagrarns our visualization of these

cross sections which we now describe. We caution that some ob

jects in a cross-sectional diagram are one dimensionaésepta-
tions of their higher dimensional counterparts in the hjngs we

We now examine the relationship between Gabriel certificate
yielded toe and the locally Delaunay property ef We empha-
sise that our results here apply onlyrton-sharpedges. We find
the results naturally separate into two cases; Hndt. both agree
on the decision of whether or not to yield a Gabriel certiicétten
we call it asymmetric caséWe find there is no distinction between
the locally Delaunay condition and the locally Gabriel citiod
here. If the faces don't agree, then we haveaapmmetric case
and it is within this realm that we find the local distinctioativeen
Delaunay meshes and Gabriel meshes.

We will make reference to the following observation:

Lemma4 Let/ be a chord in circleS, ande a point on it. Ifcis
the centre of, thenZcec, is acute.



Figurel: Lemma 6: Ife is locally Gabriel, then it is locally Delau-
nay.

6.1 Symmetric cases

We observe that much can be said by simply examining the angle
subtended by:

Lemma5 If both angles subtended lyare acute, ther has two
Gabriel certificates. If these angles are both obtuse, thbas no
Gabiriel certificates.

Proof Assumet; andt,; have acute angles subtendedebyBy
Lemma 4,c,, e] makes an acute angle with bathandt.. Since
the hinge is non-sharp; and¢. cannot lie on the same side of the
line supporting[c., €]. Thusc, must lie in the intersection of the
interior half-spaces of; andt,, and so by Lemma 2; is locally
Gabriel. The complementary result follows. O

The intermediate case, where both subtended angles /&eoc-
curs whenS; andS- coincide ¢, lies one and.S, is the diametric
ball of both triangles), and sewill be locally Gabriel. Thus if the
angles are both obtuse or both non-obtuse, locally Delaanay
locally Gabriel mean the same thing. But we can say more:

Lemma6 If e is locally Gabriel, then it is locally Delaunay. H
has no Gabriel certificates, then it is not locally Delaunay.

Proof Assumee is locally Gabriel. In light of Lemma 5, we only
need to check the case whersubtends an acute angletinand
an obtuse angle if,. We refer to Figure 1. We will show that
must lie outside of the circle with centeeand radiugt|. This
circle, call itC, intersectsS, atu™. If ¢, lies onty thenC will be
tangential taS, atu™ and thus lie entirely withirt, ande will be
locally Delaunay. So assumg lies in the interior of the interior
half-space of;. In this case” will intersectS,, transversely at*.
Furthermore, in a neigbourhood af it will be inside S, in the
interior half-space of;. Since|ti| < |¢t1] by hypothesisC' must
intersectt; and thus must remain insidg; within the interior half-
space oft;. Sincets lies within this interior half-space(’ must
intersectt, and thuse is locally Delaunay. The complementary
result follows. O

Every edge in a Gabriel mesh must necessarily be locally i€abr
We reiterate the implication of Lemma 6 for emphasis:

Theorem 2 A Gabriel mesh is a Delaunay mesh.

Figure 2. Lemma 7: If an acute triangle yields a Gabriel certifi-
cate, so too must the other triangle.

6.2 Asymmetric cases

If e has a solitary Gabriel certificate, it must come from a triang
with an obtuse angle subtendeddy

Lemma?7 Supposeé; has an acute angle subtended &y If ¢;
yields a Gabriel certificate te, then so too musk.

Proof Assumet; yields a Gabriel certificate t@, soc, lies in its
interior half-space. We will show that must also yield a Gabriel
certificate toe. Suppose to the contrary that lies in the exterior
half-space ot2, and refer to the diagram of Figure 2. L&be the
segment composed of andt;. Then¢ must separate, andty,
since by definitiort; lies within the interior half-space ak. By
Lemma 4, and our assumption on [c., ] makes an acute angle
with ¢;. Since the hinge is non-sharp, it must Jerather than
t, that lies betweelfc,, e] andt;. But by definitionts lies in the
exterior half-space af;, contradicting the hypothesis thatyields
a Gabriel certificate te. O

Whene has a single Gabriel certificate, it is not locally Gabrieit b
may yet be locally Delaunay. The following observation eleéer-
izes the distinction. Let; denote the circumradius of

Lemma 8 If edgee is subtended by an obtuse angle in triangle
and an acute angle ify, thene is nID if and only ifr,, > ry,.

