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Abstract

We formulate contour correspondence as a Quadratic
Assignment Problem (QAP), incorporating proximity in-
formation. By maintaining the neighborhood relation be-
tween points this way, we show that better matching results
are obtained in practice. We propose the first Ant Colony
Optimization (ACO) algorithm specifically aimed at solv-
ing the QAP-based shape correspondence problem. Our
ACO framework is flexible in the sense that it can han-
dle general point correspondence, but also allows exten-
sions, such as order preservation, for the more specialized
contour matching problem. Various experiments are pre-
sented which demonstrate that this approach yields high-
quality correspondence results and is computationally effi-
cient when compared to other methods.

1. Introduction

Finding a meaningful matching between shapes is a fun-
damental problem in geometry processing, with many ap-
plications in computer graphics, vision, and medical imag-
ing. In this paper, we focus on 2D contour correspondence,
a classical problem in computer vision for object track-
ing, recognition, and retrieval [1, 11, 24, 25], among other
tasks. In medical computing, establishing point correspon-
dence allows for statistical shape modelling and analysis of
anatomical structures [7]. Contour matching is also the first
step towards planar shape morphing [16], which finds appli-
cations in animation and shape analysis. Even in 3D shape
modeling, the matching of contours is often an integral sub-
problem. For instance, surface reconstruction from CT or
MRI data, or from data collected via the lofting technique,
requires correspondence between contours from adjacent
slices [19]. Also, reducing the 3D object matching prob-
lem to the matching of a set of projected object outlines [5]
was shown to be effective for 3D shape retrieval [29].
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One of the main approaches to contour correspondence
is to compute a shape descriptor for each selected feature
point to be matched. A matching can then be extracted from
the descriptors in a variety of ways, e.g., via the simple
greedy best matching [12], solved as a bipartite matching
problem using the Hungarian method [21], relying on vari-
ants of the iterative closest point (ICP) scheme [3], which is
based on descriptor distances and shape alignment via rigid
or non-rigid deformations [1, 6], or computed by dynamic
programming under point ordering [16, 24].

However, a drawback of all these optimization schemes,
along with most other contour correspondence algorithms
proposed so far, is that they treat the shape descriptors inde-
pendently and do not considerproximity information mea-
sured between feature points on the same shape. For ex-
ample, such information may be used to ensure that a fea-
ture pair which is close-by on one shape gets mapped to
points that are also close on the other shape. Compared to
approaches based purely on shape descriptors, the use of
proximity information, e.g. by incorporating a regulariza-
tion term in the cost function, can provide a better handling
of shapes with missing parts or a lack of salient features.

Incorporating proximity into an optimization framework,
we can formulate point correspondence via theQuadratic
Assignment Problem(QAP) [22]. It is well known that QAP
is one of the most difficult optimization problems to solve,
yet a simple heuristic which mimics the behavior of ants
has shown a great deal of success [31]. In this paper, we
adoptant colony optimization(ACO) [8], which we review
in Section 3, to solve the contour correspondence problem
and make the following contributions.

• We formulate the general point correspondence prob-
lem in terms of QAP (Section 4.1), incorporating prox-
imity information, and propose thefirst ACO algo-
rithm to compute the matching (Section 4.2). Note that
this basic ACO framework is applicable to the match-
ing of unorganized 2D point sets.

• Specific to contour matching, we extend our basic
framework to enforceorder preservation(Section 4.3).

• We show that the consideration of proximity has a dif-
ferent effect on contour matching compared to merely
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Figure 1. Example of a matching computed
preserving order, in (a), compared to one pre-
serving proximity and order, in (b).

enforcing order preservation, as done previously via
dynamic programming [16, 24]. An advantage of the
former is shown in Figure 1; further demonstration of
the feasibility and effectiveness of our ACO approach
is given through numerous experiments (Section 5).

Note that while order preservation can be strictly en-
forced for contour correspondence [16, 24], none of the pro-
posed solutions are applicable to the matching of surfaces
due to a lack of canonical ordering among points residing
on a 2-manifold. However, our basic QAP and ACO frame-
work can still be extended to the surface setting by replacing
proximities measured along a contour to proximities mea-
sured over a surface, e.g., using geodesic distance. We shall
leave this topic for future studies but will offer some discus-
sions on its potential in Section 6.

