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Abstract. The construction of linear mesh layouts has found various
applications, such as implicit mesh filtering and mesh streaming, where a
variety of layout quality criteria, e.g., span and width, can be considered.
While spectral sequencing, derived from the Fiedler vector, is one of the
best-known heuristics for minimizing width, it does not perform as well
as the Cuthill-Mckee (CM) scheme in terms of span. In this paper, we
treat optimal mesh layout generation as a problem of preserving graph
distances and propose to use the subdominant eigenvector of a kernel
(affinity) matrix for sequencing. Despite the non-sparsity of the affinity
operators we use, the layouts can be computed efficiently for large meshes
through subsampling and eigenvector extrapolation. Our experiments
show that the new sequences obtained outperform those derived from the
Fiedler vector, in terms of spans, and those obtained from CM, in terms
of widths and other important quality criteria. Therefore, in applications
where several such quality criteria can influence algorithm performance
simultaneously, e.g., mesh streaming and implicit mesh filtering, the new
mesh layouts could potentially provide a better trade-off.

1 Introduction

Computing linear mesh layouts is an instance of the graph layout problem [1],
where an optimal labeling of the vertices of a given graph is sought. Many op-
timization problems, including sparse matrix reordering [2–4], circuit layout [5],
DNA sequencing [6], and ranking [7] , are formulated as graph layout problems.

Consider a weighted graph G = (V,E, w) with V = {v1, . . . , vn} the set
of vertices, E the set of edges, and w : E → R the edge weights. A (lin-
ear) layout of G is a labeling π of its vertices, π : V → {1, 2, . . . , n}. For a
real number 0 < p < ∞, the p-discrepancy [7] of G with respect to a lay-
out π is defined as σp(G, π) =

(∑
uv∈E wuv|π(u)− π(v)|p)1/p

. If p = ∞, then
σ∞(G, π) = maxuv∈E |π(v)−π(v)|, and is also called the bandwidth of the layout.
The minimum value σp(G) = minπ σp(G, π), 0 < p ≤ ∞, is called the min-p-sum
of the graph G. Another important layout cost measure is vertex separation [1],
defined as max1≤i≤n | {π(u) ≤ i : ∃π(v) > i, uv ∈ E} |. Intuitively, it measures,
at a certain point of the linear layout, the number of edges for which only one
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end vertex has been encountered. In the field of numerical analysis, various mea-
sures, such as bandwidth [2], profile or envelope size [3] and workbound [4], are
considered for sparse matrix reordering. It turns out that these measures are re-
lated to different p-discrepancies of a graph layout, where the matrix of interest
can be considered as the adjacency matrix of the graph G.

Several problems in geometry processing [8, 9] benefit from having an opti-
mized mesh layout. A good example is mesh streaming [10], where the span and
width, corresponding to bandwidth and vertex separation, respectively, heavily
influence the mesh streamability. Profile, workbound, and bandwidth all affect
the cost of Cholesky factorization [11], which becomes necessary when large
sparse linear systems for the implicit mesh filtering problem need to be solved [9].

The optimization problems associated with most of the criteria mentioned
so far are NP-hard [1]. In practice, one resorts to efficient heuristics. Two best
known heuristics for minimizing span (bandwidth) and having comparable per-
formances are the Cuthill-Mckee (CM) [2] and minimum degree schemes [11],
both essentially conduct a degree-oriented breadth-first search. For the other
costs mentioned so far, spectral sequencing using the Fiedler vector, which is
the eigenvector corresponding to the smallest non-zero eigenvalues of the graph
Laplacian matrix, has been quite successful empirically [3, 7]. Note that the graph
Laplacian is derived from the graph’s adjacency matrix.

In this paper, we propose a new spectral sequencing operator for mesh lay-
out generation based on graph distance. The sequences obtained using our al-
gorithm outperform those derived from the Fiedler vector, in terms of spans,
and sequences obtained from CM, in terms of widths, profiles, workbounds, and
a few other important layout quality criteria. Thus in applications where sev-
eral such criteria can influence algorithm performance simultaneously, e.g., mesh
streaming and implicit mesh filtering, the new mesh layouts could potentially
provide a better trade-off. Although the matrix we eigendecompose is in general
non-sparse, approximate eigenvector computation via subsampling and Nyström
method [12] allows us to compute layouts for large meshes efficiently.

The rest of the paper is organized as follows. In Section 2, we describe our
spectral sequencing algorithm. Various practical issues, such as subsampling for
efficient layout computation, are addressed in Section 3. Experimental results
are given in Section 4. Finally, we conclude and suggest possible future work.

2 Spectral sequencing for graph layout

Although we focus on mesh layouts, our discussions are cast in the general con-
text of graph layout. To produce a sequence of mesh vertices or faces, the graph
of interest can be chosen as the primal or dual graph of the mesh, respectively.
For the mesh layout problem we currently consider, edge weights will be assumed
to be unit. Our approach however can trivially adapt to weighted graphs.

