
Sub-sampling for Efficient Spectral
Mesh Processing

Rong Liu, Varun Jain, and Hao Zhang

GrUVi Lab, School of Computing Sciences, SFU, BC, Canada
{lrong, vjain, haoz}@cs.sfu.ca

Abstract. In this paper, we apply Nyström method, a sub-sampling and
reconstruction technique, to speed up spectral mesh processing. We first
relate this method to Kernel Principal Component Analysis (KPCA).
This enables us to derive a novel measure in the form of a matrix trace,
based soly on sampled data, to quantify the quality of Nyström approx-
imation. The measure is efficient to compute, well-grounded in the con-
text of KPCA, and leads directly to a greedy sampling scheme via trace
maximization. On the other hand, analyses show that it also motivates
the use of the max-min farthest point sampling, which is a more effi-
cient alternative. We demonstrate the effectiveness of Nyström method
with farthest point sampling, compared with random sampling, using
two applications: mesh segmentation and mesh correspondence.

1 Introduction

Spectral methods for data modeling and processing have been well studied in
machine learning and pattern recognition, e.g., for clustering [1, 2] and corre-
spondence analysis [3, 4]. The idea is to derive, from relational data given as a
matrix and typically of high dimensionality, a low-dimensional and information-
preserving spatial embedding based on the eigenvectors of the matrix, to fa-
cilitate the processing or analysis task at hand. Recently, spectral techniques
have been applied successfully to several mesh processing problems, including
spectral decomposition for mesh compression [5], spectral clustering for mesh
segmentation [6], 3D shape correspondence in the spectral domain [7], spectral
sequencing for mesh streaming [8], segmentation [9], and as an aid to surface re-
construction [10], as well as surface flattening via multidimensional scaling [11].

One of the main drawbacks of spectral methods is that they can be computa-
tionally expensive for large data sets since they rely on eigenvector computation
and at times also require a non-sparse matrix, whose construction involves deter-
mining pairwise affinities between a large number of points. Nyström approxima-
tion [12], a sub-sampling and reconstruction technique originated from integral
calculus, has been proposed as a remedy, e.g., for image segmentation [13], but
there lacks a formal analysis of its quality and the influence of the sampling
procedure. So far, random sampling [13, 14] has been used predominantly.

In this paper, we cast Nystöm approximation in the context of kernel PCA
(KPCA), where the samples are treated as training data. The ability of the
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training set to capture the probabilistic distribution of the whole data set in
the feature space induces a way to measure the quality of the Nyström method.
The resulting measure can be derived as a matrix trace, which depends only on
sampled data. This measure is more desirable than the Schur complement [13],
the only known quality measure for Nyström so far. Empirically, we show that
both measures produce consistent evaluation results. Furthermore, our novel
quality measure is more efficient to compute and leads directly to a greedy
sampling scheme via trace maximization. On the other hand, analyses of the
measure show that it motivates the use of a more efficient heuristic sampling
scheme, which turns out to be the max-min farthest point sampling .

The rest of the paper is organized as follows. After discussing previous work,
we describe Nyström approximation and spectral embedding in Section 3. KPCA
is briefly reviewed in Section 4. Relating Nyström to KPCA, we propose our
quality measure for Nyström in Section 5. We then discuss the relevance of our
quality measure to sampling and motivate the use of the farthest point scheme.
In Section 7, we demonstrate experimentally the effectiveness of the Nyström
method and farthest point sampling, compared to random sampling, using two
applications. Finally, we conclude and comment on possible future work.

2 Previous work

The graph Laplacian operator has been well studied in geometry processing, e.g.,
see the recent survey [15]. In particular, the Fiedler vector, eigenvector of the
graph Laplacian corresponding to the second smallest eigenvalue, has been used
in graph partitioning [16] and mesh sequencing [8]. For the planar mesh graph,
the Laplacian is sparse, for which fast multilevel methods, e.g., ACE [17], can
compute the leading eigenvectors efficiently. However, when many eigenvectors
are needed, e.g., for spectral mesh compression [5], the cost would be too high
for large data sets. In this case, the mesh is often partitioned into smaller pieces
and the operation proceeds in a piecewise manner [5].

