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3D model segmentation avails to skeleton extraction, shape partial matching, shape correspondence,
texture mapping, shape deformation, and shape annotation. Many excellent solutions have been
proposed in the last decade. How to efficiently evaluate these methods and impartially compare their
performances are important issues. Since the Princeton segmentation benchmark has been proposed,
their four representative metrics have been extensively adopted to evaluate segmentation algorithms.
However, comparison to only a fixed ground-truth is problematic because objects have many semantic
segmentations, hence we propose two novel metrics to support comparison with multiple ground-truth
segmentations, which are named Similarity Hamming Distance (SHD) and Adaptive Entropy Increment
(AEI). SHD is based on partial similarity correspondences between automatic segmentation and ground-
truth segmentations, and AEI measures entropy change when an automatic segmentation is added to a
set of different ground-truth segmentations. A group of experiments demonstrates that the metrics are
able to provide relatively higher discriminative power and stability when evaluating different hierarch-
ical segmentations, and also provide an effective evaluation more consistent with human perception.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Decomposing 3D models into meaningful parts has been an
increasing topic in the shape analysis community. The tasks such
as skeleton extraction, shape partial matching, shape correspon-
dence, texture mapping, shape deformation, and shape annotation
heavily rely on 3D model segmentation. Many methods have
attempted to provide better segmentation solutions, however,
determining which method is superior to other methods is not
an easy task. Similar as many shape retrieval benchmarks pro-
posed previously, Benhabiles et al. [1] first provide a pioneering
framework to quantitatively evaluate segmentation algorithms.
Chen et al. [2] also propose a benchmark, which comprises a
dataset with 4300 manually generated segmentations for 380
surface meshes of 19 different object categories. In addition, it
offers four quantitative metrics for comparison of segmentations.
The four metrics are obtained by extending metrics from image
segmentation, and researchers adopt part or all of metrics to test
their methods. Although these metrics are widely accepted by
researchers, one-to-one comparison between automatic and
ground-truth segmentation, and the way of averaging on all the
ll rights reserved.
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comparisons limits their performance. Moreover, they are unable
to be directly applied to multiple standard comparison.

In order to provide this supplement to the Princeton segmen-
tation benchmark, in this paper, we focus on introducing two
metrics, Similarity Hamming Distance (SHD) and Adaptive Entropy
Increment (AEI). They jointly adopt all the ground-truth segmen-
tations of each model to generate a score for automatic segmenta-
tion, which is different from averaging one-to-one comparisons
between automatic segmentation and standard segmentation.
SHD is based on partial similarity correspondences between
automatic segmentation and ground-truth segmentations. For
any segment of the input mesh, the metric searches its optimal
corresponding part from all the ground-truth segmentations of the
same model instead of only one ground-truth segmentation. These
corresponding parts possibly from different segmentations are
used to calculate the final error. Semantic information contained in
the corresponding relationship between each segment of the input
mesh and its corresponding part makes evaluation more rational
and intuitive. The other metric, AEI, is based on the entropy
concept from information theory, which measures the uncertainty
associated with a random variable. We consider diversity and
disorder of different segmentations on the same shape, and model
this type of diversity and disorder using a group of random
variables. Their entropy can be introduced to measure diversity
and disorder of segmentations, and the problem of estimating
segmentation quality can also be converted to entropy compar-
ison. The entropy of all the different ground-truth segmentations
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forms a baseline. When a novel automatic segmentation generated
via an algorithm is added, the entropy increases from the baseline.
Amplitude of entropy increment is adopted to evaluate the quality
of automatic segmentation.

A group of experiments shows that the proposed metrics are
able to provide higher discriminative power and effective evalua-
tion consistent with human perception, and also robust to differ-
ent hierarchical segmentations. We will integrate the two metrics
into the Princeton segmentation benchmark for making them used
conveniently in the future.

The rest of this paper is organized as follows. Recent works in
shape segmentation and evaluation metrics will be discussed in
Section 2. The first novel metric SHD will be introduced in Section 3,
and the other metric AEI will be given in Section 4 and 5. We will
demonstrate a group of experimental results and compare the two
proposed metrics to the existent four metrics in Section 6. The work
will be concluded in Section 7.
Table 1
Summary of recent papers adopting four metrics.

Papers Metrics

Skraba et al. (2010) [3] CD, HD, RI, CE
Kalogerakis et al. (2010) [4] CE, RI
Zheng et al. (2011) [5] CD, HD, RI, CE
Huang et al. (2011) [6] CD, HD, RI, CE
Benhabiles et al. (2011) [7] RI
Bergamasco et al. (2011) [8] CD, HD, RI, CE
Meng et al. (2011) [9] HD, RI, CE
Benjamin et al. (2011) [10] CD, HD, RI, CE
Meng et al. (2011) [11] RI, CD
Solomon et al. (2011) [13] RI
Au et al. (2012) [12] CD, HD, RI, CE
Ho et al. (2012) [14] CD, HD, RI, CE
Zhang et al. (2012) [15] RI, CE
2. Related works

3D model segmentation has become a fundamental issue in
computer graphics, which absorbed many researchers in the
recent decade. The tasks have mainly focused on segmentation
of a single shape and co-segmentation of a set of shapes. In this
section, we briefly survey two closely related topics: segmentation
methods and segmentation evaluation. According to the differ-
ences between segmentation techniques employed, we divide
recent methods into three categories, including low-level geo-
metric segmentation, learning based segmentation, and interac-
tive segmentation. We will also discuss recent representative
metrics for segmentation evaluation.

