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Abstract

We undertake a study of the local properties of2-Gabriel meshes:
manifold triangle meshes each of whose faces has an open Eu-
clidean diametric ball that contains no mesh vertices. We show that,
under mild constraints on the dihedral angles, such meshes are De-
launay meshes: the open geodesic circumdisk of each face contains
no mesh vertex.

The analysis is done by means of the Delaunay edge flipping al-
gorithm and it reveals the details of the distinction between these
two mesh structures. In particular we observe that the obstructions
which prohibit the existence of Gabriel meshes as homeomorphic
representatives of smooth surfaces do not hinder the construction of
Delaunay meshes.
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1 Introduction

We examine and compare two triangle mesh structures for repre-
senting smooth surfaces: Gabriel meshes and Delaunay meshes.
The definition of each of these structures adapts the Delaunay
paradigm to apply to meshes that represent two dimensional non-
Euclidean geometry. An appealing aspect of these structures is that
they do not depend on a separate reference surface for their defi-
nition. This is in contrast to therestricted Delaunay triangulation
[Edelsbrunner and Shah 1994], a structure which has seen much
more attention.

Delaunay meshes have been studied because they present a natural
compatibility with recently defined discrete differentialstructures
and operators [Bobenko and Springborn 2007; Desbrun et al. 2005].
Wardetzky et al. [2007] identified four properties that would be de-
sirable to have in a discrete Laplacian operator. They then went on
to demonstrate that no discrete Laplacian operator can maintain all
four properties on arbitrary meshes. However, on Delaunay meshes
the limitations imposed by that theorem do not apply; Laplacian
operators based on the cotan formula [Pinkall and Polthier 1993]
enjoy all the properties identified by Wardetzky et al.

Gabriel meshes on the other hand have seen some attention in
the context of surface reconstruction. Their simple definition
ensures that they will be substructures of the three dimensional
Delaunay tetrahedralization, which in turn implies that smooth

Gabriel meshes would serve as good representations of well sam-
pled smooth surfaces [Amenta et al. 2000; Petitjean and Boyer
2001]. We loosley define asmooth meshas one in which the an-
gle between the normal vectors of two faces that share a vertex is
less than some appropriately small constant.

1.1 Motivation

Our work is inspired by the work of Cheng and Dey [2007], where
they describe an edge flipping algorithm that seeks to produce a
Gabriel mesh from a given mesh whose vertices are well sampled
from a smooth surface. We provide an analysis of this algorithm
that reveals a close relationship with the Delaunay edge flipping
algorithm we presented in [Dyer et al. 2007]. The local criteria
that are required of a Gabriel mesh are slightly stronger than what
is required of a Delaunay mesh, and this is important, because a
closed Gabriel mesh does not exist in general [Chaine 2003].In
fact, we show here that even when local uniformity constraints are
imposed on the sample set, obstructions to the existence of closed
Gabriel meshes may remain.

The authors of [Cheng and Dey 2007], which is a technical report,
have retracted their result, but the motivation behind thatwork per-
sists. The appeal of the Gabriel mesh is that it is alocally defined
surface representation: The connectivity of the vertices is con-
strained simply in terms of essentially local information and with-
out the need for an independent reference surface. In particular it
is not necessary to construct the full Delaunay triangulation of the
ambient three dimensional space in order to verify the localconnec-
tivity. This characteristic is also shared by Delaunay meshes. We
present smooth Delaunay meshes as holding promise in fillingthe
role that has previously been sought in Gabriel meshes. However,
the current work does not represent the completion of that program.

1.2 Contribution

Although it was not explicitly done, the tools needed to demonstrate
that closed Gabriel meshes will not exist in general, even when local
uniformity constraints are imposed on the sample set were already
provided in [Chaine 2003]. In Section 7 we explicitly construct
an obstruction which demonstrates this fact; but in this respect we
wish to draw attention to this implication of Chaine’s work,rather
than claim originality.