Problems such as surface flattening [11], mesh segmentation [6, 9], shape cor-
respondence [7], and most instances of clustering and dimensionality reduction
considered in the machine learning and pattern recognition literature, e.g., [1, 2],
rely on more global relational information. In these cases, an affinity matrix is
defined by applying a Gaussian-like filter to a distance matrix H, where Hij is a
suitably defined distance, e.g., Euclidean [1], geodesic [7, 11], graph distance, or
a combination of them [6, 9], between points i and j in a data set. Computing the
full affinity matrix takes quadratic time and since it is generally non-sparse, it
is computationally expensive to obtain its eigenvectors. Nyström approximation
has been proposed recently to speed up spectral methods in this case [13, 18].

The Nyström method only requires a small number of sampled rows of the
affinity matrix. It solves a small-scale eigenvalue problem and then computes
approximated eigenvectors via extrapolation. One of the main questions is how
to design appropriate sampling schemes to obtain more accurate approximations
of the ground-truth eigenvectors. To the best of our knowledge, this problem has
not been studied before. So far, random sampling predominates [13, 14] and other
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simple schemes, e.g., max-min farthest point sampling [14], have been mentioned
in passing, but with no analysis given.

3 Nyström approximation and spectral embeddings

Applications [16, 7, 2] utilizing spectral embeddings start by building a matrix
which encodes certain relationship, called affinities, between each pair of ele-
ments in a data set. Depending on the application (see Section 7), this matrix
may be transformed and then its eigenvectors and possibly eigenvalues are used
to obtain a spatial embedding of the original data points in the spectral domain.
Computing spectral embeddings is time-consuming due to the quadratic com-
plexity, in terms of the data size, of affinity computation and up to cubic-time
complexity for eigenvalue decomposition. Nyström method [13, 18] is therefore
proposed to overcome this problem via sub-sampling and reconstruction.

Consider a set of n points Z = X ⋃Y, where X and Y, X ⋂Y = ∅, are two
subsets of size l and m. Write the symmetric affinity matrix W ∈ Rn×n in block
form W = [A B; BT C], where A ∈ Rl×l and C ∈ Rm×m are affinity matrices for
points in X and Y, respectively; B ∈ Rl×m contains the cross-affinities between
points in X and Y. Without loss of generality, we designate the points in X as
sample points. Let A = UΛUT be the eigenvalue decomposition of A, then the
eigenvectors of W can be approximated, using the Nyström method [13], as

Ū =
[

U
BT UΛ−1

]
. (1)

This allows us to approximate the eigenvectors of W by only knowing the sam-
pled sub-block [A B]. The overall complexity is thus reduced from O(n3), with-
out sub-sampling, down to O(ml2) + O(l3), where l ¿ n, in practice.

The rows of Ū define the spectral embeddings of the original data points
from Z. From (1), we see that the ith row of U , which is completely determined
by A, gives the embedding x̄i of point xi in X and the jth row of BT UΛ−1 is the
embedding ȳj of point yj in Y. If we let λ1 ≥ λ2 ≥ . . . ≥ λl be the eigenvalues of
A, and ȳd

j denote the dth component of ȳj , then equation (1) can be rewritten
as

ȳd
j =

1
λd

l∑

i=1

x̄d
i B(i, j) =

1
λd

l∑

i=1

x̄d
i W (i, j + l), 1 ≤ d ≤ l. (2)

Namely, the embedding ȳj is extrapolated using the coordinates of the x̄i’s,
weighted by the corresponding cross-affinities in B.

With Ū , we obtain an approximation W̄ of the original affinity matrix W ,

W̄ = ŪΛŪT =
[

A B
BT BT A−1B

]
.