2. Related work on correspondence

While the problem of 3D shape matching and retrieval
is receiving much attention lately [33], research on 2D
shape matching [34] has remained active due to the prob-
lem’s inherent difficulty and wide-ranging applications.
Motivated by problems from image analysis, many algo-
rithms are designed to match unorganized sparse point sets,
e.g., [1, 3, 6, 17]. Although these point matching techniques
can often be directly applied to the contour correspon-
dence problem, contours define explicit ordering between
the points, which may be taken advantage of to improve
performance [16, 24, 25]. In this section, we briefly survey
existing contour matching paradigms and other point corre-
spondence schemes that are applicable to contour matching.
An overview of ACO, our adopted framework for contour
correspondence, is given in the next section.

Many contour matching algorithms rely on local shape
descriptors: a descriptor at a pointp along a contour typi-
cally encodes the position or other geometric properties at
the point itself (e.g., local curvature) or properties of the

remaining contour points, from the perspective ofp. A re-
cent survey and performance evaluation of local descriptors
is given by Mikolajczyk and Schmid [20]. The focus of our
work is on establishing correspondence regardless of the lo-
cal descriptor used. However, in this paper, we mainly use
shape context [1] as the local shape descriptor. Shape con-
text records a histogram of uniformly placed point samples
along a contour, parameterized by distance and angular ex-
tent with respect to the point described.

With a shape descriptor recorded at each point, a cor-
respondence can be computed by examining the similarity
between points from two input shapes. The similarities are
often defined by a distance metric, forming ann1×n2 dis-
tance matrix, wheren1 and n2 are the point counts. The
simplest way to arrive at a correspondence is theO(n1n2)
best matching, which greedily maps a point from one shape
to a point on the other shape that has the most similar shape
descriptor. Computing an optimal one-to-one correspon-
dence which minimizes the total distance between matched
shape descriptors is the bipartite matching problem and can
be solved using theO(n3) Hungarian algorithm [21], where
n = max(n1,n2). These schemes can both be enhanced by a
combination with iterative alignment, e.g., using thin-plate
splines [1, 6].

Other optimization-based approaches also exist. Maciel
and Costeira [17] formulate the matching problem via inte-
ger constrained minimization and solve a relaxed version of
it using concave programming. Gold et al. [10] incorporate
deformation parameters into their optimization criteria and
find good suboptimal solutions via soft assign. Recently,
Zheng and Doermann [35] improve upon initial correspon-
dence computed from shape contexts by trying to maximize
the preservation of binary neighborhood information. Most
closely related to our work is the approach of Berg et al. [2],
which also uses the QAP formulation but solves it using a
two-step method. The last two algorithms [2, 35] both settle
for gradient descent and converge to local minima.

The techniques mentioned so far are all applicable to
point set correspondence. The more specialized contour
matching problem can benefit greatly, quality-wise, under
point ordering. Order-preserving contour matching typi-
cally involves expensive optimizations, but the reliance on
a high-quality local shape descriptor is diminished. Liu et
al. [16] resort to dynamic programming, which allows for
feature skipping as well, and report excellent matching re-
sults. Scott and Nowak [24] also enforce point ordering and
their dynamic programming algorithm is more efficient, but
at the expense of a higher memory cost.

Instead of performing contour matching in the spatial do-
main, transform-based techniques have also gained some
popularity, most notably spectral correspondence [13, 27]
or modal matching [23]. In the resulting spectral domain,
conventional methods can be applied to compute a corre-



spondence. The transforms used tend to reveal more global
shape structures and can also obtain bending-invariant cor-
respondences [4, 13]. Point correspondence without defin-
ing local shape descriptors is also possible. For example,
Sederberg and Greenwood [26] present a physically based
approach for correspondence of 2D polygons which tries
to fit one polygon over another by optimizing some energy
functional. Sebastian et al. [25] introduce the notion of
an alignment curve and use a deformation-based symmetric
edit distance to define contour similarity. Skeletal [32] and
shock graphs [30] have also been proposed for 2D or 3D
shape representations, where subsequent point correspon-
dence can be computed via graph matching.

Finally, another class of techniques is based on the
minimum description length(MDL) principle. Here the
favoured point correspondence between agroupof shapes is
that which maximizes compactness (in an information the-
oretic sense) of the statistical shape model obtained using
PCA on the corresponding points. MDL is not suitable for
matching only a pair of contours (the focus of this paper)
and does not explicitly include penalty when correspon-
dence violates the proximity constraints.

3. Review of ant colony optimization

Ant colony optimization is a metaheuristic used to find
good solutions to NP-hard optimization problems, e.g.,
those related to routing, assignment (including QAP), and
scheduling. A thorough introduction to ACO is given in the
book of Dorigo [8], who pioneered this field.