2.1. Segmentation methods

Low-level geometric segmentation: Many efforts have been made
to find meaningful segmentations of 3D shapes in the recent
decade. The early works usually focus on finding geometrical
features used to provide segmentation criteria, and a detailed
survey [16] classified previous segmentation solutions into mean-
ingful part-type segmentation and surface-type segmentation
partitioning the surface mesh into patches under some geometric
criteria. Recent progress in discovering geometric properties
includes diffusion distance [17], heat kernel [3], intrinsic primitive
decomposition [13], heat walk [10], concavity-sensitive scalar
fields [12], and minimum slice perimeter [14]. These geometric
features are clustered in a descriptor space using clustering
techniques such as recent Gaussian mixture models [18], greedy
algorithm [10], and the Mumford–Shah model [15].

Learning based segmentation: To overcome the limitations inher-
ent in segmentation of single shapes, a supervised learning based
approach [4] has been considered to utilize a priori manual
segmentations to obtain higher segmentation accuracy. It realized
a data-driven approach by optimizing a conditional random field
whose objective function is learned from labeled train data. Another
work [7] learned an objective boundary edge function from a set of
segmented training meshes in an off-line step, and the learned
function is used to segment any input model in an on-line step. This
type of methods needs a large set of manual segmentation data to
train classifiers. In order to avoid the problem and simultaneously
enhance the robustness to large shape variation, researchers have
turned to unsupervised methods based on co-analysis of a set of
shapes from the same class. Huang et al. [6] presented an unsu-
pervised approach which optimizes over possible segmentations of
individual shapes as well as over possible correspondences between
segments from multiple shapes. Sidi et al. [19] and Hu et al. [20]
described unsupervised co-segmentation methods based on
descriptor-space spectral clustering and subspace clustering respec-
tively. Iterative multi-label optimization [21] could also be applied
to improve the co-segmentation, which is implemented via cluster-
ing over-segmented patches. Semi-supervised segmentation [22] is
a trade-off solution to supervised and unsupervised methods.

Interactive segmentation: Because it is difficult for fully auto-
matic segmentation to adapt to complex models and different
applications, several works have introduced user assistance such
as interactive sketching to obtain a relatively satisfactory segmen-
tation. Under user's guidance such as defining the initial area
coarsely or labeling foreground and background, they commonly
provide intuitive interactive segmentation tools to find optimal
cuts. Recent interactive segmentation tools include constrained
random walk [23], bottom-up aggregation [24], graph-cut seg-
mentation [25,26], harmonic field based method [27,11], geodesic
curvature flow [28], dot scissor based on concavity-aware field [5],
and semi-supervised learning based on cannot-link and must link
constraints [29]. These algorithms generate natural segmentation
seams by finding least cost paths. Meng et al. [9] investigated
several popular foreground/background sketch-based interactive
mesh segmentation algorithms, and performed an extensive
comparative evaluation of these methods.
2.2. Segmentation evaluation

There are two types of evaluation methods: visual comparison
and quantitative metrics. Visual comparison [30] is first adopted to
visualize several segmented models generated by five early
methods in different colors. Because visual results are limited to
selected models, it is difficult to fully and fairly compare perfor-
mances of algorithms. Four quantitative metrics are introduced
into 3D segmentation by Chen et al. [2], which include Cut
Discrepancy (CD), Hamming Distance (HD), Rand Index (RI), and
Consistency Error (CE). These metrics are used to evaluate parti-
tion curves and regions generated by algorithms. The perfor-
mances of seven representative methods including K-means
(KM) [31], fitting primitives (FP) [32], core extraction (CE) [33],
random walks (RW) [34], shape diameter (SD) [18], normalized
cuts (NC) and randomized cuts (RC) [35], are investigated. They
found that segmentation based on low-level geometric criteria did
not perform well on all the test groups because these features are
commonly sensitive to local surface perturbation, non-rigid defor-
mation, and topology change. We summarized recent segmenta-
tion methods evaluated on the representative four metrics from
the Princeton segmentation benchmark in Table 1. Although many
methods are evaluated on the four metrics simultaneously, we
consider that they cannot help to generate consistent evaluation
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results. There are two reasons: (1) CD measures segmentation
boundaries while HD, RI, and CE are based on region differences of
segmented surfaces. (2) CD, HD, and RI are sensitive to hierarchical
segmentations, while CE is robust to them.

Benhabiles et al. [36] systematically analyzed the four metrics
from several different viewpoints and suggested representative
desirable properties of a metric. This is a pioneering work in the
study of segmentation metrics. They also improved Rand Index by
introducing a probabilistic interpretation. Their probabilistic Rand
Index adopted a fast and efficient mean estimator over a gen-
erative model of correct segmentations, which can be understood
as averaging the RI over multiple ground-truths, as mentioned in
Section 3 of their paper. They then normalized it in order to
increase its dynamic range, and obtained a higher performance of
segmentation evaluation.

Kalogerakis et al. [4], Sidi et al. [19], and Lv et al. [22] adopted
an accuracy measure on segmented regions to evaluate their
methods. An indicator function of face is defined via comparison
between the ground-truth face label and recognized label, and the
segmentation score relies on area-weighted summation of indi-
cator functions, divided by the total area. This evaluation method
is based on one-to-one comparison.

