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We present an algorithm for finding a meaningful vertex-to-vertex correspondence be-
tween two triangle meshes, which is designed to handle general non-rigid transformations.
Our algorithm operates on embeddings of the two shapes in the spectral domain so as to
normalize them with respect to uniform scaling and rigid-body transformation. Invari-
ance to shape bending is achieved by relying on approximate geodesic point proximities
on a mesh to capture its shape. To deal with moderate stretching, we first raise the
issue of “eigenmode switching” and discuss heuristics to bring the eigenmodes to align-
ment. For additional non-rigid discrepancies in the spectral embeddings, we propose to
use non-rigid alignment via thin-plate splines. This is combined with a refinement step
based on geodesic proximities to improve dense correspondence. We show empirically
that our algorithm outperforms previous spectral methods, as well as schemes that com-
pute correspondence in the spatial domain via non-rigid iterative closest points or the
use of local shape descriptors, e.g., 3D shape context. Finally, to speed up our algorithm,
we examine the effect of using subsampling and Nyström method.
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1. Introduction

Given two 3D shapes represented as triangle meshes, the correspondence prob-
lem seeks to establish a meaningful mapping between them. The mapping can be
between the two sets of mesh vertices, between two coarse sets of feature points
selected on the meshes, or a continuous one between all points on the two shapes.
This is a fundamental problem in computer graphics and shape modeling, with such
applications as texture mapping25, mesh deformation2,43,46, shape registration28,35,
and object recognition21. Also, a recent trend in research into the mesh parame-
terization problem, which essentially computes a continuous dense surface corre-
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spondence, is to look for effective techniques to construct a cross parameterization
between two meshes directly26,36, i.e., without relying on a simple common param-
eter domain. Such a parameterization allows one to obtain compatible connectivity
among a set of models in a feature-sensitive way26,34, greatly facilitating tasks such
as shape blending and various forms of attribute transfer. A crucial first step for
constructing a cross parameterization is the identification of a sparse set of match-
ing feature points on the two shapes; this is followed by patch construction based on
the corresponding features. Most such methods34,25,26,36 rely on the user to spec-
ify the initial feature correspondence manually. It is well known that even if the
sets of feature points have been given, finding a meaningful correspondence auto-
matically with robustness to both rigid and non-rigid geometric transformations is
notoriously difficult. This is the problem we wish to address in this paper.

Given two triangle meshes, possibly non-manifolds (but connected) and with
different sizes, we compute a correspondence between the mesh vertices. The spa-
tial coordinates of the mesh vertices are first converted into two affinity matrices,
which are obtained by applying a Gaussian kernel to the matrices of approximate
geodesic distances for the two meshes. This way, each vertex of a mesh is represented
using intrinsic structural information. The correspondence is obtained by matching
points based on this information and this is carried out in a k-dimensional spectral
domain. Typically, k is much smaller than the size of the affinity matrices. Thus
the dimensionality of the structural information is effectively reduced.

Appropriate choice of the Gaussian kernel width and the use of spectral em-
beddings described above ensure that our matching procedure is invariant to rigid
body transformations, uniform scaling, and shape bending, since the affinities used
are invariant to precisely these transformations. We also propose to scale the eigen-
vectors by the square root of the eigenvalues in forming the spectral embeddings so
as to achieve robustness against difference in mesh vertex counts and choice of the
dimensionality of the embeddings. However, our experiments show that matching
based solely on such embeddings, e.g., using the L2 metric40, can be non-robust to
stretching in the shapes. A crucial observation is that stretching can cause certain
eigenmodes to switch places. That is, eigenvectors which form the spectral embed-
dings may not correspond according to the orderings determined by the magnitude
of their eigenvalues. To the best of our knowledge, this issue has not been addressed
before and all previous spectral correspondence algorithms6,8,9,12,37,38,40 have or-
dered the eigenmodes according to the magnitude of their eigenvalues.

In this paper, we first search for an appropriate permutation of the eigenmodes,
as well as their sign assignments. This procedure effectively aligns the spectral
embeddings with respect to certain reflections. To handle the remaining non-rigid
discrepancies between matched shapes, we perform a non-rigid alignment in the
spectral domain using thin-plate splines (TPS)5. A refinement step using the origi-
nal geodesic proximity data enhances the performance of the algorithm in the case
of dense correspondence. Through formal arguments and numerous experiments,
we demonstrate that our approach outperforms previous methods which operate
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on spectral embeddings8,9,40,45, as well as schemes that find correspondence in the
spatial domain via non-rigid iterative closest points7 or the use of local shape de-
scriptors, such as shape contexts3 or curvature maps16.

The rest of the paper is organized as follows. Section 2 gives a brief survey of
previous work. Section 3 defines notations, formalizes our problem, and provides
an algorithm overview. In Section 4, we describe the construction of the spectral
embeddings in more details, argue for its various properties, and demonstrate its
non-robustness to stretching. We also explain our eigenvector scaling scheme and its
effect on the spectral embeddings. In Section 5, we present the major components
of our correspondence algorithm. This is followed by experimental results in Sec-
tion 6, where we also point out some limitations of our current approach. Finally,
we conclude in Section 7 and comment on future work.

2. Background and previous work

Visual correspondence constitutes one of the most fundamental aspects of human
intelligence, but the difficulty with which an automatic computer algorithm can im-
itate this process has long been realized in the field of computer vision. The vision
community has mostly focused on 2D correspondence, either between contours39 or
image features3,4,7,8,9,31, e.g., for object tracking, image registration, and motion
analysis44. Although in certain aspects, the 2D problem may appear to be more
difficult than its 3D counterpart due to factors such as occlusion and illumination
artifacts, the latter can offer a different set of challenges. First of all, temporal co-
herence and spatial proximity can greatly facilitate correspondence computations
in vision applications, but the same cannot be said about 3D applications such as
texture mapping, mesh morphing and deformation, or object recognition. Secondly,
an increase in dimensionality introduces more degrees of freedom. Last but not the
least, unlike images or volumes, general 3D surfaces lack a canonical parameteri-
zation which complicates matters. As an example relevant to the correspondence
problem, we mention that order-preserving assignment for contour matching can be
done in polynomial time39, but the problem of optimizing for a neighbor-preserving
assignment between two surfaces is much more complexa.

