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Abstract One of the main approaches to contour correspondence
is to compute a shape descriptor for each selected feature
We formulate contour correspondence as a Quadratic point to be matched. A matching can then be extracted from
Assignment Problem (QAP), incorporating proximity in- the descriptors in a variety of ways, e.g., via the simple
formation. By maintaining the neighborhood relation be- greedy best matching [12], solved as a bipartite matching
tween points this way, we show that better matching resultsproblem using the Hungarian method [21], relying on vari-
are obtained in practice. We propose the first Ant Colony ants of the iterative closest point (ICP) scheme [3], wh&ch i
Optimization (ACO) algorithm specifically aimed at solv- based on descriptor distances and shape alignment via rigid
ing the QAP-based shape correspondence problem. Ouror non-rigid deformations [1, 6], or computed by dynamic
ACO framework is flexible in the sense that it can han- programming under point ordering [16, 24].
dle general point correspondence, but also allows exten- However, a drawback of all these optimization schemes,
sions, such as order preservation, for the more specializedalong with most other contour correspondence algorithms
contour matching problem. Various experiments are pre- proposed so far, is that they treat the shape descriptoes ind
sented which demonstrate that this approach yields high-pendently and do not considgroximity information mea-
quality correspondence results and is computationally effi sured between feature points on the same shape. For ex-
cient when compared to other methods. ample, such information may be used to ensure that a fea-
ture pair which is close-by on one shape gets mapped to
points that are also close on the other shape. Compared to
approaches based purely on shape descriptors, the use of
proximity information, e.g. by incorporating a regulariza
o ) ) ) tion term in the cost function, can provide a better handling
Finding a meaningful matching between shapes is a fun-of shapes with missing parts or a lack of salient features.
damental problem in geometry processing, with many ap-  |ncorporating proximity into an optimization framework,
plications in computer graphics, vision, and medical imag- we can formulate point correspondence via @eadratic
ing. In this paper, we focus on 2D contour correspondence,Assignmem ProblefQAP) [22]. It is well known that QAP
a classical problem in computer vision for object track- js one of the most difficult optimization problems to solve,
ing, recognition, and retrieval [1, 11, 24, 25], among other yet a simple heuristic which mimics the behavior of ants
tasks. In medical computing, establishing point correspon pas shown a great deal of success [31]. In this paper, we
dence allows for statistical shape modelling and analyfsis o adoptant colony optimizatioACO) [8], which we review
anatomical structures [7]. Contour matching is also the firs jn section 3, to solve the contour correspondence problem

step towards planar shape morphing [16], which finds appli- 3nd make the following contributions.
cations in animation and shape analysis. Even in 3D shape

modeling, the matching of contours is often an integral sub- e We formulate the general point correspondence prob-

1. Introduction

problem. For instance, surface reconstruction from CT or lem in terms of QAP (Section 4.1), incorporating prox-
MRI data, or from data collected via the lofting technique, imity information, and propose thérst ACO algo-
requires correspondence between contours from adjacent  rithmto compute the matching (Section 4.2). Note that
slices [19]. Also, reducing the 3D object matching prob- this basic ACO framework is applicable to the match-
lem to the matching of a set of projected object outlines [5] ing of unorganized 2D point sets.

was shown to be effective for 3D shape retrieval [29]. « Specific to contour matching, we extend our basic
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remaining contour points, from the perspectivepofA re-

i 4 —F 7 cent survey and performance evaluation of local descsptor
is given by Mikolajczyk and Schmid [20]. The focus of our
work is on establishing correspondence regardless of the lo
cal descriptor used. However, in this paper, we mainly use
shape context [1] as the local shape descriptor. Shape con-
text records a histogram of uniformly placed point samples

(@) (b) along a contour, parameterized by distance and angular ex-
tent with respect to the point described.
Figure 1. Example of a matching computed With a shape descriptor recorded at each point, a cor-
preserving order, in (a), compared to one pre- respondence can be computed by examining the similarity
serving proximity and order, in (b). between points from two input shapes. The similarities are

often defined by a distance metric, formingmnx n, dis-
tance matrix, wher@; andn, are the point counts. The
simplest way to arrive at a correspondence is@e;in;)

best matching, which greedily maps a point from one shape
to a point on the other shape that has the most similar shape
descriptor. Computing an optimal one-to-one correspon-
dence which minimizes the total distance between matched
shape descriptors is the bipartite matching problem and can
. _ ) be solved using th®(n®) Hungarian algorithm [21], where
Note that while order preservation can be strictly en- n=max(ny, ny). These schemes can both be enhanced by a