Differently from previous works, we do not average metric
values over multiple ground-truths, but fully exploit manual
segmentation datasets and integrate possible similarity informa-
tion of all ground-truth segmentations to give a comprehensive
evaluation on an automatic segmentation. In order to provide the
effective multi-standard comparison, we propose two evaluation
metrics based on multiple ground-truth segmentations, Similarity
Hamming Distance (SHD) and Adaptive Entropy Increment (AEI),
to enhance discriminability against unreasonable segmentations,
adaptability to complex and simple models, and tolerance to
hierarchical segmentations.
3. Similarity Hamming Distance

The Hamming distance proposed by Huang et al. [37] is
extended to 3D mesh segmentation evaluation [2], which com-
pares region differences between two segmentations A and G.
Suppose A is an automatic segmentation generated by a given
algorithm and G is a ground-truth segmentation generated manu-
ally. In most cases G is not unique, and this is the reason why Chen
et al. [2] collected segmentations of each model from multiple
A G2G1

Fig. 1. One-to-one comparison between a perfect segmentation A generated via an algor
is different from all the ground-truth segmentations, for example, G1 and G2.
people. We consider two questions: (1) how to evaluate an
automatic segmentation on multi-standard segmentations
acquired from multiple people? (2) how to handle many cases in
which there is no ground-truth segmentation corresponding to
the automatic segmentation?

Consider the following situations illustrated in Fig. 1, where we
assume that A is the automatic segmentation, and G1 and G2 are
both ground-truth segmentations. From the point of view of
human perception, it seems that A is a reasonable segmentation,
but A is obviously different from G1 and G2. Comparing A with
either of G1 and G2 would lead to an undesired error. And this
problem exists in all the metrics based on one-to-one comparison.
In fact, for the vast majority of 3D models, there are often many
standard segmentations in accordance with human perception,
especially for those models which contain many semantic parts
(for example, humans and four-leg animals with many joints).

Here we introduce a new metric, Similarity Hamming Distance
(SHD), which integrates possible similarity information of all
ground-truth segmentations to give a comprehensive evaluation
on an automatic segmentation. This metric is based on partial
similarity correspondences between the automatic segmentation
and ground-truth segmentations. For any segment of the input
mesh, we search its corresponding part from all the ground-truth
segmentations of the same model instead of only one ground-
truth segmentation. These corresponding parts possibly from
different segmentations are used to calculate the final evaluation
score. It explores a potential semantic relation between each
segment of the input mesh and its corresponding part, and makes
evaluation more reasonable and intuitive.

As illustrated in Fig. 2, the steps of computing SHD are as
follows:

Step 1: Let G1;…;Gnf g be all the different ground-truth seg-
mentations of the same model, and Gi

l is the l-th segment in the
segmentation Gi. A denotes the automatic segmentation to be
evaluated. We first choose one segment ak from C segments in the
segmentation A, and then search its overlapping segments in each
ground-truth segmentation Gi. The overlapping segments of ak in
Gi compose a set O(ak), and each element OjðakÞ satisfies

OjðakÞ∩ak ¼ f : f∈OjðakÞ∧f∈ak
� �

≠∅; ð1Þ

where f denotes a face, and ∅ represents the empty set.
Step 2: The segment ak is compared with each overlapping

segment in the set O(ak) of Gi by defining a geometric similarity
A G2G1

ithm and any ground-truth segmentation Gi leads to an unexpected error, because A
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Fig. 2. Overview of the steps in SHD computation. (a) An automatic segmentation A and multiple ground-truth segmentations Gi . (b) Search corresponding parts (in red) of each
segment ak in ground-truth segmentations. (c) Obtain most similar part (in red) for the segment. (d) Find all the corresponding parts (in color not black) for segments of A. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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distance as follows:

SD¼ ð1−βÞnEMDðak;OjðakÞÞ þ βn ~dðCðakÞ;CðOjðakÞÞÞ; ð2Þ

where EMD is the Earth Mover's distance of the D2 distribution
[38] between ak and each overlapping part OjðakÞ in Gi. The second
term ~dðCðakÞ;CðOjðakÞÞÞ is the scaled Euclidean distance dðCðakÞ;
CðOjðakÞÞÞ between the center CðakÞ of ak and the center CðOjðakÞÞ of
OjðakÞ. β is a weight. Because EMD lies in the range of [0,1], their
Euclidean distance should be scaled to the range of [0,1] by
introducing the following equation:

~dðCðakÞ;CðOjðakÞÞÞ ¼
dðCðakÞ;CðOjðakÞÞÞ

∑M
j ¼ 1dðCðakÞ;CðOjðakÞÞÞ

; ð3Þ

where M is the size of set OðakÞ. We use the above distance
measure to find a desired part in the segmentation Gi, whose
shape looks like the segment ak and also its geometric location is
very close to the segment ak. The best corresponding part gn

i with
the smallest similarity distance is selected. β is the weight
balancing the two terms. The method for determining β will be
shown later.

