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ABSTRACT

Partitioning a hardware structure dynamically among multiple se-

curity domains leaks some information but can deliver high perfor-

mance. To understand the performance-security tradeoff of dynamic

partitioning, it would be useful to formally quantify the leakage of

these schemes. Unfortunately, this is hard, aswhat partition resizing
decisions are made and when they are made are entangled.

In this paper, we present Untangle, a novel framework for con-

structing low-leakage and high-performance dynamic partitioning

schemes. Untangle formally splits the leakage into leakage from de-

ciding what resizing action to perform (action leakage) and leakage

from deciding when the resizing action occurs (scheduling leakage).
Based on this breakdown, Untangle introduces a set of principles
that decouple program timing from the action leakage. Moreover,

Untangle introduces a new way to model the scheduling leakage

without analyzing program timing. With these techniques, Un-
tangle quantifies the leakage in a dynamic resizing scheme more

tightly than prior work. To demonstrate Untangle, we apply it to

dynamically partition the last-level cache. On average, workloads

leak 78% less under Untangle than under a conventional dynamic

partitioning approach, for the same workload performance.
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• Security and privacy → Side-channel analysis and counter-
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1 INTRODUCTION

Contemporary computer systems have many hardware structures

that are shared by multiple processes. They include caches, TLBs,

the reorder buffer, the branch predictor, and physical registers.

Sharing enhances hardware efficiency and usually improves perfor-

mance. Unfortunately, it often creates side-channel vulnerabilities

(e.g., [1, 6, 21, 31, 32, 58]): a process may glean secret information

from the way another process shares the structure with it.

A popular approach to ensure the secure use of a shared hard-

ware structure is to partition it spatially [28]. Each process gets a

static partition for the duration of its execution. Hence, information

about a process’ use of the shared resource cannot leak to processes

that own other partitions of the structure. For example, in a shared

cache, each process may get one way. While static partitioning is

safe, it is undesirable for a dynamic environment where running

processes and process resource demands change over time. In such

an environment, any static partition is suboptimal and can lead to

resource wastage or underprovisioning [51, 54].

An intermediate approach that can retain high performance

while leaking a limited amount of information is dynamic parti-
tioning [4, 36, 39, 43]. Here, individual processes can increase or

decrease the size of their partition dynamically. For example, a

process may be allowed to resize its partition at certain times and

by a certain amount.

It would be useful to formally quantify the leakage of dynamic

partitioning. One could then assess the trade-off between security

lost and performance gained. Unfortunately, accurately quantifying

the leakage with dynamic partitioning is hard. The precise way to

do so is to enumerate all the possible inputs that the victim program

can take (including their probabilities) and record all the resulting

Resizing Traces. A resizing trace is the sequence of resizing actions

(e.g., expand the partition, shrink it, or maintain it), and the time of

each action. Then, the leakage of the program is calculated as the

entropy (intuitively, the variability) of these resizing traces [12].

Clearly, this approach does not scale. Furthermore, in today’s

dynamic partitioning schemes, what resizing decisions are made

(in ‘space’) and when they are made (in ‘time’) are entangled. For
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example,when a program reaches a given phase and triggers a resize

does depend on its rate of forward progress up to that point (time),

which in turn is based on previous partition decisions (space), and

so on. Since program timing depends on low-level effects such as

microarchitectural details, it is typically intractable to analyze. By

implication, since the sequence of actions is entangled with timing,

the sequence of actions is intractable to analyze.
1

As a result, state-of-the-art leakage analysis typically assumes

the worst case: all the resizing traces that could theoretically oc-

cur are realizable and, therefore, at each resizing decision point, all

choices are equally likely. The result is leakage overestimation. Then,
assuming that a user has a fixed leakage budget and that exhaust-

ing the budget at runtime will prohibit further resizings [2, 20, 61],

overestimating leakage means that fewer partition resizings are

allowed before the budget is reached—unnecessarily hurting per-

formance. Therefore, if the leakage could be bound tightly, it would

be possible to improve performance.

In this paper, we present Untangle, a novel framework for con-

structing low-leakage and high-performance dynamic partitioning

schemes. Untangle formally splits the leakage into two parts: (i)

leakage from deciding what resizing action to perform (action leak-
age) and (ii) leakage from deciding when each resizing action occurs

(scheduling leakage).
Based on this breakdown, Untangle makes two advances. First,

Untangle introduces a set of principles for constructing dynamic

partitioning schemes that untangle program timing from the action

leakage. As a result, the sequence of resizing actions only depends

on the retired dynamic instruction sequence of the execution, and

not on timing (e.g., the cycle when each instruction retires). Follow-

ing these principles, the action leakage can be altogether eliminated

with the help of annotations.

In a second advance, Untangle introduces a novel way to model

the scheduling leakage without analyzing program timing. Over-

all, with these two contributions, Untangle is able to quantify the

leakage of a dynamic resizing scheme more tightly than prior work.

The main focus of this paper is on describing the Untangle frame-

work rather than presenting a detailed hardware implementation.

Still, Untangle can be applied to a variety of hardware structures.

In our evaluation, we apply it to dynamically partition the last-

level cache. For a large set of workloads, we compare Untangle
to a conventional dynamic partitioning approach. We show that,

on average, workloads leak 78% less under Untangle than under

the conventional dynamic approach, for approximately the same

workload performance.

This paper makes the following contributions:

• Proposes Untangle, a novel framework for constructing low-

leakage and high-performance dynamic partitioning schemes.

• Presents a set of principles to untangle program timing from

action leakage.

• Introduces a way to model scheduling leakage without ana-

lyzing program timing.

• Applies Untangle to dynamic partitioning of the last-level

cache and evaluates its performance and leakage under a

large set of workloads.

1
This issue is akin to taint explosion in traditional information-flow systems [30, 45].

2 BACKGROUND

2.1 Microarchitectural Side Channels and

Defenses

Microarchitectural side channels rely on hardware resources shared

between an attacker and a victim. The attacker exfiltrates a se-

cret by monitoring the victim’s secret-dependent utilization of the

shared resource. Examples of commonly-exploited shared hard-

ware resources are caches [23, 31, 58], TLBs [21, 44], and functional

units [1, 6].

A popular way to defend against side-channel attacks is to par-

tition the shared resource among different security domains. The

partition can be spatial or temporal. Spatial partitioning divides

the resource into non-overlapping sections used by different do-

mains (e.g., way-partitioning in caches [28]). A temporal partition-

ing scheme splits the time into non-overlapping slices, and only

one domain is allowed to use the resource in each time slice (e.g.,

interconnect traffic shaping [16]). When it is not ambiguous, we use

the term partition size as the portion of the total resource assigned

to one domain, regardless of spatial or temporal partitioning.

Depending on the partitioning policy, a scheme can either fix

the partition size or dynamically resize it to adapt to a program’s

demand. The former schemes are static, while the latter are dynamic
(e.g., [36, 39]).

Information leakage through side channels can be detected using

a variety of techniques. One approach is to leverage taint analy-

sis [41, 57]. In this case, secret data are annotated as taint sources.

Then, taint propagation is used to detect instructions that have

secret-dependent usage of the resource of interest, or instructions

that are control-dependent on secrets. Other approaches include

symbolic execution [3, 8, 50] or abstract interpretation [18, 19, 49].

These specific works formally model the behavior of a cache and

find instructions that put the cache into a secret-dependent state.

2.2 Entropy and Mutual Information

Entropy is a quantitative measure of information, represented by the

uncertainty of a random variable [12]. Let 𝑋 be a discrete random

variable that takes values in X and 𝑝 (𝑥) be the probability of {𝑋 =

𝑥}, 𝑥 ∈ X. Then the entropy of 𝑋 is

𝐻 (𝑋 ) = −
∑︁
𝑥∈X

𝑝 (𝑥) log 𝑝 (𝑥). (2.1)

When the log is to the base 2, the entropy is measured in bits.𝐻 (𝑋 )
has the property of 𝐻 (𝑋 ) ≤ log |X|, where |X| is the number of

elements in X. The equality is achieved if and only if 𝑋 follows

a uniform distribution over X. Intuitively, the more uniform the

distribution of the variable is, the higher the entropy or information

carried by the variable is.

