
Appendices to A Set-Based Context Model for
Program Analysis

Leandro Fachinetti1, Zachary Palmer2, Scott F. Smith1, Ke Wu1, and Ayaka
Yorihiro3

1 Johns Hopkins University, USA
2 Swarthmore College, USA
3 Cornell University, USA

Keywords: program analysis, control flow, data flow, context sensitivity, higher-
order, object-oriented

This document contains appendices for the paper “A Set-Based Context
Model for Program Analysis” published in the 18th Asian Symposium on Pro-
gramming Languages and Systems, APLAS 2020, Proceedings.

A An Overview of Non-Local Variables
The example in Section 2.2 of the main paper does not illustrate the lookup
of non-local variables in Plume. This is a delicate process in demand-driven
program analyses. In this appendix, we describe how non-local variables are
handled using techniques from DDPA, Plume’s predecessor.

Consider the program appearing in Figure 1. This program defines the K-
combinator and then calls it twice to capture two different values, g and h, in
the closures of two different functions, kg and kh (respectively). At the end of
the program, kg is called with an ignored argument. During the execution of this
program, c should therefore be assigned the value g (and not the value h).

1 k = fun v -> (# λv.(λj.v)
2 z = fun j -> (rz = v;);

3);

4 g = fun p -> (rg = p); # λp.p
5 h = fun q -> (rh = q q); # λq.q q
6 kg = k g; # (λj.g)
7 kh = k h; # (λj.h)
8 c = kg h; # evaluates to g

f g h kg kh c

z

z

rz

v=g
kg=z

v=h kh=z

j=g c=rz

Fig. 1. K-Combinator: ANF Fig. 2. K-Combinator: Analysis

The CCFG produced by analyzing this program appears in Figure 2; let us
proceed to look up c from the end of the program. Moving backward, we first
see the wiring node c=rz. Proceeding backward, we see rz=v and we reduce to
looking for v. We then move past j=g (since j is not the variable we want) and
continue looking for v. We are now searching for the value v at the top level of
the program, where it is out of scope! How did we get here?

2 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

Ordinarily, skipping an unrelated variable assignment is the correct action;
however, j=g was a parameter wiring node. If we are looking for a non-parameter
variable when we discover a parameter wiring node, our search variable must have
been captured in closure where the function was defined. So we should find the
function’s definition and resume looking for our non-local variable there. Here,
the function associated with this parameter node was kg, so we look up kg and
then resume looking for v. In general, this requires a stack of variables as the
function we are looking up may have been captured in closure as well.

In our example, we suspend our lookup of v and begin looking for kg at
the wiring node. Proceeding backward, we ignore the wiring node kh=z (since it
doesn’t define kg) and skip over the kh call site. We then discover the kg=z wiring
node and follow it, looking for z. This leads us to z which defines a function.
We have discovered the location where the function’s closure was defined, so we
resume looking for the variable v. Since v is the parameter of the function, we
can safely follow v=g out to top level, where we discover g and find the answer
to the original lookup of c.

B An Operational Semantics

We begin by giving a small-step operational semantics for the language shown
in Figure 1 of the main paper. This semantics differs in a few respects from stan-
dard ones to make the formal correctness arguments more direct. The primary
difference is that it neither substitutes values for function parameters on func-
tion application nor builds closures; instead, at function application it inlines
function bodies and freshens bound variables, explicitly mapping the argument
to its value in the (flat) environment. The freshening allows static scope conven-
tions to be preserved in spite of not using closures; we will term this a freshening
operational semantics.

These semantics require some preliminary definitions. All expressions are lists
of variable assignment clauses, so we interpret the last binding of a function’s
body to be its returned value; it is therefore helpful to define a function which
extracts the last bound variable of an expression. To facilitate freshening of
inlined functions, we also define a function which obtains the set of variables
bound by an expression.

Definition 1. Preliminary definitions:

– We define RV([x1 = b1, . . . , xn = bn]) = xn.
– We define BV([x1 = b1, . . . , xn = bn]) = {x1, . . . , xn}.
– We write e[x1/x2] to denote the replacement of all instances of x2 with x1

in e.

