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Abstract In this paper we address the problem of finding
analogies between parts of 3D objects. By partitioning an
object into meaningful parts and finding analogous parts in
other objects, not necessarily of the same type, many analy-
sis and modeling tasks could be enhanced. For instance, par-
tial match queries can be formulated, annotation of parts in
objects can be utilized, and modeling-by-parts applications
could be supported. We define a similarity measure between
two parts based not only on their local signatures and geom-
etry, but also on their context within the shape to which they
belong.

In our approach, all objects are hierarchically segmented
(e.g. using the shape diameter function), and each part is
given a local signature. However, to find corresponding
parts in other objects we use a context enhanced part-in-
whole matching. Our matching function is based on bi-
partite graph matching and is computed using a flow algo-
rithm which takes into account both local geometrical fea-
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tures and the partitioning hierarchy. We present results on
finding part analogies among numerous objects from shape
repositories, and demonstrate sub-part queries using an im-
plementation of a simple search and retrieval application.
We also demonstrate a simple annotation tool that carries
textual tags of object parts from one model to many oth-
ers using analogies, laying a basis for semantic text based
search.

Keywords Part retrieval · Shape signature · Hierarchical
partitioning · Distance measure · Shape matching

1 Introduction

Adding semantic information to 3D models is beneficial for
many analysis and modeling tasks. For instance, recognizing
a specific functional part in a model provides the ability to
search for analogous parts for modeling applications, com-
parative studies, etc. However, unlike documents retrieval, it
is still almost impossible to search parts of 3D objects se-
mantically or using text tags. The main reason for this is
that most digital 3D models are not partitioned into seman-
tic parts nor annotated.

Usually, the search for 3D objects is based on finding ob-
jects similar to a given query model with the aid of some
global shape signature. Searching for a specific part inside
a 3D model is more challenging when in most cases the
models are not segmented and the different parts compos-
ing an object are not linked to semantic tags. We present a
method that finds analogies among parts of digital 3D mod-
els by segmenting them and creating a contextual signature
for each part. That is, a part is not only characterized by
its own geometric properties but also its context within the
whole shape.
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Fig. 1 (Color online) Contextual part analogies: (a) The SDF is cal-
culated on all objects in the database (colored from red for narrow di-
ameter, to blue for wide diameter). (b) All objects are then partitioned
hierarchically and the signatures of their parts is stored. (c) Our similar-
ity measure finds analogies between similar parts of different objects.

For example, analogous parts to the octopus arm are found in differ-
ent models even if the parts and the whole objects are both dissimilar
in their shapes. Signatures that are based on the geometry of the parts
alone can not find such analogies. When we factor in the context of the
part, these similarities emerge

The dominating representation of digital 3D objects is
a 2D boundary surface mesh. However, when studying a
segmentation of models into parts, and analogies between
different parts, one notes that many of the cues to a good
partitioning, and natural analogies, are volumetric in na-
ture. Therefore, it is beneficial to base the segmentation and
analogies on volumetric attributes. In this paper we use the
shape-diameter function (SDF, Shapira et al. 2008) for seg-
mentation and also as the basis for two of the local shape
signature measures we use. The SDF provides a link be-
tween the object’s volume and the mesh surface, mapping
volumetric information onto the surface boundary mesh. It
is defined by examining the diameter of the model in the
neighborhood of each point on its boundary surface. To de-
fine a contextual signature for each part, there is a need to
define the relation between the part and the whole shape.
Hence, we extend (Shapira et al. 2008) partitioning algo-
rithm to create a hierarchical segmentation of the objects
storing sub-parts contained in a given part as its child nodes
in a tree representation of the object.

To find analogies in a database of objects, we first parti-
tion all given objects into parts. Next, we define a signature
for each part based on geometric attributes as well as its rela-
tion to the whole object (its context). The context is defined
by the path from the part to the root of the object’s parti-
tioning. Given two parts we define a context-aware distance
measure between them by using bi-partite graph matching
between the two characteristic paths of the parts.

When a user specifies a model part query, we can retrieve
the most similar parts from all models in the database based
on the context-aware similarity measure. Signatures that are
based only on the geometry will fail to find many similarities
(Fig. 1). This can be utilized, for instance, to carry tags from
an annotated part to all similar parts in a database. Later,
these tags can be used for text-based retrieval from the data-
base.

Our main contributions in this paper are therefore:

1. An automatic, consistent and hierarchical clustering al-
gorithm based on the SDF, improving the algorithm
of Shapira et al. (2008).

2. A novel similarity measure which takes into account not
only local shape descriptions, but is also context-aware
and provides the ability to find part analogies.

3. We demonstrate that our measure can work with many
local distance measure, and with any database containing
hierarchically segmented models.

