
Convex Hull Covering of Polygonal Scenes for Accurate
Collision Detection in Games

Rong Liu∗
Graphics, Usability, and Visualization Lab

School of Computing Science
Simon Fraser University, Canada

Hao Zhang†

Graphics, Usability, and Visualization Lab
School of Computing Science

Simon Fraser University, Canada

James Busby ‡

Radical Entertainment

(a) A building model used in computer games. (b) Convex hull covering computed by our algorithm.

Figure 1: A result of convex hull covering. (a) A complex building mesh used in games, where front and top walls are culled to reveal the interior
structures. The building contains a disconnected collection of closed and open mesh pieces with highly non-uniform tessellations. (b) The convex
hulls obtained, shown in different colors, collectively cover the building geometry (they may overlap, hence a covering), but do not take away
any original game playing space — this is our accuracy requirement. The original model has 14,608 polygons and the algorithm returned 3,137
convex hulls. Although the convex hull count is still high due to the strict accuracy requirement, about 80% of collision entity reduction (triangles
to convex hulls) still provides great potential to lower the computation cost of collision detection.

ABSTRACT

Decomposing a complex object into simpler pieces, e.g., convex
patches or convex polyhedra, is a well-studied geometry problem.
A well constructed decomposition can greatly accelerate collision
detection since intersections with and between convex objects are
fast to compute. In this paper, we look at a particular instance of the
convex decomposition problem which arises from real-world game
development. Given a collection of polyhedral surfaces (possibly
with boundaries, holes, and complex interior structures) that model
the scene geometry in a game environment, we wish to find a small
set of convex hulls such that colliding objects in the scene against
such a set of convex hulls produces the same game behavior as col-
liding against the original surfaces.

The vague formulation of the problem is due to the difficulty
of defining the space accessible by the objects involved in the game
play. Under reasonable assumptions, we arrive at a set of conditions
for valid convex decomposition and develop a construction algo-
rithm via greedy merging driven by patch compactness. We show
that our validity conditions ensure valid collision-related game be-
havior. The effectiveness of our decomposition algorithm is demon-
strated through real examples from game development. To the best
of our knowledge, no previous convex hull decomposition or sur-

∗e-mail: lrong@cs.sfu.ca
†e-mail:haoz@cs.sfu.ca
‡jbusby@radical.ca

face decomposition algorithms were designed to handle the type of
models we consider or be able to compute a set of convex hulls that
ensure accurate collision detection results.

1 INTRODUCTION

One of the most challenging tasks in computer games is fast and ac-
curate collision detection [6]. A typical game environment is mod-
eled by a collection of triangle meshes representing the characters
or other movable objects such as automobiles, and the scene geom-
etry. The latter is assumed to be static, consisting of scene support
polygons and static objects, e.g., trees, walls, or other building in-
frastructures. Collisions can happen between characters and the
scene geometry or between characters themselves. Note that we
purposely distinguish between the scene support and a terrain, as
the former is not necessarily a height field; it is however an open
mesh piece, possibly with holes. In real-world scene data, each ob-
ject can be an open mesh, modeled by its own mesh piece, and the
pieces may interpenetrate each other.

In this paper, our problem is to decompose the scene geome-
try into patches whose convex hulls will facilitate collision com-
putations. First, the number of convex hulls should be small,
which would allow collision detection algorithms, e.g., the Gilbert-
Johnson-Keerthi (GJK) algorithm [7], to run more efficiently. More
importantly, we demand that the use of the resulting convex hulls
for collision detection should reproduce the same game behavior
as when the original surfaces are used. In short, we say that the
obtained convex hulls are accurate.

In practice, although the mesh triangle count can be quite high,
there are typically large regions that are planar or convex. Combin-
ing the triangles in such regions and replacing them by convex hulls



can significantly reduce the computational complexity of identify-
ing colliding object pairs. It is worth noting that in order to max-
imize efficiency, it is also necessary to build a bounding volume
hierarchy (BVH) of the convex hulls and integrate it into the col-
lision engine for fast hierarchical culling. However, this topic is
rather standard and not a concern in this paper. We will instead
only focus on generating accurate convex hulls.

In addition to efficiency, convex hulls are also advantageous over
triangles for collision resolution, since convex hulls, unlike trian-
gles, have a clearly defined interior. Take for example a thin wall
standing on a flat landscape. As a triangle mesh, the front and
back sides of the vertical wall surfaces will have opposing face nor-
mals. If a character traveling at high speed collides with the wall,
it is likely to generate contacts with triangles on both sides due
to deep penetration, because collision detection is performed only
at discrete and relatively large time steps in order to achieve good
real-time performance. These contacts will have opposing normals,
which makes it impossible to resolve them simultaneously. This
causes the character to get stuck in the wall. If we replace the
wall triangles with a single convex hull, where the interior of the
wall is inside that hull, the contacts generated by collision will have
consistent normal directions (pointing to the outside of the convex
hull) and the collision resolution routine will successfully correct
the penetration, without the character being stuck.