Clearly, W̄ replaces block C of W with BT A−1B. Hence it is suggested to
quantify the approximation quality using the norm of the Schur complement ,
C −BT A−1B. The smaller the norm, the better the approximation. Schur com-
plement has been used as the de facto quality measure for Nyström method [13].
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4 Review of kernel PCA

Suppose that the points in set Z lie in the Euclidean space Rg. Kernel PCA
(KPCA) [19], an extension to the standard PCA, first applies to Z a generally
non-linear mapping φ : Rg → F , where F is referred to as the feature space. Then
the standard PCA is carried out in F on the point set φ(Z) = {φ(zi)|zi ∈ Z}.
Since F may have a very high, possibly infinite, dimensionality, the non-linear
properties of the data Z can be “unfolded” into linear ones. Thus algorithms
that work on linear structures, e.g., PCA, can be effectively applied in F .

The mapping φ is never explicitly given, but implicitly specified by the inner
products between the data and encoded in a kernel matrix K ∈ Rn×n, where
Kij = k(zi, zj) = φ(zi)·φ(zj). Algorithms running in the feature space based only
on inner products can be efficiently executed in the original space by replacing
inner products with the kernel function k. Gaussian radial basis function [19]

k(zi, zj) = e−
d2

ij

2σ2 , dij = ||zi − zj ||2. (3)

is one of the most commonly used kernels. Note that in our applications, we set σ
to the average of all distances computed. Assume that Z obeys a certain proba-
bility distribution and X ⊆ Z is chosen as a training set and centered. Although
φ is not known explicitly, it is still possible to compute the projections x̃i, the
features, of φ(xi) into the space where the basis are the principal components of
the point set φ(X ) = {φ(xi)|xi ∈ X}, as follows. Let L ∈ Rl×l be the upper-left
block of K and L = EΛET the eigenvalue decomposition of L, where eigenvec-
tors, the columns of E, are in descending eigenvalue order. Let er denote the rth

row of E, then the dth coordinate of x̃i is given by x̃d
i = 1√

λd

∑l
r=1 ed

rk(xr, xi).
This can be seen as a “black box”, which returns the feature x̃i for any given
point xi. If the training set X characterizes the distribution well, it is then
reasonable to apply it to yj ∈ Y similarly,

ỹd
j =

1√
λd

l∑
r=1

ed
rk(xr, yj) =

1√
λd

l∑
r=1

ed
rK(r, j + l). (4)

It can be seen that the embedding of ỹj in the feature space can be constructed
using the eigenvector entries of the sub-kernel L, weighted by the kernel entries
defined between the xi’s and the yj ’s. Here it is worth noting that a resemblance
between KPCA and Nyström approximation (2) is emerging.

5 Quality measure for Nyström approximation

While the affinity matrix W defines spectral embeddings and the kernel K is
used in KPCA, both matrices can be seen as an implicit definition of relations
between data points. Equating W with K and comparing equation (2) with (4),
we see that ȳd

j and ỹd
j have essentially identical expressions up to a scaling factor

λ
−1/2
d ; this fact has been previously noted in [18] as well. Therefore, Nyström

approximation can be considered as a process of running KPCA on new patterns
through a training set. In this section, we investigate the approximation quality
of Nyström method in the context of KPCA.
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5.1 Quality measure as a matrix trace

Considering the Nyström method in the context of KPCA, we treat the sample
set X as the training set. Thus points in X are first mapped into the feature space
F and then the features corresponding to points in Y are approximated. In this
setting, a good training set X for accurate Nyström approximation should be a
set that, as stated in Section 4, reflects the same probability distribution function
as Y. This implies that φ(Z) and φ(X ) should roughly lie in the same space.
To this end, we stipulate that an accurate Nyström approximation necessitates
that the sum of squared distances from all the φ(zi)’s to the space spanned by
the φ(xi)’s be small. Now we derive our quality measure.

Denote by Σ the covariance matrix of the point set φ(X ). Note that although
the φ(xi)’s can be high-dimensional, the rank of Σ can be no larger than l =
|φ(X )| and Σ has at most l eigenvectors (ξ1, ξ2, . . . ξl), corresponding to non-zero
eigenvalues. Let P = [ξ1|...|ξl], then the squared distance from φ(zi) to the space
spanned by the φ(xi)’s (equivalently, the column space of P ) is

ρi = ||φ(zi)− PPT φ(zi)||2 = ||φ(zi)||2 − ||PPT φ(zi)||2,
where PPT is the orthogonal projection operator which projects any vector into
the column space of P . Hence we wish to minimize the objective function

nX
i=1

ρi =
X

zi∈X
ρi +

X
zj∈Y

ρj

=

 
lX

i=1

||φ(xi)||2 −
lX

i=1

||PP T φ(xi)||2
!