The joint entropy of two random variables 𝑋 and 𝑌 is

𝐻 (𝑋,𝑌 ) = −
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝 (𝑥,𝑦) log𝑝 (𝑥,𝑦), (2.2)

where 𝑝 (𝑥,𝑦) is the probability of {𝑋 = 𝑥,𝑌 = 𝑦}, 𝑥 ∈ X ∧ 𝑦 ∈ Y.

The conditional entropy of 𝑋 given 𝑌 is

𝐻 (𝑋 |𝑌 ) = −
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝 (𝑥,𝑦) log 𝑝 (𝑥 |𝑦). (2.3)
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Table 1: Characteristics of some prior dynamic partitioning schemes.

Name Resource Utilization Metric Action Heuristic Resizing Schedule

UMON [36] Last-level cache (LLC) Number of LLC hits under Pick partition sizes that Every 5M cycles

different partition sizes maximize global LLC hits

Jigsaw [4] LLC Similar to UMON [36] Peekahead algorithm in software Every 50M cycles

Jumanji [39] LLC Tail latency of network requests Compare to static thresholds Every 100ms

SecSMT [43] Pipeline structures shared Number of “full” events Increase the partition that Every 100 K cycles

between SMT threads has the most “full” events

Themutual information between variables𝑋 and𝑌 is the amount

of information we learn about one of the two variables when ob-

serving the other variable. It is defined by

𝐼 (𝑋 ;𝑌 ) = −
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝 (𝑥,𝑦) log 𝑝 (𝑥)𝑝 (𝑦)
𝑝 (𝑥,𝑦) . (2.4)

𝐼 (𝑋 ;𝑌 ) is always non-negative and 𝐼 (𝑋 ;𝑌 ) = 0 if 𝑋 and 𝑌 are

independent. In all cases, 𝐼 (𝑋 ;𝑌 ) = 𝐼 (𝑌 ;𝑋 ).

3 LEAKAGE OF DYNAMIC PARTITIONING

SCHEMES

3.1 Generalizing Dynamic Partitioning Schemes

A dynamic partitioning scheme is typically characterized by three

components (Table 2). One is the Utilization Metric for the resource
of interest. This metric reflects a program’s demand for the resource

and guides resizing. For example, for the last-level cache (LLC), one

possible utilizationmetric is the number of LLCmisses per thousand

instructions. Typically, improving the utilization metric translates

into performance improvements.

Table 2: Components of a dynamic partitioning scheme.

Component Description

Utilization Metric Measure of the demand for the resource

Action Heuristic &

Resizing Actions

How to pick what resizing action to perform (e.g.,

Expand, Shrink, Maintain)

Resizing Schedule When to make a resizing assessment and perform

the decided action

Another component is the Action Heuristic and the Resizing
Actions (or Actions for short). Resizing actions are scheme-defined

operations for adjusting the partition size. Common actions are

“expand the partition” (Expand), “shrink it” (Shrink), and “maintain

it” (Maintain). More generally, a scheme can define a set of actions,

and each action consists of using a given partition size next (e.g.,

actions can be “set the cache partition size to 1MB”, or “to 2MB”,

or “to 4MB”). The role of the action heuristic is to pick one of the

possible actions based on the utilization metric value. For example,

an action heuristic is to compare the utilization metric to some

utilization thresholds and, based on the result, decide which action

to perform. We call this checking and decision process a Resizing
Assessment.

A final component is the Resizing Schedule (or Schedule for short).
It determines when to make a resizing assessment and perform the

action. The action decided during the assessment is typically per-

formed immediately, but it can also be performed later. Example

schedules are to assess resizing at fixed time intervals or after retir-

ing a fixed number of instructions. The choice of resizing schedule

affects a scheme’s responsiveness to the program’s demands.

Table 1 lists the components of our framework for some prior

dynamic partitioning schemes.

3.2 Leakage with Dynamic Partitioning

Dynamically adjusting the partition size of a program based on the

program’s resource demands can cause information leakage. Secrets

can be leaked through when resizing assessments are made and

what resizing actions are taken. More formally, the victim’s Resizing
Trace, which includes the sequence of resizing actions and the timing
of each action, is secret-dependent and can leak information. Using

cache partitioning as an example, Figure 1 demonstrates three ways

of leaking a secret (similar to the three types of leakage in [5]).

1 if (secret)
2 for i in 0..4M // traverse a 4MB array
3 access(&arr[i]);
4 // Resizing assessment, expand?

(a) Resizing action depends on the secret through control flow.

1 for i in 0..4M // traverse a 4MB array
2 access(&arr[i * secret]);
3 // Resizing assessment, expand?

(b) Resizing action depends on the secret through data flow.

1 if (secret)
2 usleep(1000); // sleep for 1ms
3 for i in 0..4M // traverse a 4MB array
4 access(&arr[i]);
5 // Resizing assessment, will expand

(c) Resizing timing depends on the secret.

Figure 1: Code snippets that demonstrate the leakage of a

dynamic cache-partitioning scheme.

In Figure 1a, the secret controls the execution of a large-array

traversal. If the secret is non-zero, the array is traversed, increasing

the cache utilization and causing a partition expansion. The attacker

can observe the expansion, hence exfiltrating the secret (Section 4

details our threat model). In Figure 1b, the secret influences the

indexes used in the array traversal. Depending on the secret value,

the array traversal may access a different number of cache lines,

resulting in a different cache utilization and, possibly, a different

resizing action. Finally, in Figure 1c, regardless of the secret value,



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

the array traversal always executes and triggers a partition expan-

sion. However, the secret is leaked based on when the expansion

occurs.

The most accurate way to measure leakage in a dynamic par-

titioning scheme is to exhaustively enumerate all possible victim

program inputs (including their probability) and the resulting re-

sizing traces under the partitioning scheme. These are the set of

resizing traces that are realizable. Then, the leakage of the program
is calculated as the entropy of these traces using Equation 2.1. This

is the amount of information that the victim program leaks under

this scheme. Unfortunately, although this approach is accurate, it

is not feasible in practice.

3.3 Limitations of Prior Work

Tomitigate the leakage in dynamic partitioning schemes, most prior

work either coarsens the granularity of resizing (i.e., resizes less

frequently or reduces the number of possible actions), or fixes the

timing of resizing actions to a publicly-known schedule [2, 16, 20,

61]. As a result, these approaches reduce the leakage at the cost of

losing some of the adaptivity of dynamic schemes. Fundamentally,

they trade off performance for better security.

Making matters worse, prior schemes often overestimate the

leakage from resizing by implicitly assuming that all the resizing

traces that could theoretically occur are realizable. For example,

consider a dynamic partitioning scheme that makes resizing assess-

ments every one millisecond and supports two resizing actions. In

a one-second execution of the program, the scheme will make 1000

resizing assessments. Since the timing of the assessments is fixed

at multiples of one millisecond, the leakage purely comes from

what action is taken at each assessment. Hence, a common but

over-conservative estimation is that the scheme can produce any
of the 2

1000
different traces in a one-second execution and that all

traces have the same probability of occurring. Hence, the leakage

is computed using Equation 2.1 to be log 2
1000 = 1000 bits, which

is too conservative for most programs.

Overall, this conservative assumption results in further restrict-

ing the adaptivity allowed: given a target leakage budget, the budget

will be consumed sooner because of the leakage overestimation,

which will prohibit further resizings. The end result is to render

dynamic schemes less appealing.

3.4 Our Approach and Challenges

An intuitive idea to reduce the leakage of dynamic resizing schemes

is to make the scheme aware of which data is public and which is se-

cret. Then, resizing assessments that only depend on public data can

be performed without leaking secret information. Consequently,

the scheme gains more resizing flexibility—which maximizes per-

formance without impacting security.

Consider Figures 1a and 1b again. If the scheme knows that the

array traversal is secret-dependent (e.g., through annotations in-

serted by the side-channel detection tools of Section 2.1), it can

conveniently exclude the secret-dependent cache demand when mea-

suring the cache utilization metric. Hence, the resulting resizing

trace depends on only public cache utilization and does not reveal

the secret.

However, these annotations alone cannot remove the leakage

in Figure 1c. This is because the secret causes the public mem-

ory accesses to have secret-dependent timing. Note that the secret-
dependent timing can manifest not only through when a resizing

assessment is made, but also through what resizing action is taken

at an assessment. To see how, consider Figure 1c but with a resizing

schedule that makes an assessment at 1ms (in contrast to making

an assessment after the array traversal at Line 5). In this case, de-

pending on the secret value, the point of assessment may be before

or after the public array traversal, resulting in a different cache

utilization and, consequently, a different resizing action.