Proof  Unfold the hinge so that it is planar. The result is a direct
consequence of the observation that if two circtés,and Cs, in-
tersect such that they share a common cherdhenC’ contains
C> on one side of the line supportirgandC> containsC, on the
other side. Further, if the centres of both circles lie onshime side

of e, then the larger circle contains the other on that sid&lis

the circumcircle ofty, it's centre will be on the same side efas

to, and if C; containsCy on that sideg is nID. O

7 Obstructions to Gabriel meshes

In this section we show that given a point g2t which may be
nicely sampled from a smooth surface, it is in general nosipdes

to construct a Gabriel mesh whose vertex sePis We proceed

by constructing a flip-tet whose opposing non-sharp hingeh e
have only a single Gabriel certificate. This is done by plgdtre
tetrahedrong, at the equatorial plane, but to the side in such a way



Figure 3: Looking down on an obstruction to a Gabriel mesh. The
figure is projected onto the equatorial plane. The non-shanme

on edge[p, q] is on top. Edgduv, ¢| lies on the equatorial plane
while p lies just above it and: lies just below it. Thug, is in

the interor half-space of neith€p, v, q] nor [u,v,q]. It follows
that neither[p, ¢], nor its opposing edgéu, v] have two Gabriel
certificates: neither edge is locally Gabriel.

thatc, is exterior too, but close to a long sharp edge that is almost
a diameter ofS,,. The tetrahedron is described in Figure 3.

This obstruction cannot be avoided by imposing any readenei-
formity constraints on the sample set. A uniformity conisitram-
poses a lower limit on the distance between neighbouringolkam
points and thus imposes a lower bound on the edge lengths of tr
angles in a mesh. This uniformity constraint is coupled \tfith
sampling radius which puts an upper bound on the triangbeiair
radius in any Delaunay-based reconstruction. Thus a umifpr
constraint serves to put an upper bound on the ratio of tloeci
radius to shortest edge of the triangles. See [Dey 2007]dtaild.
Note, however, that the shortest edge in the tetrahedroigurd-3
can be made to be arbitrarily close in length to the radius of
Also, the hinges can be made arbitrarily flat.

If a Gabriel mesh exists on a sample $&it need not be unique
(consider a flip-tet that contains its circumcentre; bothgks are
locally Gabriel, so it may be possible to flip that edge andiimba
different Gabriel mesh). Therefore even if we construct amo®n-
taining this obstruction and in which all faces outside efdfstruc-
tion are Gabriel, it doesn’'t immediately imply that a Gabresh
cannot be constructed: there may be a different Gabriel riresh
which no triangle is composed solely of vertices fremHowever,
a Gabriel mesh is also a substructure of the Delaunay tetrake
ization, and as such we can constrain the possibilities bgtitrg
a sample setP, in which o is the only sliver tet in the Delaunay
tetrahedralization. In this way we see that a closed Gabrasgh
need not exist. A figure showing a similar obstruction emleedd

a mesh of nice triangles can be found in [Chaine 2003].

8 Conclusions

By analyzing the distinction between Gabriel meshes andubely
meshes we gain insight into both structures. The Delaunahme
criteria can be viewed as a relaxation, if not a generabpadif the
Gabriel mesh criteria. The obstructions which are probteniar

Gabriel meshes are not an issue for Delaunay meshes. Dglauna

meshes may in fact be the structures to provide the role @t h
repeatedly been sought in Gabriel meshes; a mesh with hktcai
connectivity criteria which are independent of any refesesurface

or ambient Delaunay structure.

However, although the Delaunay edge flipping algorithm gmésd

in [Dyer et al. 2007] was shown to be well defined and guarahtee
to terminate, a constructive existence proof for Delaunagtms on

a given fixed vertex seP was not provided. The edge flipping al-
gorithm could encounter amflippable edgeone whose opposing
edge already exists in the mesh.

In future work we wish to quantify the sampling conditionsitth
will ensure the existence of a smooth Delaunay mesh, andfaso
criteria necessary to ensure that the edge flipping algoritill
maintain sufficient mesh smoothness.
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