Step 3: After choosing the parts gn

1;…; gn
n

� �
from different

ground-truth segmentations G1;…;Gnf g, we re-compute and com-
pare the similarity distances SD from each part gn

i to the segment
ak using Eq. (2). The first term has been computed in the above
step, and only the second term should be re-scaled by the
summation of Euclidean distances between CðakÞ and Cðgn

i Þ. We
search an optimum part from gn

i

� �
, which satisfies two conditions:

(1) it has smaller similarity distance SD, and (2) its area should be
also greater than half the area of ak. If there are no parts satisfying
Areaðgn

i Þ4 1
2AreaðakÞ, we will select the part with smallest similar-

ity distance. We name the optimum part yk corresponding to ak.
Step 4: Repeat the above steps until all the corresponding parts

yk
� �

to ak
� �

are found. y1;…; yC
� �

compose a new set Y, called
similarity ground-truth segmentation. Now the number of ele-
ments in Y and A are the same, and each part ak of A has a one-to-
one geometric matching part yk in Y. This solves the problem of
different partition number of algorithms, and makes the corre-
sponding relation more meaningful.

Step5: Calculate the Hamming distance between the automatic
segmentation A and the similarity ground-truth segmentation Y as
follows:

DHðA;YÞ ¼ 1
2ðRmðA;YÞ þ Rf ðA;YÞÞ: ð4Þ

Taking into account the particularity of Y, for RmðA;YÞ and
Rf ðA;YÞ, we make the following changes:

RmðA;YÞ ¼
∑C

k ¼ 1jak\ykj
∑C

k ¼ 1jakj
; ð5Þ

Rf ðA;YÞ ¼
∑C

k ¼ 1jyk\akj
∑C

k ¼ 1jykj
; ð6Þ

where “\” is the set difference operator, and “j:j” denotes the
cardinality of a set. Here it is the total area of faces in the set.
The normalization constant in the traditional Hamming distance
[2] is jSj, which means that jAj ¼ jY j ¼ jSj. Our algorithm introduces
the Similarity Hamming Distance, which makes jAj≠jY j. Hence we
changed the normalization coefficient. The normalized Hamming
distance will take a value with a lower bound of 0 and an upper
bound of 1, where 0 represents perfect segmentation, and 1 means
no similarity between the automatic segmentation and the
ground-truth segmentations.

Discussion: We discuss two possible questions about the SHD
metric. The first question is why not to adopt the size of the
overlapping area to find the corresponding segment in Gi for each
segment ak. The traditional Hamming distance requires that the
corresponding relation is determined via the rule of “maximizing
the overlapping area”. However, this rule cannot be applied to “one
to many” matching. Fig. 3(a) shows the reason. The left is an
automatic segmentation A, and the right segmentations are
ground-truth segmentations Gif g. While sorting segmentations
by the overlapping area, the whole body of G1 is selected as the
best corresponding part to the cup's body (in red) in A. In fact, the
cup's body (in red) in segmentation G2 has more similar geometry
as the cup's body in A. Obviously, a comparison process without
similarity information will cause an unreasonable correspondence.
Accordingly, in order to avoid the unexpected correspondence, we
introduced the concept of a similarity distance.

The second question is how to choose the weight β in Step 2,
where we defined a similarity distance in Eq. (2) to consider the
shape feature along with location information for segment corre-
spondences. If only one of them is used, it will lead to an
unexpected result. For instance, sometimes the D2 distance [38]



A G1 G2

ak

Match
 parts

A G1 G2

Fig. 3. (a) Illustration of the reason of why we do not adopt the size of overlap area to find the corresponding segment in Gi for each segment ak. G2 is a more consistent
segmentation with A but its overlap area with A on the cup's body is less than that between A and G1. (b) We show a case of wrong correspondence caused by only using
location information while computing similarity distance. After sorting segmentations by the Euclidean distance between the center of the elbow part ak and its
corresponding parts in Gi, it is found that although a part of G1 has the nearest distance to ak, the arm of G2 has a more similar geometry as ak. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Overview of the steps in AEI computation. (a) The entropy of multiple ground-truth segmentations Gif g forms a baseline (a blue bar with its value). (b) The entropy
increases when an automatic segmentation A is added. The red bar is the incremental from the baseline, which is 0.1 in this example and then normalized by the upper
bound of the entropy increment (H(A)¼1.64). (c) The adaptive expectation of entropy increment EðΔHÞ is computed by introducing many random segmentations Arf g. (d) The
final AEI is obtained after normalizing it via the adaptive expectation. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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cannot separate two very similar parts, such as the upper leg and
lower leg. This can result in finding a wrong corresponding part if
only D2 distance is used. Similarly, if we use the location
information alone, Fig. 3(b) shows a case of wrong correspondence
caused by only using location information. In order to integrate
the two items to get the right correspondence result, the coeffi-
cient β plays the important role of balancing the two items. We
observe that the Earth Mover's distance of the D2 distribution in
the first term is often smaller than the Euclidean distance in the
second term, and both of them lie in [0,1]. The algorithm auto-
matically sets β by choosing one discrete value in the range of [0,1],
in order to get the smallest Similarity Hamming Distance.
4. Entropy increment

Entropy is a concept commonly used in information theory,
which measures the uncertainty associated with a random vari-
able. The entropy of a system increases while the system status
becomes more unordered. We consider diversity and disorder of
different segmentations on the same model. If this type of
diversity and disorder is modeled in the form of random variables,
their entropy can be introduced to measure this type of diversity
and disorder. The problem of measuring segmentation quality can
be converted to entropy comparison. The entropy of all the
different ground-truth segmentations forms a baseline. When a
novel automatic segmentation generated via an algorithm is
added, the entropy increases from the baseline. The amplitude of
the entropy increment is adopted to evaluate the quality of an
automatic segmentation. An overview of the steps in AEI compu-
tation is illustrated in Fig. 4.