Unfortunately, extending existing side-channel detection tools

for this type of implicit flow through program timing is very hard—

given the impracticality of fully determining program timing with

modern processors and taint explosion in traditional information-

flow systems [30, 45]. As a result, in the case when the victim

has secret-dependent timing (which is the general case), it is hard

to bound the leakage any tighter than the conservative approach

discussed above does.

To address this problem, in Section 5, we build a novel frame-

work named Untangle that helps reason about this entanglement

of action and timing. Based on the framework, we develop design

principles for dynamic resizing schemes and mitigations to achieve

a tight bound on the leakage. Untangle enables us to attain high

performance without compromising security.

4 THREAT MODEL

We consider a mutually-distrusting peer model where the attacker

and the victim are in the same security level. The attacker and

the victim share a hardware resource (e.g., a cache). The system

can partition the resource into attacker and victim partitions. The

system can dynamically change the partition sizes based on the

resource utilization, which can be secret-dependent and reveals

sensitive information of the victim.

We assume an idealized attacker that can directly observe the

victim’s exact resizing trace (i.e., what resizing actions are taken

and when). In practice, an attacker can only indirectly estimate

the victim’s resizing trace by probing its own partition size and

observing how it changes over time as a result of victim resizes.

This estimation is not completely accurate because neither the

resizing actions nor the attacker’s probing are instantaneous. Hence,

a realistic attacker would be less capable than the idealized attacker

that we are assuming. Lastly, we assume that the partition scheme

does not change utilization metric, action heuristic, resizing actions,

or resizing schedule in the course of the victim’s execution.

The victim sets a threshold for how much leakage from the

victim program’s run or runs is tolerable. The dynamic partitioning

scheme (i.e.,Untangle) measures the runtime leakage and guarantees
it cannot exceed this threshold. If and when the threshold is reached,

the victim is not allowed to perform further resizings—hurting the

performance of its subsequent execution, but not its security.
We assume that there are sound approaches to annotate pro-

grams with secret-dependent usage of the resource being parti-

tioned and secret-dependent control-flow. This is achievable with

existing analyses [3, 8, 18, 49], or with a conservative approach

that annotates all the instructions from the part of the program
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that handles secrets. Section 6.5 discusses the capabilities of these

existing analyses.

5 UNTANGLE: SECURE DYNAMIC

PARTITIONING

Recall from Section 3.1 that a dynamic partitioning scheme uses a

resizing schedule to decide when to perform resizing assessments,

and an action heuristic to decide what resizing actions to take.

As a result, secrets are leaked through the observation of “when”

and “what” actions are taken. While annotating instructions that

have secret-dependent resource usage can help reduce the leak-

age in some special cases, annotations have limited use in general

programs due to secret-dependent timing (Section 3.4).

In this section, we present Untangle, a novel framework that

quantifies the leakage in a dynamic partitioning scheme with a

tight bound. Untangle formally splits the leakage into two parts:

(i) leakage from deciding what resizing action to perform (action
leakage) and (ii) leakage from deciding when each resizing action

occurs (scheduling leakage). Based on this breakdown, Untangle
makes two contributions. First, it introduces a set of principles to

disentangle program timing from the action leakage, and eventually

remove the action leakage with annotations. Second, Untangle in-
troduces a novel way to tightly-bound scheduling leakage without

analyzing program timing.

Figure 2 shows a diagram with the action and scheduling leak-

ages, and how both are affected by the same two root causes: secret-

dependent demand and secret-dependent timing. In this section,

we describe how Untangle allows us to untangle the different ef-

fects. First, Section 5.1 shows how we formally separate the two

types of leakage. Then, Section 5.2 shows how we can eliminate

action leakage. Finally, Section 5.3 presents an easy way to bound

scheduling leakage. The result is a tight bound estimation of the

total leakage in a dynamic partitioning scheme.

Secret-dependent 
demand

Secret-dependent 
timing

Scheduling 
leakage

Action 
leakage

Root 
Causes

Observable 
Leakage

①
② ③

④

Figure 2: Action and scheduling leakages and their root

causes. Untangle is able to eliminate Edges 1○ and 3○, and

simplify the analysis for Edges 2○ and 4○.

5.1 Decoupling the Two Types of Leakage

Recall from Section 3.2 that a resizing trace is a sequence of tuples,

where each tuple contains a resizing action and the time of the

action. Further, the leakage of a specific victim program is the

entropy of the realizable resizing traces for the program.

To understand how we decouple the leakages for a given pro-

gram, let 𝑆 be a discrete random variable that represents a sequence

of resizing actions. 𝑆 takes values in a set S. If we denote the set of
supported resizing actions by A, then an action sequence 𝑠 ∈ S is

𝑎1, 𝑎2, ..., 𝑎𝑛 , where 𝑎𝑖 is the 𝑖th action in the sequence, and 𝑎𝑖 ∈ A.

Note that 𝑆 only contains what resizing actions are taken but not

when.

For an action sequence 𝑠 ∈ S, let𝑇𝑠 be a discrete random variable

that represents the timing of action sequence 𝑠 . 𝑇𝑠 is a sequence

of strictly-increasing timestamps 𝑡1, 𝑡2, ..., 𝑡𝑛 , where 𝑡𝑖 is the times-

tamp when the 𝑖th action occurs. 𝑇𝑠 takes values in T [𝑠]. Without

loss of generality, we assume that these timestamps have a finite

resolution and therefore represent them as integers. Under a fixed

time-interval resizing schedule, 𝑠 has only one possible 𝑇𝑠 (i.e.,

|T [𝑠] | = 1). However, under a more general resizing schedule, 𝑠

can have many different 𝑇𝑠 (i.e., |T [𝑠] | > 1). An example of one

such resizing schedules is to make a resizing assessment every 𝑁 re-

tired instructions.𝑇𝑠 varies because the time to retire𝑁 instructions

and then trigger an assessment depends on program timing.

We use tuple (𝑆,𝑇𝑆 ) to denote a random variable that represents

the resizing trace. (𝑆,𝑇𝑆 ) takes values in {(𝑠, 𝜏𝑠 ) | 𝑠 ∈ S ∧ 𝜏𝑠 ∈
T [𝑠]}. Therefore, the leakage 𝐿, which is equal to the entropy of

the realizable resizing traces, is the joint entropy of 𝑆 and𝑇𝑆 (using

Equation 2.2):

𝐿 = 𝐻 (𝑆,𝑇𝑆 ) = −
∑︁
𝑠∈S

∑︁
𝜏𝑠 ∈T[𝑠 ]

𝑝 (𝑠, 𝜏𝑠 ) log 𝑝 (𝑠, 𝜏𝑠 ), (5.1)

where 𝑝 (𝑠, 𝜏𝑠 ) is the probability of following a specific action se-

quence 𝑠 with a specific timing sequence 𝜏𝑠 .

By the chain rule of joint entropy [12], we can rewrite Equa-

tion 5.1 as:

𝐿 = 𝐻 (𝑆,𝑇𝑆 ) = 𝐻 (𝑆) + 𝐻 (𝑇𝑆 |𝑆)

= 𝐻 (𝑆) −
∑︁
𝑠∈S

∑︁
𝜏𝑠 ∈T[𝑠 ]

𝑝 (𝑠, 𝜏𝑠 ) log𝑝 (𝜏𝑠 |𝑠) (5.2)

= 𝐻 (𝑆) −
∑︁
𝑠∈S

∑︁
𝜏𝑠 ∈T[𝑠 ]

𝑝 (𝑠)𝑝 (𝜏𝑠 |𝑠) log 𝑝 (𝜏𝑠 |𝑠) (5.3)

= 𝐻 (𝑆) +
∑︁
𝑠∈S

𝑝 (𝑠) (−
∑︁

𝜏𝑠 ∈T[𝑠 ]
𝑝 (𝜏𝑠 |𝑠) log𝑝 (𝜏𝑠 |𝑠)︸                              ︷︷                              ︸

denoted by 𝐻 (𝑇𝑠 |𝑆=𝑠 )

) (5.4)

= 𝐻 (𝑆) +
∑︁
𝑠∈S

𝑝 (𝑠)𝐻 (𝑇𝑠 |𝑆 = 𝑠) (5.5)

= 𝐻 (𝑆) + 𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] . (5.6)

Equation 5.2 applies the definition of conditional entropy from

Equation 2.3. The term over the bracket in Equation 5.4 is the

entropy of the timing sequences in a specific action sequence 𝑠 ,

which is denoted as𝐻 (𝑇𝑠 |𝑆 = 𝑠) in Equation 5.5. The second term in

Equation 5.5 is the expected value of 𝐻 (𝑇𝑠 |𝑆 = 𝑠) for every possible
action sequence 𝑠 .