As mentioned above, a key requirement on the generated convex
hulls is that the collision detection results derived from them need
to be accurate. This means that the convex hulls should faithfully
cover the original mesh surfaces. Since the scene support geometry
that we are interested in is typically of large scale, even a small ap-
proximation error may cause significant visual discrepancy between
the collision result and the actual geometry seen by a player. This
requirement precludes direct application of previous shape decom-
position approaches, e.g., approximate convex decomposition [10]
or many methods for surface or part-based mesh segmentation [17].
The accuracy requirement also implies that the convex hulls must
not pose any unreasonable obstructions to a character. Unreason-
able obstruction is not an issue for closed objects. As long as the
convex hulls are contained within an object, nothing will go wrong.
In our case, however, we need to cope with meshes that are open or
contain holes and interior structures. Convex hulls need to be care-
fully constructed so that any space accessible by a character during
the game must not be culled away by the convex hulls. Consider a
cube-like building with a small opening entry. Previous algorithms
would likely build a single convex hull for the entire building, clos-
ing the entry and solidifying the internal space. A concrete result
from our decomposition algorithm can be found in Figure 1. We
elaborate on this in Section 3.

Our problem is related to the problem of decomposing a surface
into convex patches considered by Chazelle et al. [4], where a sur-
face patch is convex if it lies entirely on the boundary of its convex
hull. Finding the solution with the minimum number of patches is
NP-hard due to “global failure”. Global failures can occur as a re-
sult of possible “twists” in the shapes, e.g., consider a spiral surface,
even if all the edges in a patch are locally convex, the patch itself
may not be. Although our solution does not aim for the optimal so-
lution, it still has to face potential global failure in order to ensure
the accuracy of the convex hulls computed. This is illustrated in
Figure 2. We thus resort to a heuristic, based on greedy merging,
to solve our mesh decomposition problem. Note also that since our
solution will be applied to an actual game engine, issues pertaining
to the conceptual simplicity and ease of implementation have been
taken into consideration as well.

Our main contributions include a definition of a new convex de-
composition problem with respect to accurate collision detection
behavior, a concrete set of conditions for achieving such accuracy,
and an algorithm for constructing the convex hulls. We also show

(a) (b)

(c) (d)

Figure 2: Synthetic examples to illustrate several cases our mesh
decomposition algorithm needs to deal with. (a) and (b) show that
the convex decomposition of Chazelle et al. [4] does not solve our
problem. In (a), the light blue patch is convex since it lies entirely on
its convex hull. However, the convex hull contains an extra face, the
pink triangle in (b). Using such a convex hull for collision detection
will cause an object, e.g., the green block in (b), to “sit in air”, which is
an invalid game behavior. The pink triangle would be valid if it lies “in-
side” the scene support, as shown in (c). However, a “global failure”
can occur, as in (d), where the obstruction of the pink triangle to the
game environment (indicated by the dark blue region on the pink tri-
angle) cannot be detected based only on geometric information local
to the triangle or to the light blue patch.

that a compactness measure helps improve the quality of our results.
To the best of our knowledge, no previous convex hull decomposi-
tion or surface decomposition algorithms were designed to handle
the type of mesh models we attempt to deal with, or could compute
a set of convex hulls that ensure accurate collision detection results.

The rest of the paper is organized as follows. After discussing
related works in Section 2, we formulate our convex decomposition
problem and set up constraints which model the accuracy require-
ment in Section 3. Section 4 gives detailed coverage on our algo-
rithm and relevant implementation issues. Experimental results are
presented in Section 5. Finally, we conclude and discuss possible
future works in Section 6.

2 RELATED WORK

Our problem falls into the category of mesh decomposition or mesh
segmentation. Mesh segmentation can either be of surface-type or
part-type [17]. The latter strives to find meaningful components of
a geometric model, where the definition of meaningful components
is vague and it typically ties in with shape semantics — this prob-
lem is different from ours. Surface-type mesh segmentation is more
relevant. In works related to mesh parameterization, remeshing, or
surface simplification, it is often desirable to identify mesh patches
that are geometrically simple, e.g., using criteria such as planarity,
convexity [9, 10], compactness [9], constant curvature [14], or low
curvature variation [18]. Many proposed techniques, e.g., via re-
gion growing, are referenced in the survey by Shamir [17] and we
refer readers to that coverage. An important distinction to be made
is that the criteria mentioned above are computed based on the patch
itself; while a local criterion cannot be found for our problem to
guarantee the correctness of the resulting convex hulls. Local cri-
teria are relatively easy to define and more efficient to check. In
our work, we need to incorporate global constraints and develop
efficient heuristics to check for them.



Previous convex decomposition algorithms can be divided into
two categories as in [5]. The first category considers a solid poly-
hedron T and the goal is to decompose it into multiple solid convex
pieces {Hi} such that T =

⋃
i Hi and Hi

⋂
H j, j 6=i = /0. This problem

has long been studied in computational geometry [1, 3, 16]. A sim-
ilar case is studied in computer graphics [13, 19] with the relaxed
constraint T ⊂⋃

i Hi; namely the solid convex pieces are allowed to
overlap, but collectively they contain the polyhedron tightly. Con-
vex decomposition of this type depends on the volume of the poly-
hedron and does not fit in our application, since the mesh surfaces
we need to handle are typically not closed and contain interior struc-
tures as well.