Our principal contribution is the illumination of the closerelation-
ship between Delaunay meshes and Gabriel meshes. We show that
Gabriel meshes are Delaunay meshes. In Section 6 we demonstrate
that the locally Delaunay property of an edge is a slight relaxation
of what is locally demanded by a Gabriel mesh: the precise distinc-
tion is identified. Delaunay meshes are not hampered by the ob-
structions that prevent the existence of closed Gabriel meshes, thus
they hold promise as an alternative to Gabriel meshes as a locally
defined surface representation. However, for Delaunay meshes
themselves there is still no existence proof on a fixed sampleset.

We also introduce, in Section 4, a definition of the Gabriel com-
plexes that reveals a natural hierarchical decomposition of the De-
launay triangulation, which we express in Theorem 1. To the best



of our knowledge, Theorem 1 is a new result. This descriptionof
the Gabriel complexes suggests they may hold promise as a scaf-
fold for a manifold reconstruction algorithm in a high dimensional
ambient space, where the full Delaunay triangulation is impractical.

2 Background and related work

In this work, unless stated otherwise, all disks and balls are open:
they do not contain their boundary. Ageodesic circumdiskof a face
t on a triangle mesh is a geodesic disk that has the vertices oft
on its boundary and whose closure containst. If t has a geodesic
circumdisk empty of mesh vertices, then it is unique and isometric
to a planar disk.

2.1 Definitions and planar equivalence

The termintrinsic is applied to properties and objects that can be
defined in terms of the surface itself, without any referenceto its
embedding in the ambient space. ADelaunay mesh, as defined
in [Dyer et al. 2007], is a manifold triangle mesh whose triangle
faces are Delaunay with respect to the intrinsic metric of the mesh.
This means that the open geodesic circumdisk of each triangle is
empty of mesh vertices.Gabriel meshesare defined by a more
explicit relationship with the ambient space. For a triangle t ⊂ R

3

the smallest open Euclidean ball that has the vertices oft on its
boundary is thediametric ballof t. A Gabriel meshis a manifold
triangle mesh each of whose faces has a diametric ball empty of
mesh vertices. We say the faces have theGabriel propertywith
respect to the vertex set.

The Gabriel property is defined as a global condition, but it is mis-
leading to emphasize this if we are dealing with points well sampled
from a smooth surface. In this case the circumradii involvedare a
small fraction of the distance to the medial axis: geodesically dis-
tant points are irrelevant. What is at issue is the local connectivity
of the samples.

Consider set of sample points lying in a plane inR
3. A Gabriel

mesh on these samples is equivalent to a Delaunay triangulation of
the points because the restriction of the diametric ball of trianglet
to the plane is just the circumdisk oft. If the circumdisks are empty
then so will be the diametric balls, and vise versa. Likewise, the cir-
cumdisks of the triangles are geodesic disks on the planar mesh, so
for planar meshes, there is no distinction between a Gabrielmesh
and a Delaunay mesh. The distinction between Delaunay meshes
and Gabriel meshes arises when we consider general manifoldsur-
faces.

2.2 Related work on Gabriel meshes

Petitjean and Boyer [2001] defined the Gabriel complex of a given
set of pointsP as consisting of those triangles inR3 that have the
Gabriel property with respect toP . A reconstruction algorithm
was introduced which extracted a manifold triangle mesh from the
Gabriel complex. A heuristic argument, based on the planar case
mentioned above, was given for why there should be enough trian-
gles in the Gabriel complex to extract a closed manifold meshif P
is well sampled from a smooth surface. The issue of near degener-
ate configurations was not mentioned, although it was recognized
to be a problem with an algorithm described earlier in the paper.

An umbrella at a sample pointp is a collection of edge-adjacent
triangles that all sharep as a vertex and that are together homeo-
morphic to a closed disk. The umbrella isfull if p is mapped to
the interior of the disk. In their surface reconstruction algorithm
Adamy et al. [2000] also implicitly assumed that it was possible to
extract full umbrellas of Gabriel triangles around each vertex. A

topological clean-up step filled holes in the extracted mesh, some
of which were produced by other topological reparation steps. The
Gabriel complex was defined as the simplices of codimension one
that had the Gabriel property and ambient dimensions two andthree
were considered.