Equation 5.6 shows that the leakage is composed of two simple

terms: (1) 𝐻 (𝑆) is the entropy of resizing action sequences, which

we call action leakage; and (2) 𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] is the expected value

of the entropy of timing sequences 𝑇𝑠 for every possible action

sequence 𝑠 , which we call scheduling leakage.

Example. Figure 3 illustrates the computation of leakage by de-

coupling action and scheduling leakages. For this example, as-

sume a dynamic partitioning scheme with two supported resiz-

ing actions, Expand and Maintain, and three realizable traces.

These three traces have two unique action sequences: (1) 𝑠1 =
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𝒔𝟏
EXPAND
MAINTAIN

𝒔𝟐
MAINTAIN
MAINTAIN

𝑝 = 0.5 𝑝 = 0.5

𝝉𝒔𝟏
100 cycles
200 cycles

𝝉𝒔𝟏
$

150 cycles
300 cycles

𝝉𝒔𝟐
120 cycles
240 cycles

𝑝 = 0.5 𝑝 = 0.5

Action leakage: 𝐻 𝑆 = 1	bit

𝐻 𝑇!!|𝑆 = 𝑠" = 1	bit 𝐻 𝑇!"|𝑆 = 𝑠# = 0

Scheduling leakage: 𝐸 𝐻 𝑇!|𝑆 = 𝑠 = 0.5	bits

𝑝 = 1

Figure 3: An illustration of decoupling the leakage.

Expand,Maintain (i.e., 𝑠1 performs Expand and then Maintain),

and (2) 𝑠2 = Maintain,Maintain. Both sequences are equally

likely (i.e., 𝑝 (𝑠1) = 0.5 and 𝑝 (𝑠2) = 0.5). Sequence 𝑠1 has two

equally probable timing sequences, 𝜏𝑠1 = 100 cycles, 200 cycles

and 𝜏 ′𝑠1 = 150 cycles, 300 cycles. Sequence 𝑠2 has only one possible

timing sequence, 𝜏𝑠2 = 120 cycles, 240 cycles.

With our framework, the action leakage is the entropy of the

resizing action sequences. Since there are two resizing action se-

quences in total and they are equally likely, the action leakage

𝐻 (𝑆) is −(0.5 log 0.5 + 0.5 log 0.5) = 1 bit. As for the schedul-

ing leakage, since sequence 𝑠1 has two equally likely timing se-

quences, 𝐻 (𝑇𝑠1 |𝑆 = 𝑠1) = 1 bit; further, since sequence 𝑠2 has

only one possible timing sequence, 𝐻 (𝑇𝑠2 |𝑆 = 𝑠2) = 0. There-

fore, the scheduling leakage is 𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] = 𝑝 (𝑠1)𝐻 (𝑇𝑠1 |𝑆 =

𝑠1) + 𝑝 (𝑠2)𝐻 (𝑇𝑠2 |𝑆 = 𝑠2) = 0.5 bits. In total, these three traces leak

𝐿 = 𝐻 (𝑆) + 𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] = 1.5 bits.

5.2 Eliminating Action Leakage

The action leakage 𝐻 (𝑆) can be caused by both secret-dependent

demand and secret-dependent timing (Edges 1○ and 3○ in Figure 2).

Unfortunately, it is challenging to reduce the bounds on the action

leakage due to the impracticality of analyzing secret-dependent pro-

gram timing (Section 3.4). To make the action leakage independent

of program timing and, therefore, remove Edge 3○, we propose two

design principles. With these two principles, the action sequence

will only depend on the retired dynamic instruction sequence in

the execution, but not on program timing. Then, we will discuss

how to remove Edge 1○ with annotations. By removing both edges,

we have completely eliminated the action leakage.

Principle 1: Use a timing-independent metric to measure the

resource utilization. A timing-independent metric means that

it only depends on the architectural semantics of the executed

program, such as its retired dynamic instruction sequence, and not

on the actual instruction timing. An example of what is not a timing-

independent metric for caches is the number of cache hits in the

past 𝑇 cycles (similar to the metric used in [36]). This metric is not

timing-independent for two reasons. First, the performance statistic,

i.e., the number of cache hits, is timing-dependent in modern out-of-

order processors. The reason is that the program timing can change

the order of memory accesses, resulting in different cache states

and affecting the number of cache hits. Second, the profiling history

included in the window of 𝑇 cycles is also timing-dependent.

To define a timing-independent metric, we must only use timing-

independent performance statistics. Also, if the metric is defined on

awindow of execution, the history included in the windowmust not

depend on program timing. In the example of cache partitioning,

a timing-independent metric can be the memory footprint (i.e.,

the number of unique memory lines accessed) of the past 𝑁 retired
memory instructions, regardless of what level in the cache hierarchy

the memory requests were served from.

Principle 2: Use a resizing schedule based on the progress

of instruction execution (or “progress-based schedule” for

short). This means that we tie the assessment points to when

the program has made a certain progress (e.g., after 𝑁 retired

instructions)—not to when a certain time has elapsed. The rea-

son is that if assessment points are tied to elapsed time, e.g., making

an assessment after 𝑇 cycles, then the utilization metric value at

the point of assessment depends on what instructions the program

can execute in 𝑇 cycles, which depends on program timing. As

a result, secret-dependent timing can still influence the resizing

action taken at an assessment, even if a timing-independent metric

is used. Figure 4 illustrates a time-based schedule that assesses at

every𝑇 cycles and a progress-based schedule that assesses at every

𝑁 retired instructions.

Time

TimeTime-Based
Schedule

Progress-Based
Schedule

𝑇 cycles

𝑁 retired instructions

Figure 4: Comparison of a time-based schedule (used by prior

work [4, 36, 39, 43]) and a progress-based schedule. Dots on

the timelines are the times when assessments occur.

By following these two design principles, the resizing action

sequence becomes timing-independent—i.e., it only depends on

the sequence of retired dynamic instructions in an execution. This

removes Edge 3○ in Figure 2. With this property, if we can addi-

tionally ensure that the action sequence only depends on the public
portion of the dynamic instruction sequence, we can also remove

Edge 1○ and, therefore, completely eliminate the action leakage.

To make the action sequence only dependent on the public por-
tion of the instruction sequence, we annotate all the instructions

that use the resource under partitioning and are data- or control-

dependent on secrets. Then, when measuring the utilization metric,

we exclude their contribution. We also annotate any instructions that

are control-dependent on secrets, irrespective of whether they use

the resource. Then, the execution of these instructions is not counted
towards the execution progress. Prior program analyses [3, 8, 18, 49]

can be applied to find and annotate these two kinds of instructions.

With this support, regardless of the values of secret inputs, the point
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in the execution where an assessment is made and the utilization

metric value at that assessment point are independent of the said

secrets. This removes Edge 1○. Overall, the action sequence is now

secret-independent. This means that, for a given public input, there

is only one possible realizable action sequence 𝑠 regardless of the

secret inputs. Therefore, we have eliminated the action leakage.

5.3 Bounding Scheduling Leakage

The scheduling leakage 𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] is the expected value of the
entropy of timing sequences𝑇𝑠 , for every possible action sequence 𝑠 .

Since there is only one possible action sequence 𝑠 for a given public

input due to the elimination of the action leakage in Section 5.2, then

𝐸 [𝐻 (𝑇𝑠 |𝑆 = 𝑠)] = 𝐻 (𝑇𝑠 |𝑆 = 𝑠). Hence, the following discussion

focuses on bounding 𝐻 (𝑇𝑠 |𝑆 = 𝑠) for the specific action sequence 𝑠

that occurs at runtime for the given public input.