Given these preliminaries, the operational semantics appears in Figure 3. As
expressions are represented as lists of assignment clauses, a step of evaluation
consists of finding the first assignment to a non-value and reducing it. Alias
clauses x =x′ are reduced by replacing x′ with its assigned value. Function calls
x1 =x2 x3 Θ are reduced by inlining the function’s body in place of its call
and adding a binding of the parameter and returned value to the environment.

Appendices to A Set-Based Context Model for Program Analysis 3

Alias
(x2 = v) ∈ E

E ||[x1 =x2] || e −→1 E ||[x1 = v] || e

Application
(xf = fun xp -> (e′)) ∈ E e′′ = [xp =xa] || e′

BV(e′′) = {x1, . . . , xn} e′′′ = e′′[x′1/x1] . . . [x
′
n/xn] x′1, . . . , x

′
n fresh

E ||[xs =xf xa Θ] || e −→1 E || e′′′ ||[xs =RV(e′′′)] || e

Fig. 3. Operational Semantics

Variable bindings in the function’s body are freshened during this inlining to
preserve the invariant that the expression is alphatized. Note that the annota-
tions Θ, mentioned in Section 2 of the main paper, have no effect here; they are
used only by the analysis.

C Formal Properties

This appendix establishes formal properties of the Plume analysis: soundness,
decidability, and precision with respect to the closely-related DDPA analysis.

C.1 Soundness

We first prove the Plume analysis is sound with respect to a (concrete) opera-
tional semantics. The freshening operational semantics in Figure 1 of the main
paper are forward-running, and include a store in the form of the prefix E.
The Plume analysis, meanwhile, monotonically grows a control-flow graph and
reconstructs abstract store information on demand. To bridge this significant
gap, we construct a midpoint, a graph-based operational semantics which can
be formally defined as a variant on the Plume analysis.

ωPlume is a Graph-Based Operational Semantics Plume as defined in the
previous section is only two abstractions away from a full, concrete interpreter.
First: Plume’s context model Σ may be finite; second, call site annotations may
cause some contexts to be re-used. Here, we define a new analysis, ωPlume, which
relaxes these restrictions and serves as a full and faithful operational semantics.

Definition 2. The ωPlume analysis is defined as a variant of Plume as follows.

– ωPlume will use Σω as it’s context model. This is the list model of Defini-
tion 2 of the main paper with k = ω, i.e. the list length is unbounded.

– Define a function Erase(e) which erases all annotations in e (replaces all Θ
with []). All expressions analyzed in ωPlume are first erased.

Since ωPlume is in fact a (Turing Complete) language and not a program
analysis, we will use the convention of non-hatted variables when writing ωPlume
elements; for example, we may writeG but view it as shorthand for Ĝ-in-ωPlume.
We formalize the stepping of concrete graphs as follows:

Definition 3. We define G −→1 G′ to be the least relation satisfying the rules in
Figure 11 of the main paper. We write G0 −→∗ Gn to denote G0 −→1 . . . −→1 Gn.

4 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

Equivalence of the Operational Semantics To show the soundness of
Plume, it is sufficient to prove two smaller goals: that the freshening opera-
tional semantics is bisimular to ωPlume, and that (any) Plume analysis simulates
ωPlume.

The first subgoal can be proven by establishing a bisimulation relation ∼=
between expressions under substitution-evaluation and embedded expressions
under graph-evaluation; a term steps in one operational semantics if and only if
its bisimulated term steps in the other.

Establishing the bisimulation is relatively straightforward; we will highlight
the four notable parts of the process. First, we must align each clause in the
expression with a node in the ωPlume graph. The only variation in these nodes
is in the variables: the freshening system generates fresh variables while the
graph system does not. In each case that fresh variables are generated, however,
the call stack of the associated graph nodes is changed; therefore it suffices to
be deliberate about how these fresh variables map to variable-stack pairs.

The second notable part of the process is that, by inspection, the freshening
system is deterministic — it always operates on the first unevaluated clause —
while the graph system operates on any Active? node. This reflects the non-
determinism of the expansion of the CFG in the analysis. It is possible, however,
to prove by induction that, during ωPlume evaluation, (1) at most one site is
active at a time that has not yet been expanded and (2) no active site is expanded
more than once. ωPlume is deterministic even though inspection is not sufficient
to demonstrate it.