In general, point correspondence may be computed based on either absolute
coordinates or relative information, e.g., given by weighted graphs. Two main classes
of methods exist for spatial correspondence: those using local shape descriptors and
those relying on iterative alignment schemes. The first class of techniques describe
every point on a shape by encoding shape information from the perspective of
that point. Point matching is then based on appropriate distances between the
descriptors. Well-known descriptors for images31 include shape contexts3 and spin
images22, both utilizing a histogram obtained by binning the space around a point

aOne possible formulation is via the Quadratic Assignment Problem33, which is arguably one of
the most difficult NP-hard combinatorial optimization problems.
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Fig. 1. TPS-RPM is sensitive to initial configuration of shapes.

according to the Euclidean metric and collecting point counts. The former has been
generalized in a straightforward manner to handle 3D point sets23.

Neither shape contexts nor spin images are invariant to shape bending. A
promising remedy is the curvature maps of Gatzke et al.16. Local shape descriptors
are constructed on a mesh by dividing the geodesic neighborhood of a vertex into
bins. Although geodesic binning is invariant to bending (not stretching), the his-
tograms computed are based on curvature distributions, which, even if estimated
robustly, are not invariant to bending.

More recent shape signature based methods include those by Gelfand et al.17 and
Li et al.28. Both methods are robust under only rigid transformations. The partial
matching scheme of the former do provide a way to detect articulated subparts of a
shape and subsequently match them to the subparts of the second shape. However,
their work lacks a discussion and analysis of the performance and robustness of the
matching method when there are multiple pose changes in the models or when the
models consist of a large number of articulated subparts.

Iterative alignment schemes compute a correspondence and a transformation
which would transform one shape into another at each step. The correspondence is
usually based on a “closest point” criteria and the transformation is obtained by op-
timizing an energy. Such techniques include the well known iterative closest point
(ICP) algorithm of Besl and Mckay4 and its variants35, which can handle affine
transformations. Recent works, most notably the TPS-RPM method of Chui and
Rangarajan7, attempt to incorporate non-rigid deformations into the ICP frame-
work, using thin-plate splines (TPS) to model the deformation. However, these
methods can easily get trapped in bad local minima if the shapes are not approxi-
mately aligned initially, since the correspondence, which dictates the optimization,
is computed using an Euclidean closest point method. For example, rotation alone
can cause a bad matching, as shown in Figure 1.

Sumner et al.43 and Zayer et al.46 attempt to alleviate this problem by fixing a
small number of feature points on the shapes to be matched. Sumner et al. rely on
these feature points as guidance to ICP in order to escape local minima, whereas
Zayer et al. use interpolation, based on barycentric coordinates, of the correspon-
dence between the feature points to compute the remaining point correspondences.
In both methods, it is imperative that the feature points selected on the two meshes
be corresponding in a meaningful way. This can only be done with user assistance
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as automatic selection and matching of the feature points is equivalent to the cor-
respondence problem we are trying to solve in the first place.

Spectral shape correspondence involves first constructing intrinsic (relative)
point representations of the two shapes, in the form of weighted graph adjacency or
affinity matrices. Elad and Kimmel12 make use of geodesic proximities to construct
bending-invariant surface signatures through multi-dimensional scaling. Applica-
tion to object classification has been considered, but they do not solve the harder
correspondence problem. Given a proximity matrix, a k-dimensional spectral em-
bedding can be computed via principal component analysis (PCA). Shapiro and
Brady40 use L2 distances between the embedded points to compute a correspon-
dence, while Umeyema45 chooses the correlation between the embedding coordi-
nates. Both Caelli and Kosinov6 and Carcassoni and Hancock9 rely on spectral clus-
tering and cluster correspondence to guide point correspondence. The use of spectral
embeddings has traditionally been exploited in the computer vision and machine
learning literature. Recently, they have found several applications in geometry pro-
cessing as well, including mesh segmentation27, spherical parameterization19, sur-
face reconstruction24, object retrieval12,21, and surface quadrangulation10.

3. Overview

Let us first give a brief overview of the problem we address and the algorithm we
propose. Given two 3D shapes MA and MB , in the form of triangle meshes and
with nA and nB vertices, respectively, we wish to compute a correspondence Y

between the two sets of vertices in MA and MB . That is, Y (i) is the vertex in MB

that best corresponds to vertex i in MA. Note that the correspondence computed is
not required to be bijective. However, in the case where nA = nB and a one-to-one
correspondence is sought, we can easily modify our method to meet the goal.

Our method of computing Y is as follows: first, we establish an nA×nA affinity
matrix A where Aij is the affinity between vertices i and j of MA. Similarly, we
compute an nB×nB matrix B, the affinity matrix for MB . The affinities that we use
in our implementation are based on distances over surfaces in order to attain invari-
ance to bending. Next we find the spectral embeddings Âk and B̂k of the matrices
A and B, respectively. These embeddings give k-dimensional coordinates of all the
vertices of MA and MB . The embeddings are based on the eigenvectors of A and
B, properly processed as we describe in Section 4. The purpose of transforming the
3D mesh from spatial domain to spectral domain is to attain invariance to bending,
rigid transformations, and uniform scaling, as well as robustness to difference in
mesh sizes. Now Y is computed in the spectral domain.

Common to all the existing spectral correspondence techniques is the premise
that the eigenmodes from two similar shapes should match up, according to the
magnitude of their corresponding eigenvalues. One of our main observations is that
this ordering of the eigenmodes is not always reliable. As the eigenvalues charac-
terize data variance in the direction of the corresponding eigenvectors, eigenmode
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ordering based on eigenvalues implies ordering by data variance. This may not be
appropriate since variance only captures global information and does not reflect the
way specific data points would vary. Under shape stretching, certain eigenmodes
may be “switched”. Failure to resolve such reflections or other non-rigid discrepan-
cies between spectral embeddings will lead to poor matching results. In this paper,
we examine heuristics to handle eigenmode switchings. Afterwards, the two k-D
spectral embeddings will be corresponded via non-rigid ICP registration based on
TPS. This registration is not required to be one-to-one, but we can force bijectivity
by using the Hungarian algorithm for bipartite matching.

4. Spectral embedding

In general, intrinsic point representations can be obtained via pairwise point prox-
imities, specified by a symmetric affinity matrix A = {aij}, where aij ≥ 0 char-
acterizes the similarity or simply the graph adjacency6,45 between points i and j.
One may view the affinity matrix A as a data vector whose n columns (or rows)
represent n-dimensional data points.