If we tied assessment points to elapsed time (e.g., a resize every𝑇

cycles), 𝐻 (𝑇𝑠 |𝑆 = 𝑠) = 0 for any action sequence 𝑠 and the scheme

would not have scheduling leakage. But then it would have timing-

dependent action leakage (Section 5.2). If, instead, we use a progress-

based resizing schedule as discussed in Section 5.2, we eliminate

the action leakage with the help of annotations. However, we still

have timing-dependent scheduling leakage: when an assessment

occurs leaks how much time the program takes to make a certain

amount of execution progress.

It may seem that no matter whether a scheme ties assessment

points to elapsed time or to progress, one cannot avoid analyzing

program timing. To solve this problem, we propose a covert channel

model that enables us to bound the worst-case scheduling leakage in
an environment with a progress-based resizing schedule, without

analyzing program timing. With this approach then, we have no

action leakage and can compute a tightly bound of the scheduling

leakage.

A covert channel assumes that both the sender (i.e., victim) and

the receiver (i.e., attacker) are cooperative, while a side channel

assumes that the sender is non-cooperative. Therefore, computing

the maximum data rate of the more capable covert channel pro-

duces an upper bound of the scheduling leakage that occurs in the

real environment with a non-cooperative victim. Overall, with this

approach, we do not need to find exact realizable timing sequences

nor consider Edges 2○ and 4○ in Figure 2.

Next, we describe the model for the covert channel, the bound

on the scheduling leakage, and optimizations to reduce the leakage.

We assume a progress-based resizing schedule and that we have

already eliminated the action leakage with annotations.

5.3.1 Understanding the Covert Channel. Weobserve that the leaked

information is encoded as the duration of remaining in a certain

observable state (i.e., using a certain partition size). To illustrate

this observation, we revisit the code snippet in Figure 1c. The code

snippet always decides to Expand after finishing the array traver-

sal, but the timing of Expand is secret-dependent, as shown in

Figure 5. Therefore, the example can be modeled as a covert chan-

nel that changes the current state (i.e., performs Expand) after 𝑡 ms

to transmit a symbol “0”, or after 𝑡 + 1 ms to transmit a symbol “1”.

The sender can try various transmission strategies to amplify

the leakage. For example, the sender can use more than two input

symbols per transmission to increase the amount of data being

Time

𝑡	𝑚𝑠

𝑡 + 1	𝑚𝑠

EXPAND

𝑠𝑒𝑐𝑟𝑒𝑡 = 0

𝑠𝑒𝑐𝑟𝑒𝑡 ≠ 0

Figure 5: Timing of Expand for the code snippet in Figure 1c.

transferred each time. Each symbol will be assigned a different time

duration. The sender can also increase the time duration differences

between symbols, to make the channel more resilient to potential

noise—e.g., instead of using 𝑡 ms and 𝑡 + 1 ms to encode “0” and

“1”, one can use 𝑡 ms and 𝑡 + 10 ms to make “0” and “1” more distin-

guishable under noise. Finally, the sender can tune the probability

distribution of input symbols.

We do not limit the transmission strategy that a sender uses.

Even in this case, the maximum data rate through the covert chan-

nel is still bounded because of a trade-off between the amount data

per transmission and the average transmission time. Intuitively, this

is because as the number of symbols increases or the time differ-

ences that distinguish these symbols increase, so does the average

transmission time. It can be shown that, after a point, increasing

the data per transmission results in a lower data transmission rate.

Section 5.3.3 presents a formal model of the covert channel. Then,

Appendix A discusses how to calculate the maximum data rate of

the covert channel, which is an upper bound of the scheduling

leakage of the side channel.

Example. The following two strategies illustrate the trade-off: (i)

Strategy 1 uses 1ms, 2ms, 3ms, and 4ms to represent an alphabet

of four symbols; and (ii) Strategy 2 uses 1ms, 2ms, ..., 8ms to

represent an alphabet of eight symbols. To simplify the discussion,

we assume that all symbols are equally likely in both strategies.

Then, Strategy 1 transmits log 4 = 2 bits per transmission (i.e., the

entropy of the four symbols), and the average transmission time

is (1 + 2 + 3 + 4)/4 = 2.5ms. Strategy 2 transmits log 8 = 3 bits

per transmission and the average transmission time is (1 + 2 + ... +
8)/8 = 4.5ms. Comparing the data rates for both strategies, we see

that Strategy 1’s data rate (2 bits/2.5ms = 800 bits/s) is higher
than Strategy 2’s (3 bits/4.5ms ≈ 667 bits/s), despite using fewer
symbols.

5.3.2 Limiting the Maximum Data Rate. Based on the previous

intuitive explanation of the covert channel, and before presenting

a formal model of it, we introduce two mechanisms to reduce the

maximum data rate of the covert channel (i.e., the upper bound of

the scheduling leakage rate). One mechanism lowers the transmis-

sion rate and the other reduces the amount of data that the receiver

(i.e., the attacker) can learn per transmission.

Mechanism 1: Set a minimum wait time, called the Cooldown
Time (denoted by𝑇𝑐 ), between two consecutive resizing assess-

ments. Specifically, if an assessment occurs at 𝑡 , then the scheme

enforces that the next assessment cannot occur before 𝑡 +𝑇𝑐 . This
cooldown time helps reduce the transmission rate.

Once 𝑇𝑐 is picked, the resizing schedule has to be aware of the

value of 𝑇𝑐 , and guarantee that the time between two consecutive

assessments is never below 𝑇𝑐 . For example, using a resizing sched-

ule that makes assessments every 𝑁 retired instructions, a possible
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Time
𝛿𝑖 𝛿𝑖+1

When the assessments occur

When the actions occur

𝑁 retired instructions

Figure 6: Delaying actions by a random amount of time.

approach is to set 𝑁 to the maximum number of instructions that

the core can possibly retire within 𝑇𝑐 . If the core has a commit

width of𝑤 , then 𝑁 = 𝑤𝑇𝑐 (assuming 𝑇𝑐 is measured in cycles).

The cooldown time is set based on the security and performance

goals: the longer the cooldown time is, the lower the leakage rate

is, and the slower the program execution is.

Mechanism 2: Delay each resizing action by a random time 𝛿

after the corresponding assessment point. Intuitively, adding

random delays “blurs” the differences between symbols and can

introduce bit errors in the channel, thus reducing the amount of

information learned by the receiver. This technique is shown in

Figure 6. On the time axis, blue dots show when the assessments

occur, and orange triangles show when the actions take place. Note

that, right after Assessment 𝑖 is made, we start counting progress

towards Assessment 𝑖 + 1. This ensures that the action taken at

Assessment 𝑖 + 1 is not influenced by program timing.

5.3.3 Formal Analysis. This section formalizes the proposed covert

channel model and the two data rate reduction mechanisms just

described. To be conservative, we reason about the upper bound

of 𝐻 (𝑇𝑠 |𝑆 = 𝑠) for the worst-case action sequence 𝑠 . The worst-

case action sequence is the one that changes the partition size at

every action, thus making the timing of every action visible to the

attacker. Later, in Section 5.3.4, we will discuss how the model can

be optimized when the sequence includes Maintain decisions—as

usual, assuming that only one action sequence is possible.

We assume that the resolution at which the attacker (i.e., receiver)

can measure the time is finite. We represent timestamps with unit-

less integers, with 1 time unit being the resolution.

As per Section 5.3.1, the information is encoded as the time

duration of remaining in a certain partition size, and the sender uses

different durations to represent different input symbols. Therefore,

let𝑋 be a random variable that represents an input symbol.𝑋 takes

values in a discrete input alphabet X. An input symbol 𝑥 ∈ X
follows the input distribution 𝑝 (𝑥). For each input symbol 𝑥 , we

use a unique time duration 𝑑𝑥 to represent it. Since we enforce that

two assessments must be at least 𝑇𝑐 apart, 𝑑𝑥 ≥ 𝑇𝑐 for any 𝑥 . Then,

the average time for one transmission is:

𝑇𝑎𝑣𝑔 =
∑︁
𝑥∈X

𝑝 (𝑥)𝑑𝑥 . (5.7)

Lastly, if there are multiple transmissions (one per each assessment),

we denote the input symbol in the 𝑖th transmission as 𝑋𝑖 , and the

input sequence used in 𝑛 transmissions as 𝑋𝑛 = 𝑋1, 𝑋2, ..., 𝑋𝑛 .