The third notable part of establishing the bisimulation is that, while call sites
are replaced in the freshening semantics, ωPlume leaves old call sites in place.
That these call sites do not affect future evaluations can similarly be proven by
induction.

Finally, while ωPlume performs lookup on demand, the freshening opera-
tional semantics replaces alias assignments x =x′ with value assignments x = v.
We resolve this by allowing the single-stepping relations not to move in lock step
as long as they invariably realign. These insights allow the following result to be
established:

Lemma 1. If e ∼= G then

1. If e −→∗ e′ then G −→∗ G′ such that e′ ∼= G′.
2. If G −→∗ G′ then e −→∗ e′ such that e′ ∼= G′.

Abstract Interpretation The second subgoal of soundness described above is
to show that ωPlume is simulated by (6) Plume. This step is easier than the
previous as they only differ in how Plume may lose context information, which
can be shown by a similar simulation on context models.

In an un-annotated program, each ωPlume list context [c1, . . . , cn] can be
shown by induction to be simulated by ε ⊕ ĉ1 ⊕ . . . ⊕ ĉn. Our simulation must
be more general to support selective polyinstantiation annotations, however; an
annotated function call may not grow the abstract context (i.e., when the Acon-
textual Application rule of Figure 11 of the main paper applies). Our map from

Appendices to A Set-Based Context Model for Program Analysis 5

concrete contexts to abstract contexts can generally determine if a particular
ωPlume call site ci is acontextual by using ci to identify the call site, using
ci+1 to identify the called function, and determining if that function-site pair is
annotated as acontextual. In summary, we may establish the following.

Theorem 1 (Soundness). For any ωPlume graph G and any Plume graph Ĝ,

if G 6 Ĝ and G −→1 G′ then Ĝ −̂→1
Ĝ′ such that G′ 6 Ĝ′.

C.2 Decidability
Unlike soundness, the decidability of Plume does not hold for all context models
(obviously includingΣω). Here, we characterize effectively finite models for which
Plume is decidable:

Definition 4. Let Σ = 〈Ĉ, ε,⊕〉. Using ĉ to denote finite sets of abstract clauses
{ĉ, . . .}, let Ĉ yĉ Ĉ

′ iff Ĉ ′ = Ĉ ⊕ ĉ for ĉ ∈ ĉ. We write Σ/ĉ to denote the
transitive closure of yĉ on {ε}. We call Σ effectively finite if Σ/ĉ is finite for
all finite ĉ.

We now show the decidability of Plume for effectively finite context models.
We begin by showing the computability of the lookup function given in Defini-
tion 5 of the main paper.

Lemma 2. For any Ĝ, η̂, and X̂, Ĝ, η̂ ` X̂ � v̂ is computable.

Proof. By inspection, every premise in the rules of Figure 10 of the main paper is
either immediately computable or a subproof of the same relation Ĝ, η̂ ` X̂ � v̂.
Throughout a proof in this system, Ĝ is constant, η̂ is a position in the graph, and
X̂ is a list of variables manipulated only from the left side by a constant number
of additions and removals in each rule. This problem reduces to reachability in
a pushdown automaton: states are either nodes η̂ or values v̂, the stack is X̂,
and the input grammar consists solely of the empty string ε. In this encoding,
Ĝ, X̂ ` η̂� v̂ holds iff η̂ can reach v̂ with initial stack X̂ and final stack [].

The pushdown reachability question described above is computable in time
polynomial in the size of the graph Ĝ but can be computed more efficiently using
an equivalent, specialized automaton as in DDPA.

As lookup is computable, a single step of graph closure is computable as well:

Lemma 3. For any finite Ĝ, Ĝ −̂→1
Ĝ′ is computable.

Proof. All premises in Figure 11 of the main paper are either immediately com-
putable, computable by graph traversal (Âctive?), or computable by Lemma 2.

To show decidability, it now suffices to show that any closure sequence con-
verges in finitely many steps. We proceed by counting argument, showing a finite
upper bound on the size of the graph and relying on the monotonicity of closure.