4. We demonstrate applications of part analogies in part-in-
whole queries and partial matching, as well as for a tag-
ging and annotation tool for parts in a 3D shape database.

2 Related Work

There are numerous mesh partitioning techniques based on
various mesh attributes. For a survey on different mesh par-
titioning techniques we refer the reader to (Shamir 2007).
Since we seek part-type partitioning, we employ the method
in (Shapira et al. 2008), which uses the SDF to partition sets
of objects consistently. This measure relates to the medial
axis transform (MAT) (Choi et al. 1997) which is extremely
informative for shape analysis and partitioning. The SDF re-
places the local shape radius of the MAT by a measure of the
local shape diameter. Partitioning based on the SDF is likely
to create parts which are similar in their SDF signature and
are correspondent among different objects (Fig. 2). Never-
theless, other part-type partitioning methods such as Attene
et al. (2006b), Katz and Tal (2003) could also be used in the
first stage of our algorithm.

Shape matching is also an active topic of research, and
numerous shape signatures based on geometry and topol-
ogy have been proposed (Bustos et al. 2005; Gal et al. 2007;
Tangelder and Veltkamp 2008). In Osada et al. (2002), a
large number of points are sampled from the surface and
several different statistics are gathered. These statistics form
the basis for several histogram based signatures which are
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Fig. 2 Sample models used in
this paper. (a) Models from the
SHREC model set (Giorgi et al.
2007), which contains around
400 categorized models.
(b) Models from the
PSB (Shilane et al. 2004) and
other various sources (over
300 models). The color mapping
on the models is of the
Normalized SDF values. Note
how these values already
indicate similarity between
analog parts

simple, yet descriptive. In Gal et al. (2007) the SDF was
used alongside a centricity measure to define a 2D histogram
based signature which is pose-oblivious. In Ben-Chen and
Gostman (2008) a signature based on conformal geometry
is proposed, it is invariant under non-rigid quasi-isometric
transformations. In Sect. 4 we evaluate these measures, in
addition to a simple SDF histogram based signature, and use
them as basis for a novel, contextual similarity measure.

We concentrate on matching sub-parts of objects which
is related more to partial matching. Nevertheless, partial
matching techniques (Belongie et al. 2001; Funkhouser and
Shilane 2006; Gal and Cohen-Or 2006; Johnson and Hebert
1999; Novotni et al. 2005; Zhang et al. 2008) are based more
on feature correspondence but less on segmentation results.
Segmentation and shape analysis was used to enrich models
with semantic information in Attene et al. (2006a, 2007) by
manually connecting parts through a user interface to an in-

stance in a knowledge base, or by using ontology connecting
form and functionality in Camossi et al. (2007).

Finding correspondence and analogies between differ-
ent shapes is recently becoming an active field of re-
search. Many works focus on the need to define mea-
sures for similarity of shapes (Sundar et al. 2003; Cornea
et al. 2005; Funkhouser et al. 2005), alignment of shapes
(Gelfand et al. 2005) and finding complete correspon-
dence between two models for the purposes of deforma-
tions, morphing (Alexa 2002), and cross-parameterizations
(Kraevoy and Sheffer 2004). We focus on finding analogies
between sub-parts.

Low level analogies to match vertices are used in
Schreiner et al. (2004), Kraevoy and Sheffer (2004) for cross
parametrization between two models. The matching is found
using user supplied matching points. In Sumner and Popovic
(2004) such matching points are used to define a many-to-
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Fig. 3 Non-linear (log-space)
mapping of SDF values to
enhance the importance of
delicate parts of the model (low
SDF values). Note how in
log-space the horns and nose of
the cow are better separated
from the head

many mapping of vertices between the models which is then
used to transfer deformations between the models. These
works require a long time to process and non-trivial user in-
put. They operate mostly on two models, and cannot work
on parts of models. Our work targets higher level analogies
and can work also on objects with different topology and
structure (Fig. 1).

In our experiments we show results on models from the
Princeton Shape Benchmark (PSB) (Shilane et al. 2004) and
the SHREC water-tight models database (Giorgi et al. 2007)
(Figs. 2, 9).

3 Partitioning to Parts

When examining 3D models, one can observe that the simi-
larity of parts often stems from their functionality. For exam-
ple in humans and animals parts are associated with organs,
which are usually 3D volumetric sub-parts of the shape.
Therefore, an automatic algorithm aimed at detecting such
3D shape analogies must first identify these sub-parts. We
use a partitioning of the shapes guided by the shape diame-
ter function (SDF) (Shapira et al. 2008). The SDF connects
volumetric information of an object onto its boundary mesh
by measuring the local diameter of the object at points on
its boundary. Hence, the SDF is suitable to guide volumet-
ric part extraction, detect natural 3D shape partitioning, and
define part signatures (Fig. 2).