+

 
mX

j=1

||φ(yj)||2 −
mX

j=1

||PP T φ(yj)||2
!

.

Note that
∑l

i=1 ||φ(xi)||2 +
∑m

j=1 ||φ(yj)||2 =
∑n

i=1 ||φ(zi)||2 =
∑n

i=1 Kii. Also,∑l
i=1 ||PPT φ(xi)||2 =

∑l
i=1 ||φ(xi)||2 =

∑l
i=1 Kii. For our purpose, K is derived

using the Gaussian kernel (3), thus the diagonals of K are constant 1. As a result,
the first three terms of the objective function are constant, given that the size
of X is fixed. Our goal is then reduced to maximizing the quantity

Γ =
m∑

j=1

||PPT φ(yj)||2 =
m∑

j=1

(PT φ(yj))T (PT φ(yj)). (5)

Denote by U1, U2, . . . , Ul the eigenvectors of A, as first defined in Section 3. Note
that since we now make no difference between K and W , A is also the upper-left
block of K. It is known [19] the principal component ξi of φ(X ) can be written

as a linear combination of the φ(xi)’s, i.e. ξi =
∑l

d=1 λ
− 1

2
i Ud

i φ(xd). We then have

ξT
i φ(yj) =

∑l
d=1 λ

− 1
2

i Ud
i [φ(xd) · φ(yj)] =

∑l
d=1 λ

− 1
2

i Ud
i k(xd, yj). Therefore

PT φ(yj) = [ξ1|. . . |ξl]T φ(yj) = [ξT
1 φ(yj)|. . . |ξT

l φ(yj)]T = (UΛ−
1
2 )T Bj ,

where Bj is the j-th column of B. Thus (5) is simplified to

Γ =
m∑

j=1

BT
j UΛ−1UT Bj = tr(BT A−1B), (6)
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where tr(·) denotes the matrix trace. When Γ attains a larger value, in the feature
space, points in Z lie closer to the space spanned by X . Consequently, Nyström
method achieves a better approximation. Thus Γ provides a quality measure for
Nyström method. The time complexity for computing Γ is O(ml2) + O(l3). In
practice, l ¿ n and can be regarded as a constant. Throughout our experiments
(Section 7), we set l = 10. Next, we empirically verify the accuracy of Γ against
Schur complement and then use it to derive a heuristic sampling scheme.

5.2 Comparison with Schur complement

Typically, the norm of the Schur complement C−BT A−1B, defined in Section 3,
is used to measure the approximation quality of Nyström. But the time complex-
ity involved would be O(n2), since C is required. For efficiency, C should never
be computed fully; this excludes the possibility of using the Schur complement
on the fly as a measure to supervise the sampling process. On the other hand,
Γ does not suffer from this problem and is much more efficient to compute.

−100 0 100
−100

0

100
γ 

(S
2)

 −
 γ

 (
S

1)

η(S1) − η(S2)

 

 
quadrant (1)(2)

(3) (4)

Fig. 1. Only 4% of the red markers
lie in the second and fourth quadrants.
This shows the consistence between Γ
and the norm of the Schur comple-
ment, in evaluating sampling schemes
for Nyström approximation.

Quality-wise, let us use the Schur
complement as the ground truth to
evaluate the accuracy of Γ , empiri-
cally. In each run of our experiment,
a set of points is generated using
a Gaussian distribution. From these
points, two sample sets S1 and S2

of equal size are randomly chosen.
We check whether the two measures
would rank the two sample sets con-
sistently. Denote by η(Si) and γ(Si)
the approximation error values result-
ing from using the norm of the Schur
complement and Γ , respectively, on
sample set Si. We plot, as a red
marker, the position of the 2D point
(η(S1) − η(S2), γ(S2) − γ(S1)). Obvi-
ously, the marker would appear in the
first or third quadrant if and only if
the two approaches had produced the same ranking of the sample sets. In Fig. 1,
results from 100 test runs are shown. Evidently, almost all points lie in the
first and third quadrants. This verifies, experimentally, the robustness of Γ as a
quality measure for Nyström approximation.