forced for contour correspondence [16, 24], none of the Pro- .ombination with iterative alignment, e.g., using thimdgl
posed solutions are applicable to the matching of surfacesspIineS 1, 6]

due 10 a lack of canonical ordering among points residing Other optimization-based approaches also exist. Maciel
on a 2-manifold. However, our basic QAP and ACO frame- P PP . o
: . .~ and Costeira [17] formulate the matching problem via inte-
work can still be extended to the surface setting by reptacin . T .
ger constrained minimization and solve a relaxed version of

proximities measured along a contour to proximities mea- =~ : i

: S t using concave programming. Gold et al. [10] incorporate
sured over a surface, e.g., using geodesic distance. We Shadeformation arameters into their optimization critena a
leave this topic for future studies but will offer some diseu b P

sions on its potential in Section 6. find good suboptimal soluti_ons via soft a;s_ign. Recently,
Zheng and Doermann [35] improve upon initial correspon-
dence computed from shape contexts by trying to maximize
2. Related work on correspondence the preservation of binary neighborhood information. Most
closely related to our work is the approach of Berg et al. [2],
While the problem of 3D shape matching and retrieval Which also uses the QAP formulatiqn but solves it using a
is receiving much attention lately [33], research on 2D tWO-Step method. The last two algorithms [2,_3&_3] both settle
shape matching [34] has remained active due to the probfor gradient descent and converge to local minima.
lem’s inherent difficulty and wide-ranging applications. ~ The techniques mentioned so far are all applicable to
Motivated by problems from image analysis, many algo- point set correspondence. The more specialized contour
rithms are designed to match unorganized sparse point setgnatching problem can benefit greatly, quality-wise, under
e.g.,[1, 3, 6, 17]. Although these point matching techngque point ordering. Order-preserving contour matching typi-
can often be directly applied to the contour correspon- cally involves expensive optimizations, but the reliance o
dence problem, contours define explicit ordering betweena high-quality local shape descriptor is diminished. Liu et
the points, which may be taken advantage of to improve al. [16] resort to dynamic programming, which allows for
performance [16, 24, 25]. In this section, we briefly survey feature skipping as well, and report excellent matching re-
existing contour matching paradigms and other point corre-sults. Scott and Nowak [24] also enforce point ordering and
spondence schemes that are applicable to contour matchingheir dynamic programming algorithm is more efficient, but
An overview of ACO, our adopted framework for contour at the expense of a higher memory cost.

enforcing order preservation, as done previously via
dynamic programming [16, 24]. An advantage of the
former is shown in Figure 1; further demonstration of
the feasibility and effectiveness of our ACO approach
is given through numerous experiments (Section 5).

correspondence, is given in the next section. Instead of performing contour matching in the spatial do-
Many contour matching algorithms rely on local shape main, transform-based techniques have also gained some
descriptors: a descriptor at a poiptalong a contour typi-  popularity, most notably spectral correspondence [13, 27]

cally encodes the position or other geometric properties ator modal matching [23]. In the resulting spectral domain,
the point itself (e.g., local curvature) or properties of th conventional methods can be applied to compute a corre-



spondence. The transforms used tend to reveal more global i1 i
shape structures and can also obtain bending-invariant cor
respondences [4, 13]. Point correspondence without defin- i
ing local shape descriptors is also possible. For example, % 2
Sederberg and Greenwood [26] present a physically based _ _
approach for correspondence of 2D polygons which tries I3 I3
to fit one polygon over another by optimizing some energy
functional. Sebastian et al. [25] introduce the notion of  Figure 2. Example of an ant traversal over a
an alignment curve and use a deformation-based symmetric (3,3) bipartite graph modeling a correspon-
edit distance to define contour similarity. Skeletal [32§lan dence problem. The path is (i; — j1 — iz —
shock graphs [30] have also been proposed for 2D or 3D  j3 — i1 — j2) and the corresponding assign-
shape representations, where subsequent point correspon- ment ris: 7(iy) = jo, m(i2) = j1, 1(i3) = j3. The
dence can be computed via graph matching. ant shown is not part of our graph model.