The surface reconstruction algorithm presented by Attene and
Spagnuolo [2000] also exploited the Gabriel property. Interestingly
it was not assumed that the Gabriel faces would form a closed sur-
face, but that holes would be limited to isolated missing triangles.

Then Chaine [2003] observed that a certain sliver tetrahedron in the
3D Delaunay tetrahedralization was sufficient to prevent full um-
brellas of Gabriel faces at its vertices. We refer to such a tetrahe-
dron as atetrahedral obstructionto Gabriel meshes. The example
described has two vertices very close together and one mightwon-
der whether uniformity constraints could be imposed on the sample
set so as to permit the construction of closed Gabriel meshes.

3 Delaunay edge flips

In [Bobenko and Springborn 2007] the intrinsic Delaunay triangu-
lation of a piecewise flat surface was carefully defined and shown
to have similar properties to the planar Delaunay triangulation. A
Delaunay mesh is a manifold triangle mesh whose edges form an
intrinsic Delaunay triangulation of its vertices [Dyer et al. 2007].

Although the Delaunay mesh is defined in terms of its own intrinsic
metric and is independent of a reference surface, we emphasize that
it is not intrinsically defined. Rather, the definition demands a mar-
riage of intrinsic and extrinsic triangulations. The edgesof a mesh
can be interpreted as an artifact of the embedding of the piecewise
flat surface intoR3. A Delaunay mesh demands that this extrinsic
triangulation coincide with the intrinsic Delaunay triangulation.

We review the edge flipping algorithm of [Dyer et al. 2007], which
produces a Delaunay mesh from a given meshM . Note that this is
anextrinsic edge flipping algorithm: the actual edges of the mesh
triangles are flipped, resulting in a modification of the geometry
of the mesh. This is in contrast to the intrinsic edge flippingal-
gorithms studied elsewhere [Bobenko and Springborn 2007; Fisher
et al. 2006; Glickenstein 2005], where the geodesic triangulation
changes, but the geometry remains fixed.
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Flip-tet

Thehingedefined by an edgee =
[p, q] ⊂ M is e together with the
two triangle faces adjacent to it.
Edgee is thepivot of the hinge.
The four vertices of a hinge de-
fine a tetrahedron that we call the
flip-tet. Let a hinge one be de-
fined by trianglest1 = [u, p, q]
andt2 = [v, q, p], and letσ be the
flip-tet defined by this hinge. The
edgee′ = [u, v] is theopposing
edgeto e and it defines, together
with its adjacent faces inσ, anopposing hingeto that ofe.

Note that an empty geodesic disk on a mesh can be unfolded onto
the plane without metric distortion. Alocally Delaunay edgeis de-
fined as in the planar case:e is locally Delaunay if the geodesic
circumdisk of one of its adjacent faces does not contain the other
adjacent face, otherwise it isnot locally Delaunay(nlD). An edge
e is locally Delaunay if it is locally Delaunay by the usual planar
criteria when we unfold its hinge onto a plane. For our purposes a
convenient characterization of a locally Delaunay edge is that the
sum of the two face angles it subtends must not exceedπ. In par-
ticular, if e subtends two acute angles, then it is locally Delaunay



and if it subtends two obtuse angles, it is nlD. The opposing edge
to an nlD edge is always locally Delaunay, and when an nlD edge
with a non-planar hinge is flipped the surface area of the meshis
reduced [Dyer et al. 2007]. It follows that the edge flipping algo-
rithm is sure to terminate. Analogously to the planar case, if all
the edges in a mesh are locally Delaunay, then they are all globally
Delaunay [Bobenko and Springborn 2007].

4 Gabriel complexes

We begin by defining the Gabriel complexes in arbitrary dimen-
sions. LetP ⊂ R

d be a finite set of sample points in general posi-
tion. Letk ≤ d and letσk be ak-dimensional simplex with vertices
in P . The diametricd-ball for σk, denotedBσk

, is the smallest
d-dimensional ball containing the vertices ofσk on its boundary.
We sayσk is k-Gabriel if its diametricd-ball does not contain any
points ofP . Thek-Gabriel complex ofP is the simplicial complex
formed by thek-Gabriel simplices and their faces.