Assume that an arbitrary segment in each ground-truth seg-
mentation Gi is sðGiÞ, and the probability of segment overlaps from
different segmentations G1;…;Gnf g is defined as:

P sðG1Þ;…; sðGnÞ
� �� �¼ ∥ ∀f ; f∈sðG1Þ

� �
⋂…⋂ ∀f ; f∈sðGnÞ

� �
∥

S
; ð7Þ

where S denotes the total area of the mesh, and ∥ � ∥ is the area size
of a given subset of faces. In order to simplify the expression of
probability distribution, we introduce the following definition to
substitute it:

PðG1;…;GnÞ ¼ P sðG1Þ;…; sðGnÞ
� �� �

: ð8Þ
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Fig. 5. If A can be completely represented by a combination of segments from G1

and G2, then the value of its entropy increment does not change. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Z. Liu et al. / Computers & Graphics 37 (2013) 553–564558
Eqs. (7) and (8) mean that the joint distribution of G1;…;Gnf g
can be estimated by computing overlapped area among segments
from different segmentations. Then, their entropy is based on all
the possible segment combinations among different segmenta-
tions of the same model, which is defined as follows:

HðG1;…;GnÞ ¼−∑PðG1;…;GnÞlogðPðG1;…;GnÞÞ: ð9Þ
It describes diversity and disorder of different segmentations

on the same model. While computing the distribution of manual
segmentations for the model, the possible combination statuses
are limited, and the upper bound of status number is the number
of faces in the model. We only consider these valid statuses, and
therefore the computation complexity is linear. According to the
concept of entropy, when a novel automatic segmentation A is
added, the entropy will increase and the following inequality
should be satisfied:

HðG1;…;GnÞ≤HðG1;…;Gn;AÞ: ð10Þ
The above equation implies that the inconsistent degree of

segmentations will increase when adding a new segmentation A
generated via an algorithm. Nevertheless, the entropy increment
will be zero in the following three cases:
1.
 A contains no segments, which means the mesh is not seg-
mented at all in the automatic segmentation.
2.
 A is the same as one of G1;…;Gnf g.

3.
 A consists of a combination of segments from G1;…;Gnf g.

In the third case, we assume that A is an automatic segmenta-
tion to be compared to two manual segmentations G1;G2f g of a 3D
human mesh. Fig. 5 shows this situation using three segmenta-
tions and their illustrative partitioned boxes. The blue part in the
box describes the upper body of the segmentation A, and the red
part corresponds with the legs of A. The blue part appears in the
ground-truth segmentation G1 because A and G1 have the same
segmentation in the upper body. The red part appears in the
ground-truth segmentation G2 because A and G2 have the same
segmentation in the lower body. A is fully consistent with two
ground-truth segmentations, and accordingly we think A is a
complete combination of G1 and G2. Different from previous
metrics based on average of one-to-one comparisons, the entropy
increment does not change when A is added as follows:

HðG1;G2Þ ¼HðG1;G2;AÞ: ð11Þ
It shows that adding A will not increase the joint entropy,

which means that a segmentation is perfect when it can be
expressed as combination of subsets of standard segmentations.
To better understand the idea, we give a metaphor that if a child's
nose is like his father and the other parts look like his mother, we
say he still “looks like his parents”. We can use this concept to
achieve the multi-criteria evaluation. In contrast, the entropy
increases remarkably when A is not related to the set of
G1;…;Gnf g. It means that A looks like none of the ground-truth
segmentations G1;…;Gnf g. In this case, we can get the following
equation:

HðG1;…;Gn;AÞ−HðG1;…;GnÞ ¼HðAÞ: ð12Þ
The above case is an extreme case, and also a useful cue that H

(A) can be adopted as the upper bound of entropy increment. In
order to normalize the entropy increment to the range of [0,1], we
use the upper bound H(A) to scale the metric by the following
equation:

ΔH ¼ HðG1;…;Gn;AÞ−HðG1;…;GnÞ þ ϵ

HðAÞ þ ϵ
: ð13Þ

where a very small constant ϵ (set to be the minimum of any
floating-point number) is added in order to avoid a special case
that an input mesh is not partitioned at all. In this case H(A) is zero
and the normalized entropy increment is 1.

Additionally, we also tried another different normalization
coefficient logm, where m is the number of segments in A. The
reason of adopting this normalization is that the maximum value
of H(A) is logm. Although choosing log m as a scale factor can
make the scale the same in different segmentations, it possibly
leads to incorrect evaluation under the situation of unbalanced
segmentation. We use an example to explain it. Fig. 6(a) shows
segmentations of a water pot: an automatic segmentation A with
very unbalanced segments (such as relatively very small and large
segments), and a ground-truth segmentation G1. We compute the
error of the automatic segmentation using Eq. (14), and find that
its value is close to 0. This means that the automatic segmentation
is very similar to the ground-truth segmentation, while in fact it is
not so.