The most common proximity measure used to define relationship between points
for shape matching is the Euclidean distance8,9,38,40, which implies invariance to
rotation and translation. For mesh correspondence, we may use geodesic distances
between the mesh vertices, computed via fast marching12, to include invariance to
bending as well. But to be able to handle non-manifold situation, which occurs for
many of our test models taken from the Princeton Benchmark41, we use graph dis-
tances in a mesh to approximate geodesic distances. The graph is composed simply
of mesh vertices and edges with edge weights given by edge lengths. Invariance to
uniform scaling is achieved by mapping the approximate geodesic proximities into
the interval [0, 1] using a scale-dependent kernel function. In this paper, we use
Gaussian kernels which is a common choice for spectral correspondence8,9,38,40.

Although the point proximities contain a great deal of shape information, with-
out a proper point mapping, one cannot compare such representations for two data
sets directly. Also, the size of the data sets, or the dimensionality of the point rep-
resentations, may not be the same. Last but not the least, the high dimensional
representations may contain a great deal of redundancy, resulting in unnecessarily
high computational cost. These observations naturally lead us to consider trans-
forming two data sets, respectively, into some information-preserving subspaces
that share the same low dimensionality. This can be accomplished through princi-
pal component analysis (PCA) on the affinity data.

4.1. Principal component analysis

Given the data (affinity) matrix A ∈ Rn×n, we first compute its principal com-
ponents e1, . . . , en, which are the normalized eigenvectors of the autocorrelation
matrix R = AAT . Since A is symmetric, R = A2 and e1, . . . , en are simply the
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Fig. 2. Spectral embeddings (bottom row) of some articulated 3D shapes (top row) from the McGill
shape database. The embeddings are constructed using the second, third, and fourth eigenvectors.
The ignoring of the first eigenvector is explained in Section 5.

eigenvectors of the affinity matrix A. Let λ1, . . . , λn be the corresponding eigenval-
ues of A and suppose that λ1 ≥ . . . ≥ λn. Projecting the data matrix onto the first
k principal components yield

Âk = ET
k A = ΛkET

K , (1)

where Ek = [e1| . . . |ek], Λk = diag(λ1, . . . , λk), and the columns of Âk represent a
k-dimensional spectral embedding of the data points. A point permutation induces
the same permutation of the embeddings but leaves the spectrum invariant.

In the case of mesh spectral embeddings, the data points are mesh vertices. A
spectral embedding associates with each mesh vertex a k-dimensional vector. In the
3D spectral domain, one can visualize the embedding of a mesh M by rendering
a mesh whose connectivity is the same as M and whose vertices are given by the
embedding coordinates, as shown in Figure 2, where the original shapes were taken
from the McGill articulated shape database30. It is worth noting the normalization
of shape articulation in the spectral domain, which is quite evident.

Although Âk gives a provably best k-dimensional approximation of A (in terms
of the Frobenius norm), it may not be suitable for matching. The more important
requirement is for the projection axes, derived from the principal components, to
be compatible between two data sets.

4.2. Eigenvector scaling

Given two affinity matrices A and B characterizing two shapes, possibly in different
scales, a scale-dependent kernel can normalize the affinity values in A and B. If the
number of vertices, nA and nB , in the two (mesh) shapes differ however, we first need
to truncate both spectral embeddings to the same dimension k ≤ min{nA, nB}. In
addition, since we normalize each eigenvector, the cardinality of a data set affects the
magnitude of the entries in its eigenvectors, which in turn affects the embeddings.

Correspondence algorithms that use un-scaled eigenmodes8,9,40 as spectral em-
beddings are common. Shapiro and Brady40 first suggest a scaling of the the eigen-
modes by eigenvalues, as in (1), but did not elaborate. Caelli and Kosinov6 scale the
eigenmodes using squared eigenvalues and then project the resulting embeddings



April 5, 2007 13:59 WSPC/INSTRUCTION FILE spect˙corr

8 V. Jain, H. Zhang, and O. van Kaick

0 200 400 600 800 1000 1200 1400
0

2

4

6

8x 10
5

Difference in the number of vertices

E
rr

o
r 

in
 c

o
rr

es
p

o
n

d
en

ce

Without scaling
With eigenvalue scaling

Fig. 3. Effect of eigenvector scaling on correspondence, based on the correspondence error plots
averaged over several test models taken from the Princeton Shape Benchmark.

onto the unit k-sphere for matching graphs of different vertex counts. Evidently,
proper scaling of the eigenmodes is a crucial normalization step. None of these
approaches adequately resolves the discrepancies in the scales of the principal com-
ponents (or embeddings) due to difference in the cardinality of the data sets. In
this paper, we propose to scale the principal components by the square root of the
eigenvalues, yielding projections

Âk = Λ
1
2
k UT

k and B̂k = Γ
1
2
k V T

k , (2)

where A = UΛUT and B = V ΓV T are the eigenvalue decompositions of A and B,
respectively, with Uk, Vk,Λk, Γk defined as in (1). Spectral embeddings of this form
are well known in the spectral clustering literature32.

Justifications: Consider the vector of projections âi from set A. We can estimate
the scale of these projections by sA,i = ||âi||2/nA. From (2), we have

âi =
√

λiui and b̂i =
√

γivi.

It follows that sA,i = λi/nA and sB,i = γi/nB . With the affinity matrices having
unit diagonal elements, signaling that a point has maximal affinity to itself, we have

sA,i =
λi

trace(A)
=

λi∑nA

j=1 λj
and sB,i =

γi∑nB

j=1 γj
.

We do not normalize these scales to some constant, since they represent data vari-
ations along the projection axes and thus contain shape information. We only wish
to remove the effect of different data size; this is achieved by normalizing the eigen-
values, which represent data variations.

Another justification for (2) is that the dot-product matrices ÂT
k Âk and B̂T

k B̂k

are respectively the best rank-k approximations, in Frobenius norms, of A and B11,
which are already normalized to scale. Using the same argument, we see that the dot
product matrices resulting from eigenmode scaling with eigenvalues themselves40

become best rank-k approximations of the autocorrelation matrices AAT = A2 and
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Fig. 4. Eigenvector plots for two shapes, both with 252 vertices. The first 8 eigenvalues are [205.6,
11.4, 4.7, 3.8, 1.8, 0.4, 0.26, 0.1] and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.25], respectively.

B2, respectively, whose entries do depend on the size of the data sets. Finally, one
can also justify the scaling by making use of the notion of kernel PCA, see20.