Thus the1-Gabriel complex is the Gabriel graph ofP , and thed-
Gabriel complex is the Delaunay triangulation ofP . For complete-
ness, define the0-Gabriel complex to be the sample points them-
selves. Denote byGk thek-Gabriel complex. Then we have

Theorem 1 The Gabriel complexes form a nested hierarchy of sub-
complexes of the Delaunay triangulation ofP ⊂ R

d:

P = G0 ⊂ G1 ⊂ · · · ⊂ Gk ⊂ · · · ⊂ Gd.

ThatG0 ⊂ G1 can be established by demonstrating that the Gabriel
graph contains the nearest neighbour graph. Our proof of Theo-
rem 1 is an extension of this method. The edge to the nearest
neighbour of a pointp can be characterized as the1-simplex on
p that has the smallest diametricd-ball. This ball is necessarily
empty of sample points. The extension to higher dimensions fol-
lows by showing that ifσk is k-Gabriel, then the(k + 1)-simplex
with the smallest diametricd-ball amongst those that haveσk as a
face, must be(k + 1)-Gabriel. The technical demonstration of this
result is provided in a supplemental docmuent, and published in a
technical report [Dyer et al. 2008].

According to Theorem 1, thek-Gabriel complex is a subcomplex of
thek′-Gabriel complex ifk′ ≥ k. However not all thek-simplices
of thek′-Gabriel complex need belong to thek-Gabriel complex. It
is this latter fact that motivates the introduction of thek prefix.

Indeed, we will be interested in the edges of a substructure of the
2-Gabriel complex, but these edges need not belong to the Gabriel
graph. Triangle faces containing an edgee of the1-Gabriel com-
plex cannot have an obtuse angle subtended bye, but the2-Gabriel
complex may well contain obtuse triangles. This property of1-
Gabriel edges implies that they will never be flipped by a Delaunay
edge flip, and so we anticipate their relevance in this context. How-
ever, for the purposes of the current work an unspecified mention
of the Gabriel property can be understood as a reference to the 2-
Gabriel complex. We define aGabriel meshas a manifold triangle
mesh that is a substructure of the2-Gabriel complex.

In all that follows we will taked = 3 for convenience. Note,
however, that the ambient dimension has no bearing on the results.
Local computations involving an isolated flip-tet may be confined
to the affine hull of the tetrahedron. Since Gabriel triangles have
empty circumballs, they belong to the Delaunay tetrahedralization
by definition. We have the following useful characterization:

Lemma 1 A triangle t ⊂ R
3 is Gabriel iff its dual Voronoi edge

intersects the affine hull oft.

Proof If t is Gabriel, the diametricd-ball of t is empty and so its
centre must lie on the Voronoi edge dual tot. But the centre of the
diametric ball also lies on the plane defined byt. Conversely, if the
Voronoi edge dual tot intersects the affine hull oft at ct, then the
empty circumball oft centred atct is a diametric ball, and sot is
Gabriel. �

4.1 Gabriel faces in a tetrahedron

In the next section we will prepare for a detailed examination of
hinges. Every hinge has an associated flip-tet, and we make some
preliminary observations here about the Gabriel properties of tetra-
hedra. We will assume that the tetrahedron is non-degenerate. The
case where the affine hull of a flip-tet is a plane corresponds to the
usual case of planar Delaunay edge flips. More extreme degen-
eracies can be dealt with by the same arguments that permit the
assumption of general position for planar point sets.

Let σ be a tetrahedron with circumsphereSσ and circumcentrecσ .
The interior half-spacewith respect toσ of a triangle facet ⊂ σ is
the half space bounded by the supporting plane oft and containing
the fourth vertex ofσ. Likewise, theexterior half-spaceof t is the
one that does not contain the fourth vertex. We define these half
spaces to be closed: the intersection of the interior and theexterior
half spaces oft is the affine hull oft.

The following two lemmas concern the Gabriel properties of the
faces of an isolated tetrahedron. In other words we considerthe
sample set to be comprised solely of the four vertices of the tetra-
hedron.