The second category of convex decomposition algorithms work
on a polyhedral surface S and aims to decompose it into convex
patches {pi}, with S =

⋃
i pi and pi

⋂
p j, j 6=i = /0. A patch pi is

convex if it lies entirely on the boundary of its convex hull. Our
work falls into this category. It is proved by Chazelle et al. [4] that
finding the minimum set {pi} is NP-hard and they hence resort to
several heuristic methods, one of which is later applied in [21]. The
closest work to ours is described in [5], in which the authors add
the constraint S

⋂
Hi = pi, where Hi is the convex hull of pi. This

additional constraint amounts to requesting that the convex hulls do
not contain in its interior any part of the surface S. If S is closed,
this condition implies that the resulting convex hulls are entirely
contained inside S, guaranteeing correct collision detection. Unfor-
tunately, this does not suffice when handling open surfaces: holes
may be closed and surfaces may be extended beyond the bound-
ary by the output convex hulls. Moreover, the special case when pi
is in 2D is not discussed by the authors. If the blue patch in Fig-
ure 2(a) were flat, the algorithm in [5] would allow it to be formed
and hence lead to unreasonable collision behavior as shown in plot
(b). We have to address all these issues in our solution.

Finally, we mention that to accelerate collision detection, it is de-
sirable to make use of a bounding volume hierarchy (BVH). Chris-
ter Ericson’s book [6] on real-time collision detection has detailed
coverage on BVH’s and extensive surveys on collision detection in
general also exist, e.g., [8, 11, 12]. Building a hierarchy, however,
is not the problem we wish to address in this work. We are only
interested in building low-level primitives from the triangles which
allow for accurate collision detection. A BVH based on these low-
level primitives, convex hulls in our case, can be constructed in the
same way as in [5] to further speed up collision detection.

3 CONVEX HULL COVERING

The convex hulls sought in our work are for real-time collision de-
tection in 3D video games. We are mainly interested in computing
convex hulls for mesh data which model scene geometry, such as
scene support, e.g., terrain, walls and other obstacles, building in-
frastructures, etc. These objects are often of large-scale and quite
complex; see Figure 1, 9, and 10 for a few examples.

Given a triangulated representation M = 〈V,E,F〉 of the mesh
surfaces, where V , E, F are the vertex, edge, and face (triangle) sets,
respectively, we wish to compute a set of convex hulls C = {Hi} out
of V , so that the collision results obtained by testing objects against
C are the same as those obtained by testing against M . This is
a hard constraint on accuracy, which we detail in Section 3.1. At
the same time, the efficiency of collision detection should be im-
proved as much as possible; this is discussed in Section 3.2. Sec-
tion 3.3 outlines the algorithmic challenges we face to motivate our
approach. In our application, the input mesh M is required to be
orientable and free of self-intersection; it does not have to be con-
nected. Typically, M contains a set of connected components, each
describing its own surface, open or closed. Our algorithm computes
a convex hull covering for each component separately, since it needs
connectivity information to merge patches iteratively. However the
validity condition checks described in Section 4 have to be carried

out on the entire mesh M .

3.1 Accuracy
The accuracy of the produced convex hulls is imposed on collision
behavior rather than geometry alone. Specifically, we need C to be
accurate in the sense that when a character interacts with the scene,
the collisions triggered using the facets in C remain consistent with
those triggered using the faces in F . Also, since we are dealing
with meshes representing large scale scene geometry, unlike ap-
proximate convex hull decomposition algorithms, e.g., [10], our
tolerance for error is much lower — even a small amount of error
on large-scale scene geometry can cause visible unnatural game be-
havior. To move towards a constructive algorithm, we first interpret
accuracy into three requirements:

1. Reproducibility: Surfaces of the original mesh should be re-
produced by the convex hull facets.

2. Accessibility: Convex hulls in C must not enclose any por-
tion of the original mesh surface in their interior.

3. Obstruction Free: Convex hulls in C should not cause any
unreasonable obstructions to a character’s movement.

Although related, these requirements are not quite the same and
are meant to deal with different scenarios. The three of them col-
lectively ensure that the collision behavior will be the same when
the convex hulls are used. The first two requirements guarantee
that the original scene surfaces are entirely present and available to
the characters. However, the way the characters interact with the
surfaces may still be affected due to the obstructions caused by the
resulting convex hulls, as in Figure 2. Thus the third requirement
is introduced and in that we wish to distinguish between reasonable
and unreasonable obstructions. Though in theory a character can
access any empty region in the embedding space of the scene ge-
ometry, game semantics dictate that many regions in the scene are
not supposed to be reached, e.g., spaces below a terrain. Obstruc-
tions occurring in such regions are acceptable and we call them
reasonable. This rather imprecise definition will become clearer in
Section 4 when the validity conditions of the convex hulls are de-
scribed.

Except for these three requirements, output convex hulls are free
to take any form or occupy any region in the space. By giving such
freedom to convex hull formation, the algorithm is able to produce
fewer convex hulls, for better efficiency.

3.2 Efficiency
Collision detection is typically carried out in two phases. At the
broad phase, the task is to determine all pairs which can collide with
each other. At the narrow phase, the actual collision results, i.e.,
point of contact, penetration depth, etc., are computed. A smaller
number of convex hulls implies less overhead for the broad-phase
detection. Therefore, our algorithm should strive to minimize the
number of convex hulls, the hull count, in C . On the other hand,
the accuracy requirement places several hard constraints on the re-
sulting convex hulls, which can potentially resist reduction on hull
count. However, as we stated earlier, these constraints are only con-
cerned with accurate game behavior and not geometric approxima-
tion, e.g., a resulting convex hull can cover a large empty space (as
long as the space is not supposed to be accessible by a character).
Such flexibility serves to effectively reduce the hull count.