3.1 Overview of ACO framework

The inspiration for ACO comes from the ability of natu-
ral ant colonies to solve difficult problems, despite the sim-
ple behaviour of each individual member of the colony. This
ability is reflected by the way ants search for food and com-
municate with each other. Initially, ants explore the sur-
roundings of their nest in a random manner, a characteristic
of their foraging behaviour. Whenever an ant finds a source
of food, it returns to the nest leaving a trail of a chemical
calledpheromoneon the ground. The purpose of this trail
is to guide other ants to the food sources.

The ACO metaheuristic replicates some aspects of this
behaviour. An artificial ant colony is seen as a system of dis-
tributed agents searching for the solution of an optimization
problem. The problem is usually modelled with a graph and
the solution search involves ants traversing this graph. Each
traversal by an ant corresponds to a feasible solution, which
is evaluated using an objective function of the problem at
hand. The quality of the solution dictates pheromone de-
position, whose accumulation on the traversed graph edges
serves as the means for communication.
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Figure 2. Example of an ant traversal over a
(3,3) bipartite graph modeling a correspon-
dence problem. The path is (i2→ j1 → i3→
j3 → i1→ j2) and the corresponding assign-
ment π is: π(i1) = j2, π(i2) = j1, π(i3) = j3. The
ant shown is not part of our graph model.

In this work, we model the correspondence problem
over a complete bipartite graph on the two point sets to be
matched. As an ant traverses the graph, a path is formed.
We define the obtained correspondence by those edges di-
rected from one designated point set to the other and eval-
uate it using a criterion from the QAP formulation. Fig-
ure 2 shows a possible ant traversal and the correspondence
formed. The details of our algorithm are given in Section 4.

3.2 ACO metaheuristics

As an ant traverses the graph, its decision on where to
go next are influenced byheuristic informationand current
pheromone deposition. For correspondence, the heuristic
information will take into account both local shape descrip-
tors and proximity (Section 4.2.4). After a number of ants
have traversed the graph, known as one iteration of ACO,
a certain amount of pheromone is alsoevaporatedfrom
all edges. Pheromone evaporation occurs in nature and in
ACO, it can help the ants escape from local minima.

When examining the ACO algorithm, we see that, at
first, ants will tend to freely explore the whole solution
space, leading to many different solutions. However, over
time, pheromones will accumulate only on edges that are
part of those traversals favoured by the objective func-
tion; this causes the ants to gradually follow only a limited
number of traversals. Moreover, heuristic information and
pheromones have to be combined to guide an ant. The for-
mer is necessary to bias the ants to construct good traversals
at the start, when the pheromones are set to random initial
values. On the other hand, the pheromones are necessary
for later iterations of the algorithm, when they reinforce the
traversal of the graph edges that lead to good solutions.

4. ACO for shape correspondence

This section formulates the correspondence problem and
describes how the ACO metaheuristic is applied.



4.1. Problem formulation using QAP

Given two point setsI andJ, the shape correspondence
problem can be stated as finding a meaningful mapping
from points of I to points ofJ which minimizes a given
objective function. That is, we seekπ∗ such that

π∗ = argminπ(OBJ(π , I ,J)),

where OBJ is the objective or cost function which evaluates
the matchingπ in relation to the shapes characterized byI
andJ, andπ is a mapping such that∀i ∈ I ,∃ j ∈ J : π(i) = j.
We also assume without loss of generality that|I | ≤ |J|.

The assignment problem (AP): A common approach to
shape correspondence is to extract a set of features for each
point, referred to as theshape descriptors. Examples of
shape descriptors include shape contexts [1], among many
others [20]. Next, a distance measure between two shape
descriptors has to be defined. Theassignment problemor
AP [24] seeks a correspondence which minimizes the sum
of the distances between descriptors of points on one set and
the descriptors of the corresponding points on the other set:

AP(π , I ,J) = ∑
i∈I

DR(Ri ,Rπ(i)),

whereRi denotes the descriptor at pointi, andDR is the
shape descriptor distance measure. Here, the matching is
constrained to be one-to-one (not necessarily onto). The
optimal matching for this cost measure can be computed in
cubic time with the Hungarian algorithm [21].