Lemma 4. For any effectively finite context model Σ and any program e, let
Ĝ0 = Êmbed(e). Let ĉ be the set of all clauses in e. Then, for any Ĝ0 −̂→∗ Ĝn,
every node 〈â, Ĉ〉 in Ĝn has (1) either â ∈ ĉ or â as a wiring node comprised of
variables and clauses from ĉ, and (2) Ĉ ∈ Σ/ĉ.

6 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

Proof. By Definition 4 of the main paper, Ĝ0 contains only clauses appearing in
e and only the context ε. By inspection of Figure 11 of the main paper, closure
adds only those edges produced by ̂Wirefun. By Definition 6 in the main paper,
the nodes of these edges contain clauses either from the graph or comprised
of clauses and variables from graph. By induction on the length of the closure
sequence, the clauses in the nodes of Ĝn are either in ĉ or are wiring nodes
comprised of clauses and variables in ĉ.

By Definition 6 in the main paper, each node in an edge created by ̂Wirefun

contains either a context already in the graph or the context provided as an
argument. By inspection of Figure 11 of the main paper, the context provided
to ̂Wirefun is either already in the graph or is derived from an existing context
and a clause from ĉ. Because Σ is effectively finite and because Ĝ0 contains only
the context ε, we have by induction on the length of the closure sequence that
all such contexts are in Σ/ĉ.

With this upper bound on the size of the graph, proof of Plume’s decidability
is straightforward:

Theorem 2 (Decidability). For any effective finite context model Σ and any

program e, let Ĝ0 = Êmbed(e). Then Ĝ0 −̂→!
Ĝn is decidable.

Proof. By Lemma 3, each step of closure is computable. By inspection of Fig-
ure 11 of the main paper, closure is monotonic: Ĝi ⊆ Ĝi+1. By Lemma 4, all
graphs in the sequence are upper-bounded by a finite set of edges. The maximum
number of steps in any closure sequence is therefore less than or equal to the
number of edges in this finite upper bound.

C.3 kPlume ≥ kDDPA
The proof argument for Theorem 1 in Section 4.1 of the main paper is as follows:

Proof. We proceed by constructing a simulation of the ACFG of kDDPA using
the CCFG of kPlume. In particular, the initial ACFG of kDDPA may be sim-
ulated by a covering CCFG in which each the ACFG nodes are replicated into
the CCFG at every possible context (and edges are inserted correspondingly);
the kPlume CCFG is a subset of the covering CCFG. It may then be proven
by induction on the definition of lookup that, for any simulated pair of graphs,
kDDPA lookup produces at least as many values as kPlume lookup. Finally, we
may prove by induction on the length of the closure sequence that this simulation
is preserved throughout the analysis process.

D Evaluation of Performance
In this appendix, we conduct a preliminary performance evaluation of the anal-
ysis techniques presented in this paper. First: we wish to determine if SetPlume,
an analysis using a set-based context model and selective polyinstantiation an-
notations has performance comparable to state-of-the-art analyses on functional
programs. Second and relatedly: we wish to determine if selective polyinstantia-
tion is effective at preventing the worst-case exponential generation of contexts
in SetPlume. We do so by conducting two classes of experiments: one over a series
of functional microbenchmarks and another over a pair of pumped examples.

Appendices to A Set-Based Context Model for Program Analysis 7

D.1 Experiment Design

Both classes of experiments consist of several performance benchmarks. We chose
to compare SetPlume, an analysis using a set-based context model, to three other
analyses: kPlume, P4F, and Boomerang SPDS.

Comparison with kPlume is a natural step as it most directly illustrates
the effect of the set-based context model. We included P4F and Boomerang
SPDS to compare with recent state-of-the-art analyses. P4F is a forward-running
functional analysis; it is theoretically quite similar to 1ADI and, while the ADI
artifact is a proof of concept developed for our precision comparison above, the
P4F artifact has been used for previously published benchmarks. Boomerang
SPDS is a hybrid forward-backward object-oriented alias analysis; this analysis
is dissimilar to SetPlume in form but, like SetPlume, uses a novel approach to
context sensitivity in the presence of dynamic control flow; we believe for this
reason that it warrants attention.