3.3 Algorithmic challenges
Convex decomposition algorithms may be volume-based: convex
primitives are computed to approximate the volume bounded by
mesh surfaces [13, 15, 19]. Meanwhile, it is also practiced to de-
compose the shape into non-concave parts, where the concavity



measure is based on the distances from mesh vertices to their cor-
responding convex hull facets [9, 10]. Based on these measures,
heuristics searching for the global optimal solution can be imple-
mented either top-down, via recursive bisection [20], or bottom-up,
e.g., via region growing [9].

Top-down decomposition approaches tend to work well when a
global quality measure is available, e.g., mesh volume or concav-
ity. Such measures are only reliable when the meshes are relatively
simple and nicely shaped. Unfortunately, the mesh models we need
to deal with do not often have clearly defined volumes, neither are
the correspondences between mesh vertices and hull facets well de-
fined. They often come with boundaries, holes, tunnels and the
surfaces they represent can be rather flat with only local fluctu-
ations or twisted like a helix. Moreover, meshes in games often
have complex interior structures. For example, it is not clear how
to decompose the building mesh in Figure 1 into valid pieces us-
ing a top-down approach in a meaningful manner. For this rea-
son, we have opted for a patch merging approach working bottom-
up. Roughly speaking, the algorithm iteratively merges (connected)
mesh patches, starting with the original scene triangles, into larger
ones P = {pi}. The resulting convex hulls {Hi} are the con-
vex hulls of these patches. During the merging process, each pair
of adjacent patches need to be evaluated to ensure that the accu-
racy requirement is maintained; otherwise the two patches will not
be merged. Thus instead of considering volume approximation or
vertex-to-hull distances, we define mergeability conditions specifi-
cally to solve the decomposition problem we face.

Mergeability: Recall that the “obstruction free” requirement de-
mands that the convex hulls should not unreasonably obstruct a
character’s movement. One trivial way to accomplish this is to re-
quire each patch in P to be convex and planar, i.e., it is a 2D con-
vex polygon lying entirely on the original mesh surface. If output
convex hulls have to have non-zero volume, such convex polygons
can be easily extruded into prisms along the negative local surface
normal direction. Although accurate, this simplistic approach can
greatly compromise efficiency. In many cases, further merging is
possible. Figure 3(a) illustrates such a case. Imagine that the curve
shown is a cross-section of a terrain where the arrow indicates the
surface normal. The two blue patches p1 and p2 are valid to merge,
as its convex hull (shown as the light blue trapezoid) sits below
the terrain and is an acceptable obstruction. Similarly, the two or-
ange patches are also mergeable. On the other hand, (b) shows an
“inverse” case where neither the blue nor the orange patches are
mergeable, as the resulting convex hulls would block the passage to
the bottom part of the surface. Note that we frequently use 2D pro-
file to illustrate 3D situations in this paper. Be aware that although
curves may not be adjacent in a 2D illustration, the patches they
represent may be.

hull
1
p
 2
p


(a) P1 and P2 are mergeable.

hull

1
p
 2
p


(b) Non-mergeable.

Figure 3: Mergeability of patches depends on game semantics.

As we can see, mergeability is something that is related to the
game semantics, e.g., what space is accessible and what is not, or
in other words, whether a convex hull has the potential to obstruct
a character’s movement in an unreasonable manner. We shall make
these precise next. Note here that it is solely for illustration pur-
poses that we used the term “above” or “below”. In practice, such
concepts, along with “inside” and “outside” are all ill defined glob-
ally due to the complexity presented by our mesh data.

4 ALGORITHM

Our algorithm starts out by classifying each mesh face into a sin-
gle patch and initializing the merging cost between each adjacent
pair. Given any two adjacent patches, denoted by p1 and p2, their
merging cost is set to infinite if they are not mergeable. Mergeabil-
ity requires the merged patch to be valid so as to produce accurate
collision (see Section 4.1). If p1 and p2 are mergeable, their merge
cost is the inverse of the compactness (see Section 4.2) of p, the
resulting merged patch. The merging procedure works in a greedy
manner: in each iteration, it merges the pair with the smallest cost
and update the costs of affected pairs. This process iterates until all
the mergeable pairs are exhausted.

4.1 Validity conditions for merging
Let p be the resulting patch by merging p1 and p2 and let H be
the convex hull of p. We define p to be valid, equivalently, p1 and
p2 are mergeable, if the following four conditions hold; these con-
ditions give precise geometric interpretations to the three require-
ments in Section 3.1 for ensuring collision detection accuracy.

1. H contains no mesh vertices or edges in its interior: By
the accessibility requirement, H cannot contain any portion of the
original mesh surface. Algorithmically, we check whether H con-
tains any mesh vertices or edges. If so, p is invalid. Testing if a
mesh vertex is inside a convex hull involves running sidedness tests
against hull facets. As for a mesh edge, it suffices to check if it pen-
etrates the convex hull. The only possible case in which a surface
portion is enclosed by H but not detectable via the above checks
is when the portion is from the interior of a mesh triangle and the
three vertices and edges are outside the convex hull. However, this
implies self-intersection of the input mesh, which we disallow.