Order preservation for contour matching: Note that
shape descriptors might not be the only factor one should
take into account when evaluating a correspondence. One
possible element pertaining to contour matching is order
preservation [16, 24, 25], which follows from the observa-
tion that the vertices defining a contour are ordered. For ex-
ample, the COPAP algorithm [24] solves the cyclic-order-
preserving assignment problem via dynamic programming.
It has been shown that order-preserving contour matching
significantly improves the correspondence results [16, 24,
25]. However, it is unclear how it can be extended to other
domains, e.g., for points residing on a 3D shape, for which
a canonical point ordering is not available.

Incorporating proximity information: Another ele-
ment for evaluating a correspondence between continu-
ous shapes, e.g., contours or surfaces, is the preserva-
tion of quantitative neighborhood orproximity information.
Namely, if point i from shapeI and point j from shapeJ
are matched, then a close-by neighbori′ of i on I should
be matched with a pointj ′ on J that is close toj. Berg et
al. [2] refer to this as the minimization of distortions in a
correspondence. This differs from the case of order preser-
vation in that besides point ordering, we are also concerned
with distances between point pairs on the same shape.

QAP formulation: When augmenting the shape descriptor
R with proximity information, we obtain the general objec-
tive function of QAP,

QAP(π ,R, I ,J) = (1−ν)S (π ,R, I ,J)+ νX (π , I ,J), (1)

where the free parameter 0≤ ν ≤ 1 weighs between the
shape descriptor distance or similarity termS (·) and the
proximity termX (·). In our implementation, we define

S (π ,R, I ,J) =
1
|I |
·∑

i∈I

∣

∣

∣

∣

∣
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where the use of the Gaussian is for normalization purposes,
so that 0≤S (π ,R, I ,J)≤ 1. Note that other filter functions
that are monotonically decreasing away from zero can also
be used in place of the Gaussian. The proximity term

X (π , I ,J) =

∑
i6=i′∈I

[

e
−DI (i,i

′)2

σI
∣

∣DI (i, i
′)−DJ(π(i),π(i′))

∣

∣

]

I(I −1)/2

also lies in[0,1], whereDI andDJ are distances, normalized
to [0,1], between two points fromI andJ, respectively. For
matching contours, these distances are geodesic distances
normalized with respect to contour length. If the point sets
are unorganized, we can resort to Euclidean distances nor-
malized against the maximal pairwise distance in each set.

Moreover, proximity preservation is emphasized more in
the local neighborhood of a given vertex and it diminishes
for points that are far away from each other. Our way to
accentuate proximity is to apply Gaussian weights to the
proximities in theX (·) term. The Gaussian widthsσR and
σI applied to the descriptor distances and proximities are
free parameters set by the user.

Finally, note that a great advantage of our QAP formula-
tion is that it can be extended to any domain where distances
between points can be computed; this includes the case of
points residing on a 2-manifold, whereDI andDJ will be
geodesic distances over the manifold. However, finding an
optimal solution to QAP is NP-hard. Therefore, heuristic
algorithms are necessary to obtain approximate solutions.

4.2. Correspondence algorithm using ACO

It has been experimentally shown that the ACO meta-
heuristic is one of the most successful approaches for solv-
ing structured real-life instances of the QAP [8]. Moreover,
when incorporating proximity information, solving the cor-
respondence problem can be viewed as solving a QAP, as
we have shown in the last section. In this section, we de-
scribe a novel extension of the ACO framework, which has
been used for solving assignment problems [18], to deal
with the specific shape correspondence problem.



4.2.1 Graph model and correspondence extraction

We define the graphG = {V,E} that is to be traversed by
the ants as acomplete, directed bipartite graph. The set of
vertices of this graph is composed of the two point sets to
be matched, i.e.,V = I ∪J. The directed edgesE fully con-
nect the two point sets. The path that is determined by the
traversal of an ant onG corresponds to a possible solution
to the assignment (correspondence) problem. During such
a traversal, two conceptually distinct tasks are performed.
When an ant traverses a directed edge that connects a vertex
in I to a vertex inJ, an assignment fromI to J is determined.
On the other hand, when an ant traverses an edge fromJ to
I , the order in which the vertices are assigned is determined.

An ant starts the graph traversal from a randomly se-
lected vertex. It traverses edges until an assignment of each
vertex inI is determined (recall thatI ≤ J). The final assign-
mentπ is given by the edges fromI to J chosen by the ant.
Note that a correspondence obtained this way is not neces-
sarily one-to-one, as opposed to the AP or COPAP match-
ing formulations. In Section 4.3, we show how ACO is a
flexible framework which allows other types of matching.