Independent of any specific layout costs, observe that if two graph vertices are
close to each other based on connectivity, they should also be close to each other
in the sequence. Take the min-1-sum problem for example. If all the adjacent
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vertices in the graph were consecutive in the sequence, the closest possible in
1-D, an optimal layout would be obtained. This is of course not possible in 1-D
in general, but we can look for an embedding φ of the graph vertices in a high
dimensional space, in which adjacent vertices are always close to each other. To
obtain a sequence, the vertices are projected onto a properly chosen vector, so
that their mutual distances are preserved as mush as possible. To summarize,
given a graph G = (V,E) with n vertices, our algorithm works as follow.

1. Calculate the graph distance, g(vi, vj), between each pair of vertices.
2. Compute an embedding φ(V ) = {φ(vi)} of V , such that given any vertex v,
∀(i, j), ||φ(v)− φ(vi)||2 < ||φ(v)− φ(vj)||2, if and only if g(v, vi) < g(v, vj).

3. Project points in φ(V ) onto a vector p∗, along which their relative positions
are preserved as much as possible.

4. Sort the projections of φ(V ) on p∗ to obtain a sequencing of the vertices.

2.1 Graph distance and the kernel matrix

To find the embedding φ(V ), we resort to relevant concepts from Kernel PCA [13].
Imagine a mapping φ : V → F , v 7→ φ(v), where F is typically called the feature
space which may have a very high, and possibly infinite, dimensionality. For this
reason, φ is never explicitly used and instead, it is implicitly defined by a kernel
(affinity) matrix K, with Kij = k(vi, vj) = 〈φ(vi), φ(vj)〉. Thus if K is known,
the embedding φ(V ) is implicitly induced. To define K, we first form a distance
matrix W , where Wij = g(vi, vj) is the graph distance between the vertices.

The next step is to convert W into the kernel matrix K, using a certain kernel
function. One of the most popular kernels is the Gaussian radial basis function,

k(vi, vj) = exp (W 2
ij/2δ2), where δ is the kernel width. (1)

In this case, it can be shown [14] that the square distance between two vertices
i and j in the feature space F is W2

ij = ||φ(vi)− φ(vj)||2 = 2− 2k(vi, vj). Thus
distances in F are seen to be proportional to those in the graph, in that the
order among distances between vertices in the graph is preserved in the feature
space. Specifically, since the graph edges have unit length, neighboring vertices
in the graph are always closest to each other in the feature space F .

2.2 Sequencing via spectral embedding

The positioning of the embeddings φ(V ) provides a good start to extract a vertex
sequence since the distances between pairs of vertices in the graph are relatively
preserved in F . We simply project each φ(v) onto a vector p. Afterwards, the
projections are sorted to obtain the sequence. Since after the projection the
dimensionality of the embedding space is reduced to 1, to obtain a smaller layout
cost for the resulting sequence, it is desirable to preserve their mutual distances,
hence the relative positions, as much as possible. To this end, we choose the
optimal direction p∗ subject to the following objective function

p∗ = argmax
p∈Rdim(F),||p||=1

∑

i<j

||pT (φ(vi)− φ(vj))||2,
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To motivate this approach, let us note that as the projection of distances onto
p is always smaller than the corresponding original distances, maximizing the
sum of projected distances tends to preserve the original distances. Assume that
φ(V ) is centered around the origin, it can be proven that p∗ is the first principal
component of the point set φ(V ). Denote by φ(V )p∗ the projection of φ(V ) onto
p∗, it can be demonstrated that the sequence obtained from φ(V )p∗ is identical to
that obtained from U1, the largest eigenvector of the kernel matrix K. Therefore
the algorithm simply sorts the elements of U1 to produce the sequence for V for
the layout problem. More details on these and our subsequent discussions can
be found in an extended version of this paper in [14].

3 Some practical issues

Subsampling: The algorithm described so far is unable to handle large meshes
due to overhead caused by pair-wise distance computation required by W and
the eigenvalue decomposition of K, giving rise to a time complexity of at least
O(n2 log n). To overcome this complexity, we adopt subsampling and the Nyström
method [15], which allows for computing only the distances between m sampled
vertices to the remaining vertices and approximating the leading eigenvectors
of K by knowing only m rows of it. Throughout this paper, we fix the number
of samples to 10, reducing the overall complexity to O(n log n). With farthest
point sampling [15], our experiments demonstrate that Nyström approximation
works remarkably well, even at an extremely low sampling rate.
Centering of K: Till now we have assumed that the set φ(V ) is centered at the
origin, which is not true in general. Thus, the kernel K has to be first centered [13]
to obtain K̄, where K̄ := (I− 1