ΔH¼ HðG1;AÞ−HðG1Þ þ ϵ

logmþ ϵ
≈0: ð14Þ

If H(A) is used as the normalization coefficient, the value of
entropy increment in Eq. (15) is close to 1. It leads to the correct
conclusion that the automatic segmentation is far from the
ground-truth segmentation. Moreover, adopting H(A) also makes
the upper bound compact and enlarges the variation range of the
entropy increment metric

ΔH¼ HðG1;AÞ−HðG1Þ þ ϵ

HðAÞ þ ϵ
≈1: ð15Þ
5. Adaptive entropy increment

We observe that the variation range and discriminative power
of entropy increment cannot satisfy the requirement of segmenta-
tion evaluation. The values of entropy increment are different for
the segmentations of simple and relatively complex models. Fig. 6
(b) illustrates two examples, one of which is a simple cup model
and another is a relevantly complex horse model. We design an
algorithm to randomly partition the two models eleven times, and
the number of segments in each random segmentation is consis-
tent with the automatic segmentation to be evaluated. The
entropy increment value of each random segmentation against
the ground-truth segmentations Gif g of the same model is
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computed. We use manual segmentations in the Princeton dataset
as ground-truths. Therefore, we obtain eleven error values for both
the cup model and the horse model. The entropy increment of the
simple model varies around the center of a large value, while the
entropy increment of the complex model varies centered around a
small value.

Therefore, we attempt to find an adaptive expectation to scale
the value of entropy increment for each model and specified
segment number, which can enhance the discriminative power
of entropy increment. If an automatic segmentation with zero ΔH
is viewed as the best segmentation, the random segmentation
without any a priori knowledge such as geometric features should
be the worst segmentation and its entropy increment should be
scaled to 1 by its adaptive expectation. A remaining problem is
how to define the expected entropy increment. We estimate it
from N random segmentations Arf g in the following equation:

EðΔHÞ ¼ 1
N

∑
N

r ¼ 1
ΔHðG1;…;Gn;ArÞ; ð16Þ

where Ar is a random segmentation with same segment number as
the automatic segmentation to be evaluated, and ffGigg is the set of
ground-truth segmentations for the same 3D mesh. Given a
specified segment number, we use random region growing to
generate those N random segmentations, which can be seen as the
worst cases. We use this way to obtain the expected entropy
increment EðΔHÞ.

After obtaining EðΔHÞ, the adaptive entropy increment (AEI)
metric is defined as follows:

ΔHa ¼
ΔH

EðΔHÞ ð17Þ
6. Experiments

In order to investigate the utility of the two proposed metrics
for evaluating segmentations, we performed five experiments. The
first three experiments are to investigate their discrimination
capability in three aspects: (1) standard segmentations and ran-
dom segmentations, (2) extreme segmentations, (3) segmentations
of complex models and simple models. The next study evaluates
whether our metrics are robust against hierarchical segmenta-
tions. We finally generate the errors of two proposed metrics for
manual segmentations in the Princeton segmentation dataset and
automatic segmentations generated by representative algorithms.

Protocol: Here we first describe the protocol adopted in the
experiment to evaluate a given segmentation. There are two cases
according to the origin of the segmentations. While evaluating one
manual segmentation, the remaining manual segmentations of the
same model are treated as ground-truths. In the case of evaluating
one automatic segmentation, the segmentation generated by any
state-of-the-art algorithm or a random algorithm designed only
for test is compared to all the ground-truth segmentations of the
same model. Moreover, the evaluation process is different for each
metric when computing the segmentation error. In order to
measure the error of one segmentation using one of the CD, HD,
RI, and CE metrics, the segmentation is first compared to each
ground-truth segmentation to get one error value, and the result-
ing values are then averaged within all the ground-truths of the
same model. In the case of the SHD and AEI metrics, only one value
is generated by means of comparing this segmentation to multiple
ground-truth segmentations of the same model.

6.1. Discrimination capability on standard segmentations and
random segmentations

We first investigate whether the two proposed metrics improve
the discrimination capability between standard segmentations and
random segmentations. We continue to use the 4300 manual
segmentations in the Princeton segmentation dataset, and also
generate 4300 new random segmentations. The segment number
of each random segmentation is set to be the same as its
corresponding manual segmentation. We adopt the above protocol
to generate a metric score for each segmentation, and make a
histogram of scores of all the segmentations. We compute six
metric scores for all the manual segmentations and all the random
segmentations, and finally produce six histograms of metric scores.

Fig. 7 illustrates the statistics of the discriminative power on
standard segmentations and random segmentations for four pre-
vious metrics, and two proposed metrics respectively. The vertical
axis represents the number of segmentations with scores located
in the horizontal bin. It is expected that manual segmentations
have lower errors, and random segmentations have higher errors.
Therefore, the most desirable status is that statistical bars counting
manual segmentations are grouped to the left, and the bars
counting random segmentations are grouped to the right. We
see that both SHD and AEI can spatially separate two different
types of segmentations in the histograms, and especially AEI
generates a satisfactory discrimination result.

We obtain a quantitative difference between two different histo-
grams H1 and H2 for each metric as follows:

DðH1;H2Þ ¼
μ1−μ2
s1 þ s2

; ð18Þ

where μ denotes the mean and s is standard deviation. The difference
values of CD, HD, RI, CE, SHD, and AEI are 0.6, 1.4, 0.7, 1.5, 1.9, and
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5.0 respectively. SHD and AEI have relatively larger difference values
between standard and random segmentations, which proves that
they have higher discriminative power.