4.2.2 Path construction and evaluation

When traversing from a vertexi ∈ I to a vertex inJ, the
probability pk

i j of an antk choosing the edge that connects
to vertex j ∈ J is given by

Edge probability: pk
i j =

ατi j +(1−α)ηi j

∑l∈Ni
[ατil +(1−α)ηil ]

(2)

whereτi j quantifies the pheromones accumulated on edge
(i, j), ηi j indicates the desirability of traversing(i, j) based
on heuristic information (defined in Section 4.2.4), and
Ni = {l ∈ V : (i, l) ∈ E} is the immediate neighbourhood
of vertex i. The parameter 0≤ α ≤ 1 regulates the influ-
ence of pheromones over heuristic information. We can see
that the choice of the traversed edge is stochastic, where the
sum of probabilities∑ j∈Ni

pk
i j = 1. Moreover, when travers-

ing back fromJ to I , an edge pointing to any vertex inI
that has not been visited yet can be chosen. Each edge from
j to I has the same probability of being selected, and no
pheromones or heuristic information are considered. This
choice is certainly not unique and our framework is quite
flexible in allowing for other variants, as we shall describe
later in Section 4.3.

After m≥ 1 ants have traversed the graph, completing
an ACO iteration, the corresponding solutions are evaluated
and the pheromones are accordingly updated. The cost of
each solution, a correspondenceπ extracted from a path
traversed by an ant, is given by Equation (1), where the
distances between two shape descriptors and the geodesic
distances between vertices on each contour are combined.

4.2.3 Pheromone updates

Pheromones are updated at the end of an ACO iteration.
First, pheromones are evaporated at a constantpheromone
evaporation rateρ , 0≤ ρ ≤ 1,

Pheromone evaporation: τi j ← (1−ρ)τi j , (3)

for all edges(i, j). Next, new pheromone is deposited only
onedges that were traversed by the ants,

Pheromone deposition: τi j ← τi j +
m

∑
k=1

∆τk
i j , (4)

where ∆τk
i j is the amount of pheromone that antk has

deposited on edge(i, j). It is given as a constantδ (a
free parameter) divided by the correspondence cost defined
above: the larger the cost, the less the amount of deposited
pheromones. In addition, a minimum level of pheromones
τmin is maintained on all edges to avoid completely elimi-
nating certain traversals during the ants’ exploration.

4.2.4 Heuristic information for ant traversal

What remains to be determined now is how to compute the
heuristic informationηi j in (2). Naturally, our proposed
heuristic is a combination of descriptor distance and the
geodesic distance between vertices on the same shape, in
a manner similar to the QAP cost in (1). Specifically,

ηi j =

(

e
−DR(Ri ,Rj )

2

σR

)

×

(

1−e
−DI (i,i

′)2

σI
∣

∣DI (i, i
′)−DJ( j,π(i′))

∣
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)

×

(

1−e
−DI (i,i

′′)2

σI
∣

∣DI (i, i
′′)−DJ( j,π(i′′))

∣

∣

)

wherei′ andi′′ are respectively the last and second last ver-
tices visited inI , andπ is already defined for all the pre-
viously visited vertices. The possible distance valuesDR

(for shape descriptorR), DI , andDJ are all normalized to
[0,1], as before. Therefore, the heuristic information has the
maximum value of 1 when all the distances are very small
(zero), and lower values when all the distances are large.
In this way, assignments which relate points with similar
descriptors and encourage preservation of proximity infor-
mation are favored by the heuristic.

Note that we can consider more than two last visited ver-
tices in the heuristic. However, since the previous assign-
ments also take into consideration of proximity, information
from the last two vertices appears to be sufficient to main-
tain the proximity between the assigned vertices.



ACO Parameter Symbol Value
Number of ants m 1
Number of iterations T 1000
Influence of pheromones α 0.3
Pheromone evaporation rate ρ 0.1
Pheromone deposition constantδ 0.01
Initial pheromone levels τ0 1
Minimum pheromone levels τmin 0.1 · 1

|I |

Influence of proximity ν 0.7
Gaussian width inX σI 0.1 · Imax

Gaussian width inS σR 0.1 ·Rmax

Table 1. Parameters used in our ACO algo-
rithm and their chosen values.

4.2.5 List of ACO parameters and values

In Table 1, we list all the parameters used in our ACO shape
matching algorithm and the respective values that are cho-
sen in our experiments. Note that the auxiliary parameters
Imax andRmax are data dependent and they are respectively
set to be the maximum proximity (inI ) and the maximum
descriptor distance. Although appropriate tuning of the pa-
rameters is necessary for a good performance of the algo-
rithm, it will be shown that the ACO approach is sufficiently
robust to work on a wide range of contours from different
classes using the same set of parameter values.