Finally, another class of techniques is based on the
minimum description lengtiMDL) principle. Here the
favoured point correspondence betwegmaupof shapes is In this work, we model the correspondence problem
that which maximizes compactness (in an information the- 5yer 4 complete bipartite graph on the two point sets to be
oretic sense) of the statistical shape model obtained usingnatched. As an ant traverses the graph, a path is formed.
PCA on the corresponding points. MDL is not suitable for e define the obtained correspondence by those edges di-
matching only a pair of contours (the focus of this paper) rected from one designated point set to the other and eval-
and does not explicitly include penalty when correspon- ate it using a criterion from the QAP formulation. Fig-
dence violates the proximity constraints. ure 2 shows a possible ant traversal and the correspondence

formed. The details of our algorithm are given in Section 4.
3. Review of ant colony optimization
3.2 ACO metaheuristics

Ant colony optimization is a metaheuristic used to find
good solutions to NP-hard optimization problems, e.g., AS an ant traverses the graph, its decision on where to
those related to routing’ assignment (inc|uding QAP)’ and 90 next are influenced Uwuristic informatiorand current
scheduling. A thorough introduction to ACO is given in the Pheromone deposition. For correspondence, the heuristic

book of Dorigo [8], who pioneered this field. information will take into account both local shape descrip
tors and proximity (Section 4.2.4). After a number of ants
3.1 Overview of ACO framework have traversed the graph, known as one iteration of ACO,

a certain amount of pheromone is alewaporatedfrom
all edges. Pheromone evaporation occurs in nature and in
ACO, it can help the ants escape from local minima.

When examining the ACO algorithm, we see that, at
first, ants will tend to freely explore the whole solution

The inspiration for ACO comes from the ability of natu-
ral ant colonies to solve difficult problems, despite the-sim
ple behaviour of each individual member of the colony. This

ability is reflected by the way ants search for food and com- ' i !
municate with each other. Initially, ants explore the sur- SPace, leading to many different solutions. However, over

roundings of their nest in a random manner, a characteristicime, Pheromones will accumulate only on edges that are

of their foraging behaviour. Whenever an ant finds a sourcePart of those traversals favoured by the objective func-
of food, it returns to the nest leaving a trail of a chemical UOM: this causes the ants to gradually follow only a limited

calledpheromoneon the ground. The purpose of this trail number of traversals. Moreover, heuristic information and
is to guide other ants to the food sources. pheromones have to be combined to guide an ant. The for-

The ACO metaheuristic replicates some aspects of this™Mer is necessary to bias the ants to construct good tras_er.s.al
behaviour. An artificial ant colony is seen as a system of dis- &t the start, when the pheromones are set to random initial
tributed agents searching for the solution of an optimarati  ValUe€s. On the other hand, the pheromones are necessary
problem. The problem is usually modelled with a graph and for later iterations of the algorithm, when they requrbet
the solution search involves ants traversing this grapbhEa  traversal of the graph edges that lead to good solutions.
traversal by an ant corresponds to a feasible solution,twhic
is evaluated using an objective function of the problem at 4. ACO for shape correspondence
hand. The quality of the solution dictates pheromone de-
position, whose accumulation on the traversed graph edges This section formulates the correspondence problem and
serves as the means for communication. describes how the ACO metaheuristic is applied.



4.1. Problem formulation using QAP QAP formulation: When augmenting the shape descriptor
R with proximity information, we obtain the general objec-
Given two point set$ andJ, the shape correspondence tive function of QAP,
problem can be stated as finding a meaningful mapping
from points ofl to points ofJ which minimizes a given ~ QAP(T,R1,J) = (1-v).Z (MR 1,J)+v 2 (m1,J), (1)

objective function. That is, we seeK such that .
) where the free parameter<Qv < 1 weighs between the

m = argmin,(OBJ,1,J)), shape descriptor distance or similarity ter#fy(-) and the

where OBJ is the objective or cost function which evaluates Proximity term2°(-). In our implementation, we define
the matchingr in relation to the shapes characterized by

andJ, andris a ma_pping such thai € Ij.j ed:n(i)=j. S(MR1,J) = 1 Z
We also assume without loss of generality that |J]. I &£

The assignment problem (AP): A common approach 1o \here the use of the Gaussian is for normalization purposes,
shape correspondence is to extract a set of features for eaclg that o< #(m,R 1,J) < 1. Note that other filter functions
point, referred to as thehape descriptors Examples of  {hat are monotonically decreasing away from zero can also

shape descriptors include shape contexts [1], among manye ysed in place of the Gaussian. The proximity term
others [20]. Next, a distance measure between two shape

descriptors has to be defined. Tassignment problerar

AP [24] seeks a correspondence which minimizes the sum . {e
of the distances between descriptors of points on one setand2’(m,1,J) = ITel
the descriptors of the corresponding points on the other set l(1-1)/2