Experimental verification using correspondence errors: The effectiveness
of our eigenvector scaling scheme is shown in Figure 3, where we plot the corre-
spondence errors in the case of scaled versus un-scaled spectral embeddings. The
correspondence error is measured as the total graph distance

∑n
i=1 d(vi, v

′
i), where

n is the number of vertices to be matched, vi is the vertex corresponding to i that
is computed by an algorithm, and v′i is the ground-truth match for i. The plots are
against the difference in the number of vertices of the two meshes to be matched.
The correspondence algorithm used is our own and it is described in Section 5. In
producing the two plots, the only difference is whether the eigenmodes are scaled.

Measuring error for dense correspondence is not easy since the ground-truth cor-
respondence is impractical to establish manually. In our evaluation, we successively
decimated a 3D mesh using the QSlim mesh decimation program of Garland15. Next
we use our algorithm to correspond the original mesh with its coarsified versions
and measure correspondence errors. The ground-truth can be trivially established
since QSlim retains the positions of undecimated vertices.

4.3. Non-robustness of eigenmodes

Eigenmode switching: Perturbation theory predicts that when eigenvalues move
close to each other, the corresponding eigenvectors may switch order18. Geomet-
rically, an eigenmode switching corresponds to a reflection of the spectral embed-
ding about the symmetry axis between the two axes corresponding to the switched
eigenmodes. We have observed that eigenmode switching in spectral shape corre-
spondence can occur early in the eigenvalue order, e.g., before the 8-th eigenmode,
even when the two shapes being matched are perceptually similar. But there is no
general pattern of eigenvalue clustering that is sufficiently reliable to detect the
switchings. As switching of two coordinates, the eigenvectors, induces a reflection
in the spectral domain, spectral correspondence based on the L2 distance measure
or correlations40,45, even with the aid of clustering6,9, can fail.

For a visual illustration of eigenmode switching, we color-plot the eigenvectors
in MATLAB, where the entries in an eigenvector are used as indices into the color
map. To enhance our illustration, we nonlinearly warp the color map. As shown in
Figure 4, two similar shapes have compatible eigenmodes, reflected by consistent
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color plots, only up to the 4th eigenvector. The 5th and 6th eigenmodes are switched
and color patterns for the next a few eigenvectors, those exhibiting higher-frequency
color variations, do not exhibit any discernible patterns. Evidently, correspondence
analysis using eigenvalue orderings to pair up eigenmodes beyond the 4th one would
be hard to justify in this case.

Other effects of eigenvector scaling: One interesting point to note is that
as the magnitude of the eigenvalues of the approximate geodesic affinity matrices
exhibit rapid decay, as shown in the caption of Figure 4, scaling using eigenvalues
has the effect of rapidly attenuating the effects of higher-frequency eigenvectors.
This would be quite appropriate since these eigenvectors are less reliable to use for
correspondence analysis. As a side effect, the resulting correspondence algorithm
will be less sensitive to the number of eigenmodes chosen. In previous works, e.g.,9,
some heuristic has to be adopted to determine the proper dimensionality to use.

Sign flips: Arbitrary determination of the signs of the eigenvectors returned by
a numerical solver introduces another form of reflection to be handled, as already
noted in previous works6,40. Caelli and Kosinov6 propose to use a dominant sign
correction, always ensuring that there are more positive entries in each eigenvec-
tor. This is highly unreliable however since specific to spectral correspondence, the
eigenvectors tend to have about the same number of positive and negative entries
due to orthogonality to a constant eigenvector; see Section 5.1. Shapiro and Brady40

use a greedy approach to correct one sign at a time by optimizing for a correspon-
dence cost. In the presence of eigenmode switchings, this is clearly not robust.

Other transformations: Consider the spectral embeddings of two similar human
meshes using the 2nd, 3rd and 4th eigenvectors (this particular choice of the eigen-
vectors is explained in Section 5.1), as shown in Figure 5(a). Ideally, the embeddings
would be perfectly aligned. However, a rotational difference in the embeddings is
clearly visible. In addition, there are also other discrepancies of a non-rigid nature.
Another example is given in Figure 5(b), where the second (light gray) mesh is
merely a scaled version (scaled along the x direction) of the first (dark gray) mesh.
But there again is a rotation in the embedding. We believe that such transforma-
tions in the spectral domain, as well as eigenmode switchings, are the result of
non-uniform stretching in the shapes. Obviously, a matching algorithm must be
able to deal with all these transformations in order to operate robustly.

5. Our algorithm

An outline of our non-rigid spectral mesh correspondence algorithm is given in Fig-
ure 6, with details described below. Note that iterative alignment, e.g.,7, can work
quite well if the initial shapes are approximately aligned, while spectral embedding
can automatically remove the effects of rigid-body transformations, uniform scal-
ing, and shape bending. Hence, a natural approach would be to perform non-rigid
alignment in the spectral domain before computing the matching. The only obsta-



April 5, 2007 13:59 WSPC/INSTRUCTION FILE spect˙corr

Non-Rigid Spectral Correspondence of Triangle Meshes 11

(a) Alien vs. human, and their embeddings. (b) Alien stretched and the embeddings.

Fig. 5. Rotational and non-rigid discrepancies between similar meshes in the spectral domain. (a)
A skinny alien vs. a well-proportioned man. (b) The skinny alien (left) is stretched horizontally.

NonRigidSpecCorr(MA,MB : two meshes with nA ≤ nB = n vertices)

(1) A, B ← Gaussian affinity matrices for MA and MB — Θ(n2 log n).

• Compute pairwise graph distances using Dijkstra’s algorithm.
• The time complexity can be reduced to O(pn log n) using Nyström

approximation, where p ¿ n is the number of samples. See Section 5.1.

(2) Â, B̂ ← (k − 1)-dimensional spectral embeddings — O(kn2).

• With Nyström, this step becomes O(p3 + p2n).

(3) Eigenvector scaling of spectral embeddings — O(kn).
(4) Eigenmode permutation and sign assignments. — depends on heuristic.
(5) Non-rigid alignment using TPS returns nA × nB dissimilarity matrix Z —

O(ln2), with l iterations. In all of our experiments, 5 ≤ l ≤ 10.
(6) Y ← correspondence via best matching and proximity guidance — O(n2).

• Or optimal 1-to-1 matching via the O(n3) Hungarian algorithm.

Fig. 6. NonRigidSpecCorr(): Our non-rigid spectral mesh correspondence algorithm and asso-
ciated asymptotic time complexity of each step.

cle now is to handle reflections caused by eigenvector switching and sign flips, as
they can introduce large discrepancies into the initial shape configurations, which
will likely compromise the performance of non-rigid registration.