The SDF at a point on the surface of the object is de-
fined as the diameter of the object in the neighborhood of
that point. Given a point on the surface mesh a set of rays is
sent inside a cone centered around its inward-normal direc-
tion (the opposite direction of its normal) to the other side
of the mesh. Ideally we would use only one ray, opposite
the normal. However, in order to obtain a smooth function
and better approximate the shape diameter in the presence
of geometric noise, we must sample several rays. The value
of the SDF at the point is defined as a weighted average of

all the lengths of the rays that fall within one standard devi-
ation from the median of all lengths. We use the inverse of
the angles between the rays to the center axis of the cone as
the weight to put more emphasis on rays opposite the normal
direction.

To maintain compatibility over different meshes, which
may have different scales and resolutions, we normalize and
smooth the SDF values. We also perform the partitioning in
log-space to enhance the importance of delicate parts, which
tend to have low characteristic SDF values (Fig. 3). The nor-
malized SDF value nsdf of facet f is calculated at the cen-
troid of the face and defined as

nsdf (f ) = log

(
α · sdf (f ) − min(sdf )

max(sdf ) − min(sdf )
+ 1

)/
log(α + 1),

where sdf : F → R is the SDF value for each facet f and
α is a normalizing parameter which is set to 4 in all our
examples.

The SDF can be seen as a scalar function over the mesh
surface. Specific iso-values of the SDF create iso-contours
on the surface, which can be used to partition the mesh. The
partitioning algorithm consists of two steps, first we model
the SDF values and then we cluster the faces of the mesh.

Partitioning Algorithm First, we use a Gaussian Mixture
Model (GMM) to fit k Gaussians to the histogram of SDF
values of the faces. This is achieved using the Expectation-
Maximization (EM) (Bilmes 1997) algorithm (Fig. 4). Once
we have a GMM, we calculate for each face f , a vector
vf ∈ Rk where vi

f is the probability of f to belong to the
ith Gaussian. Therefore at this stage, each face on the mesh,
belongs to all Gaussians with some probability. In the fol-
lowing step we use this information to cluster mesh faces
together, and create a segmentation.

In the second step we would like to segment the model
into parts. Additionally, we would like to ensure that the
boundaries between parts adhere to local mesh features such
as concave areas or creases and are smooth. We employ an
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Fig. 4 GMM model on
normalized SDF values
calculated using EM. The GMM
is later used to partition the
model. For illustrative purposes
we show here a varying number
of Gaussians on the different
models. Note that when
applying automatic partitioning
to a whole database of models,
we used a constant number of
Gaussians (4), with a handful of
exceptions

alpha expansion graph-cut algorithm (Boykov et al. 2001;
Zabih and Kolmogorov 2004) to solve the k-way graph-cut
problem, leading to a labeling of the mesh faces. The graph-
cut problem is known to be NP-hard. The alpha expansion
algorithm utilizes a series of large moves, changing a large
number of mesh face labels at a time, to arrive at an approxi-
mate solution within a known factor of the optimal solution.

We define a set of k labels, such that label i corresponds
to cluster i from the GMM. Let us denote by x̂ : F → B ,
the face labeling, where F is the set of mesh faces and B

is the label set. When optimizing for x̂, we wish to take
into account both the cluster assignment probabilities com-
puted from the EM step and the quality of the boundaries.
Therefore, our graph-cut formulation minimizes the follow-
ing energy functional composed of two terms: e1, a data
term, and e2, a smoothness term (see also Katz and Tal 2003;
Shapira et al. 2008).

E (x̂) =
∑
f ∈F

e1(f, x̂(f )) + λ
∑

{f,g}∈N

e2(x̂, f, g),

e1(f, b) = − log(P (f |b) + ε),

e2(x̂, f, g)

=
{

l(f, g)(1 − log(θ(f, g)/π)), x̂(f ) �= x̂(g),

0, x̂(f ) = x̂(g)

where

– P(f |b) represents the probability of assigning face f to
cluster b; these values are derived from the EM-fitted
GMM in the first step of the algorithm;

– θ(f, g) is the dihedral angle between facets f and g (if
connected, see next paragraph);

– l(f, g) is the length of the edge shared by f and g;
– N is the set of adjacent face pairs in the mesh.

A constant value of λ = 0.3, as a weight for smoothing,
gave good results in all our experiments. We also normalize
smoothness by the edge length l(f, g). Here and in subse-
quent equations, ε = 10−3 is used to avoid numerical insta-
bility.

A large percentage of the models used in the paper are
challenging: many of them are not water-tight, contain in-
ner parts, have faulty connectivity etc. We overcome these
problems by utilizing a spatial search structure to find neigh-
boring faces (i.e. not entirely relying on connectivity). This
allows us to support a wide variety of models. Note that
in the smoothness term we use the dihedral angle between
two connected faces. If two faces are adjacent but are not
connected, we use instead a constant value, which we have
found to produce good results.