AP(m,1,J) = ZQR(R’R"(D)’ also liesin[0, 1], where2, _and% are distances, r!ormalized
ic to [0, 1], between two points frorhandJ, respectively. For
whereR denotes the descriptor at poiptand Zk is the matching contours, these distances are geodesic distances
shape descriptor distance measure. Here, the matching i§0rmalized with respect to contour length. If the point sets
constrained to be one-to-one (not necessarily onto). Thed'® unorganized, we can resort to Euclidean distances nor-
optimal matching for this cost measure can be computed inmalized against the maximal pairwise distance in each set.

cubic time with the Hungarian algorithm [21]. Moreover, proximity preseryation is empha;izeq more in
the local neighborhood of a given vertex and it diminishes

Order preservation for contour matching: Note that  for hoints that are far away from each other. Our way to
shape descriptors might not be the only factor one shouldyccentuate proximity is to apply Gaussian weights to the
take into account when evaluating a correspondence. O”eproximities in the () term. The Gaussian widthzk and

possible element pertaining to contour matching is order i anplied to the descriptor distances and proximities are
preservation [16, 24, 25], which follows from the observa- ¢.qq parameters set by the user.

tion that the vertices defining a contour are ordered. For ex- Finally, note that a great advantage of our QAP formula-
ample, the COPAP algorithm [24] solves the cyclic-order- ion is that it can be extended to any domain where distances
preserving assignment problem via dynamic programming. petween points can be computed; this includes the case of
It has been shown that order-preserving contour matChinngintS residing on a 2-manifold, whef® and 2; will be
significantly improves the correspondence results [16, 24, 3eqdesic distances over the manifold. However, finding an
25]. However, it is unclear how it can be extended to other optimal solution to QAP is NP-hard. Therefore, heuristic

domains, e.g., for points residing on a 3D shape, for which 44qrithms are necessary to obtain approximate solutions.
a canonical point ordering is not available.

*QR(RLRn(i))Z
l-e

~9(i,!)? . ; ;
3401 - 2o, ) |

Incorporating proximity information: Another ele- 4.2. Correspondence algorithm using ACO
ment for evaluating a correspondence between continu-

ous shapes, e.g., contours or surfaces, is the preserva- It has been experimentally shown that the ACO meta-
tion of quantitative neighborhood proximityinformation. heuristic is one of the most successful approaches for solv-
Namely, if pointi from shapd and pointj from shapel ing structured real-life instances of the QAP [8]. Moregver
are matched, then a close-by neighBoof i on | should when incorporating proximity information, solving the eor
be matched with a point on J that is close toj. Berg et respondence problem can be viewed as solving a QAP, as
al. [2] refer to this as the minimization of distortions in a we have shown in the last section. In this section, we de-
correspondence. This differs from the case of order preserscribe a novel extension of the ACO framework, which has
vation in that besides point ordering, we are also concernedoeen used for solving assignment problems [18], to deal
with distances between point pairs on the same shape. with the specific shape correspondence problem.



4.2.1 Graph model and correspondence extraction 4.2.3 Pheromone updates

We define the grapls = {V,E} that is to be traversed by Pheromones are updated at the end of an ACO iteration.
the ants as aomplete, directed bipartite grapfThe set of First, pheromones are evaporated at a congthatomone
vertices of this graph is composed of the two point sets to evaporation ratep, 0< p < 1,

be matched, i.e\ =1 UJ. The directed edgds fully con-

nect the two point sets. The path that is determined by thePheromone evapor ation: Tij — (1—p)Tj, 3
traversal of an ant o corresponds to a possible solution

to the assignment (correspondence) problem. During suchor all edgeq(i, j). Next, new pheromone is deposited only
a traversal, two conceptually distinct tasks are performed onedges that were traversed by the ants

When an ant traverses a directed edge that connects a vertex

in | to a vertexin], an assignment fromto J is determined.
On the other hand, when an ant traverses an edgeJrimom
I, the order in which the vertices are assigned is determined.