4.3. Extensions to basic ACO framework

Order preservation: It is quite straightforward to mod-
ify our basic ACO algorithm described so far so that only
correspondences that preserve the ordering of the contour
vertices are constructed. Basically, when the algorithm is
computing the probability of matching a vertexi ∈ I to a
certain vertexj ∈ J, j is only assigned a non-zero proba-
bility if it lies in a valid interval of vertices that preserve
the ordering of the matching. This interval is computed as
follows. Firstly, verticesi l andir are found in the first con-
tour, which are respectively the left and right neighbors of
vertexi that already have defined matchingsπ(i l ) = j l and
π(ir) = jr . Next, j lies in the valid interval if it is contained
betweenj l and jr , taking into consideration the cycle of the
contour; see Figure 3. It is assumed that both contours are
consistently ordered along the same direction; if this were
not the case, we could always reverse the vertex ordering of
one contour and perform a second matching.

Open curves: These are trivial to handle by ACO: the only
distinction from contour matching is related to the determi-
nation of the valid vertex range for order preservation. With
open curves, their end points serve as hard boundaries.

i
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(a) ContourI . (b) ContourJ.

Figure 3. Valid range of vertices for order-
preserving contour matching. If the matching
π has been partially constructed with π(i l ) =
j l and π(ir) = jr . Then the set of vertices on
contour J (b) that are in the valid range for
matching i on contour I (a) are marked in red.

Flexible matching paradigm: While AP and COPAP en-
force one-to-one correspondence, our ACO framework can
be easily tuned to allow for one-to-one, one-to-many, many-
to-one, or many-to-many matchings. All that is needed is
to place hard constraints or assign appropriate probabilities
to allow/disallow or encourage/discourage certain edges to
be traversed by an ant. For example, we allow many-to-
one matching by assigning non-zero probabilities to edges
pointing fromJ towards already assigned vertices inI .

4.4. Pseudocode for ACO correspondence

Figures 4, 5, 6, and 7 present the pseudocode for our
ACO-based shape matching algorithm described in the pre-
vious sections, where order preservation is enforced to em-
phasize our focus on contour correspondence. The main
function isACO-ShapeMatching, given in Figure 4, and it
calls several helper functions given in subsequent figures.

5. Experimental results

To demonstrate the capabilities of our method, a set of
experiments were performed on the Brown dataset [28] and
the results are presented here. The Brown dataset is fre-
quently used in the computer vision community as test data
for shape analysis algorithms. It consists of the silhouette
images of objects such as hands, humans, fish, airplanes,
etc., some of which were captured under occlusion. We are
using the collection from this dataset that is composed of 9
object classes with 11 images per class. In our experiments,
a contour of 70 vertices is extracted for each image.

The original (rotation-variant) shape context [1] is used
as the descriptor in most of the experiments. The similar-
ity between two shape context histograms is given by the
χ2-distance. We primarily compare results we obtain with
those of COPAP [24], which is a recent and one of the most
successful contour matching algorithms.



1: ACO-ShapeMatching(I ,J):
2: G← initGraph(I ,J)
3: BestMatching← /0
4: BestCost← ∞
5: for i← 1 toT do
6: Matchings← /0
7: for j← 1 tomdo
8: M← constructMatching(G)
9: C← Cost of matchingM according to Equation (1)

10: Matchings←Matchings∪{M,C}
11: if C < BestCostthen
12: BestMatching←M
13: BestCost←C
14: end if
15: end for
16: updatePheromones(G,Matchings)
17: end for
18: return {BestMatching,BestCost}

Figure 4. The main function for our ACO-
based shape correspondence algorithm.

1: initGraph(I ,J)
2: G← A complete, directed, bipartite graph betweenI andJ
3: for each edgee in {I → J} ⊂ E(G) do
4: epher← τ0
5: end for
6: for each edgee in {J→ I} ⊂ E(G) do
7: epher← 0
8: end for
9: return G

Figure 5. Graph model initialization.

1: constructMatching(G)
2: M← /0
3: i← Randomly chosen from the vertices inI
4: while there are unmatched vertices inI do
5: for each vertexj in J do
6: /* for order preservation */
7: if j is in the set of validJ verticesthen

8: P[ j ]← ατi j +(1−α)ηi j

∑l∈N ατil +(1−α)ηil

9: else
10: P[ j ]← 0
11: end if
12: end for
13: jchoice← Probabilistically chosen vertex inJ

according to probabilitiesP
14: M←M∪{i, jchoice}
15: i← Randomly chosen from the set of available

vertices inI
16: end while
17: return M

Figure 6. Matching construction function.