Lemma 2 A facet in a tetrahedron,σ, is Gabriel iff cσ lies in its
interior half-space.

Proof Consider the Voronoi diagram of the vertices ofσ. A
Voronoi edge is supported by the line perpendicular to its dual face
and through its circumcentre. The Voronoi edges all extend to in-
finity in one direction and terminate atcσ in the other. A Voronoi
edge dual tot must extend to infinity in the exterior half-space of
t: given a sufficiently large radius a ball centred in this half-space
and with the vertices oft on its boundary will not contain the fourth
vertex ofσ. Thus the Voronoi edge dual tot terminates atcσ and
always extends to the exterior half space oft. Therefore it will in-
tersect the plane supportingt iff cσ lies in interior half-space oft.
The result follows from Lemma 1. �

Lemma 2 is one of the two principal observational tools we useto
extract our results. This characterization of Gabriel faces in a tetra-
hedron facilitates an understanding of the four point configurations
that obstruct Gabriel meshes.

Lemma 3 Every tetrahedron has at least two Gabriel faces.

Proof Supposeσ does not have two Gabriel faces. Lemma 2
implies thatcσ lies in the intersection of the exterior half spaces of
three faces ofσ. Let v be the vertex common to the three faces.
Thencσ is contained within a space exterior toσ and defined by a
solid angle opposite to (thus congruent to) the solid angle of σ at
v. Since the tetrahedron is convex, this solid angle is less than2π
and it follows that a vector fromcσ to v would point towards the
interior of σ. But the direction of the exterior normal vector ofSσ

atv coincides with that of the vector fromcσ to v, and cannot point
towards the interior ofσ. Thus we have a contradiction. �

5 The anatomy of a hinge

We will examine the distinction between Gabriel meshes and De-
launay meshes by focusing on edges and their adjacent faces:



hinges. A mesh is not a Delaunay mesh if any of its edges is not lo-
cally Delaunay. We will compare this local Delaunay criterion with
the natural corresponding condition that edges in a Gabrielmesh
must possess. We say thate obtains aGabriel certificatefrom each
of its adjacent faces that is Gabriel in the associated flip-tet. Edgee
will be locally Gabrielonly if it has two Gabriel certificates.

In all that follows, the hinge will consist of edgee = [p, q] and
adjacent trianglest1 = [p, q, u] andt2 = [q, p, v]. It is convenient
to work with spheres rather than balls. Denote byS1 andS2 the
boundaries of the diametric ballsBt1

andBt2
. The centres of these

spheres are denotedc1 andc2 respectively. The flip-tet associated
with the hinge isσ. Its circumsphere isSσ with centrecσ .

Facest1 and t2 haveconsistent normalsif they are both oriented
towards their respective interior half-spaces, or both towards their
exterior half-spaces with respect toσ. A hinge isnon-sharpif the
angle between the consistent normals is less thanπ/2. In all that
follows we consider only non-sharp hinges. Since our interest is in
smooth meshes, this is not a limitation.

5.1 Equivalent hinges

To test the locally Delaunay property ofe it is sufficient to check the
sum of the angles it subtends. Two different hinges one will yield
the same result on the Delaunay test if their angles are the same.
This reflects the fact that what is important is the circumcircles of
the triangles, not the triangles themselves.
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Equivalent hinges

For the Gabriel property,
not only are the angles
subtended bye important,
but also the dihedral angle
betweent1 and t2. Given
two circumcircles on pivot
e, the dihedral angle will
affect Sσ and the relative
position of cσ . We say
two hinges,(t1, e, t2) and
(t′1, e, t

′

2) on e are equiv-
alent if the dihedral angle
betweent1 and t2 is the
same as that betweent′1
and t′2 and the angle subtended bye in ti is equal to that int′i,
i = 1, 2.

Thus equivalent hinges have the sameSσ, and the affine hulls of
their faces coincide. The circumcircles (intersections ofthe affine
hulls with Sσ) are the same, as are the interior and exterior half-
spaces. Equivalent hinges yield the same Gabriel certificates and
have the same locally Delaunay status. Note that this does not imply
equivalent consequences if we were to perform an edge flip. We
will not be concerned with the flip-tet itself until Section 7.