The result of the graph-cut algorithm is a labeling of the
mesh faces, where each label corresponds to a Gaussian in
the model (see Fig. 5). These label are the basis of the hi-
erarchical segmentation of the model. In the next subsec-
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tion we describe how the association of each face with the
k Gaussians is used to create a this hierarchical partition-
ing. Using more Gaussians in the mixture creates a finer
segmentation of the mesh into parts, and also increases the
number of levels in the hierarchy of sub-parts. We have
found that for most models we have used, a constant value
of k = 4 gave good results. A few exceptions were re-
partitioned using a different value (between 3 and 6). Fig-

Fig. 5 Natural part boundaries. (a) Camel model with SDF visualiza-
tion. (b) Selecting the label matching the closest Gaussian for each face
partitions the mesh without adhering to local mesh features. (c) Apply-
ing the graph-cut step smooths the boundaries

ure 6 demonstrate that our scheme is not highly dependant
on the choice of parameter values. We show partitioning
results for the Armadillo varying both k and λ parameter
values. Note how the partitioning does not change dras-
tically, remaining consistent throughout the different val-
ues.

3.1 Hierarchical Partitioning

Many times analogies between parts are based on the rela-
tion of the parts to their respective whole objects. For exam-
ple the leg on a human model, if seen out of context, resem-
bles a cylinder. However, seen in context, it is analogous to
the legs of other bipeds and quadrupeds. Parts from different
objects that vary in their geometric shape or attributes indi-
vidually, become analogous when placed in the context of
their whole shape. Therefore, we want to create a hierarchi-
cal representation of each shape’s parts, and employ it later
to find analogies.

We sort the means of the GMM model from large to
small, and define k′ iso-values separating the Gaussians, and
consequently, separating the mesh into “levels”. The first
level is always set at 1 and is considered the root of the ob-
ject’s partitioning hierarchy, represented by a tree. The next
value separates the label corresponding to the Gaussian with
the largest mean from the rest of the labels. Thus, each face
of the mesh is assigned one of two possible labels. For ex-
ample, in a human model this would separate the torso from
the head and limbs. The actual parts are defined by prop-
agating from a seed triangle to create connected pieces of
the model. The next level separates the label correspond-

Fig. 6 Our automatic
segmentation of the Armadillo
model over a wide range of
parameters creates proper
segmentation which is also
consistent
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Fig. 7 Hierarchical
partitioning. (a) The camel
model is partitioned
automatically using four
iso-values, resulting in a five-tier
hierarchy of partitioning.
(b) The partitioning induces a
hierarchical graph of parts

ing the Gaussian with the second largest mean, separating
the faces of the object into three distinct groups. For exam-
ple, in a human model this would now separate the hands
from the arms and the feet from the legs. The rest of the iso-
values are calculated similarly in a recursive manner. Iso-
values are merged when they do not change the partition-
ing, thus k′ ≤ k. For example, if we use k = 2 then each
part is associated with one of two Gaussian means. The first
hierarchy level will be at iso-value 1 (the whole model),
and the second iso-value would be between the Gaussian
means.

Therefore, given a set of iso-values, for each iso-value,
each face in the model belongs to a certain part. Us-
ing this hierarchy we build the segmentation tree of the
model. For example, the five-tier camel partitioning hier-
archy (Fig. 7(a)) induces a hierarchical part graph as can be
seen in Fig. 7(b). Note that the toes and legs of the camel
(in all four legs) were separated using the fourth iso-value.
However, in the front, they are direct descendants of the
front legs, while in the back, the third iso-value induces a

slightly more detailed partitioning. In any case, once we
build the partitioning hierarchy there is no need to remem-
ber the specific iso-values. Additional examples of hierar-
chical segmentations can be seen in Fig. 8. The tree defines
the relation of parts inside the object, and assists to define
a better distance metric to recognize similar object parts as
described in the next section.

4 Part Signature and Distance Measure

To find analogies between multiple models, we must define
a way to measure similarity between parts of models. We
contend that when seeking to compare two parts, the context
from which they came is crucial to the comparison. A finger
on a human model is just a capped cylinder. However, when
taken in context of the hand, the arm and the entire body, its
description is more complete, and better matches and analo-
gies could be found.
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Fig. 8 Hierarchical partitioning
of the cheetah and dinopet
models

Each segmented part in the model is assigned a local sig-
nature composed of its geometrical attributes. For the pur-
pose of this work we have experimented with the following
signatures (see also Fig. 10):

– HSDF: Normalized histogram of SDF values within the
part and the size of the part as a percentage of the whole
model (see Sect. 4.1).