It should be noted that these analyses were implemented in different ways.
SetPlume and kPlume are written in OCaml and analyze a toy experimental lan-
guage, P4F is written in Scala and analyzes a subset of Scheme, and Boomerang
SPDS is written in Java and analyzes Java programs at scale. Due to these
differences, we focus only on cases in which the analyses perform dramatically
differently and all charts use logarithmic scales.

Our experiments consist of repeatedly executing each of a series of test cases
under each analysis. We ran each test case with each analysis ten times on a
3.4GHz Intel Xeon CPU with 32Gb of RAM running Ubuntu 18.04.3 (Linux
4.15); reported values are the mean of all ten runs. No significant variation
occurred between runs for any particular analysis-test case pair. Experiments
were timed out after thirty minutes. We observed that, for each analysis-test
case pair, either every run completed before the timeout or every run timed out;
there were no borderline cases.

D.2 Microbenchmarks

As of the time of this writing, no standard benchmark suite exists for higher-
order program analyses. Instead, we selected a set of test cases used by P4F and
by other evaluations in the higher-order program analysis literature. We have
selected the subset of test cases which (1) work in all four analyses’ implementa-
tions and (2) are not made redundant by the later experiments in Section D.3,
which test scalability. The tested microbenchmarks are described below.

– ack, tak: arithmetic functions with multiple recursion sites
– blur, loop2-1: test functions creating non-local variables in a loop
– eta: an identity function containing a spurious call
– facehugger: calls to two independent recursive functions which may appear

to call each other if precision is lost
– kcfa-2, kcfa-3: worst-case programs for kCFA, accessing non-locals in in-

creasingly nested functions
– primtest: the Fermat primality testing function
– regex: regular expression matching via derivatives

8 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

– rsa encryption and decryption algorithms from the RSA public-key cryp-
tosystem

The original microbenchmarks in this category were written in Scheme. Sim-
ilar to our precision experiments, we translated those benchmarks by hand to
Java (for Boomerang SPDS); we also translated them to a sugared surface lan-
guage which we then machine translate into shallow A-normalized form with
appropriate annotations for recursion (for kPlume and SetPlume). As a conse-
quence, the two Plume analyses are using recursion-annotated source code; the
other two analyses are not. As in Section 4 of the main paper, we attempted to
translate examples in such a way as to preserve control flow but not to introduce
unnecessary program points.

The results of this microbenchmark experiment appear in Figure 4. The Set-
Plume and Boomerang SPDS analyses are context sensitive but have no tuneable
parameters. The P4F artifact may be run in either a monovariant mode or a poly-
variant mode; this polyvariant mode, however, is not further configurable and
is a form of 1-limited context with perfect call-return alignment. The kPlume
analysis has a choice of k and, for each benchmark, there are three cases. If some
fixed k ≥ 1 will produce the same precision as SetPlume, we use that k. If no
such k exists, we use k = 1 and denote this as inacc (for “inaccurate”). If such
a k may exist but determining it is impractical, we use k = 1 and denote this as
imprac.

1
0
6

2
7 8
1 9
7

ack

4
6
1

2
1 2
8

1
0
6

blur

1
7
0

8 9

5
3

eta

1
1
5

3
4 4
5 9
7

facehugger

9
4

1
9 2
3

8
6

kcfa-2

2
7
7

5
8 8
0 2
2
3

kcfa-3

1
8
0

4
7 5
3 1
0
7

loop2-1

3
3
0

1
2
6

1
9
5 5
3
6

primtest

1
6
4

1
2
9
8
8

1
6
4
6

regex
3
3
5

2
2
0

2
7
3

2
6
6
1

rsa

1
0
6

5
3

3
9
9

1
4
5

tak

Key: Boomerang SPDS SetPlume kPlume P4F Timeout

100

101

102

103

104

105

106

ti
m
e
in

m
s

k=1 k=1 k=1 k=5 k=7 k=1 k=1 k=1inacc inacc imprac

Fig. 4. Results: Microbenchmarks

With two notable exceptions, the four analyses perform comparably on all
of the benchmarks. SetPlume appears to holds a slight advantage for the recur-
sive functions ack and tak; we attribute this to the combination of a set-based
context model and selective polyinstantiation. SetPlume and kPlume perform
well in cases which involve spurious calls or non-locals; this is attributable to
the demand-driven nature of the analyses.