5.2 Cross-sectional diagrams

Having established that we only need to consider equivalence
classes of hinges, we choose the most convenient representative
from each class for the purposes of visualization and analysis. A
hinge one is thecanonical representativeof its equivalence class if
u andv lie on the perpendicular bisector plane ofe.

This bisector plane defines a cross-section of the hinge and its cir-
cumsphere. Across-sectional diagramis our visualization of these
cross sections which we now describe. We caution that some ob-
jects in a cross-sectional diagram are one dimensional representa-
tions of their higher dimensional counterparts in the hinge, yet we

use the same symbol for both. Thus, for example,t1 may be a seg-
ment in the diagram or a triangle in the hinge: we rely on context
to resolve the ambiguity.

Refer to Figure 1. The circumsphere of the hinge,Sσ, is depicted as
the large solid circle. Trianglet1 is depicted as a solid segment be-
tweenu and pointe. The latter point is the centre of the pivot edge
of the hinge. The circumcircle oft1 is represented by its diameter,
the segment[u, u∗]. The portion of this diameter that does not con-
tain t1 is drawn with a dashed line and denotedt∗1. If e subtends an
acute angle int1, then|t1| > |t∗1| in the diagram. The other triangle
in the hinge,t2, is represented in the same way.

Figure 1 is used as a visual aid to the proof of Lemma 6 which says
that if e has two Gabriel certificates, then it is locally Delaunay.
Appealing to Lemma 2, we see that the hinge drawn in the figure
has two Gabriel certificates becausecσ lies in the intersection of
the interior half-spaces oft1 and t2. Indeed, it follows directly
from the definition that the interior half-space oft1 is represented
in our diagram by the half-plane bounded by the affine hull oft1
and containingt2.

The Delaunay condition of a hinge can be checked by unfoldingthe
faces into a common plane and determining if the circumcircle of
one triangle contains the other triangle. In terms of our diagram,
Figure 1, we could rotatet2 clockwise one until it lies in the affine
hull of t1 and then check ifv in this new position lies outside of
Sσ. In other wordse will be locally Delaunay ifu∗ lies inside the
circle of radius|t2| centred ate. This is just a check on the relative
lengths oft2 andt∗1. Thus, an equivalent check is to test whetherv
itself liesoutsidethe circle of radius|t∗1| centred ate. Since this is
the case in Figure 1, the edgee shown there is locally Delaunay.

This leads to another observation we can make from the diagrams.
When we draw a hinge,(t1, e, t2), in this fashion we at the same
time draw another hinge(t∗1, e, t

∗

2) represented with dotted lines.
We call this hinge thecomplementary hinge. The dihedral angle of
a hinge is the same as that of its complementary hinge. Ift1 is acute,
thent∗1 will be obtuse (it has the complementary angle subtended
by e). Also, if t1 yields a Gabriel certificate toe, thent∗1 will not,
and vise versa. Ife is locally Delaunay with respect to(t1, e, t2),
then it will be not locally Delaunay with respect to(t∗1, e, t

∗

2), and
vise versa. Thus results about the former hinge directly yield “com-
plementary results” about the latter.

So, for example, the first part of Lemma 5 says that it is impossible
to draw a non-sharp hinge witht1 andt2 acute without havingcσ

contained in the intersection of their interior half-spaces. This im-
mediately gives us the complementary result that it is impossible to
draw a non-sharp hinge witht∗1 andt∗2 obtuse and such thatcσ is
contained in either of their interior half-spaces.

6 Relating Gabriel and Delaunay properties

We now examine the relationship between Gabriel certificates
yielded toe and the locally Delaunay property ofe. We empha-
sise that our results here apply only tonon-sharpedges. We find
the results naturally separate into two cases. Ift1 andt2 both agree
on the decision of whether or not to yield a Gabriel certificate, then
we call it asymmetric case. We find there is no distinction between
the locally Delaunay condition and the locally Gabriel condition
here. If the faces don’t agree, then we have anasymmetric case,
and it is within this realm that we find the local distinction between
Delaunay meshes and Gabriel meshes.