– SD (D1, D2, D3, A3): Shape-distribution signatures from
(Osada et al. 2002). A large number of points are sampled
uniformly on the surface of the model. The signature is a
histogram on the values of the following functions: (D1)
Distances between a fixed point and the sampled points.
(D2) Distances between two random points on the sur-
face. (D3) The square root of the area of the triangle be-
tween three random points. (A3) The angle between three
random points.

– CG: Conformal geometry signatures from (Ben-Chen and
Gostman 2008), which define a curvature based histogram
measure.

In some cases, the geometrical attributes are sufficient to
define a good distance measure between the parts, specifi-
cally in distinct parts, such as a head or paw (Fig. 11). How-
ever, analogies may stem from the characteristic of the part
in the whole as well as its geometric attributes. Therefore,
we define a context-based similarity measure, which uses
both local distance measures, and part-in-whole information
gathered from the hierarchical partitioning of the model. We

show, through experimentation, that this measure improves
the results of all the local distance measures we tried. More-
over, the context based is robust to different partitioning re-
sults, enhancing its usability.

Using the hierarchy we define the context of a part as the
path between the node representing the part, and the root
of the partitioning hierarchy. Each node along this path rep-
resents a part for which we can calculate the geometrical
attributes as described above. The set of all of these geo-
metric attributes define the context descriptor of the part.
We use this context descriptor in a distance measure be-
tween two parts, that takes into account both the similarity
of the parts themselves, and the similarity among the path
nodes.

4.1 Local SDF Signature

We define the local HSDF measure between two parts p and
p′ as a weighted sum of the distance between the local part
histograms, and the relative part sizes.

dhistogram(p,p′) = ∥∥H(p)/‖H(p)‖ − H(p′)/‖H(p′)‖∥∥2

dsize(p,p′) = |size(p) − size(p′)|
size(p) + size(p′)

,

HSDF(p,p′) = 1

3
· dsize(p,p′) + 2

3
· dhistogram(p,p′).

H is a normalized histogram of the part’s SDF values.
We construct the histogram based on the original SDF mea-
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Fig. 9 Partitioning to parts
using the SDF results works on
a wide variety of models, as
seen here for sample models
from the SHREC model set (a),
the PSB, and other sources (b).
All the results seen above were
achieved automatically with a
small (4) number of Gaussians
fitted to SDF histograms

surements in the part, removing the top and bottom 5% to
remove possible outliers. We use the L1 distance metric on
the normalized histogram, treating it as a vector. We have
experimented with various distance measures such as L2,
Chi-Square and Kullback-Leibler (1), but found that results
do not differ significantly from L1. In the above expres-
sions size(p) is the relative size of part p within the whole
shape.

4.2 Context-Aware Distance Measure

We define a local geometric distance measure between parts
p and p′ as d(p,p′). In our experiments we have used
HSDF, CG, SD(D1), SD(D2), SD(D3), SD(A3) as local part
signatures.

To define our context-aware distance measure D(p,p′)
we consider not only the local distance measure d(p,p′)

between the two parts, but also the whole paths from the
nodes of p and p′ to the root of their partitioning hierarchy.
Given two such paths on which we want to measure simi-
larity, we build a bipartite graph G (Fig. 12) such that each
side represents all nodes in each path. The edges between
the two sides contain one edge between p and p′ (the two
parts whose distance we want to measure), and an edge be-
tween each ancestor of p to each ancestor of p′. Note that
the number of ancestors of p and p′ may be different. The
capacity of an edge between two nodes q and q ′ is defined
as:

capacity(q, q ′) = 1

d(q, q ′) + ε
− 1

Lastly, we add two nodes, source S and sink T , and connect
each one of them to the nodes in one side of the graph re-
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Fig. 10 Different local shape
signatures, as visualized here for
the dog (whole model), nose of
statue, hand of woman and head
of teddy bear. SDF is a
histogram of normalized SDF
values. Conformal Geometry
(CG) is a histogram of sampled
values as described in Ben-Chen
and Gostman (2008). D1,D2,D3
and A3 are histograms of
different measures as described
in Osada et al. (2002)

Fig. 11 Local geometrical attributes in some cases are sufficient to define a good distance measure, as evident in the cougar paw and the teddy
bear’s head. Note that success rates vary with the choice of a specific distance measure
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spectively, with capacity equal to β · capacity(p,p′), with
β set at 1.5. This serves as an upper limit on the capacity of
the flow in the graph G. We now define