An ant starts the graph traversal from a randomly se- where At is the amount of pheromone that athas
lected vertex. It traverses edges until an assignment ¢f eac geposited on edgé, j). It is given as a constani (a
vertexinl is determined (recall th&t< J). The final assign-  free parameter) divided by the correspondence cost defined
mentrris given by the edges fromto J chosen by the ant.  apove: the larger the cost, the less the amount of deposited
Note that a correspondence obtained this way is not necespheromones. In addition, a minimum level of pheromones
sarily one-to-one, as opposed to the AP or COPAP match-r_ . is maintained on all edges to avoid completely elimi-

ing formulations. In Section 4.3, we show how ACO is & nating certain traversals during the ants’ exploration.
flexible framework which allows other types of matching.

m
Pheromonedeposition:  Tj —Tij + ) AT, (4)
K=

. . 4.2.4 Heuristicinformation for ant traversal
4.2.2 Path construction and evaluation

What remains to be determined now is how to compute the
heuristic informationn;; in (2). Naturally, our proposed
heuristic is a combination of descriptor distance and the
geodesic distance between vertices on the same shape, in
a manner similar to the QAP cost in (1). Specifically,

When traversing from a vertexe | to a vertex inJ, the
probability pikj of an antk choosing the edge that connects
to vertexj € J is given by

aTjj +(1—G)I’]ij
Sien [T+ (1—0a)n]

Edge probability: p = 2)

-7R(R Rj)?
i nj=(e °r X
wheret; quantifies the pheromones accumulated on edge
(i,]), nij indicates the desirability of traversirig j) based (
l-e

-7 (ii")?

on heuristic information (defined in Section 4.2.4), and o |@|(i,i/)—%(j,n(i’))\) X
Ni={l eV :(i,l) € E} is the immediate neighbourhood
of vertexi. The parameter & o < 1 regulates the influ-
ence of pheromones over heuristic information. We can see
that the choice of the traversed edge is stochastic, where th
sum of probabilities <y, pikj = 1. Moreover, when travers-  wherei’ andi” are respectively the last and second last ver-
ing back fromJ to I, an edge pointing to any vertex In tices visited inl, andrt is already defined for all the pre-
that has not been visited yet can be chosen. Each edge fromiously visited vertices. The possible distance valtgs
j to | has the same probability of being selected, and no (for shape descriptdR), 2, and Z; are all normalized to
pheromones or heuristic information are considered. This[0,1], as before. Therefore, the heuristic information has the
choice is certainly not unique and our framework is quite maximum value of 1 when all the distances are very small
flexible in allowing for other variants, as we shall describe (zero), and lower values when all the distances are large.
later in Section 4.3. In this way, assignments which relate points with similar
After m > 1 ants have traversed the graph, completing descriptors and encourage preservation of proximity infor
an ACO iteration, the corresponding solutions are evatliate mation are favored by the heuristic.
and the pheromones are accordingly updated. The cost of Note that we can consider more than two last visited ver-
each solution, a correspondenmextracted from a path  tices in the heuristic. However, since the previous assign-
traversed by an ant, is given by Equation (1), where the ments also take into consideration of proximity, inforroati
distances between two shape descriptors and the geodesiftom the last two vertices appears to be sufficient to main-
distances between vertices on each contour are combined.tain the proximity between the assigned vertices.

—9,(,i"?
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ACO Parameter Symbol  Value i

Number of ants m 1

Number of iterations T 1000 _

Influence of pheromones a 0.3 I i j

Pheromone evaporationrate p 0.1 r I

Pheromone deposition constand 0.01 Ir

Initial pheromone levels To 1 (a) Contout . (b) Contourd.

Minimum pheromone levels  Tpin 0.1 ﬁ

Influence of proximity v 0.7 Figure 3. Valid range of vertices for order-

Gaussian width in2” i 0.1 Imax preserving contour matching. If the matching

Gaussian width in” OR 0.1 Rmax mhas been partially constructed with (i) =
ji and mi(iy) = jy. Then the set of vertices on
contour J (b) that are in the valid range for

Table 1. Parameters used in our ACO algo- matching i on contour | (a) are marked in red.

rithm and their chosen values.

Flexible matching paradigm: While AP and COPAP en-
425 List of ACO parametersand values force one-to-one correspondence, our ACO framework can

In Table 1, we list all the parameters used in our ACO shapebe easily tuned to allow for one-tq-one, one-to-many, many-
to-one, or many-to-many matchings. All that is needed is

matching algorithm and the respective values that are cho- : : . -
; . - to place hard constraints or assign appropriate probiakilit
sen in our experiments. Note that the auxiliary parameters . ; .
-~ “to allow/disallow or encourage/discourage certain edges t
Imax andRmax are data dependent and they are respectively
: R ; be traversed by an ant. For example, we allow many-to-

set to be the maximum proximity (i) and the maximum ; o o

. . : . one matching by assigning non-zero probabilities to edges
descriptor distance. Although appropriate tuning of the pa _ . . . . .