On the receiver side, let 𝑌 be a random variable that represents

an output symbol. Note that 𝑌 is not the same as 𝑋 because of the

random delay 𝛿 . Specifically, 𝑌 takes values in a discrete output

alphabet Y, which is determined by X and the distribution of the

random delay 𝛿 (i.e., 𝑝 (𝛿)). For a specific input symbol 𝑥 represented

by time duration 𝑑𝑥 , the time duration observed by the receiver,

TimeSender

TimeReceiver

𝛿𝑖−1 𝛿𝑖

𝑑𝑥

When the assessments occur

When the actions occur and are observed by the attacker

𝑑𝑦

Figure 7: Timeline of the sender and the receiver.

Time

EXPAND SHRINK

…

𝑛 MAINTAIN

Equivalent to 𝑇!" = 𝑛 + 1 𝑇!

Figure 8: Optimizing the covert channel withMaintain.

denoted by 𝑑𝑦 , can be different from 𝑑𝑥 due to the 𝛿 . If we denote

the random delay in transmission 𝑖 by 𝛿𝑖 , then

𝑑𝑦 = 𝑑𝑥 + 𝛿𝑖 − 𝛿𝑖−1, (5.8)

as illustrated in Figure 7. Since each possible 𝑑𝑦 is mapped to 𝑦 ∈
Y, the output distribution 𝑝 (𝑦) can be computed from 𝑝 (𝑥) and
𝑝 (𝛿). Lastly, the output sequence received from 𝑛 transmissions is

denoted by 𝑌𝑛 = 𝑌1, 𝑌2, ..., 𝑌𝑛 .

The maximum amount of information that the receiver learns

from 𝑛 transmissions is 𝐼 (𝑋𝑛
;𝑌𝑛), the mutual information between

𝑋𝑛
and𝑌𝑛

(Equation 2.4). Also, the average time for𝑛 transmissions

is 𝑛𝑇𝑎𝑣𝑔 . Therefore, the data rate 𝑅 of the covert channel is

𝑅 = 𝐼 (𝑋𝑛
;𝑌𝑛)/𝑛𝑇𝑎𝑣𝑔 . (5.9)

Different input distributions of 𝑝 (𝑥) result in different values of

𝐼 (𝑋𝑛
;𝑌𝑛) and 𝑇𝑎𝑣𝑔 . Therefore, we are interested in the input dis-

tribution of 𝑝 (𝑥) that produces the maximum data rate (𝑅𝑚𝑎𝑥 ) of

the covert channel. This value is an upper bound of the scheduling

leakage rate of any victim program.

Computing a closed-form of 𝑅𝑚𝑎𝑥 is complex. Consequently, in

Appendix A, we show a numerical method that computes a tight

upper bound of 𝑅𝑚𝑎𝑥 .

5.3.4 Optimized Covert Channel Model. In Section 5.3.3, the covert

channel model conservatively assumes the worst-case action se-

quence, where every action changes the partition size, thus making

the timing of every action visible to the attacker. However, in prac-

tice, most resizing assessments result in Maintain (as shown in

Section 9), whose timing is invisible to the attacker.

Since the victim only has one possible action sequence 𝑠 under

Untangle for a given public input, we can leverage theMaintain ac-

tions to optimize the covert channel model to reduce the maximum

data rate. The idea is illustrated in Figure 8. If the victim chooses

Maintain 𝑛 consecutive times, the execution is equivalent to a case

when the two visible resizing actions that occur right before and

right after these 𝑛 Maintain actions are separated by a longer

cooldown time 𝑇 ′
𝑐 = (𝑛 + 1)𝑇𝑐 . Therefore, the scheduling leakage

during this period is reduced because of the increased cooldown

time. Consequently, we can monitor the number of consecutive

Maintains performed during a victim execution and lower the

upper bound of the scheduling leakage rate of the execution. In

Section 7, we discuss how to obtain the optimized 𝑅𝑚𝑎𝑥 at runtime.
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6 DISCUSSION

In this section, we describe some aspects related to the operation

of Untangle.

6.1 Timing-Dependent Dynamic Instruction

Sequences

In Section 5.2, we removed Edge 3○ in Figure 2 and made the resiz-

ing action sequence depend not on program timing but only on the

retired dynamic instruction sequence of the execution. However, in

some cases, this is not enough to eliminate the effect of timing be-

cause the dynamic instruction sequence itself depends on program

timing. This case may happen, e.g., in parallel programs, where

the timing of when a thread attempts a synchronization operation

may result in different outcomes: repeated spinning or proceeding

past the synchronization. It may also happen in single-threaded

programs, where the thread may check the current time and take

different paths based on the result.

To handle this case, the code regionswith these timing-dependent

dynamic instruction sequences need to be annotated, so that one can

exclude their contribution when measuring the utilization metric

and exclude their instructions when quantifying execution progress.

The techniques used by existing analysis tools that detect secret-

dependent control and data flow in a program can be used as a

basis to identify and annotate these timing-dependent sequences.

For example, one can treat the data read inside a critical section or

the return value of a get-time system call as a secret. We consider

any further analysis of this issue the subject of future work.

6.2 Other Attacks

A powerful attacker can replay the victim program many times,

gaining additional information at every replay from the scheduling

leakage. However, the operating system can use the upper bound

of the victim program’s leakage rate as computed by Untangle
(Equation 5.9) to keep accumulating the victim program leakage

across the multiple runs. When the accumulated leakage across

runs reaches a user-defined threshold, the system prevents the

victim program from performing any further resizes. From then on,

the performance of the program will decrease, but there will be no

more leakage.

The attacker can also actively interact with the victim, as illus-

trated in Figure 9. In this example, the victim is in a steady state

and decides to Maintain at assessment 1○. Since Maintain is

invisible to an attacker, our optimized covert channel model can

leverage it to further bound the scheduling leakage (Section 5.3.4).

However, before the victim makes the next assessment, the attacker

can put a high pressure on the shared resources to “squeeze” the

victim partition. This strategy can force the victim to perform an

attacker-visible action Expand at the next assessment ( 2○), incur-

ring a higher scheduling leakage rate. As a result, the user-defined

leakage threshold will be reached sooner, which can disable further

resizing and hurt execution performance, but cannot violate the

security guarantees discussed in Section 4, as the leakage will not

exceed the threshold. Note that an active attacker cannot cause

action leakage in Untangle. The reason is that even if the action se-

quence changes, it is not due to secret values and, therefore, there is

no action leakage. The change is due to the attacker actions, which

Time

Victim 
Partition 

Size ② EXPAND

① MAINTAIN

Attacker “squeezes” 
the victim partition

Figure 9: An active attacker that interacts with the victim.

cannot affect the victim’s timing-independent resource utilization

metric at the points of assessment.

6.3 Partitioning Other Hardware Resources

In Section 3 and 5, we mainly use the last-level cache (LLC) as

an example of resource of interest. However, Untangle is a general
framework and it can be applied to different hardware resources. To

apply Untangle to a new type of resource, we first need to define a

timing-independent utilization metric for that resource (Section 5.2).

For example, we can trivially extend the LLC utilization metric to

the TLB. Another example of resource of interest is functional units

shared by two SMT threads [43, 47], where we can use the fraction

of the retired instructions that utilize a certain type of function

unit as a metric. Next, we also need to extend the static analysis to

identify the secret-dependent usage of the new resource of interest.

For the TLB, we can reuse the static analysis for caches [3, 8, 18, 49];

for function units, an analyzer that detects secret-dependent control

flow suffices.

6.4 Extending the Threat Model

Untangle assumes a peer security model, where all programs are

mutually distrusting and in the same security level (Section 4). It

is possible to extend Untangle to support a more complex security

lattice that is also tiered. Under this model, information flow from a

lower-tiered program (𝐿) to a higher-tiered program (𝐻 ) is allowed,

but not vice versa. As a result, program 𝐿 can take resizing actions

that claim resources from or free resources to 𝐻 without counting

towards the leakage thresholds of both programs. However, there

is one caveat: 𝐿’s resizing can affect the timing of 𝐻 due to the

change of available resources. This timing change in𝐻 can be secret-

dependent and observed by 𝐿 through other observable events (e.g.,

termination of 𝐻 ). Untangle’s covert channel model can be adapted

to measure this type of leakage.