D(p,p′) = 1

flow(G) + 1

where flow(G) is the maximum flow in graph G.
The key motivation behind such a measure is on one

hand to match the part in the context of the whole hier-
archy, and on the other to achieve robustness against dif-
ferences in the partitioning. The measure will be higher as
more parts in the path from the node to its root match the
respective nodes in the compared part. However, it is hard
to determine the exact matching of parts in two hierarchies.
By connecting each ancestor of p to each ancestor of p′ we
are assured that the flow will represent the maximum simi-
larity from possible different matchings. For instance, given
three geometrically similar parts p,q,w such that p and q

also come from similar models, the local distance d(p,q)

and d(p,w) will be similar. When constructing the context-
aware distance measure, we construct two graphs, one com-

Fig. 12 Measuring context based similarity between two parts using
a bipartite graph. The first part hierarchy is represented by the nodes
p,q, r while the second part hierarchy is represented by the nodes
p′, q ′, r ′. The capacity of the edge (x, y) is defined to be 1

d(x,y)+ε
. The

similarity between two parts is defined as the maximum flow through
this graph

paring p to q , the other comparing p to w. In these graphs,
the edges pq and pw (defined using d(p,q) and d(p,w)

respectively) have similar weights. However, when connect-
ing nodes along the path from p to its hierarchy root to the
path of q and the path of w, we get different edge weights
(since p and q originate from similar models, with similar
parts). Therefore D(p,q) < D(p,w). Figure 13 illustrates
this idea.

Comparing a local signature to a context-aware dis-
tance measure (using that same local signature for com-
paring specific parts) shows significant advantage to using
the context-aware measure. Such examples can be seen in
Fig. 14.

5 Applications and Results

We will demonstrate the usefulness of our part analogies ap-
proach using two applications. The first is in the context
of a search and retrieval application of 3D shapes. Using
analogies, one can search for parts of shapes in the data-
base that are similar to a given part, or for objects that con-
tain similar parts to a given part query. The second can
be seen as a tool to enhance the meta-data in 3D objects.
Once part analogies are found, any information linked with
the query part can be carried automatically to other anal-

Table 1 Example of local vs. context-aware distance measures be-
tween the dinopet’s hand and six other parts (Fig. 13), where the HSDF
distance measure is used

Part d(p,p′) D(p,p′)

a (dinopet other hand) 0.001 0.0033

b (human hand) 0.034 0.0147

c (dinosaur hand) 0.042 0.0263

d (cheetah paw) 0.07 0.0242

e (human head) 0.26 0.126

f (airplane wing) 0.373 0.192

Fig. 13 Distance measure
comparison. We measure the
distance from hand of the
dinopet to six other parts. Parts
(a) through (d) are similar in
spite of their large geometric
variability, while parts (e) and
(f) are not. The distance
measurements are listed in
Table 1
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Fig. 14 Taking as example queries an airplane wing (a), the hand of a teddy bear (b) and the arm of a woman (c), we see significantly better query
results when moving from a local distance measure to a context-aware one

ogous parts, enriching the database with semantic meta-
data.

5.1 3D Model Parts Retrieval

Using the distance measure defined in Sect. 4 we developed
a simple part retrieval application. The user loads a model,
which is automatically partitioned. The user can select a part
p and search for similar parts in the database. The database
models are segmented to parts, each retaining its partitioning
hierarchy, and pre-calculated geometric attributes. We scan

the database, and for each part p′, calculate the contextual
distance measure D(p,p′). We sort the results and return
the top list of matching parts. Several example queries can
be seen in Fig. 15.

We also allow to search for analogies in a set of models
(Fig. 19). Given a source model, and k target models, we at-
tempt to find a maximal correspondence between the source
and each of the target models. This is done in a greedy
fashion, which queries successively each part in the source
model, over the subset of target models. The best match is
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Fig. 15 Results of several part queries. On the left is the query part and on the right the search results. All examples are from the SHREC database

selected, and the matching continues on the parts adjacent to
it.

We have conducted experiments on two databases. The
first is the SHREC water-tight models database (Giorgi et
al. 2007) which contains 400 models in various categories
such as men, women, animals, ants, planes, chairs, tables
etc. (for samples see Fig. 2). The second database contains
models gathered from various sources, including the Prince-
ton Shape Benchmark database (Shilane et al. 2004). This
database contains 300 models.

For both databases we have partitioned the models using
4 iso-values, which results in up to four levels of partition-
ing. The partitioning resulted in 3562 distinct parts in the
SHREC database, and 4711 parts in our second database.
For an example of the partitioning results see Fig. 9.

Due to the fact that the parts of the models we use are
not categorized, it has been difficult to quantize the suc-
cess of our algorithm and compare it to other algorithms.
To the best of our knowledge, no previous works have yet
compiled a segmented semantic part database of 3D mod-
els, and conducted extensive testing on it. We hope our

efforts will be the first step in establishing such a bench-
mark.