The clearest exception to this trend is regex, in which SetPlume timed out.
We suspect that this is because, as in the original Scheme example, the imple-
mentation indirectly generates cycles in control flow via continuations. Because
this is not observed by our annotator, it triggers the worst-case exponential ex-
pansion of contexts (as if no selective polyinstantiation annotations were used).
This may be mitigated in a number of ways, such as by a naive preliminary

Appendices to A Set-Based Context Model for Program Analysis 9

analysis, which would be able to better inform an annotator before SetPlume
operates on the program; we leave such explorations to future work.

From this experiment, we conclude that SetPlume performs comparably
to modern state-of-the-art analyses on small functional benchmarks, including
those representative of real programming patterns.

D.3 Scalability

Our second category of test cases consist of pumped examples of two forms.
The first form of test case, termed rec, defines a function which calls itself at
several call sites (similar to the description of ack and tak above). An example
of rec appears in Figure 5. As we scale up rec, the number of recursive call
sites increases. As previously, Plume operates on annotated ANF. This form
was specifically designed to test the efficacy of these annotations.

1 (define (pathological x)

2 (if (eq? x x) (pathological x)

3 (if (eq? x x) (pathological x)

4 (if (eq? x x) (pathological x)

5 (if (eq? x x) (pathological x) 0)))))

6 (pathological 5)

Fig. 5. Pumped Recursion Example: rec-S4

The results of experimentation on the rec series of test cases appears in
Figure 6. We use 1Plume for these experiments for simplicity. kPlume’s exe-
cution time gradually worsens the number of call sites increases; this is likely
due to the ambiguity introduced during analysis by the loss of previous context.
Boomerang SPDS and P4F are unaffected by this; we suspect that this is due to
the primarily forward nature of the analyses, which prevents this loss of context
from affecting the lookup of non-local variables so directly. SetPlume fares well
because, paradoxically, it is capable of retaining all of the non-recursive con-
text and so faces no ambiguity except in the particular values of the boolean
variables.

9
0

9

1
7 3
6

rec-S2

8
7

1
1

3
2 3
6

rec-S3

9
8

1
5

6
2

3
7

rec-S4

9
9

1
9

1
0
7

3
7

rec-S5

1
0
4

2
3

1
8
1

3
7

rec-S6

1
2
1

2
6

2
9
3

3
8

rec-S7

1
1
5

3
2

4
5
4

3
8

rec-S8

Key: Boomerang SPDS SetPlume kPlume P4F

100

101

102

103

104

ti
m
e
in

m
s

Fig. 6. Pumped rec Benchmark Results

The second form of test case, termed sat, is a program which will, if analyzed
with perfect precision, induce the solution to a SAT problem; it is designed to
ensure that an analysis does not attempt to maintain perfect context sensitivity

10 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

in the face of indirect recursion. An example appears in Figure 7. As we scale
up the number of nested calls, the number of variables in the equivalent SAT
problem increases. This form was inspired by the sat-1, sat-2, and sat-3 test
cases from the test suite used by P4F; those cases were elided from the above
for redundancy. Again: Plume operates on code with selective polyinstantiation
annotations.

1 (define phi (lambda (x1) (lambda (x2) (lambda (x3) (lambda (x4)

2 (any boolean expression using those variables))))))

3 (define try (lambda (f) (or (f #t) (f #f))))

4 (define sat-solve-4 (lambda (p)

5 (try (lambda (n1) (try (lambda (n2) (try (lambda (n3) (try (lambda (n4)

6 ((((p n1) n2) n3) n4)))))))))))

7 (sat-solve-4 phi)

Fig. 7. Pumped SAT Example: sat-P4

The results of experimentation on the sat series of test cases appears in
Figure 8. We use k = 1 for kPlume in these experiments as the level of k necessary
to yield perfect precision is intractable. The results in this figure demonstrate
clear trend lines even on a logarithmic scale. P4F’s time grows exponentially as
the number of nested calls increases; this is unsurprising, as polymorphic CFA
analyses (like polymorphic P4F) are known to be exponential in these cases.
Boomerang SPDS’s time grows less rapidly and careful examination suggests
that it may not be exponential. We suspect that this performance is because
Boomerang SPDS maintains a distinct pushdown system at each call site to
support context sensitivity and these examples are pathologically growing all of
them.