Note that any patch that has both concave and convex edges,
which would be non-convex in the sense of Chazelle et al. [4], will
be deemed invalid by this condition. However, it does more as it is
a global criterion, e.g., it ensures that a generated convex hull is not
penetrated by any scene polygon, even one that is far away.

2. Mesh face normals consistent with facet normals in H:
While condition 1 ensures that the entire mesh surfaces lie on the
facets of the resulting convex hulls, this condition demands consis-
tency in face orientations. The two conditions together guarantee
that p is a convex patch, in the sense of Chazelle et al. [4] and con-
sistent with the orientation of the mesh faces. To see that condition
2 is necessary in this context, consider a mesh piece whose Gaus-
sian curvature is negative everywhere.

In fact, both the reproducibility and accessibility requirements
are completely handled by these two conditions. In particular,
meshes with interior structures or inner surfaces (e.g., a cube whose
face normals point inward) are correctly handled. If interior struc-
tures are present, the outer convex hull will not be formed as this
would violate condition 1. Inner surfaces will be broken into in-
dividual pieces contributing to separate convex hulls, so that the
interior space is still accessible. What remains now is to model the
“obstruction free” requirement.

3. H contains no boundary constraint bars: If the convex
hull H extends beyond a surface boundary, either an inner or an
outer one, an unreasonable obstruction occurs. Imagine that a char-
acter may walk beyond the mesh boundary and stand on some facets
of H, causing wrong game behaviors, as illustrated in Figure 4(a).
If the convex hull of p1 and p2 is formed, it will close the opening.
To prevent H from extending itself beyond a boundary, we utilize
boundary constraint bars.

Each boundary bar is a line segment passing through the cen-
ter of the corresponding boundary edge and perpendicular to the
adjacent mesh face. With these constraint bars guarding along the
boundaries, H will always get intersected by some of them if it



extends beyond a boundary, as shown in (a). Accordingly, the al-
gorithm only needs to check whether any boundary bar penetrates
or is contained in H. If so, p is invalid and merging is disallowed.
Figure 4(b) shows the correctly generated convex hulls, with the
opening intact. We make boundary bars perpendicular to their ad-
jacent faces. This is equivalent to bounding the hulls along the face
normal direction. We found this to work well for our application.
A user may choose to tilt a bar more toward the negative side of the
face to constraint the hull more aggressively.

hull


opening


1
p

2
p


(a) Boundary violation.

hull
hull


opening


1
p
 2
p


(b) Constrained hulls.

Figure 4: Use of boundary constraint bars to prevent unreasonable
obstruction. (a) Obstruction occurring at an opening by merging p1
and p2. The convex hull is invalid as it is intersected by the red bound-
ary constraint bars. (b) Correct result.

Note that so far in our discussion we have assumed that H is a
3D polyhedron. When p is planar, the QHull package [2] we rely
on would return H as a convex 2D polygon, in which case the first
two conditions are satisfied automatically. As for condition 3, it
reduces to testing whether H is intersected, in its planar interior, by
any boundary bars.

Unreasonable obstructions may also occur even when the mesh
is completely closed, as shown in Figure 5. Assume that H is a
polyhedron. Figure 3(b) shows a situation where an obstructing
convex hull can completely sit above (locally) the surface. This
suggests that the mesh surface and hull facets have inconsistent nor-
mals — which should have been caught by condition 2. Since the
convex hull cannot extend beyond the boundary (guarded by condi-
tion 3), obstructions at the surface interior could only happen when
H cuts through the mesh surface. In this case, H has to contain
certain mesh vertices or edges, as illustrated by Figure 5, and this is
caught by condition 1. Therefore, we only need to take care of cases
where H is a 2D convex polygon, which calls for the last condition.

hull

1
p


2
p


hull
1
p
 2
p


Figure 5: Unreasonable obstructions occur over surface interiors
when the relevant convex hull cuts through the mesh surface, in
which case condition 1 is violated.

4. No triangles touch the interior and sit on the negative side
of H: Consider the two orange patches in Figure 3(b) and the right
plot in Figure 5. In neither of these two cases, the two patches
should be merged as the resulting convex polygon H causes unrea-
sonable obstruction. In order to detect this type of violation, we
check all the mesh faces not belonging to the two patches that also
touch the interior of H. If any of these triangles sit on the nega-
tive side of H, H is invalid. As in the right plot of Figure 5, H is
cut through by some of these triangles. In Figure 3(b), H has such
triangles with an edge lying on it but the third vertex sits on the neg-
ative side of it. Note that in this condition, the triangles touching H
on its boundary are not considered.

2


8


6


4
1
p


2
p


(a) (
√

32/28, 16)

3


5


4


8


1
p


2
p


(b) (
√

32/26, 8)

4


8


1
p


2
p


(c) (
√

32/24, 0)

Figure 6: Correlation between patch compactness and overlapping.
The three plots show three different configurations of two patches
with increasing compactness in a square with side length 8. The
dashed parallelogram in the first two plots indicate the overlapped
regions of the two patches. Under each plot, the numbers in the
brackets are the compactness of both patches and the area of the
overlapped region, respectively.