6 Sampling scheme

Depending on the application, different sampling strategies for Nyström method
may be considered. But so far random sampling [13, 14] has been the norm.
Random sampling may work well when the sample size is sufficiently large. But
large sample size will increase the workload. In the applications we discuss in
Section 7, we wish to take few samples while still achieving good performance.
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6.1 Greedy sampling based on Γ

As verified in Section 5.2, Γ provides a good quality measure for Nyström
method, which can be used on the fly to guide a greedy sampling procedure.
Specifically, each time a new sample is added, its affinities to the remaining
points are maintained. This way we always know the current A and B, the
within-sample and cross-sample affinities. The next sample is the one which if
selected, the updated B and A would maximize Γ .

However, it is worth pointing out that we cannot afford to evaluate Γ on
all the un-sampled points, which makes finding one sample a procedure with a
complexity of at least O(m2). Instead, we resort to the best candidate sampling
scheme. Namely, we do not evaluate Γ on all the remaining points to locate the
best one, but only to find a sample among the best 1% with a probability of 95%.
Assuming that the remaining points are independent identically distributed ran-
dom variables, we only need to search for the best sample (maximizing Γ ) from
a random subset of size dlog(0.01)/ log(0.95)e = 90 regardless of the problem
size. Our experiments show that this greedy scheme works quite well and effi-
cient since a very low sampling rate can be used. Moreover, it can be made more
efficient without computing Γ explicitly, as we show below.

6.2 The max-min farthest point sampling scheme

To further speed up the greedy sampling scheme without sacrificing much of its
quality, we propose to use a heuristic which would not require explicit compu-
tation of Γ . This is made possible by examining the mathematical properties of
Γ . Based on the cyclic property of matrix trace operation, we know that

Γ = tr(BT A−1B) = tr(A−1BBT ) = tr(A−1
m∑

j=1

BjB
T
j ).

When m is large, entries of M =
∑m

j=1 BjB
T
j are close to each other. If we rewrite

M ≈ τ11T, with τ ∈ (0, m) a fixed value, then Γ ≈ τtr(A−111T) = τ1T(A−11).
Observe that there are two conditions for Γ to attain a relatively large value.
The first is to have a large 1T (A−11). Note that A−11 gives the coefficients of
the expansion of 1 in the space whose basis are the columns of A. Moreover, the
diagonals of A are 1 and its other entries lie in (0, 1). It is easy to show, in 2D,
that the sum of these coefficients, 1T (A−11), is no larger than l. The maximal l is
obtained when A’s columns are the canonical basis of the Euclidean space. This
is generalizable to arbitrary dimensions. In order for A’s columns to be close to
the canonical basis, the off-diagonal entries should be close to zero. Thus samples
should be taken mutually far away from each other.

The second condition is to have a larger τ . To this end, entries of B should
be large, meaning that the distances from the samples to the remaining points
should be small on average. When a sufficient number of sample points are
distributed mutually far away, the average distances from the remaining points to
the sample points tend to converge, making this condition much less influential.
Our experiments also verify that the first condition plays a dominant role.
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Stimulated by the first condition, we propose to use the more efficient max-
min farthest point sampling scheme for Nyström method, which works as follows:

1. Randomly pick a point q and find p which is farthest away. Switch p and q
and repeat. After several iterations, p is chosen as the first sample s1. This
procedure will most likely place s1 close to an extremity of the point set.

2. At step i, a new sample si is chosen as the one which maximizes the minimum
distance (hence “max-min”) to the previous samples s1, s2, . . . , si−1.

The significance of having the quality measure Γ is that it induces a greedy
sampling scheme, which dramatically speeds up the spectral embedding as a very
low sampling rate can be used. Moreover, it provides an underlying motivation
for using farthest point sampling at an even lower computational cost.