We have run queries for each part in the SHREC data-
base and tested the results using the Nearest-neighbor test
(Shilane et al. 2004). Using the context-aware distance mea-
sure we were able to achieve 97.7% accuracy, compared
to 93% accuracy using the local HSDF measure. Addition-
ally, we defined several test categories such as Airplane
wing, Armadillo hand, Human leg, and ran queries on parts
within these categories. Each query was run on local and
context-aware distance measures. The context-aware dis-
tance measures outperformed the local distance measures in
each query with no exceptions. A plot of the results can be
seen in Fig. 16.

We illustrate the effectiveness of our technique on other
classes of objects by adding around 30 CAD models to the
database. We also include variations of the same model and
search for a specific part. Figure 17 shows that although geo-
metrically the parts may vary, since we use context-based
measures, we find the correct analogous parts in other mod-
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Fig. 16 We performed part queries in several categories such as Hu-
man leg, Armadillo leg and Airplane wing. We have compared the re-
sults using two local distance measures and their context-aware coun-
terparts. The number of relevant results returned with the use of con-
textual analogies surpassed its local counterpart over all queries

els. Furthermore, we inserted into the parts database differ-
ent partitioning of the same object, and used such parts as
queries. Still, regardless of the partitioning, the results re-
turned similar parts from all the copies of the model, illus-
trating a level of robustness to specific (possibly incorrect)
partitioning of objects (Fig. 18).

All statistics were gathered on a 2.4 GHz dual core Win-
dows XP machine. The pre-processing steps for building
the SHREC database are summarized in Table 2 along with
timing information. A query takes on average 600 ms to
cover all parts in the database, and return the relevant re-
sults.

Table 2 Pre-processing times for the SHREC database

Task Time (mins) Comment

SDF Values 10 400 models

Auto Partitioning 5 400 models

Conformal Geometry Sig. 60 3652 parts

Shape Dist. Sig. 90 3652 parts

Fig. 17 CAD Models. (a) We
added a class of mechanical
models to the database and
partitioned them. (b) We added
several variations of the phone
model created using iWires (Gal
et al. 2009). (c) Querying for the
dial and handle of the phone
returns the correct parts in the
different variations
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Fig. 18 Five distinct
partitioning of the dinopet
model are inserted into the
database (a). Even though the
part hierarchy is different for
each model, querying the
dinopet hand (b) returns
matching hands from all dinopet
variants

Fig. 19 Analogies between
parts of whole objects, as
indicated by matching colors
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5.2 Part Annotation

Using the contextual distance measure, we can now trans-
fer user supplied annotations from one part to others in our
database automatically. We developed a simple interface, in
which a user may select a part (of any level in the hierar-
chy of the corresponding object) and annotate it with one or
more textual tags. The tag is then associated with the part,
and kept in the database.

Given a part p which we wish to automatically annotate,
we define it as a query and search the database, retrieving
a set of results. We discard all but the first 20 results from
the set, denoting the resulting subset by R, and build a set
of tags T (R) containing all tags attached to parts in R. For
each tag t ∈ T (R) we define a tag importance measure:

C(t) =
∑
r∈Rt

1

D(p, r) − 1
,

where Rt = {r ∈ R|t ∈ r} and D is the shape context dis-
tance measure defined in Sect. 4.

We associate part p with all tags t such that C(t) > m,
where the threshold m is set to 100 throughout. The tags are
attached to the parts and saved in the database.

We allow the user to perform an annotation transfer on
all tags found in the database, or only on selected tags.
Consequently we can perform text searches in the data-
base, searching for specific tags, such as “‘ear”’, “‘head”’,
“‘thin”’, “‘wide”’ etc. (Fig. 20).

6 Conclusions and Future Work

We have presented a framework which automatically finds
part analogies among 3D objects. The method first parti-
tions a given 3D object to create a part hierarchy, and then
defines a signature for each part. This signatures draws not
only from the properties of the part itself, but from the re-
lations between the part and the whole object. Using these
signatures we defined an effective context-aware distance
measure that can find analogous parts among other objects,
which are not necessarily similar as a whole.

We have shown that such part analogies can support part
search queries in a shape retrieval application. We have also
used them to add semantic information to the objects by car-
rying information defined on one part (e.g. tags) to analo-
gous parts in other objects.

The current method relies on the initial hierarchical parti-
tioning of the objects. A stronger approach would attempt to
analyze or partition the object in various ways depending on
the query context. This would allow more flexible analogies
to be found and better support to partial matching which is
not restricted to the given partitioning. Such an investiga-
tion is left for future work. Other possible future directions

include the use of contextual distance measures with differ-
ent signatures and the extension of the tagging application
to full semantic taxonomies of objects databases.
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(2005). Feature-based similarity search in 3D object databases.
ACM Computing Survey, 37(4), 345–387.