If all the above four conditions are satisfied, the accuracy re-
quirement for collision detection using the convex hulls obtained
from the merged patches is fulfilled.

In retrospect, the unreasonable obstructions we wish to avoid
are mainly caused by planar patches and boundaries. It is worth
pointing out, however, that as convex hulls inevitably solidify some
empty spaces in the scene, theoretical correctness of collision be-
havior cannot be guaranteed. In Figure 4(b) for example, the two
resulting hulls still take their interior regions away from the scene.
However, the reasoning is that a character is not supposed to interact
with those two regions; otherwise the mesh should have interior sur-
face at the back side of the two blue patches, in which case the two
hulls would not have been formed in the first place. In this partic-
ular example, the important factor is to keep the opening. Chances
are such an opening in a real game would serve as a “dead hole” or
a trigger point to enter another playing scene.

4.2 Compactness-guided merging
With mergeability defined, merging order can simply be random.
However, this has its obvious drawbacks. In particular, random
merging offers no control over the shape of the patches formed.
A valid patch can have a jaggy boundary, leading to more overlap-
ping between the convex hulls. Consequently, if a collision occurs
inside an overlapping region on the mesh surface, then it is nec-
essary to pinpoint the exact triangles that cause this collision and
extra efforts are needed to check associated triangles with all the
overlapped convex hulls. For such efficiency concerns, we wish to
reduce overlapping between the resulting convex hulls on the mesh
surfaces. This can be accomplished by greedy merging based on a
compactness measure. The compactness of a patch p is given by:

compactness(p) =

√
A(p)

B(p)
,

where A(p) and B(p) denote the surface area and the boundary
length of the patch p, respectively. In 2D, the maximum compact-
ness is achieved by a circular disk. Note that the compactness of
p is infinite when p is closed, as B(p) = 0. It follows that closed
patches are preferred. Figure 6 shows a simple example in 2D. It is
easy to see that compact patches tend to have less jaggy boundaries.
As a result, convex hulls of these patches overlap less.

One possible alternative to measuring the compactness of a patch
is through the compactness of its convex hull defined based on the
hull’s volume and surface area [9]. However, this measure is not
suitable for our application since again the patches being formed
during the merging iterations usually do not have a clearly defined
enclosed volume. Additionally, it is only the overlapping on the



original mesh surface that can cause concern. For this reason, it is
better to measure the compactness of the patch surface itself rather
than the compactness of its convex hull.

Another drawback of random merging is its high likelihood to
merge in the wrong order, causing poor results. We have found that
the compactness score tends to help alleviate this problem. The
rationale behind is that in general less compact patches are more
likely to cause separation (due to jaggy boundaries) that reduces
the overall mergeability among patches. A simple 2D example is
shown in Figure 7, while 3D examples can be found in Figure 10.

Figure 7: Patch compactness and merging order: In this example,
the two cyan patches are merged first, producing a non-compact
patch with a jaggy boundary. The jaggy boundary separates the
patches which otherwise could be merged. Due to this merge, a
total of four patches are generated, while the ideal case should have
only three patches as indicated by the dashed rectangles.

4.3 Practical issues
Numerical errors: For a practical implementation, several issues
deserve mentioning. The first one is the necessity to handle nu-
merical errors. Our algorithm frequently needs to run sidedness
and intersection tests. It would be error prone if these results were
simply based on the sign of corresponding distances; this is due to
numerical errors or unintentional positional drift of the vertices dur-
ing design of the mesh models. In our implementation, a tolerance
specified by the user is used.

Speeding up validity checks: As validity condition checks must
be executed each time two patches are merged, it would be expen-
sive if all the vertices, edges, faces and constraint bars were to be
examined. We rely on space partitioning to speed up this process.

Convex hull output: The final patches after the merging process
can be either in 3D or planar. When a patch is planar, the convex
hull returned is a convex polygon. As the collision engine requires
convex hulls with non-zero volume, the final 3D convex hull will be
constructed as a prism by duplicating an identical convex polygon
translated along the negative surface normal direction and connect-
ing the corresponding vertices.

Material properties: So far we have only focused on the geom-
etry of the mesh data and the convex hulls can overlap with each
other. In computer games, mesh faces may be associated with non-
geometrical properties, e.g., material types. When such face prop-
erties come into play, the overlapping on the original mesh sur-
face may cause problems. For example, since each convex hull is
supposed to have only one material type, if two convex hulls with
different material types overlap on the mesh surface, the collision
events triggered inside this overlapping region will not be able to
decide the right material type for computing the response. To ad-
dress this problem, we can simply add a virtual boundary between
faces with different materials by adding boundary constraint bars
(Section 4.1, condition 3) at their common edges.

5 RESULTS

In this section, we first demonstrate the ideas of our algorithm with
simple examples. We also show results obtained on complex mesh

(a) Front view. (b) Back view.

(c) Resulting patches. (d) Hulls (top view). (e) Hulls (back view).

Figure 8: Convex hull covering result on a simple fireplace model.

(a) Overview of decomposed patches on playground.

(b) Patches for a stair. (c) Hulls for middle region.