We also compare two histograms of standard and random
segmentations for each metric using overlapping bars. Specifi-
cally, the function of overlap comparison OðH1;H2Þ is defined as
follows:

OðH1;H2Þ ¼
Z

minðh1ðeÞ;h2ðeÞÞ de: ð19Þ

where e denotes a metric error and h(e) is the corresponding
probability density of error. The function values of CD, HD, RI, CE,
SHD, and AEI are 26.0%, 11.1%, 34.3%, 8.5%, 7.9%, and 3.1%
respectively. These numerical values show that SHD and AEI have
smaller overlap between standard and random segmentations,
and achieve relatively higher discrimination.
6.2. Discrimination capability on extreme segmentations

A group of extreme segmentations including unreasonable
segmentation, over-segmentation, relatively perfect segmentation,
and under-segmentation is used to test quantitative responses of
four metrics from the Princeton segmentation benchmark, and the
two proposed metrics. Fig. 8 shows the four types of segmenta-
tions, and the error values of the six metrics. Unreasonable
segmentation and over-segmentation have larger SHD and AEI
errors, and under-segmentation has largest AEI error. The values of
SHD and AEI on the perfect segmentation are both small. For each
metric, if the error value of the perfect segmentation is subtracted
from the error value of a bad segmentation (unreasonable seg-
mentation, over-segmentation, and under-segmentation), we see
that AEI generates a higher difference than the other metrics. The
remarkable difference is desirable while evaluating and comparing
segmentation algorithms. Moreover, we see the values of CE on
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the four segmentations. The over-segmentation and under-
segmentation obtain lower error than the perfect segmentation,
which is an unsatisfactory evaluation of the segmentation.

6.3. Discrimination capability on complex models and simple models

We perform two groups of experiments concerning discrimi-
native power on not only simple models but also complex models.
Simple models commonly consist of a small number of segments,
and complex models consist of relatively many segments. The
desirable discriminative power should appear not only on several
segmentations of a simple model, but also on segmentations of a
complex model. The six metrics including CD, HD, RI, CE and our
two metrics SHD and AEI, are adopted to evaluate seven segmen-
tations of a simple cup selected from the Princeton segmentation
dataset, as shown in Fig. 9. The first five segmentations are
reasonable and they are slightly different on the boundary of the
handle, while the last two segmentations are clearly inconsistent
with human perception. SHD and AEI generate lower errors for
five good segmentations. CD and AEI generate higher errors on
the last two segmentations, especially the last one, while CD
and RI have higher errors on five good segmentations. When
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Table 2
Subjective scores (SS) of seven algorithms, and their subjective rank (SR). Their
ranks via CD, HD, RI, CE(GCE,LCE), SHD, and AEI are also given.

Metric RC SD NC CE RW FP KM

SS 6.0 5.7 5.5 5.2 4.8 4.7 3.9
SR 1 2 3 4 5 6 7
AEI 1 2 3 4 5 6 7
SHD 1 3 2 4 6 5 7
GCE 1 2 4 3 5 6 7
LCE 1 2 4 3 5 6 7
RI 1 3 2 4 6 5 7
HD 1 2 4 3 5 6 7
CD 1 2 3 5 6 4 7
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segmentations become worse from the first five segmentations to
the last two segmentations, SHD and AEI give quick response and
errors rise significantly. In Fig. 10, we also compute the six metrics
on thirteen segmentations of a complex model, where the first
eleven segmentations are satisfactory and the last two segmenta-
tions are unreasonable or an over-segmentation. As can be seen,
AEI and SHD have lower errors on good segmentations, and they
rise quickly for the last two segmentations. The two examples
show that AEI and SHD have higher discriminative power.

6.4. Robustness against hierarchical segmentations

Next we show an experiment to examine whether our metrics
are sensitive to hierarchical segmentations. Fig. 11 shows eleven
segmentations of the same model with different refinements. The
vertical axis represents the score of each metric, while the
horizontal axis indicates the segmentation number. Compared to
the first four metrics, the error values of SHD and AEI are relatively
stable and change little. Hence, for segmentations with different
hierarchical structures, the two proposed metrics can tolerate
these refinements and generate consistent results.

6.5. Evaluation on the Princeton segmentation dataset

We finally investigate the effectiveness of adopting the pro-
posed metrics to evaluate the Princeton segmentation dataset and
seven representative algorithms, which include randomized cuts
(RC), shape diameter (SD), normalized cuts (NC), core extraction
(CE), random walks (RW), fitting primitives (FP), and K-means
(KM). The 4300 manually generated segmentations of the 380 3D
models in the Princeton segmentation benchmark [2] are selected
as our ground-truth segmentations.

Human-generated segmentation evaluation: We first compute
the proposed metrics, SHD and AEI, on these manual segmenta-
tions to measure their errors. As mentioned in the above protocol,
the error of each manual segmentation is obtained by viewing the
remaining segmentations as ground-truths and comparing against
them. Next, we average the errors of all the manual segmentations
first within each model, then those results are averaged within
each category, and finally a mean error value is provided for the
entire dataset for each of the proposed metrics. The same protocol
is adopted for each of the previous four metrics, CD, HD, RI, and CE,
to report a total mean error for all the segmentations of models
generated by humans.