7 Applications

Now we apply Nyström method with max-min farthest point sampling to two
applications and evaluate the results both numerically and visually.

7.1 Mesh correspondence

A recent variant to the classical mesh parameterization problem is to compute
a cross parameterization [20] between two meshes directly, where mesh corre-
spondence, computed over sets of selected features on the two meshes, is often
the first step. Currently, most methods [20] rely on manual feature selection and
correspondence. Spectral techniques have been proposed in the past to compute
correspondence between feature points on two 2D images [4, 21] and they can
be applied to find the much needed initial mapping between mesh features as
well [7]. In this section, we apply Nyström method to a simple 3D extension of one
such spectral correspondence algorithm by Shapiro and Brady [21]. Specifically,
pairwise similarities between data points are given by the L2 distances between
their spectral embeddings and best matching is used to recover correspondence.

Instead of using Euclidean distances [21] to define the affinities, we use
geodesic point-to-point distances on the meshes to better handle articulated
shapes. We also make two modifications to the original algorithm as follows.
First we use only the leading k eigenvectors of the affinity matrix to compute
the spectral embeddings and secondly, we scale the eigenvectors with the square
root of the corresponding eigenvalues. Both modifications have been shown to
improve the correspondence in the case of 3D meshes [7].

To visualize the correspondence, we use color coding of vertices. If X and Y
are the two meshes to be matched, we first assign colors to every vertex in Y ; we
carefully assign colors so that different parts of the mesh are colored differently.
Then, we set the color of every vertex of X to be the color of the matching
vertex in Y . Thus a good correspondence induces similar coloring in the two
shapes. Also shown is a comparison between random and farthest point sampling.
Clearly, the matching obtained using Nyström approximation with farthest point
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(a) (b)

Fig. 2. Results from spectral mesh correspondence. (a) Top row: ground truth, without
sampling. The next two rows show results using Nyström, with farthest-point and ran-
dom sampling, respectively. Inconsistent coloring at badly matched points for the latter
are highlighted by circles. (b) Results for larger meshes (4000 faces) using Nyström and
farthest point sampling. Shapes on the left are matched with those on the right. As we
can see, with only 10 samples, we already obtain excellent correspondence results.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of faces in slimmed mesh

E
rr

or
 in

 c
or

re
sp

on
de

nc
e

 

 

Without sampling

Nystrom with farthest point sampling

Nystrom with random sampling

Fig. 3. Plot of correspondence error
against mesh size. Nyström with far-
thest point sampling has comparable
performance to the un-sampled case.

sampling is comparable to the ground
truth, which is the matching com-
puted via eigen-decomposition of the
full affinity matrix. Fig. 2(b) shows
more correspondence results obtained
using Nyström approximation on
larger meshes (4000 triangles), with
the same k and sample size.

Note that results shown in Fig.
2(a) and 2(b) are subjective. Evalu-
ating a dense correspondence objec-
tively is non-trivial since the ground-
truth correspondence is not known
and is impractical to establish man-
ually for large data sets. To present
a more objective evaluation, we use
the following trick. We first construct
a series of decimated meshes using QSLIM [22]. Then we find the correspon-
dence between the original mesh and a decimated version. Since QSLIM does
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not alter the position of un-decimated vertices, the ground-truth correspondence
can be trivially computed from a decimated mesh. The correspondence error at
a vertex is defined as the geodesic distance between the found matching point
for the vertex and its ground-truth matching point. In Fig. 3, the total error is
plotted for all vertices against the size of the mesh. This plot is averaged over
several meshes. Again, it can be seen that Nyström method, when combined
with farthest sampling, has comparable performance to its much more costly
counterpart, where the full affinity matrices are used and the eigenvectors are
accurately computed.