Camossi, E., Giannini, F., & Monti, M. (2007). Deriving function-
ality from 3D shapes: Ontology driven annotation and retrieval.
Computer-Aided Design & Applications, 4(6), 773–782.

Choi, H., Choi, S., & Moon, H. (1997). Mathematical theory of medial
axis transform. Pacific Journal of Mathematics, 181(1), 57–88.

Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson,
S., & Kantor, P.B. (2005). 3d object retrieval using many-to-many
matching of curve skeletons. In SMI ’05: proceedings, shape mod-
elling and applications conference. Los Alamitos: IEEE Com-
puter Society.

Funkhouser, T., & Shilane, P. (2006). Partial matching of 3D
shapes with priority-driven search. In: SGP ’06: Proceedings
of the fourth Eurographics symposium on Geometry processing
(pp. 131–142). Eurographics Association, Aire-la-Ville, Switzer-
land.

Funkhouser, T., Kazhdan, M., Min, P., & Shilane, P. (2005). Shape-
based retrieval and analysis of 3D models. Communications of
the ACM, 48(6), 58–64.

Gal, R., & Cohen-Or, D. (2006). Salient geometric features for partial
shape matching and similarity. ACM Transactions on Graphics,
25(1), 130–150.

Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose oblivious shape sig-
nature. IEEE Transactions on Visualization and Computer Graph-
ics, 13(2), 261–271.

Gal, R., Sorkine, O., Mitra, N., & Cohen-Or, D. (2009, to ap-
pear). iWIRES: An analyze-and-edit approach to shape manipula-
tion. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH), 28(3).

Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. (2005). Robust
global registration. In Proc. symp. geom. processing.

Giorgi, D., Biasotti, S., & Paraboschi, L. (2007). Shape retrieval con-
test 2007: Watertight models track (Tech. Rep). CNR-IMATI,
Friedrich-Wilhelms-Universität Bonn.



Int J Comput Vis

Johnson, A., & Hebert, M. (1999). Using spin images for efficient ob-
ject recognition in cluttered 3D scenes. PAMI, 21(5), 433–449.

Katz, S., & Tal, A. (2003). Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Transactions on Graphics (Pro-
ceedings SIGGRAPH 2003), 22(3), 954–961.

Kraevoy, V., & Sheffer, A. (2004). Cross-parameterization and com-
patible remeshing on 3D models. ACM Transactions on Graphics,
23(3), 861–869.

Kullback, S., & Leibler, R. (1951). On information and sufficiency.
Annals of Mathematical Statistics, 22(1), 79–86.

Novotni, M., Degener, P., & Klein, R. (2005). Correspondence genera-
tion and matching of 3D shape subparts (Tech. Rep). CG-2005-2,
Friedrich-Wilhelms-Universität Bonn.

Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape
distributions. ACM Transactions on Graphics, 21(4), 807–832.

Schreiner, J., Asirvatham, A., Praun, E., & Hoppe, H. (2004). Inter-
surface mapping. ACM Transactions on Graphics, 23(3), 870–
877.

Shamir, A. (2007, to appear). A survey on mesh segmentation tech-
niques. Computer Graphics Forum.

Shapira, L., Shamir, A., & Cohen-Or, D. (2008). Consistent mesh par-
titioning and skeletonisation using the shape diameter function.
The Visual Computer, 24(4), 249–259.

Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The
Princeton shape benchmark. In Shape modeling international.

Sumner, R. W., & Popovic, J. (2004). Deformation transfer for triangle
meshes. ACM Transactions on Graphics, 23(3), 399–405.

Sundar, H., Silver, D., Gagvani, N., & Dickinson, S. (2003). Skele-
ton based shape matching and retrieval. In SMI ’03: Proceed-
ings, shape modelling and applications conference (p. 130). Los
Alamitos: IEEE Computer Society.

Tangelder, J. W., & Veltkamp, R. C. (2008). A survey of content based
3D shape retrieval methods. Multimedia Tools and Applications,
39(3), 441–471. doi:10.1007/s11042-007-0181-0.

Zabih, R., & Kolmogorov, V. (2004). Spatially coherent clustering us-
ing graph cuts. CVPR’04, 02, 437–444.

Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O.,
& Tagliasacchi, A. (2008). Deformation-drive shape correspon-
dence. Computer Graphics Forum, 27(5), 1431–1439. (Special Is-
sue of Symposium on Geometry Processing 2008.)

http://dx.doi.org/10.1007/s11042-007-0181-0

	Contextual Part Analogies in 3D Objects
	Abstract
	Introduction
	Related Work
	Partitioning to Parts
	Partitioning Algorithm
	Hierarchical Partitioning

	Part Signature and Distance Measure
	Local SDF Signature
	Context-Aware Distance Measure

	Applications and Results
	3D Model Parts Retrieval
	Part Annotation

	Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