Figure 9: Convex hull covering result on a playground model.

data used in real-world games.
Figure 8 shows our convex hull covering result on a simple fire-

place model. The top row gives the front and back views of the
model. Since the mesh is single-sided, (b) is generated by revers-
ing the triangle normal for proper lighting. The resulting patches
are color coded in (c). As we can see, the algorithm successfully
merges the patches with the full capacity and leaves the burning
chamber open. Figure (d) shows from atop the convex hulls of each
patch. We see that the top three patches are constrained by the
boundary bars, without being merged together, and the unreason-
able obstruction immediately along the boundary are avoided. We
also notice that faces belonging to the top panel form a single patch
as its convex hull is “behind” the scene and not reachable by any
character, such as Santa Claus.

The algorithm is also tested on a playground and the results are
presented in Figure 9. Figure 9(a) shows the overall result. No-
tice how the wavy part in the upper left region is decomposed into
small valid pieces. For the middle region of the playground, we ob-
serve that the patches around the four corners are separated nicely
to prevent the resulting convex hulls from forming a cover over the



lower surfaces. Figure 9(b) shows a close-up of a stair object in the
playground. The meaningful patches are formed despite the non-
uniform tessellation. The convex hulls of the middle region of the
playground are shown in (c). It can be verified that the accuracy
requirement is strictly respected.

In Figure 10, we demonstrate the advantages of compactness-
based merging over random merging. The gear shown in the top
row has 32 teeth. Random merging has joined some faces from a
teeth to those from the central part, as shown in (a). Compactness-
based merging successfully decomposes the teeth and the central
part into their own patches, generating the ideal result. The second
row in Figure 10 shows results from a similar test applied to a block
of buildings. Pay attention to the patches on the streets: compact
merging effectively produces patches with less jaggy boundaries,
hence less overlapping between the resulting convex hulls. Note
that the reason that compact merging has still produced some frag-
mented and jaggy patches in this example is mainly due to the small
fluctuations on the street and bad tessellation.

(a) Random merging. (b) Compact merging.

(c) Random merging. (d) Compact merging.

Figure 10: Comparison between random merging and compactness-
based merging. The top row shows the comparison for a gear with
32 teeth. The random merging result (a) contains 43 patches, while
the compactness-based merging (b) achieves the ideal result with
33 patches. The second row illustrates the patches obtained on a
street block, where compactness-based merging also leads to more
compact ones, especially those on the streets.

Figure 1 shows a complex building model with interior struc-
tures and its convex hull covering generated by our algorithm. Note
that the building has only interior walls and for illustration purpose,
those back facing triangles are culled. As we can see, the convex
hulls generated reproduce the original surface and they also manage
to keep the openings and interior space intact. Figure 11 presents
a few close-up views of the result. The top view in (a) demon-
strates how the patches are formed to ensure their convex hulls are
valid. Through the top opening, we can see that the interior space
are not filled by the convex hulls. In fact, the entire space inside the
building which should be accessible to a character is completely
retained when the convex hulls are used. Figures (b) and (c) par-
ticularly demonstrate the capability of our algorithm to reduce the
number of convex hulls by differentiating between reasonable and
unreasonable obstructions. Note how both floors are turned into a
single convex hull against the obstructions introduced inside the en-

circled region. This is valid since the obstruction is reasonable as
it is outside the wall (back facing wall faces not shown), where a
character is not supposed to access.

(a) (b) (c)

Figure 11: Some close-up views of convex covering of the building
model shown in Figure 1.

One limitation of the current algorithm is its obliviousness to
small-scale objects in the scene. Figure 12 shows the decomposi-
tion result of a tub inside the building (Figure 1). As we impose
hard accuracy constraints on all the geometry, the curvedness of the
tub surface results in more patches than necessary as its relatively
small scale does free up some room for approximation errors as far
as collision detection is concerned. However, the challenge lies in
how to detect such a small object and allow for a larger error toler-
ance on it without affecting the correctness of the result as a whole.

Figure 12: Over-segmentation of a small-scale object.

Timing-wise, our algorithm is fairly efficient with the help of the
bottom-up approach and local queries against the frequent convex
hull computations and validity checks. Depending on the configura-
tion of the model and sizes of patches being formed, our algorithm
runs from tens of seconds to about a minute for meshes with up to
21K faces on a 2.5GHz Pentium CPU.

In terms of the asymptotic computational complexity of the al-
gorithm, we use the QHull algorithm to compute convex hulls; this
has a cost of O(n logn). Due to the strict accuracy requirement, we
need to compute convex hulls and perform validity checks at each
merging step. In the worst case, each validity check is quadratic
in complexity, which is likely inevitable since there may be global
failures, calling for global intersection tests. Have said that, it is im-
portant to note that we take a bottom-up approach. Thus the prob-
lem sizes for convex hull construction, along with other necessary
operations, are predominantly small. The use of spatial partitioning
also greatly speeds up the validity checks. Therefore in practice,
our algorithm is quite efficient, as a heuristic for solving a decom-
position problem that is likely NP-hard.

One missing component in the current paper is the actual colli-
sion efficiency test on the convex hulls in a real game environment.
The reason for this is that the game engine currently does not in-
corporate a bounding volume hierarchy representation for collision
objects and the convex hull collision detection routines are poorly
optimized. We can only verify the accuracy requirement of the con-
vex hulls at this moment, but we have strong reasons to believe that
the performance can be improved significantly once the above two
issues are addressed.