5.1. Geodesic affinities, spectral embeddings, and Nyström method

Consider two 3D meshes MA and MB with nA ≤ nB vertices, respectively. We
first construct Gaussian affinity matrix A with Aij = exp(−d2

ij/σ2
A), where dij is

the graph or approximate geodesic distance between vertex i and j in MA. The
Gaussian kernel width σA is set to be the maximum geodesic distance between any
two vertices in MA. The performance of our method is relatively invariant to the
choice of σA as long as it is set to a sufficiently large value. Similarly, we construct
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B, the Gaussian affinity matrix for mesh MB . The affinity matrices A and B are
then eigenvalue decomposed and the resulting spectrum are truncated to k. Each
of the k eigenvectors is scaled with the square root of its corresponding eigenvalue.
These steps have already been described in details in Section 4.1 and 4.2.

Note that if the Gaussian width is sufficiently large, the row sums of the affinity
matrix are almost constant. As a result, the first eigenvector of the matrix will be
close to a constant vector and can be safely ignored. From now on, we denote by
Â ∈ RnA×(k−1) and B̂ ∈ RnB×(k−1), as first defined in Equation (2), the (k − 1)-
dimensional embeddings of MA and MB , respectively, where the first eigenvector is
disregarded. Â and B̂ are essentially nA× (k− 1) and nB × (k− 1) matrices where
the ith rows of Â and B̂ are the (k−1)-dimensional spectral embedding coordinates
of the ith vertices of meshes MA and MB respectively. In all our experiments, we
have used k = 5 or 6 hence giving a 4 or 5-dimensional spectral embedding.

To reduce the complexity of affinity and eigenvector computations, we can em-
ploy a well-known technique called Nyström approximation13, explained in detail in
Appendix A. Using Nyström, we never compute the full affinity matrix A, instead,
a small number p of A’s rows are sampled. An p×p eigenvalue problem is solved and
extrapolating its eigenvectors, we obtain approximated leading eigenvectors of A.
In all of our experiments, we choose p = 20 samples using farthest point sampling29.

5.2. Eigenvector reordering and sign correction

We keep the ordering and signs of the eigenvectors of one mesh, e.g., MA, fixed.
The most straightforward way to search for a matching eigenvector ordering and
sign assignment for MB is simply to consider all combinations, all k!× 2k of them.
We can also employ a simple, greedy heuristic. Let us first consider a very low
dimensional embedding, e.g., with only two eigenvectors. We exhaustively find the
best possible ordering and signs of these few eigenvectors. Now we incrementally
add one eigenvector at a time and at each step, compute the best possible position
and sign of the new eigenvector. This results in O(k2) possibilities to compare,
greatly reducing the time complexity. Another possible heuristic would be to per-
form pairwise swaps of the eigenmodes. Due to the rapid decay of eigenvalues and
eigenvector scaling, we never find it necessary to use more than k = 6 eigenvectors
to arrive at a satisfactory mesh correspondence. So k is always small.

With either the exhaustive search or the greedy heuristic, we need to estimate
the cost of a correspondence, which we describe below. First, we obtain a best
matching Y based simply on the L2 metric; other metric, such as the Chi-square
or Mahalanobis distance is also possible. Specifically, for a vertex vA

i of mesh MA,
with best matching, vB

Y (i) is the corresponding vertex of MB , where

Y (i) = argminj‖Âi − B̂j‖. (3)

Here Âi and B̂j denote the spectral embedding coordinates of vertex i in mesh MA
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and j in mesh MB , respectively. Cost of the correspondence Y is simply the sum:

cost(Y ) =
nA∑

i=1

‖Âi − B̂Y (i)‖

We choose the ordering and signs of the eigenvectors for mesh MB which give the
minimum cost(Y ). Note that even with a cost as simple as L2, finding an optimal
solution is a hard global optimization problem.

An alternative to finding an optimal ordering and sign assignment is to utilize
reflection-invariant shape descriptors in the spectral domain. To this end, we have
experimented with high-dimensional shape context and transforms via symmetric
polynomials1 but without a great deal of success. This agrees with findings by
others, e.g.,14, that more invariance properties tend to render the descriptors less
descriptive or shape distinguishing, compromising correspondence performances.

5.3. Non-rigid alignment

Once the eigenvectors for two shapes have consistent ordering and signs, we wish
to transform one embedding into another. Due to the presence of non-rigid defor-
mations in the spectral domain, we modify the original rigid ICP algorithm4 by
replacing its transformation model with the use of TPS. TPS is well-known and
has been applied to model non-rigid transformations before 3,7 for 2D shape reg-
istration. A brief overview of TPS is given in Appendix B. A pseudo-code for the
TPS alignment procedure is given below, for two spectral embeddings Â and B̂.

(1) Initialize parameters d, w, λ.

(2) Transform B̂ into ˆ̂
B using the transformation parameters d and w.

(3) Update correspondence Y using Equation (3) after replacing B̂j with ˆ̂
Bj .

(4) Given Y , update transformation parameters using Equation (5).
(5) Update the regularization parameter λ.
(6) Repeat from Step 2 until convergence.

We have found experimentally that 5 to 10 iterations of the iterative alignment
are sufficient to align the embeddings. The value of the regularization parameter λ

is set to be the mean distance between all embedded point pairs. As shown in 3,
this scale-dependent assignment of λ is robust to scaling of the point sets.

5.4. Proximity-aided matching using anchor points

For dense correspondence it is hard to distinguish between near-by points using
an alignment and correspondence procedure based on optimizing a global energy.
In order to improve correspondence locally, we perform matching using a heuristic
based on point proximity. Specifically, we first select a small number of anchor point
pairs. These are point pairs that are best matched (that is, pairs contributing the
least to the correspondence cost), but that are also not too close to each other. Now
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for finding the correspondence cost between two points, we not only consider the
L2 distance between their (non-rigidly aligned) spectral embeddings, but also the
difference between their approximate geodesic proximities to these anchor points.