6.5 Using Existing Static Analyses for

Annotation

Recall from Section 5.2 that we need to annotate all instructions

that have secret-dependent resource usage and all instructions that

are control-dependent on secrets. The main challenge of using

existing analyses [3, 8, 18, 49] for annotation is their scalability,

since they use static analysis to ensure soundness. According to

the literature, all these analyses can analyze cryptography libraries.

Besides that, Cacheaudit [18] also analyzes sorting primitives and

Casym [8] analyzes database applications (e.g., PostgreSQL [22]).

These libraries and applications can process sensitive information.
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For applications that are beyond the capability of these tools, one

can use manual inspection assisted by these tools to generate con-

servative but sound results for Untangle—e.g., by applying analyses

on a manually-selected portion of the program. In this case, the per-

formance of applications may decrease due to the conservativeness

of the analysis.

7 HARDWARE IMPLEMENTATION

This section discusses a potential implementation of key aspects

of the Untangle hardware. Similar to the previous discussion, we

use LLC partitioning as an example. We do not explore a full imple-

mentation because the focus and the novelty of this paper is in the

Untangle framework.

Transmitting the Annotations to the Hardware. There are sev-

eral possible ways to transmit the annotations to the underlying Un-
tangle hardware. Intuitively, we can re-purpose a currently-unused

instruction prefix to mark the relevant instructions. A similar ap-

proach is used by Intel for lock elision [25]. However, this approach

can generate bloated binaries if many instructions are annotated.

An alternative approach is to introduce two new instructions that

flag the start and the end of a secret-dependent code region. Finally,

we can also introduce a special bit in the page table to coarsely

annotate pages that contain secret-dependent code [38]. The latter

approach does not require recompilation and can be applied to

legacy programs.

Monitoring LLC Utilization.Many prior works have proposed

various ways of monitoring LLC utilization [4, 36, 39]. We describe

one possible mechanism that we use in the evaluation. The mecha-

nism is similar to UMON [36], which assumes that the partition size

is chosen from a pre-defined list of supported sizes. At a high level,

for each domain, at runtime, the mechanism simulates memory

accesses with each possible partition size, and measures the corre-

sponding number of LLC hits. Then, during a resizing assessment,

the monitor picks the size for each domain that maximizes the

number of LLC hits across all domains. To satisfy the requirements

of a timing-independent utilization metric, the monitor does not

consider memory instructions that are data- or control-dependent

on secrets. In addition, it only considers the memory accesses re-

sulting from retired memory instructions and in program order

(Section 5.2).

The proposedmechanism can be implementedwith a set-associative

hardware table that selectively simulates memory accesses to only

certain cache sets. This hardware table only contains tags but not

data. When a public load or store to one of the monitored sets

retires, the table is accessed. Memory accesses that would hit in the

private caches are filtered out.

Measuring Scheduling Leakage at Runtime. Recall from Sec-

tion 5.3.4 that we leverage consecutiveMaintain actions, which are

invisible to the attacker, to further reduce the bound on scheduling

leakage rate. However, it is impractical to compute the optimized

scheduling leakage rate at runtime, since it needs to generate a new

𝑅𝑚𝑎𝑥 , and this involves a computation-intensive algorithm (Appen-

dix A). Therefore, we use a small hardware table that stores pre-

computed leakage rates. Specifically, table entry 𝑖 stores the leakage

rate 𝑅𝑚𝑎𝑥𝑖 , corresponding to when 𝑖 consecutive Maintains occur.

At runtime, if the victim choosesMaintain𝑚 consecutive times,

Table 3: Parameters of the simulated architecture.

Parameter Value

Architecture 8 out-of-order x86 cores at 2.0GHz

Core 8-issue, 8-commit, no SMT, 72 load queue en-

tries, 56 store queue entries, 224 ROB entries,

LTAGE branch predictor

Private L1-I & L1-D

cache

32 kB, 64 B line, 8-way, 2 cycle round trip (RT)

latency

Shared L2 cache

(LLC)

16MB (2MB per slice), 64 B line, 16-way, 8 cy-

cles RT latency

DRAM 50 ns RT latency after L2

Supported partition

sizes for a domain

128 kB, 256 kB, 512 kB, 1MB, 2MB, 3MB, 4MB,

6MB, 8MB

Monitor window𝑀𝑤 1M memory instructions

Table 4: Partitioning schemes evaluated.

Scheme Description

Static Static partitioning. Each domain uses a 2MB partition

Time Dynamic partitioning. Assessing resizing every 1ms

Untangle Dynamic partitioning. Assessing resizing every 8M retired

instructions with a cooldown time of 1ms

Shared No partitions. All domains share the 16MB LLC

we conservatively assume that the next action is not Maintain

and use the rate 𝑅𝑚𝑎𝑥𝑚 to compute the leakage for that resizing.

If the next action turns out to be another Maintain, we switch to

the lower rate 𝑅𝑚𝑎𝑥𝑚+1 . Finally, if𝑚 exceeds the table capacity, we

conservatively use the rate of the entry for the maximum number

of Maintains considered.

8 EXPERIMENTAL METHODOLOGY

We use last-level cache (LLC) partitioning as an example to demon-

strate that Untangle can offer flexibility and better performance

than static partitioning, and significantly less leakage than prior dy-

namic partitioning schemes. We choose the LLC as the resource of

interest because it is a commonly-exploited hardware resource, and

there are many prior LLC partitioning schemes [15, 28, 36, 37, 46].

Following prior work [15, 37, 46], we use set partitioning. We

assume a simple design where the size of a partition is chosen from

a pre-defined list of 9 choices. We use the mechanism discussed in

Section 7 to monitor LLC utilization and guide resizes. The monitor

only considers the past 𝑀𝑤 retired memory instructions at the

time of an assessment, to focus on the program’s most recent LLC

utilization.

Configurations & Schemes. We model an 8-core system (Ta-

ble 3) using cycle-level simulations with gem5 [7]. We consider four

LLC partitioning schemes (Table 4). The baseline scheme is Static,

which partitions the LLC statically, giving 2MB to each domain.

We evaluate two dynamic partitioning schemes: Time is similar to

previous ones [4, 36, 39, 43] that make resizing assessments at a

fixed time interval (1ms interval in our configuration); Untangle

applies our mitigations described in Section 5. Untangle makes re-

sizing assessments every 8M retired instructions and its minimum

wait time between resizes is 1ms. We use this configuration for Un-

tangle to match the performance of Time by performing resizing
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Table 5: OpenSSL [11] cryptographic benchmarks.

Name Description

Chacha20 Stream cipher, encrypt 10 kB payloads

AES-128 Block cipher with a 128-bit key, encrypt 10 kB payloads

AES-256 Block cipher with a 256-bit key, encrypt 10 kB payloads

SHA-256 Digest function, compute 10 kB payloads

RSA-2048 RSA signing with a 2048-bit key

RSA-4096 RSA signing with a 4096-bit key

ECDSA ECDSA signing using curve Secp256k1

EdDSA EdDSA signing using curve Ed25519

assessments at a similar frequency. The random delay in Untangle

follows a uniform distribution between [0, 1ms). Both Time and

Untangle start with a partition size of 2MB. Finally, Shared is an

insecure configuration that uses a shared LLC without partitioning.

Workloads. To evaluate workloads that have both secret-related

and public parts, we build workloads composed of one SPEC17

benchmark [9] and one cryptographic benchmark from OpenSSL

3.0.5 [11] (Table 5). Both benchmarks share the same domain and

hence use the same LLC partition. Since we target a typical work-

load that spends most of its execution time in the public part, we

repeatedly run in a loop 1M instructions from the cryptographic

benchmark and then 10M instructions from the SPEC17 bench-

mark. Both benchmarks make forward progress. We conservatively

assume that all instructions from the cryptographic benchmark are

secret-dependent. We do not set a leakage threshold for a workload;

we allow it to freely resize and then measure its leakage.

For SPEC17, we use the reference input size. We simulate all

36 SPEC17 benchmarks.
2
For each SPEC17 benchmark, we use

SimPoint [24] to select a representative slice of 500M instructions.