SetPlume’s and 1Plume’s times grow at similar rates. At twenty-two vari-
ables, the last test on which Boomerang SPDS completes before timeout, Set-
Plume is two orders of magnitude faster. We attribute SetPlume’s good perfor-
mance to the selective polyinstantiation annotations discussed Section 2.4 of the
main paper. Although the try function is not directly recursive, each invocation
of try which occurs within the try function itself (such as when try is invoked at
the call site f #t) and so bears annotations that prevent polyinstantiation of its
call sites. As a consequence, the number of contexts of try will be linear (rather
than exponential) in the number of SAT variables in the example.

These experiments used pumped code designed to exploit the worst case of
SetPlume. From these experiments, we conclude that selective polyinstantiation
is successful at preventing exponential context generation. These results also
suggest that ΣSet with selective polyinstantiation may be a practical approach
to context sensitivity in a program analysis, though more experimentation at
scale is required.

D.4 Threats to Validity

Test cases. The test cases used in the experiments above are representative
of common functional programming idioms, but they are much smaller than
real-world programs and do not include several features commonly found in

Appendices to A Set-Based Context Model for Program Analysis 11

3
7
7

1
8
1

5
2

4
7
7

sat-P4

7
5
4

3
5
9

7
9

5
7
5
9

sat-P6

1
8
0
8

5
6
0

1
1
6

1
2
1
6
6
8

sat-P8

4
0
8
4

1
3
3
9

1
6
5

sat-P10

1
0
4
7
7

1
3
4
7

2
2
6

sat-P12

2
5
8
9
2

2
0
5
3

3
0
8

sat-P14

5
9
0
8
8

3
1
0
9

4
1
4

sat-P16

1
2
7
2
0
0

4
2
5
5

5
5
4

sat-P18

2
6
6
4
2
2

5
5
6
4

7
0
6

sat-P20

4
5
9
9
0
1

6
9
6
2

8
9
5

sat-P22

1
0
1
2
0

1
1
3
5

sat-P24

Key: Boomerang SPDS SetPlume kPlume P4F Timeout

100

101

102

103

104

105

106

ti
m
e
in

m
s

Fig. 8. Pumped sat Benchmark Results

practice (such as exceptions or state) due to lack of support in the implemented
artifacts. This could be mitigated by the development of a test suite for functional
program analyses which, as of the time of this writing, does not exist; the test
cases provided here are either taken directly from or are generated based upon
examples that have been used in various other program analysis publications.

Variations in expressiveness. Although Section 4 of the main paper details
experiments which illustrate the precision of SetPlume in comparison to other
analyses, these tests are not the subject of those experiments. This is in part
because these test cases do not clearly illustrate the strengths and weaknesses of
these analyses; they are instead designed to exemplify functional programming
patterns which don’t require considerable expressiveness but act as tar pits for
overly ambitious analyses.

In these experiments, we attempt to mitigate this concern by making choices
generally favorable to other analyses at the expense of SetPlume. In the sat

example, for instance, we used 1Plume because the ideal value of k would in-
duce factorial complexity in the analysis but would also produce a result more
precise than SetPlume (in that it would actually solve the SAT problem with
sufficiently high k). When translating to Java, we used static methods when pos-
sible and only instantiated objects to represent functions when such an object
would meaningfully be allocated to the heap in a functional language. We do this
in an attempt to err on the side of over-approximating SetPlume’s cost, but this
model is not perfect. In the long term, this threat may be mitigated by fixing
a particular client for the three analyses performing the same task with each of
them. At the time of this writing, no same client exists for all of the concerned
analyses.

Language runtime performance. Three different languages are represented
in the artifacts that implement these analyses. Reported times are provided by
the analysis programs themselves to exclude runtime startup costs, parsing times,
and so on. Mitigation of this concern would require reimplementation of the
artifacts in a common language, which is impractical; instead, we simply avoid
drawing conclusions without clear timing differences which cannot be explained
by runtime variations (such as the trend lines in Figure 8).

	Appendices to A Set-Based Context Model for Program Analysis