We will make reference to the following observation:

Lemma 4 Let ℓ be a chord in circleSσ ande a point on it. Ifc is
the centre ofℓ, then∠cecσ is acute.
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Figure 1: Lemma 6: Ife is locally Gabriel, then it is locally Delau-
nay.

6.1 Symmetric cases

We observe that much can be said by simply examining the angles
subtended bye:

Lemma 5 If both angles subtended bye are acute, thene has two
Gabriel certificates. If these angles are both obtuse, thene has no
Gabriel certificates.

Proof Assumet1 andt2 have acute angles subtended bye. By
Lemma 4,[cσ , e] makes an acute angle with botht1 andt2. Since
the hinge is non-sharp,t1 andt2 cannot lie on the same side of the
line supporting[cσ, e]. Thuscσ must lie in the intersection of the
interior half-spaces oft1 andt2, and so by Lemma 2,e is locally
Gabriel. The complementary result follows. �

The intermediate case, where both subtended angles areπ/2, oc-
curs whenS1 andS2 coincide (cσ lies one andSσ is the diametric
ball of both triangles), and soe will be locally Gabriel. Thus if the
angles are both obtuse or both non-obtuse, locally Delaunayand
locally Gabriel mean the same thing. But we can say more:

Lemma 6 If e is locally Gabriel, then it is locally Delaunay. Ife
has no Gabriel certificates, then it is not locally Delaunay.

Proof Assumee is locally Gabriel. In light of Lemma 5, we only
need to check the case wheree subtends an acute angle int1 and
an obtuse angle int2. We refer to Figure 1. We will show thatv
must lie outside of the circle with centree and radius|t∗1|. This
circle, call itC, intersectsSσ atu∗. If cσ lies ont1 thenC will be
tangential toSσ at u∗ and thus lie entirely withinSσ ande will be
locally Delaunay. So assumecσ lies in the interior of the interior
half-space oft1. In this caseC will intersectSσ transversely atu∗.
Furthermore, in a neigbourhood ofu∗ it will be inside Sσ in the
interior half-space oft1. Since|t∗1| < |t1| by hypothesis,C must
intersectt1 and thus must remain insideSσ within the interior half-
space oft1. Sincet2 lies within this interior half-space,C must
intersectt2 and thuse is locally Delaunay. The complementary
result follows. �

Every edge in a Gabriel mesh must necessarily be locally Gabriel.
We reiterate the implication of Lemma 6 for emphasis:

Theorem 2 A Gabriel mesh is a Delaunay mesh.

l
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Figure 2: Lemma 7: If an acute triangle yields a Gabriel certifi-
cate, so too must the other triangle.

6.2 Asymmetric cases

If e has a solitary Gabriel certificate, it must come from a triangle
with an obtuse angle subtended bye:

Lemma 7 Supposet1 has an acute angle subtended bye. If t1
yields a Gabriel certificate toe, then so too mustt2.

Proof Assumet1 yields a Gabriel certificate toe, socσ lies in its
interior half-space. We will show thatt2 must also yield a Gabriel
certificate toe. Suppose to the contrary thatcσ lies in the exterior
half-space oft2, and refer to the diagram of Figure 2. Letℓ be the
segment composed oft2 andt∗2. Thenℓ must separatecσ andt1,
since by definitiont1 lies within the interior half-space oft2. By
Lemma 4, and our assumption ont1, [cσ, e] makes an acute angle
with t1. Since the hinge is non-sharp, it must bet∗2 rather than
t2 that lies between[cσ , e] andt1. But by definitiont∗2 lies in the
exterior half-space oft1, contradicting the hypothesis thatt1 yields
a Gabriel certificate toe. �

Whene has a single Gabriel certificate, it is not locally Gabriel, but
may yet be locally Delaunay. The following observation character-
izes the distinction. Letrt denote the circumradius oft.

Lemma 8 If edgee is subtended by an obtuse angle in trianglet1
and an acute angle int2, thene is nlD if and only ifrt1

> rt2
.