The anchor point pairs are computed as follows. Consider the nA×nB matrix Z

of correspondence costs between all points of MA and MB . That is, Zij = ‖Âi−B̂j‖.
The first anchor point pair (a(1)

A , a
(1)
B ), where a

(1)
A is a vertex of MA and a

(1)
B is a

vertex of MB , is selected as the pair with least correspondence cost in Z. The
second anchor point pair is calculated in the same way. However, we would need
the anchor points to be far from each other over the mesh. Hence, before finding
the second pair, we modify the matrix Z so that points close to the first anchor
point are penalized. The new correspondence cost matrix is given by:

Z
(1)
ij = Zij − 1

2
[distMA(i, a(1)

A ) + distMB (j, a(1)
B )],

where distM (i, j) is the approximate geodesic distance between the ith and jth

vertices of mesh M . Now, the second anchor point pair is given by the least-cost pair
according to Z(1). This process can be repeated to obtain more anchor point pairs.
With the anchor points, we modify Equation (3) for finding the best correspondence
Y to incorporate the proximity cost:

C(i) = argminj

[
‖Âi − B̂j‖

h∑

l=1

αl · ‖distMA(i, a(l)
1 )− distMB (j, a(l)

2 )‖
]

where h is the number of anchor pairs and the αl’s are user-set parameters.
The success of the proximity heuristic depends on two factors: quality of the an-

chor point pairs and proximity measures. Since the meshes are already well aligned,
choosing the anchor point pairs to be the most trusted matches are expected to be
robust. However, the dependence on geodesic distances may cause sensitivity of the
heuristic to stretching in the shapes. Hence, fixing a large number of anchor point
pairs can render the matching non-robust. Thus we restrict to fixing only three
anchor pairs and set α1 = α2 = α3 = 1 for all our experiments.

6. Experimental results

The meshes tested in our experiments are taken from the Princeton Benchmark
data set41 and their vertex counts range from 180 to 250. To evaluate a corre-
spondence algorithm, we hand-pick a small number (between 15 and 20) of feature
points on both meshes to be matched. The feature points would cover the shape
fairly uniformly, encompassing all visually meaningful parts, e.g., see Figure 7 for
feature points picked on two turtle models, a pig, and a rabbit. The ground-truth
correspondence between the features is determined by human. Now we compute a
correspondence using an algorithm and record the percentage of correct correspon-
dences obtained. Before discussing experimental results, we first describe briefly the
other schemes we have experimented with and compared.
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Fig. 7. Feature points hand-picked on four models are shown in dark dots.

• TPS-RPM7 in spatial domain: one of the most successful non-rigid ICP
algorithms, operating on point sets without connectivity information. It com-
bines TPS, soft assign, and deterministic annealing to achieve robustness. But
as we have shown in Figure 1, it is susceptible to poor initial alignment. To
improve its performance, we manually and rigidly align the two shapes to be
matched to neutralize any rotation or translation between them; this is done
for all the three spatial-domain schemes we have experimented with.

• Robust ICP47 in spatial domain: a recent variant of the original ICP4

algorithm. It uses a hierarchical approach to achieve robust registration of 3D
point sets. We use it as a representative of the rigid iterative alignment schemes.

• Shape context3 in spatial domain: a trivial 3D extension of the original 2D
shape context of Belongie et al. 3 is adopted as a representative correspondence
scheme based on local shape descriptors. For each mesh vertex v, consider a
bounding sphere of the mesh centered at v. The sphere is divided into many bins
based on distance to the center, longitude, and latitude divisions. A histogram
capturing the vertex count for each bin is the 3D shape context assigned to
v. Rotation-invariance is not sought as we manually align the shapes before
comparing the shape contexts at their vertices.

• Shapiro and Brady40: one of the early and best-known spectral point corre-
spondence algorithms. It uses L2 cost to compute a best matching, with their
greedy sign correction but no eigenvector scaling or reordering. We also exper-
iment with adding only eigenvector scaling to the Shapiro and Brady scheme.

6.1. Comparison of correspondence results

In Figure 8, we compare our algorithm against schemes listed above with respect
to percentages of correct correspondences, on 10 test model pairs. The shapes to be
matched are shown in Figure 9; each pair of shapes exhibit some degree of non-rigid
deformations. In each case, k = 6 eigenvectors are computed. More eigenvectors do
not change the result due to eigenvector scaling. For Nyström method, 20 samples
are chosen via farthest point sampling. Four out of the ten cases have eigenmode
switchings before the 6-th eigenvectors; they are armadillo:alien (fifth and sixth),
hands4:hand3 (fourth and fifth), lion:horse (fifth and sixth), and rabbit:pig (third



April 5, 2007 13:59 WSPC/INSTRUCTION FILE spect˙corr

16 V. Jain, H. Zhang, and O. van Kaick

and fourth). More switchings occur later, e.g., on the two turtle models, but they
do not influence our results for the current test. Sign flips are rather common
throughout the test cases. The greedy heuristic for eigenmode reordering and sign
correction is successful in seven of the ten cases. The results shown are obtained
by exhaustive search. Hence all results are limited to meshes with a few hundred
vertices. In all test cases, no more than 10 iterations of our non-rigid ICP procedure
are needed. In several cases, the procedure converges in less than 5 iterations.

In terms of results, we can see from Figure 8 that our non-rigid spectral corre-
spondence algorithms clearly outperform all the schemes mentioned above. Subsam-
pling and Nyström approximation has give the second best performance; further
improvements should be possible if we rely on a more shape-sensitive sampling
routine. Compared to the best performing scheme, which makes use of full affin-
ity matrices, Nyström improves efficiency by an order of magnitude. Although the
spatial algorithms (TPS-RPM, Shape Context, and Robust ICP) have been aided
with manual initial alignment, bending in the shapes still cause them to perform
poorly, e.g., see armadillo:alien and man1:man2. TPS-RPM performs poorly on the
airplane models since they are badly tessellated with highly nonuniform point dis-
tributions. Without connectivity information, TPS-RPM also fails on hand1:hand2
as the fingers in hand2 are positioned too closely.

As expected, Shapiro and Brady performs poorly on meshes of different sizes,
e.g., hand3:hand2 and hand4:hand3. It also scores badly on rabbit:pig and ar-
madillo:alien, due to eigenmode switchings (in the case of rabbit:pig, an early
switching appears to worsen the result more), and on turtle1:turtle2 and lion:horse,
due to inadequate sign corrections. The case of the two turtles is chosen deliber-
ately to test our algorithms, as the spatial algorithms are expected to work well.
Our result confirms this, as both Robust ICP and TPS-RPM have returned per-
fect matchings. Our algorithms and shape context are one correct matching short
of being perfect. Nevertheless, the one mis-matched point is assigned by our algo-
rithms to a marked feature in close proximity to the ground-truth feature, leading
to a correspondence that is not 1-to-1. Finally, note that our algorithms depend on
distance measures over the mesh surfaces. Although we are using the crude graph
distances to approximate geodesic distances, the correspondence results returned
are quite satisfactory. If all the models were manifolds, then using the true geodesic
distances should only improve the results further.