. pointing fromJ towards already assigned vertices in
rameters is necessary for a good performance of the algo-
rithm, it will be shown that the ACO approach is sufficiently
robust to work on a wide range of contours from different

classes using the same set of parameter values.

4.4. Pseudocode for ACO correspondence

Figures 4, 5, 6, and 7 present the pseudocode for our
. . ACO-based shape matching algorithm described in the pre-
4.3. Extensions to basic ACO framework vious sections, where order preservation is enforced to em-

phasize our focus on contour correspondence. The main

Order preservation: It is quite straightforward to mod-  function iSACO-ShapeMatching, given in Figure 4, and it
ify our basic ACO algorithm described so far so that only calls several helper functions given in subsequent figures.
correspondences that preserve the ordering of the contour
vertices are constructed. Basically, when the algorithm is 5. Experimental results
computing the probability of matching a vertex | to a
certain vertexj € J, j is only assigned a non-zero proba-
bility if it lies in a valid interval of vertices that preserve
the ordering of the matching. This interval is computed as
follows. Firstly, vertices, andi; are found in the first con-
tour, which are respectively the left and right neighbors o
vertexi that already have defined matchings,) = j; and

To demonstrate the capabilities of our method, a set of
experiments were performed on the Brown dataset [28] and
the results are presented here. The Brown dataset is fre-
¢ qguently used in the computer vision community as test data

for shape analysis algorithms. It consists of the silh@uett
(ir) = jr. Next, j lies in the valid interval if it is contained g?j?gsn?é g?{z ﬁihs\lljvgr]ea:agﬁjnrg(sj’ uhnudne]?gzty:lfliri](;na.ll(/ﬁ)llezag?:’

betvgleer.m an?:J." taklg glltn.to COﬂSIde(;EE;tI]]O? E)hethcycletof the using the collection from this dataset that is composed of 9
contour, see Figure 5. 111S assumed that both contours areobject classes with 11 images per class. In our experiments,

ﬁg?fﬁsetiggﬁ Orieégdlglglngatzersagsee‘igzc?rg 'fotrhd'zr\.';eri t;:1 contour of 70 vertices is extracted for each image.
- We coud always rev vertex N9 The original (rotation-variant) shape context [1] is used

one contour and perform a second matching. as the descriptor in most of the experiments. The similar-
Open curves: These are trivial to handle by ACO: the only ity between two shape context histograms is given by the
distinction from contour matching is related to the determi  x2-distance. We primarily compare results we obtain with

nation of the valid vertex range for order preservation Wit those of COPAP [24], which is a recent and one of the most
open curves, their end points serve as hard boundaries.  successful contour matching algorithms.



1: ACO-ShapeMatching(l,J):

2. G« initGraph(l,J)

3 BestMatching— 0

4: BestCost— o

5 fori—1toT do

6: Matchings— 0

7 for j «— 1tomdo

8 M «— constructMatching(G)

9: C « Cost of matchingM according to Equation (1)
10: Matchings— MatchingsJ {M,C}

11 if C < BestCosthen

12: BestMatching— M

13: BestCost—C

14: end if

15: end for

16: updatePheromones(G, Matchingg
17:  endfor

18:  return {BestMatchingBestCos}

Figure 4. The main function for our ACO-
based shape correspondence algorithm.

1: initGraph(l,J)

2: G« Acomplete, directed, bipartite graph betweeandJ
3: for each edgein {Il —J} CE(G) do

4: €pher < To

5. end for

6: for eachedgein {J— 1} C E(G) do

7 €pher<— 0

8 end for

9 return G

Figure 5. Graph model initialization.

1: constructM atching(G)
2. M<0
3: i+ Randomly chosen from the verticeslin
4:  whilethere are unmatched verticeslido
5: for each verte) in J do
6: /* for order preservation */
7: if j isin the set of valid) verticesthen
: atj+(1-a)n
& Plil < JleN é:|<+(1JZ)JHi|
9: ese
10: Pljl< 0
11 end if
12: end for
13: jchoice < Probabilistically chosen vertex ih
according to probabilitieP
14: M —MU{i, jehoice}
15: i +— Randomly chosen from the set of available
vertices inl

16:  end while
17:  return M

Figure 6. Matching construction function.