Algorithm-generated segmentation evaluation: Similarly, we
study properties of segmentations generated by seven state-of-
the-art algorithms and use the two proposed metrics to compute a
total mean error for each algorithm. It should be noted that each
algorithm produces one segmentation for each model in our
experiment, and the above protocol is adopted to compute the
error of this segmentation. Five algorithms such as RC, NC, RW, FP,
and KM, require the target number of segments as an input
parameter. Similarly as the setting in [2], we set it to be the mode
(most frequent) of the number of segments appearing in segmen-
tations created by people for that model in the Princeton dataset.
SD and CE automatically select the optimal segment number for
each model. Similarly, for each of the previous four metrics, a total
mean error is obtained by averaging all the errors over the entire
segmentation dataset generated by any automatic algorithm.

Fig. 12 shows the errors of the two proposed metrics, compared
to the other four metrics. For all the six metrics, lower bars
represent better segmentation results. Among the six metrics,
we see that AEI and SHD achieved relatively larger difference
range between manual segmentation and automatic segmentation
generated by algorithms, for example, human and K-means.
According to the RI metric, the maximum difference of scores
between different algorithms is only 0.15. The dynamic ranges are
0.25 and 0.52 for SHD and AEI respectively. They have potential to
effectively differentiate the ability of segmentation algorithms.
We also rank these algorithms via the two proposed metrics and
the four previous metrics in Table 2, and next discuss a user study
on these ranks.

User study: To demonstrate the effectiveness of algorithm
comparison using the two proposed metrics, we performed a
study where we asked 10 participants to subjectively estimate the
segmentation quality of 380 models generated by each algorithm,
and then sort these seven algorithms via mean subjective scores.
Before the test, we asked these participants to observe each
standard segmentation in the Princeton dataset, and also each
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random segmentation generated in the previous experiment. Next,
we provided all the segmentations of 380 models generated by
these seven algorithms to each participant. Each participant
graded automatic segmentations and was required to compare
corresponding standard segmentations at the same time, where
the range of given scores was from 0 to 10. According to scores
given by each participant, we took the average over models in each
category, and then averaged the scores over all the categories.
Accordingly, we obtained seven scores for these algorithms from
each participant, and took the average for each algorithm over 10
participants. The mean scores and rank of seven algorithms are
shown in Table 2. We give ranks provided by the metrics. We can
see that the rank provided by AEI is fully consistent with the
subjective rank, while SHD and other metrics are slightly different
from the subjective rank. SHD and RI are fully consistent on the
method rank. We also compute the mean correlation value
between subjective scores and the values of each metric. The
values of AEI and SHD are 0.55 and 0.48, and CD, HD, RI, and GCE
(LCE) are 0.18, 0.47, 0.38, and 0.41(0.37) respectively. It can be
shown that AEI and SHD have relatively higher consistency with
the subjective evaluation. Finally, it should also be noted that the
subjective evaluation contains many uncertainty factors, for exam-
ple, the scale that different participants assign to good or bad
segmentations.
7. Conclusion

This paper describes two metrics supporting evaluation on
multiple standard segmentations, which are Similarity Hamming
Distance (SHD) and Adaptive Entropy Increment (AEI). SHD is
based on partial similarity correspondences between an automatic
segmentation and ground-truth segmentations, and AEI measures
diversity and disorder of segmentations when an automatic
segmentation is added to a set of ground truth segmentations.
A group of experiments shows that the new metrics obtain higher
discrimination on different types of segmentations and models.
We expect that they will be adopted to evaluate the development
of algorithms in the future.

Discussion and limitations: The mean computation time of
evaluating an automatic segmentation via SHD and AEI is 5.5 s
and 0.3 s respectively, executing in an Intel i3 3.3 GHz computer
with 8 GB memory. We find that SHD costs much time on the com-
putation of the D2 distributions and parameter selection, although
we set a search step 0.01 for the balancing parameter β. It is a
limiting factor to practical use. Another limitation is that we only
search for corresponding parts of an automatic segmentation, and
correlation between segments and contextual relations is not
considered in SHD. Moreover, we first compute two terms in the
similarity distance, and then find the β by searching its approx-
imate discrete values in order to get the smallest distance. It is a
trade-off solution however this can bias the metric and possibly
affects the accuracy of SHD. In addition, AEI is based on combina-
tions of small entropies, where summing several small entropies
would equal to one big entropy change. In this case, a segmenta-
tion that locally is very different would have the same distance as
a segmentation which has many small differences. This will lead to
a biased evaluation.

Future work: We would like to focus on the evaluation of co-
segmentations of shape sets. Co-segmentation has been a hot topic
in the segmentation field, and a large dataset was just recently
introduced [39], although there is still a lack of metrics designed
specifically to evaluate co-segmentation results. Also of interest is
to label and evaluate 3D scene segmentation because 3D scene
datasets like Sketchup scenes and depth map scenes captured by
Kinect are growing rapidly. Besides the automatic segmentation
generated by algorithms, segmentations are obtained by interac-
tive techniques in many applications. It is interesting to investigate
how the proposed metrics reveal the user interaction during the
shape segmentation and evaluate interactive segmentation in real
time. First, a dataset composed of standard interactive segmenta-
tions should be built, and these standard segmentations should be
finished by skilled people. The proposed metrics score online
operations via comparing real-time interactive segmentation to
standard segmentations. This would assist users to produce
satisfactory segmentation results.
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