In Figure 9, we show some matching results obtained from our algorithm (full
affinities and exhaustive search) visually. The matching is shown by coloring the
vertices of the meshes in an appropriate way. We first assign colors to the vertices
of one of the two meshes, e.g., MB . Then the color for the ith vertex of mesh MA

is set to be the color of the Y (i)th vertex of MB , where Y is the correspondence
found by our algorithm. This way, a good correspondence will induce a coloring that
is consistent on both meshes. To show the meaningfulness of the correspondence
obtained, we carefully assign different colors to different visual parts of the mesh
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Fig. 8. A comparison between several correspondence algorithms, including ours. The percentage
of correct correspondences is plotted.

armadillo:alien hand1:hand2 hand4:hand3 man1:man2 rabbit:pig

cow:lion hand3:hand1 plane1:plane2 lion:horse turtle1:turtle2

Fig. 9. Visual results for the correspondences obtained from our algorithm (full affinities and ex-
haustive search), shown with color plots. The model sizes (vertex count) are as follows. Armadillo:
256; hand3: 252; cow: 203; and all the rest: 182.

MB . As can be seen, our algorithm matches bent shapes well, as well, it behaves
robustly against moderate stretching in the shapes, e.g., see the armadillo:alien,
lion:horse, cow:lion, hand3:hand1, and turtle1:turtle2 pairs.

However we should note that in the man1:man2 and lion:horse pairs, in Figure
9, which are of symmetric shapes, the correspondence is symmetrically switched.
Namely, the right hand of one human is matched to the left hand of the other
and vice versa. Similarly, the right legs of the lion are matched to the lefts leg of
the horse and vice versa. In our evaluation of correspondence results, we tolerate
such symmetry flips. They occur since we define affinities based purely on intrinsic
measures. As such, the left hand and the right hand of the human are equally
good matches for the right hand of the other human, as long as a consistence is
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(1-a) (1-b) (1-c) (1-d) (1-e) (1-f) (1-g) (1-h)

(2-a) (2-b) (2-c) (2-d) (2-e) (2-f) (2-g) (2-h)

(3-a) (3-b) (3-c) (3-d) (3-e) (3-f) (3-g) (3-h)

(4-a) (4-b) (4-c) (4-d) (4-e) (4-f) (4-g) (4-h)

Fig. 10. Row 1: correspondence results for human shapes. Row 2: for animal shapes. Row 3: for
hand shapes. Row 4: for bird shapes.

maintained. An interesting consequence is that our algorithm can find a meaningful
matching between a left hand and a right hand, e.g., see Figures 10(3-a) and (3-c),
even when both are close to making a fist. After all, each point on a hand is only
aware of its geodesic distances to the remaining points, along various geodesic paths,
it does not maintain an ordering between these paths. Note that a rigid algorithm
will unlikely be able to match up the fingers on these left and right hands correctly.

Figure 10 gives additional correspondence results obtained using our algorithm
on numerous articulated shapes. In each shape class, one per row, all the shapes are
matched to a single reference shape (the first shape in the row of 8) and correspon-
dence obtained is color coded in accordance with the colors on the reference shape.
Apart from showing the effectiveness of our method, e.g., shown in the second row,
these examples also reveal some of its limitations, discussed below.

6.2. Current limitations

Effect of using purely intrinsic information: As explained earlier, due to the
intrinsic nature of our approach, it is not guaranteed to match symmetric shapes
correctly, as shown in Figures 10(1-c), 10(4-c), and (4-d). In all three cases, the sign
configuration of the eigenvectors that gives the lowest correspondence cost leads to
counterintuitive results. Our method succeeds in all the remaining cases in row 1,
2, and 4, although in each case, the next best eigenvector sign configuration, which
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has a correspondence cost extremely close to the lowest cost, would have given a
symmetrically flipped matching. Note that although the correspondence returned
by our algorithm may be symmetrically flipped, it is nevertheless still consistent
across the shape.

One solution to the symmetry problem would be to carefully select the right
signs of the eigenvectors within a small threshold. For shapes where there is one
plane of symmetry, there will be two possible sign configurations of the eigenvectors
that would give the same minimum correspondence cost. These can be detected
and the right configuration may be chosen by utilizing additional information, e.g.,
from the spatial domain. As the number of symmetry planes increase, more sign
configurations will need to be examined. An alternative would be to define affinities
in a symmetry-distinguishing way.

Effect of topological changes: Since our method largely depends on geodesic
distances, topological changes can seriously harm the correspondence computation.
This effect is visible in Figure 10(3-e) and (3-f), where the fingers of the hands are
connected to the palm which would change the connectivity of the mesh, as well
as the geodesic distances drastically, resulting in unnatural correspondence results.
Correct recovery of the correspondence between the fingers in this case appears to
be a rather difficult problem, without some level of prior knowledge.

Unreliable approximate geodesic distances: Figure 10(4-e) shows a bird shape
that is quite similar to the reference figure for this group, Figure 10(4-a). However,
the correspondence obtained is incorrect. We suspect that this is mainly due to the
unreliability of the geodesic distance approximation on the wings of the bird that
contains many “cuts”. Hence, even though the shapes look similar in the spatial
domain, their spectral embeddings are rather different.

Non-robustness of L2 cost for exhaustive search: Close inspection of Fig-
ure 10(1-b) reveals that the correspondence obtained is inconsistent: the left arm
is colored orange which means that the left leg must be colored blue which is not
the case (note that this is different from the symmetry issue discussed above).
This should not have been the case as the shapes are topologically sound and the
geodesic distances are approximated robustly. The problem becomes clear when we
examine the result of the exhaustive reordering of eigenvectors. It turns out that
for this shape, the exhaustive reordering does not give the right ordering of the
eigenvectors, as shown in Figure 11. After further investigation we have found that
the problem lies with the crude L2 cost measure used in arriving at the reordering.
A more meaningful cost measure should be sought.

7. Conclusion and future work

In this paper, we present a hybrid approach to finding a one-to-one correspondence
between the vertices of two 3D meshes. We first transform the meshes into the spec-
tral domain, based on geodesic affinities, and then match the spectral embeddings
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Fig. 11. Incorrect eigenvector ordering is obtained even after exhaustively reordering the eigen-
vectors for shapes in Figure 10(1-a) and (1-b).

after taking appropriate steps to ensure a consistent ordering and sign assignment
of the eigenvectors. Eigenvalue scaling of the eigenvectors renders our algorithm
robust against difference in mesh sizes and choice of the dimensionality of the em-
beddings. Our method does not need a pre-selected set of feature vertices and can
be completely automated. It is invariant against rigid transformations, uniform
scaling, and shape bending. Experimentally, we find it to be robust against mod-
erate stretching in the shapes as well, relying on thin-plate splines for non-rigid
alignment in the spectral domain, and it outperforms well-known existing shape
correspondence schemes.