1: updatePheromones(G, Matchings)
2: /* Evaporate pheromone */
3: for each edgee in {I → J} ⊂ E(G) do
4: epher← (1−ρ)epher
5: end for
6: /* Add new pheromone */
7: for each{M,C} in Matchingsdo
8: ∆pher← δ/C
9: for each edgee in {I → J} in matchingM do

10: epher← epher+∆pher
11: end for
12: end for
13: /* To ensure minimum pheromone level */
14: for each edgee in {I → J} ⊂ E(G) do
15: if epher < τmin then
16: epher← τmin
17: end if
18: end for

Figure 7. Pheromone update function.
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(a) t = 200. (b)t = 300. (c)t = 1,000.

Figure 8. Pheromone deposit during an exe-
cution of our ACO-based correspondence al-
gorithm after t = 200,300, and 1,000iterations.

ACO pheromone deposition: Firstly, the proposed method
is examined from the view of the ACO metaheuristic.
Figure 8 presents several 70× 70 matrices representing
pheromone deposition during one execution of the algo-
rithm, when the correspondence for two similar contours
is computed. Each pixel at position(i, j) represents the
pheromone deposited at edge(i, j), where lighter colors in-
dicate larger numbers. It can be seen that all edges possess
similar levels of pheromone at the beginning of the com-
putation. However, as the iterations advance, pheromone
concentrates on certain edges, leading to a configuration
where only a few traversals are favored during the compu-
tation. These edges represent the assignments that heuristi-
cally provide the best correspondences.

Order preservation (OP) vs. proximity consideration:
Next, the quality of the computed correspondences is ad-
dressed. In order to verify that the incorporation of proxim-
ity information has a significant contribution in the quality
of the matchings, Figures 1 and 9 present two cases where
the matchings are computed with and without the addition



(a) Contours to match. (b) OP via COPAP [24].

(c) ACO (Proximity + OP). (d) ACO (Proximity only).

Figure 9. Effect of incorporating proximity in-
formation when matching two contours (a)
with the same features but under stretching.
(b) Results from order preservation (OP) only.
(c) ACO with proximity and OP. (d) ACO with
proximity information and without OP.

of proximity consideration. Additionally, Figure 9 presents
a case where proximity information is used, but no order
preservation is imposed. The descriptor used in these two
examples is the angle at each vertex. The results indicate
that the incorporation of proximity information provides
matchings that tend to be more intuitive than those com-
puted when only order preservation is imposed, especially
for cases where there is a lack of salient features (Figure 1)
or when nonuniform stretching occurs (Figure 9).

Handling of occlusion or missing parts: Figure 10 shows
the correspondences computed for models that have miss-
ing or occluded parts. The first three cases were compared
before by Sebastian et al. [25], which failed in case (c). To
avoid cluttering in the figures, we only present the match-
ing of relevant feature points as marked. It can be seen that
our algorithm computes the correct matchings for all the
model pairs, not being significantly affected by changes in
the structure of the shapes, such as the missing part happen-
ing from (b) to (c) or the occlusion in case (d).

Handling of open contours: The correct correspondence
for two open contours is computed by our ACO algorithm
and is presented in Figure 11(b). The two left-ventricular
contours were extracted from an echocardiography image
sequence, with one frame shown in Figure 11(a).

Evaluation against ground-truth correspondence: In Ta-
ble 2, we present differences between the correspondences
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Figure 10. Matchings computed by ACO for
contours with occlusion or structure change.
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Figure 11. Matching computed by ACO for an
open contour of a left ventricle.

obtained by our algorithm and the ground truth, collected
over the whole Brown dataset. The ground truth is provided
by a human user for a selected set of feature points along
the contours. Note that this is done for all the shape classes
in the database except for one of the “fgen” shapes for
which the ground truth has been hard to establish. Next, the
geodesic distances along the contour between the ground-
truth matching points and the matchings returned by the al-
gorithm are summed up; such a scoring scheme has been
proposed by Karlsson and Ericsson [14]. Obviously, the
smaller the distance measure obtained, the closer the com-
puted matching is to the ground truth.