6 CONCLUSION AND FUTURE WORK

In this paper, we address a particular convex decomposition prob-
lem for real-world game development: decomposing the scene ge-
ometry into convex patches so that the convex hulls of these patches
serve as a valid alternative to the original mesh for the purpose of
real-time collision detection. The challenge comes from the neces-
sity of minimizing the number of convex hulls as well as maintain-
ing exactly the same collision behavior.

The meshes we need to handle are more complex than those
considered in previous algorithms. Complications resulting from
meshes with boundaries and interior structures can render typical
measures used for convex decomposition, e.g., those based on vol-
ume or vertex-to-hull distances, ineffective. Our proposed algo-
rithm is guaranteed to produce valid results while allowing for suf-
ficient freedom in convex hull formation. The latter helps reduce
convex hull count. The effectiveness of our algorithm is demon-
strated through numerous examples.

In the future, we plan to investigate how to effectively minimize
the number of convex hull facets as well, not just the number of
convex hulls. A small number of facets should help reduce the com-
putational cost of collision detection in the narrow phase. The main
question is how to factor it into an optimization process. Another
interesting yet challenging problem we wish to look into is to ex-
tend the algorithm to handle triangle soups. These representations
are desired from a 3D artist’s point of view as they allow for more
freedom in model design. They are difficult to handle from the per-
spective of geometry processing since a sufficient description of the
underlying surfaces in the model can be difficult to infer.

Acknowledgement The authors would like to acknowledge the
support from the Accelerate BC Graduate Research Internship Pro-
gram and Radical Entertainment. We are also deeply grateful to Dr.
David Fracchia and the ATG physics team from Radical Entertain-
ment for their generous help and invaluable suggestions. Models
used in Figure 8 and Figure 10(a) were taken from the Princeton
Shape Benchmark. We thank the anonymous reviewers for their
comments as well.

REFERENCES

[1] C. L. Bajaj and T. K. Dey. Convex decomposition of polyhedra and
robustness. SIAM J. Comput., 21(2):339–364, 1992.

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483,
1996. http://www.qhull.org.

[3] B. Chazelle. Convex partitions of polyhedra: a lower bound and worst-
case optimal algorithm. SIAM J. Comput., 13(3):488–507, 1984.

[4] B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal. Strategies for
polyhedral surface decomposition: An experimental study. In Proc. of
Symposium on Computational Geometry, pages 297–305, 1995.

[5] S. A. Ehmann and M. C. Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. In Proc. of
Eurographics’ 01, volume 20, pages 500–510, 2001.

[6] C. Ericson. Real-Time Collison Detection. Morgan Kaufmann, 2005.
[7] E. Gilbert, D. Johnson, and S. S. Keerthis. A fast procedure for

computing the distance between convex objects in three-dimensional
space. IEEE Journal of Robotics and Automation, 4(2):193–203,
1988.

[8] P. Jimenez, F. Thomas, and C. Torras. 3d collision detection: a survey.
Computers and Graphics, 25:269–285, 2001.

[9] V. Kreavoy, D. Julius, and A. Sheffer. Model composition from inter-
changeable components. In Proc. of Pacific Graphics, pages 129–138,
2007.

[10] J.-M. Lien and N. M. Amato. Approximate convex decomposition
of polyhedra. In Proc. of ACM Symposium on Solid and Physical
Modeling, pages 121–131, 2007.

[11] M. Lin and S. Gottschalk. Collision detection between geometric
models: a survey. In Proceedings of IMA, Conference of mathematics
of surfaces, pages 602–608, 1998.

[12] M. Lin and D. Manocha. Collision detection. In J. E. Goodman and
J. O’Rourke, editors, Handbook of discrete and computational geom-
etry, pages 787–807. Chapman & Hall, 2004.

[13] L. Lu, Y. Choi, W. Wang, and M.-S. Kim. Variational 3d shape seg-
mentation for bounding volume computation. Computer Graphics Fo-
rum, 26(3):329–338, 2007.

[14] A. Mangan and R. Whitaker. Partitioning 3D surface meshes using
watershed segmentation. IEEE Trans. on Visualization and Computer
Graphics, 5(4):308–321, 1999.

[15] S. Quinlan. Efficient distance computation between non-convex ob-
jects. In Proc. of Robotics and Automation, pages 3324–3329, 1994.

[16] J. Ruppert and R. Seidel. On the difficulty of triangulating
three-dimensional nonconvex polyhedra. Discrete Comput. Geom.,
7(3):227–253, 1992.

[17] A. Shamir. Segmentation and shape extraction of 3D boundary
meshes. In Eurographics STAR, 2006.

[18] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-
distortion piecewise mesh parameterization. In Proc. of IEEE Visual-
ization, pages 355–362, 2002.

[19] R. Wang, K. Zhou, J. Snyder, X. Liu, H. Bao, Q. Peng, and B. Guo.
Variational sphere set approximation for solid objects. Vis. Comput.,
22(9):612–621, 2006.

[20] H. Zhang and R. Liu. Mesh segmentation via recursive and visually
salient spectral cuts. In Proc. of Vision, Modeling, and Visualization,
pages 429–436, 2005.

[21] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface decom-
position with applications. Computer and Graphics, 26(5):733–743,
2002.