Proof Unfold the hinge so that it is planar. The result is a direct
consequence of the observation that if two circles,C1 andC2, in-
tersect such that they share a common chord,e, thenC1 contains
C2 on one side of the line supportinge, andC2 containsC1 on the
other side. Further, if the centres of both circles lie on thesame side
of e, then the larger circle contains the other on that side. IfC1 is
the circumcircle oft1, it’s centre will be on the same side ofe as
t2, and ifC1 containsC2 on that side,e is nlD. �

7 Obstructions to Gabriel meshes

In this section we show that given a point setP , which may be
nicely sampled from a smooth surface, it is in general not possible
to construct a Gabriel mesh whose vertex set isP . We proceed
by constructing a flip-tet whose opposing non-sharp hinges each
have only a single Gabriel certificate. This is done by placing the
tetrahedron,σ, at the equatorial plane, but to the side in such a way



Sσ

cσ
v q

p u

Figure 3: Looking down on an obstruction to a Gabriel mesh. The
figure is projected onto the equatorial plane. The non-sharphinge
on edge[p, q] is on top. Edge[v, q] lies on the equatorial plane
while p lies just above it andu lies just below it. Thuscσ is in
the interor half-space of neither[p, v, q] nor [u, v, q]. It follows
that neither[p, q], nor its opposing edge[u, v] have two Gabriel
certificates: neither edge is locally Gabriel.

thatcσ is exterior toσ, but close to a long sharp edge that is almost
a diameter ofSσ. The tetrahedron is described in Figure 3.

This obstruction cannot be avoided by imposing any reasonable uni-
formity constraints on the sample set. A uniformity constraint im-
poses a lower limit on the distance between neighbouring sample
points and thus imposes a lower bound on the edge lengths of tri-
angles in a mesh. This uniformity constraint is coupled withthe
sampling radius which puts an upper bound on the triangle circum-
radius in any Delaunay-based reconstruction. Thus a uniformity
constraint serves to put an upper bound on the ratio of the circum-
radius to shortest edge of the triangles. See [Dey 2007] for details.
Note, however, that the shortest edge in the tetrahedron in Figure 3
can be made to be arbitrarily close in length to the radius ofSσ .
Also, the hinges can be made arbitrarily flat.

If a Gabriel mesh exists on a sample setP it need not be unique
(consider a flip-tet that contains its circumcentre; both hinges are
locally Gabriel, so it may be possible to flip that edge and obtain a
different Gabriel mesh). Therefore even if we construct a mesh con-
taining this obstruction and in which all faces outside of the obstruc-
tion are Gabriel, it doesn’t immediately imply that a Gabriel mesh
cannot be constructed: there may be a different Gabriel meshin
which no triangle is composed solely of vertices fromσ. However,
a Gabriel mesh is also a substructure of the Delaunay tetrahedral-
ization, and as such we can constrain the possibilities by creating
a sample set,P , in which σ is the only sliver tet in the Delaunay
tetrahedralization. In this way we see that a closed Gabrielmesh
need not exist. A figure showing a similar obstruction embedded in
a mesh of nice triangles can be found in [Chaine 2003].

8 Conclusions

By analyzing the distinction between Gabriel meshes and Delaunay
meshes we gain insight into both structures. The Delaunay mesh
criteria can be viewed as a relaxation, if not a generalization of the
Gabriel mesh criteria. The obstructions which are problematic for
Gabriel meshes are not an issue for Delaunay meshes. Delaunay
meshes may in fact be the structures to provide the role that has
repeatedly been sought in Gabriel meshes; a mesh with natural local
connectivity criteria which are independent of any reference surface

or ambient Delaunay structure.

However, although the Delaunay edge flipping algorithm presented
in [Dyer et al. 2007] was shown to be well defined and guaranteed
to terminate, a constructive existence proof for Delaunay meshes on
a given fixed vertex setP was not provided. The edge flipping al-
gorithm could encounter anunflippable edge: one whose opposing
edge already exists in the mesh.

In future work we wish to quantify the sampling conditions that
will ensure the existence of a smooth Delaunay mesh, and alsothe
criteria necessary to ensure that the edge flipping algorithm will
maintain sufficient mesh smoothness.
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