A simple way to reduce the cost of extracting correspondences, where the näıve
best matching would require quadratic time, would be to take advantage of the
accurate alignments that have already been obtained and apply spatial partitioning
to speed up the search for correspondence pairs. A more serious limitation of our
current approach, in terms of computational cost, is its reliance on an exhaustive
search to find a consistent eigenmode ordering and sign assignment. The greedy
reordering approach is fast but it does not always give correct results. Analytically,
the problem of finding a reordering and sign assignment which would lead to the best
correspondence, e.g., according to the simple L2 distance, is as hard as the graph
isomorphism problem. We would like to look into fast approximation algorithms
for this problem and adopt it for our purpose. Alternatively, we may be able to
heuristically reorder the eigenvectors based on their corresponding nodal domains10

and the shape characteristics of these nodal domains.
Quality-wise, an important issue is related to the appropriateness of the corre-

spondence cost used in determining the eigenmode ordering and sign assignment,
as well as in TPS alignment. Currently, we are using the crude L2 cost, as it is
simple to optimize for, but in some rare cases as shown earlier, even the exhaustive
search could return a poor eigenvector ordering or sign assignment. This shows that
a better cost function is still required. In addition, we plan to address the other
limitations of our current method, including the handling of symmetry. We would
also like to investigate possible definitions of the point affinities that are robust, if
not invariant, to stretching within perceptually salient parts of a shape. This would
offer an alternative to using non-rigid alignment in the spectral domain and avoid
having to find a consistent eigenvector ordering or sign assignment.

Another interesting direction would be to compare our algorithms with skeleton-
based methods for handling shape bending and stretching. This latter type of ap-
proaches have been extensively studied by Shokoufandeh and co-authors over the
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years for classification and retrieval of articulated shapes, e.g., see42. A spectral
approach is also used, focusing on eigenvalues, but the graph is skeletal, which is
different from our case. It would be interesting to see how the skeletons can be used
effectively for point correspondence. However, issues such as eigenmode switchings
and symmetry will likely still need to be addressed.

Finally, we speculate that the different approaches for correspondence, e.g., in-
trinsic vs. extrinsic, skeleton vs. surface, rigid vs. non-rigid, may complement each
other. For example, intrinsic approaches such as ours can lose the spatial perspective
possessed by extrinsic methods, e.g., as in handling of shape symmetries, while it
does excel in dealing with shape bending. Therefore, it may be possible to combine
the different approaches to achieve more robust correspondence results.
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Appendix A: Nyström Approximation

Consider a set of n points Z = X ⋃Y partitioned by sets X and Y of sizes p and q,
respectively. Write the symmetric affinity matrix W ∈ Rn×n for Z in block form:

W =
[

A B

BT C

]
,

where A ∈ Rp×p and C ∈ Rq×q are affinity matrices for points in X and Y,
respectively; B ∈ Rp×q contains the cross-affinities between points in X and Y.
Without loss of generality, we designate the points in X as sample points. Let
A = UΛUT be the eigenvalue decomposition of A, then the eigenvectors of W can
be approximated, using the Nyström method13, as

Ū =
[

U

BT UΛ−1

]
.

This allows us to approximate the eigenvectors of W by only knowing the sampled
sub-block [A B]. The overall complexity is thus reduced from O(n3), without sub-
sampling, down to O(pn log n + p3 + p2n), where p ¿ n in practice.

The rows of Ū define the spectral embeddings of points in Z. We see that the
ith row of U , which is completely determined by A, gives the embedding x̄i of point
xi in X and the jth row of BT UΛ−1 is the embedding ȳj of point yj in Y. If we let
ȳd

j denote the dth component of ȳj , then the above equation can be rewritten as

ȳd
j =

1
λd

p∑

i=1

x̄d
i B(i, j) =

1
λd

p∑

i=1

x̄d
i W (i, j + p), 1 ≤ d ≤ p.

Namely, the embedding ȳj is extrapolated using the coordinates of the x̄i’s, weighted
by the corresponding cross-affinities in B. With Ū , we obtain an approximation W̄

of the original affinity matrix W ,

W̄ = ŪΛŪT =
[

A B

BT BT A−1B

]
.
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Appendix B: Thin-plate splines

Thin plate splines5 are a generalization of cubic splines to higher dimensions and
it contains affine transformation as a special case. With non-rigid transformations,
there are infinitely many ways of transforming a point set into another. Thin plate
splines are effective because of their smoothness constraints which discourage ar-
bitrary mappings. In the limit of this smoothness constraint the thin plate spline
model reduces to an affine transformation model. The thin plate spline transforma-
tion functions fp : x ∈ Rk → R, 1 ≤ p ≤ k map a point set X = {x1, x2, . . . , xn}
in k (say k = 2) dimensional space to another point set Y = {y1, y2, . . . , yn} by
minimizing the following energy functionals:

E(fp) =
n∑

i=1

‖yip − fp(xi)‖+ λ

∫ ∫ [
(
∂2fp

∂x2
)2 + 2(

∂2fp

∂x∂y
)2 + (

∂2fp

∂y2
)2

]
dxdy (4)

where λ is the regularization (smoothing) parameter. Note that the correspondence
between X and Y is assumed to be given. Hence, point yi = (yi1, yi2, . . . , yik) is
the matching point for xi. The unique set of fp’s that minimize the above energy
functionals can be written in matrix form as:

f(xi, d, w) = xi · d + φ(xi) · w,

where xi is now in (k + 1)-dimensional homogeneous coordinates, d is a (k + 1) ×
(k +1) affine transformation matrix, w is an n× (k +1) warping coefficients matrix
and Φ(xi) is a vector of length n such that φj(xi) = −‖xj − xi‖.

As shown in3, the transformation (d,w) that minimizes the energy can be cal-
culated by solving the following system:

[
K XT

X 0

] [
w

d

]
=

[
Y

0

]
(5)

Here, K is the matrix (Φ − λI) where, I is an identity matrix of appropriate
size and Φ is an (n× n) matrix whose ith row is φ(xi), that is, Φij = −‖xj − xi‖.

Using these transformation parameters, we transform the point set X to point
set Y and then recompute the correspondence. This process is iterated until con-
vergence as described in Section 5.