n11T )K(I− 1
n11T ) and 1 is the column vector of

1’s. However, this is inefficient for large K. At the same time, due to subsampling,
the full K is unavailable for centering. We thus propose to use the subdominant
eigenvector of the un-centered K, which can be both formally and experimentally
shown [14] to be a good approximation to the dominant eigenvector of K̄, as
long as the kernel width δ used in (1) is sufficiently large. In our experiments,
we choose δ as the average of all the sampled graph distances.
Choice of kernel function: To convert a distance matrix to a kernel matrix,
we use the Gaussian kernel, given in equation (1). Note that other kernels, e.g.,
step function, exponential, polynomial and rational polynomial kernels, are also
possible. In fact, the use of the Fiedler vector can be seen as a special case of
our general paradigm, when applied to regular graphs, since the eigenvectors of
the graph Laplacian coincide with the eigenvectors of K derived from distance
matrix W with a step function kernel of width 1. We have experimented with
other kernels and have not found particular reasons to prefer one over the other,
but this issue requires further investigation.

4 Experimental results

This section presents an experimental comparison which evaluates the quality
of the sequence generated by the Fiedler vector, the Cuthill-Mckee scheme and
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(a) Bunny (b) Bone (c) Igea (d) Crater

(e) Bowl (f) Teeth (g) Rocker Arm (h) Isis

Fig. 1. Models used in the experiments.

our approach, referred to as Laplacian, CM, and Affinity, respectively. Given a
mesh, its vertex or face sequence is generated by considering the primal or the
dual graph, respectively. In our experiments, we consider six quality measures of
the sequence: span, width, profile, workbound, 1-discrepancy and 2-discrepancy,
where the first two are of particular interest to mesh streaming [10].

Figure 1 shows the triangle meshes used in our experiments, which are per-
formed on a Pentium 1.7GHz processor with 1GB RAM. Note that models with
boundary (Crater), elongated aspect ratio (Isis) and non-zero genus (Rocker
Arm) are all tested. Table 1 presents the characteristics of these models in con-
junction with the timing of our algorithm. Note that CM works the fastest among
the three, while Affinity and Laplacian perform similarly in speed.

Table 1. Characteristics of models and timing in seconds, I/O excluded.

Model Bunny Bone Igea Crater Bowl Teeth Rocker Arm Isis

Vertex # 34,834 50,002 60,002 100,000 102,402 100,002 160,704 187,644

Time 2.00 3.14 4.20 7.31 7.45 7.58 15.50 23.80

Figure 2 shows the comparison between the six layout measures for the primal
graphs; more experimental results can be found in [14]. It can be seen that
CM obtains the best results in terms of span, while the Laplacian operator
generally provides the best results in terms of the other measures. However, since
the Affinity operator outperforms the Laplacian in span and CM in width, it
achieves a trade-off between these two sets of measures, thus providing potential
benefits to applications where all these measures influence performance. Since the
models we use have different structural properties, we believe our result is model
independent. We have also experimented on dual graphs (for face sequencing)
and found that Affinity tends to outperform both CM and Laplacian on regular
graphs [14]. This issue is currently under investigation.
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Fig. 2. Comparison of layout quality measures for primal graph of different models:
(a) Bunny (b) Bone, (c) Igea, (d) Crater, (e) Bowl, (f) Teeth, (g) Rocker Arm, (h) Isis.

Note that in all our experiments, the sample size is fixed at 10, which is as
small as 0.0053% of the mesh size. We also conduct experiments to compare
between using and not using subsampling and report the results in [14].

5 Conclusion and future work

In this paper, we present a spectral sequencing algorithm for linear mesh lay-
out. We study this problem in the more general context of linear graph layout.
Independent of any specific cost measure, we abstract that a desirable vertex
sequence should be one in which close-by vertices in the graph are also close-by
in the sequence. To this end, a high dimensional distance preserving embedding
and 1D projection are applied to extract the sequence, with the help of Kernel
PCA. To make the algorithm work efficiently for large meshes, several practical
issues are addressed, including subsampling, eigenvector extrapolation, and the
usage of the subdominant eigenvector of the un-centered kernel matrix.
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Our experiments demonstrate that for span and width, the two principal
quality measures for mesh streaming, as well as other graph layout cost criteria,
e.g., profile and workbound, our algorithm potentially provides a better trade-off
compared to ordering schemes based on localized graph traversal, e.g., Cuthill-
Mckee, and spectral sequencing using the Fiedler vector.

The geometric appeal of our framework and analysis based on Kernel PCA
has shed some light on possible further improvement of layout qualities. One
particularly intriguing problem is to investigate the distribution properties of
the vertex embedding in the feature space, so as to achieve better results in both
span and width. It is also interesting to investigate the role of kernel functions in
the layout result, as well as more sophisticated distance measures between graph
vertices that take into consideration more global mesh connectivity information.
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