7.2 Mesh segmentation

In part-type mesh segmentation [23], the goal is to decompose a mesh shape
into its constituent components according to human intuition. Since mesh seg-
mentation can be considered as a problem of clustering mesh faces, spectral
clustering becomes applicable. In the work of [6], spectral embeddings of faces
are first derived from the intrinsic geometric property of the shape, followed by a
K-means clustering in the spectral embedding space. The rationale behind this
approach is that face clusters in the embedding space correspond to parts of the
shape. In [6], sub-sampling is not conducted and all pairwise distances have to
be computed and converted into affinities. Subsequently, the eigenvectors of the
affinity matrix are computed to find the face embeddings. Although it is possible
to lower the workload by computing only the leading eigenvectors, it is still pro-
hibitive for large meshes, since computing pairwise distances alone would take
O(n2 log n) time for an n-face mesh.

Alternatively, we can apply max-min farthest point sampling and Nyström
method to approximate the spectral embeddings of faces. Supposing that the
sample size is l, we only need to compute the distances from the l sample faces
to the remaining faces since only the sub-block [A B] of W is needed. The whole
process for computing the embeddings then takes O(ln log n) time. Since l ¿ n,
the computational overhead is dramatically reduced.

Fig. 4 presents several segmentation results using Nyström method with far-
thest point sampling, where parts are indicated by different colors. As we can
see, the segmentation results are quite intuitive even at a very low sample rate
of 10. Table 1 reports the timing. Compared with the results in [6], which only
handles meshes of size up to 4000 faces, in about 30 seconds, the improvement
is quite evident.

In Fig. 5, we compare the performance of Nyström method under random and
farthest point sampling. It is easy to see that Nyström method works much better
with farthest point sampling. Also shown in this figure is that a better sampling
(indicated by a larger Γ value) leads to a more meaningful segmentation. For the
two pictures, (b) and (d), produced using Nyström and farthest point sampling,
no visually differences from those obtained in [6] can be observed.
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Table 1. Statistics of segmentation experiments on a 2.2 GHz Pentium machine with
1.0 GB RAM. Note that since iterative 2-means, instead of a single K-means, is used
on the horse and hand bone models, their running time is relatively higher.

Model Heart Igea Headless Smile Horse Hand bone

Face # 1619 2000 32,574 34,712 39,698 65,001

Part # 4 3 7 5 8 7

Time (s) 0.03 0.07 2.23 3.32 6.86 9.67

(a) Headless (b) Smile (c) Horse (d) Hand bone

Fig. 4. Segmentation results. We test the effectiveness of Nyström method for both
K-means (a, b) and iterative 2-means (c, d). Farthest point sampling is used.

8 Conclusion and future work

In this work, we study the approximation quality of Nyström approximation,
an important approach for speeding up kernel based algorithms. To overcome
the difficulty of investigating the method directly, we cast it in the context of
KPCA. With the help of the geometric intuition offered by the KPCA framework,
a simple yet accurate quality measure for the Nyström method is derived. This
quality measure can be used on the fly to guide a greedy sampling process
for better approximation. To improve efficiency, we analyze its mathematical
properties and motivate the use of the max-min farthest point sampling scheme.
We apply Nyström method and farthest point sampling to two mesh processing
algorithms, correspondence and segmentation, to demonstrate their effectiveness.
At the same time, we also experiment with applying the same framework to
spectral sequencing with positive results achieved. But due to limited space, we
shall report those results elsewhere.

One possible future work is to consider in more detail the relationship be-
tween KPCA and Nyström method when various preprocessing procedures are
applied to the affinity matrix. Another improvement is to study how different
kernels, such as Gaussian, exponential kernel and polynomial kernels, would in-
fluence the behaviors of the Nyström method. It is also interesting to come up
with application-based evaluation for the effectiveness of Γ . With mesh segmen-
tation as an example, it is desirable to be able to measure the segmentation qual-
ity quantitatively so that the approximation performance of Nyström method
can be evaluated based on the final result directly.
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(a) Heart [0.75] (b) Heart [1.06] (c) Igea [0.636] (d) Igea [0.99]

Fig. 5. Comparison of segmentation results under different sampling schemes. (a, c)
are results when random sampling is taken; (b, d) are obtained using farthest point
sampling. The numbers in brackets are the Γ values divided by the number of faces.
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