1. updatePheromones(G, Matchings)

2:  /* Evaporate pheromone */

3:  for each edgein {| — J} C E(G) do
4 €pher — (1= P)€pher

5. endfor

6: /* Add new pheromone */

7. for each{M,C} in Matchingsdo

8
9

ApherH 5/C
: for each edgein {I — J} in matchingM do
10: €pher < €pher T Apher
11 end for
12:  end for

13:  /* To ensure minimum pheromone level */
14:  for each edgein {Il — J} C E(G) do

15: if €gher < Tmin then
16: €pher <~ Tmin

17: end if

18: endfor

Figure 7. Pheromone update function.

(a)t =200. (b)t =300. (c)t =1,000.
Figure 8. Pheromone deposit during an exe-
cution of our ACO-based correspondence al-
gorithm after t = 200 300 and 1,000iterations.

ACO pheromonedeposition: Firstly, the proposed method

is examined from the view of the ACO metaheuristic.
Figure 8 presents several ¥070 matrices representing
pheromone deposition during one execution of the algo-
rithm, when the correspondence for two similar contours
is computed. Each pixel at positig, j) represents the
pheromone deposited at ed@gj), where lighter colors in-
dicate larger numbers. It can be seen that all edges possess
similar levels of pheromone at the beginning of the com-
putation. However, as the iterations advance, pheromone
concentrates on certain edges, leading to a configuration
where only a few traversals are favored during the compu-
tation. These edges represent the assignments that keurist
cally provide the best correspondences.

Order preservation (OP) vs. proximity consideration:
Next, the quality of the computed correspondences is ad-
dressed. In order to verify that the incorporation of proxim
ity information has a significant contribution in the quglit

of the matchings, Figures 1 and 9 present two cases where
the matchings are computed with and without the addition



(a) Contours to match.  (b) OP via COPAP [24].

(c) ACO (Proximity + OP). (d) ACO (Proximity only).

Figure 9. Effect of incorporating proximity in- Figure 10. Matchings computed by ACO for
formation when matching two contours (a) contours with occlusion or structure change.
with the same features but under stretching.
(b) Results from order preservation (OP) only.
(c) ACO with proximity and OP. (d) ACO with
proximity information and without OP.

of proximity consideration. Additionally, Figure 9 presen

a case where proximity information is used, but no order
preservation is imposed. The descriptor used in these two
examples is the angle at each vertex. The results indicate
that the incorporation of proximity information provides
matchings that tend to be more intuitive than those com-  Figure 11. Matching computed by ACO for an
puted when only order preservation is imposed, especially ©0Pen contour of a left ventricle.

for cases where there is a lack of salient features (Figure 1)

or when nonuniform stretching occurs (Figure 9).

Handling of occlusion or missing parts: Figure 10 shows  obtained by our algorithm and the ground truth, collected
the correspondences computed for models that have missover the whole Brown dataset. The ground truth is provided
ing or occluded parts. The first three cases were comparedy a human user for a selected set of feature points along
before by Sebastian et al. [25], which failed in case (c). To the contours. Note that this is done for all the shape classes
avoid cluttering in the figures, we only present the match- in the database except for one of the “fgen” shapes for
ing of relevant feature points as marked. It can be seen thatvhich the ground truth has been hard to establish. Next, the
our algorithm computes the correct matchings for all the geodesic distances along the contour between the ground-
model pairs, not being significantly affected by changes in truth matching points and the matchings returned by the al-
the structure of the shapes, such as the missing part happergorithm are summed up; such a scoring scheme has been
ing from (b) to (c) or the occlusion in case (d). proposed by Karlsson and Ericsson [14]. Obviously, the
smaller the distance measure obtained, the closer the com-
puted matching is to the ground truth.

Handling of open contours. The correct correspondence
for tv_vo open contpurs_ is computed by our ACO aIgopthm Each number in Table 2 is a sum of the distances col-
and is presented in Figure 11(b). The two left-ventricular

i tracted f h di hy | lected for all contour pairs from a particular class. Our
contours were extracted from an echocardiograpny Imagealgorithm is compared to the COPAP algorithm [24], and
sequence, with one frame shown in Figure 11(a).

to AP, which is computed by the Hungarian algorithm. It
Evaluation against ground-truth correspondence: In Ta- can be inferred from the results that our algorithm gener-
ble 2, we present differences between the correspondenceally provides matchings that are closer to the ground truth