Each number in Table 2 is a sum of the distances col-
lected for all contour pairs from a particular class. Our
algorithm is compared to the COPAP algorithm [24], and
to AP, which is computed by the Hungarian algorithm. It
can be inferred from the results that our algorithm gener-
ally provides matchings that are closer to the ground truth



Shape class Hungarian COPAP ACO
Airplanes 223.16 32.55 13.02
Fish 56.85 21.67 22.80
Four-legged 235.57 32.58 25.48
Hands 375.94 94.86 121.95
Humans 482.27 53.75 20.95
Rabbits 190.01 80.01 53.44
Stingrays 30.55 5.88 5.16
Tools 204.36 35.29 22.48

Table 2. Deviation from ground truth.

when compared to both algorithms; this is more so for the
airplane, human, and tool classes. It is worth noting that
since the local shape descriptor we use is not rotationally
invariant, the correspondence tests are conducted after the
shapes have been pre-aligned.

Shape retrieval: We conduct a retrieval experiment on a
collection of 25 images chosen from the Brown dataset [24];
this has been a fairly standard test performed by several oth-
ers. Each shape is matched to all the others in the collection,
and the matching cost is used as a measure of similarity be-
tween the contours for retrieval. Next, the three most simi-
lar contours are obtained. The number of first, second, and
third matches that belong to the same class are counted. The
result obtained for COPAP is, respectively, 21, 19, and 17.
For our algorithm, we obtained 21, 20, and 17. It should be
noted that these two tests were conducted using the origi-
nal shape context as the descriptor, while the better scores
reported in [24] used a rotationally invariant version of it.

Test on unorganized point sets: The same shape retrieval
experiment described above has also been performed on
the 25-image Brown dataset where the models are now re-
garded as general (unorganized) point sets and not consider-
ing the ordering of the contours. The results obtained were
21, 19, and 18, reinforcing that just the incorporation of
proximity information can provide high quality results.

Parameters: It is important to be aware that all the re-
sults presented here for our algorithm were obtained with
the same set of parameters (shown in Table 1), which con-
firms the robustness of our ACO approach.

Timing: Figure 12 plots the execution time required by our
algorithm (1,000 ACO iterations), in comparison to COPAP
and Hungarian, when contour sizes increase. Although our
algorithm is comparable to the other two for small contours,
it clearly scales better as vertex counts grow. The memory
requirements for COPAP also increase significantly with the
contour size, while those of ACO increase linearly.
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Figure 12. Execution time comparison be-
tween Hungarian, COPAP, and ACO.

6. Conclusions and Future Work

We formulate shape correspondence as a Quadratic As-
signment Problem (QAP), incorporating proximity infor-
mation into the point matching objective function. We also
propose the first Ant Colony Optimization (ACO) algo-
rithm directly aimed at solving the point and contour cor-
respondence problems, which are difficult problems when
the QAP formulation is adopted. The advantage of incor-
porating proximity and the effectiveness of the proposed
method have been verified with a set of experiments. Qual-
itative and quantitative results show that the correspon-
dences obtained by our ACO algorithm are at least com-
parable to those obtained by the best alternative methods,
e.g., [24, 25]. In several cases, we have demonstrated clear
advantages offered by our approach. In addition, our algo-
rithm also has the advantage that its resource requirements
scale moderately for contours of increasing size.

Although the descriptor used in our experiments did not
allow to compute matchings for planar shapes with artic-
ulated deformations, the original shape context can be ex-
tended using geodesic neighborhood information [12]; this
can be incorporated into our ACO framework easily, as well
as any shape descriptor that allows to compute the similarity
between vertices on two shapes.

Moreover, the proposed QAP-based ACO framework is
quite flexible in several aspects: (1) Hard constraints can
be incorporated by simply restricting the ant traversals toa
reduced set of edges, as is done for enforcing order preser-
vation; (2) Soft constraints can also be added by assigning
different probabilities to different edges. For example, order
preservation can befavouredrather thanenforcedthrough
assigning non-zero and non-unit probabilities to different
edges. The classical order preservation constraint can then
be thought of as a special case of this new formulation; (3) It



can be extended to surface matching by replacing proxim-
ities measured along a contour with proximities measured
over a surface (e.g., using geodesic distance), and by ex-
tracting surface shape descriptors for the vertices (e.g. 3D
shape context [15] or local surface curvature [9]); (4) It can
be applied to point clouds rather than ordered vertices on
contours or meshes by also modifying the proximity com-
putation (e.g., using Euclidean distance).

Our future work includes the aforementioned extensions
to the matching of 3D meshes and point clouds. Moreover,
experiments with other shape descriptors and comparisons
with alternative techniques are also planned in order to fur-
ther confirm the effectiveness of our ACO algorithm.
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