Shapeclass | Hungarian | COPAP | ACO 2000 | | |

Airplanes 223.16 32.55 13.02 Order preserving

Fish 56.85| 21.67| 22.80 200l nco

Four-legged 235.57 32.58| 25.48

Hands 375.94| 94.86| 121.95 2 2000

Humans 482.27| 53.75| 20.95 S ool

Rabbits 190.01 80.01| 53.44 g

Stingrays 30.55 5.88 5.16 & 1000

Tools 204.36 35.29| 22.48 i,

Table 2. Deviation from ground truth. 50 100 150 200 250 30 30 400 450

Number of vertices in contour

Figure 12. Execution time comparison be-

when compared to both algorithms; this is more so for the )
tween Hungarian, COPAP, and ACO.

airplane, human, and tool classes. It is worth noting that
since the local shape descriptor we use is not rotationally
invariant, the correspondence tests are conducted after th

shapes have been pre-aligned. 6. Conclusions and Future Work

Shape retrieval: We conduct a retrieval experiment on a

collection of 25 images chosen from the Brown dataset [24];
this has been a fairly standard test performed by several oth
ers. Each shape is matched to all the others in the collection

and the matching cost is used as a measure of similarity be thm directly aimed at solving th int and "
tween the contours for retrieval. Next, the three most simi- rithm directly aimed at solving the point and contour cor-

lar contours are obtained. The number of first, second, andrespondence problems, which are difficult problems when

third matches that belong to the same class are counted. Thgw QAP formulation is adopted. The advantage of incor-

result obtained for COPAP is, respectively, 21, 19, and 17. porating proximity and_ _the e_ffectiveness of t_he proposed
For our algorithm, we obtained 21, 20, and 17. It should be method have been verified with a set of experiments. Qual-

noted that these two tests were conducted using the Origi_|tat|ve and quantitative results show that the correspon-

nal shape context as the descriptor, while the better scoregencsls ?btt?]med bgt our gxgot;\lggrltﬁml?re att least t%omd-
reported in [24] used a rotationally invariant version of it parable 1o those obtained by the best alternalive methods,
e.g., [24, 25]. In several cases, we have demonstrated clear

Test on unorganized point sets. The same shape retrieval 2dvantages offered by our approach. In addition, our algo-
experiment described above has also been performed ofiithm also has the advantage tha_t its resource requirements
the 25-image Brown dataset where the models are now re-Scl€ moderately for contours of increasing size.
garded as general (unorganized) point sets and not consider Although the descriptor used in our experiments did not
ing the ordering of the contours. The results obtained were@/low to compute matchings for planar shapes with artic-
21, 19, and 18, reinforcing that just the incorporation of Ulated deformations, the original shape context can be ex-
proximity information can provide high quality results. tended using geodesic neighborhood information [12]; this
can be incorporated into our ACO framework easily, as well
Parameters: It is important to be aware that all the re- as any shape descriptor that allows to compute the sinyilarit
sults presented here for our algorithm were obtained with between vertices on two shapes.
the same set of parameters (shown in Table 1), which con- Moreover, the proposed QAP-based ACO framework is
firms the robustness of our ACO approach. quite flexible in several aspects: (1) Hard constraints can
be incorporated by simply restricting the ant traversals to
Timing: Figure 12 plots the execution time required by our reduced set of edges, as is done for enforcing order preser-
algorithm (1,000 ACO iterations), in comparison to COPAP vation; (2) Soft constraints can also be added by assigning
and Hungarian, when contour sizes increase. Although ourdifferent probabilities to differentedges. For examplelgy
algorithm is comparable to the other two for small contours, preservation can biavouredrather thanenforcedthrough
it clearly scales better as vertex counts grow. The memoryassigning non-zero and non-unit probabilities to différen
requirements for COPAP also increase significantly with the edges. The classical order preservation constraint can the
contour size, while those of ACO increase linearly. be thought of as a special case of this new formulation; (3) It

We formulate shape correspondence as a Quadratic As-
signment Problem (QAP), incorporating proximity infor-
mation into the point matching objective function. We also
propose the first Ant Colony Optimization (ACO) algo-



can be extended to surface matching by replacing proxim- [14] J. Karlsson and A. Ericsson. A ground truth correspode

ities measured along a contour with proximities measured

over a surface (e.g., using geodesic distance), and by ex-
tracting surface shape descriptors for the vertices (3. 3 [15]
shape context [15] or local surface curvature [9]); (4) hica

be applied to point clouds rather than ordered vertices on [16
contours or meshes by also modifying the proximity com-

putation (e.g., using Euclidean distance).
Our future work includes the aforementioned extensions [17]

to the matching of 3D meshes and point clouds. Moreover,

experiments with other shape descriptors and comparisonéls]

with alternative techniques are also planned in order to fur

ther confirm the effectiveness of our ACO algorithm.
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