We study each SPEC17 benchmark’s sensitivity to LLC size by

running it with every supported partition size and normalize its

instruction-per-cycle (IPC) to the IPC with an 8MB partition (i.e.,

the maximum partition size). The study is detailed in Appendix B.

We neglect the crypto benchmarks because they have much smaller

LLC use.We then define the adequate LLC size of a benchmark as the

minimal LLC size that allows the benchmark to reach a normalized

IPC of at least 0.9. If a benchmark has an adequate LLC size higher

than 2MB (i.e., the Static partition size), we classify it as LLC-
sensitive (8 benchmarks in total); otherwise, it is LLC-insensitive (28
benchmarks in total).

Since we simulate an 8-core system, we first randomly select

a mix of eight workloads (2 LLC-sensitive and 6 LLC-insensitive).

Then, from this base mix, we randomly replace two LLC-insensitive

workloads with two LLC-sensitive ones to generate a new mix. We

repeat this change until there are no LLC-insensitive workloads in

the mix. We run our experiments on each mix. Next, we repeat this

process with different base mixes to cover all possible workloads.

For each experiment, we warm up the system for 5ms. Then, we

simulate the mix of workloads until each workload finishes its

slice (500M instructions from SPEC and 50M from crypto). When

a workload finishes, if there are other running workloads in the

system, the finished workload maintains its pressure on the LLC,

but does not update the statistics that we collect.

2
The same SPEC application with another input is a different benchmark.

Measuring the Leakage.We measure the leakage in Time with

log |A| bits per assessment, where |A| is the number of supported

resizing actions (Section 3.3). For Untangle, we use the leakage

model proposed in Section 5 with the optimization discussed in

Section 5.3.4.

We compare Time with 1ms assessment interval against Untan-

gle with 𝑇𝑐 = 1ms, which corresponds to 8M retired instructions

between assessments. We report the leakage per assessment of a
workload under each scheme. Leakage per assessment determines

the number of assessments that a workload is allowed under a leak-

age threshold. The lower the leakage per assessment is, the more

assessments the scheme can make. Because Time and Untangle

use different resizing schedules, the same workload can have differ-

ent number of resizing actions under different schemes, in spite of

running the same number of instructions. The total leakage from an

execution is proportional to the number of resizing actions during

the execution.

9 EVALUATION

We evaluate 16 workload mixes in total. Due to the similarity be-

tween mixes, and due to space limits, we only show in Figure 10

the results of 4 selected mixes. Appendix B includes the results of

the rest of mixes.

In Figure 10, each group of three charts corresponds to one

mix. The top-left group (Mix 1) is for a mix with 2 LLC-sensitive

workloads (shown in bold). As we move from left to right (Mix

2), and then from top to bottom (Mix 3 and Mix 4), we replace

2 non LLC-sensitive SPEC17 benchmarks with 2 LLC-sensitive

SPEC17 benchmarks, until we reach a mix with all 8 LLC-sensitive

benchmarks. In the title of each group, we show the total LLC
demand as the sum of the adequate LLC size of all the workloads

in the mix. In a given group, the bottom-most chart shows the

IPC of every workload and scheme—normalized to Static. The

middle chart shows the leakage per assessment in bits for Time

and Untangle. Finally, the topmost chart shows the distribution of

partition size measured at intervals of 100 µs. In that chart, the thick

short bar covers the first to third quartile range; the thin long bar is

the minimum and maximum range; the white dot is the median of

the partition sizes. Note that the figure has a non-linear y-axis, and

each dashed horizontal line corresponds to a supported partition

size listed in Table 3.

Consider the top-left group of charts in Figure 10. It shows Mix 1,

which has 2 LLC-sensitive workloads and a total LLC demand from

all the 8 workloads equal to 14.6MB. There is enough LLC for every

workload. Under both Time and Untangle, the two LLC-sensitive

workloads, gcc_23 and parest_0, attain high speedups over

Static, and even slightly outperform Shared. The remaining LLC-

insensitive workloads experience no slowdown, in spite of some

of them using partitions smaller than the 2MB of Static (see top

chart). Overall, the system-wide speedup (i.e., the geometric mean

of IPCs) of Time and Untangle over Static is 1.14. Shared (i.e., no

partitioning) has a lower speedup of 1.12 because of cache conflicts

between workloads.

3
To refer to a workload, we use the SPEC17 application name plus a number for the

input.
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Mix 1: 2 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 14.6MB
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Mix 3: 6 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 33.4MB
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Figure 10: Comparing different partitioning schemes according to: IPC normalized to Static (bottom-most row of each group

of three charts), leakage per assessment (middle row), and distribution of partition size (topmost row). The bars correspond to

different workloads, where bolded workloads are LLC-sensitive.

Since the dynamic partitioning scheme in our evaluation sup-

ports 9 different actions (Section 8), Time leaks log 9 ≈ 3.2 bits per

assessment for every workload (middle row chart). Based on our

measurements, the leakage per assessment in Untangle is at most

1.3 bits per assessment, and on average 0.4 bits per assessment.

Consider now the top-right group of charts in Figure 10. It shows

Mix 2, which replaces deepsjeng_0 and gcc_3 from Mix 1

with mcf_0 and roms_0. The Mix 2 workloads demand 23.5MB

of LLC in total. Due to the increased total LLC demand, gcc_2
receives a smaller partition than in Mix 1, with a median size of

4MB (top chart). As a result, its speedup is now lower than in Mix

1, namely 1.54 under Time and 1.52 under Untangle. parest_0
and mcf_0 attain good speedups, but roms_0 does not translate

its higher cache use into performance. Overall, both Time and

Untangle deliver a system-wide speedup of 1.14, while Shared has

a speedup of 1.08. Lastly, Untangle has a leakage per assessment

of 1.5 bits at most and 0.7 bits on average, while Time leaks 3.2 bits

per assessment.

The bottom-left group of charts in Figure 10 shows Mix 3, which

includes two more LLC-sensitive workloads: lbm_0 and wrf_0.
These 8 workloads demand 33.4MB of LLC, which is more than

twice the available LLC. In this over-committed setting, three LLC-

sensitive workloads have their demand fulfilled under Time and

Untangle:gcc_2,parest_0, andmcf_0. Also, the rest of work-
loads do not suffer slowdown when compared to Static. Both Time

and Untangle deliver a system-wide speedup of 1.14, and Shared

has a speedup of 1.12.

For the Mix 2 and 3 workloads, we start to see an increase of

leakage per assessment under Untangle. The reason is that the

workloads have more attacker-visible resizing actions that change

the partition size, due to the high LLC pressure. In Mix 3, Untangle
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has a maximum leakage per assessment of 1.7 bits and 0.7 bits on

average.

In Mix 4 (bottom-right group of charts), all 8 workloads are

LLC-sensitive. They demand a total LLC of 39.0MB. Under this

extreme LLC pressure, Time and Untangle can still fulfill three

LLC-sensitive workloads. However, some of the remaining work-

loads start to suffer slowdown. Overall, both Time and Untangle

have a system-wide speedup of 1.11, while Shared has a lower

speedup of 1.07. The leakage per assessment in Untangle increases

to 1.9 bits in the worst-case workload and 1.0 bits on average. As

usual, Time leaks 3.2 bits per assessment.

To summarize, Time and Untangle provide nearly the same

speedups over Static, but Untangle leaks information at a signifi-

cantly lower rate. Shared delivers slightly lower speedups due to

cache conflicts between workloads. In Untangle, it can be shown

that, of all reassessments across all mixes, 90% areMaintain.

Total Leakage. Table 6 summarizes the leakage of the selected

mixes under Time and Untangle. The table shows both the average

leakage per assessment and the average total leakage per workload.

Across the mixes, the leakage per assessment under Untangle is

78% lower than under Time.

Table 6: Leakage of Mixes 1-4 under Time and Untangle.

Time Untangle

Avg. leakage

per assessment

Avg. total

leakage

Avg. leakage

per assessment

Avg. total

leakage

Mix 1 3.2 bits 637.6 bits 0.4 bits 38.5 bits

Mix 2 3.2 bits 829.7 bits 0.7 bits 65.5 bits

Mix 3 3.2 bits 979.9 bits 0.7 bits 70.0 bits

Mix 4 3.2 bits 1084.1 bits 1.0 bits 96.0 bits

Leakage of Untangle under an active attacker. A powerful

active attacker can put high pressure on the shared LLC, forcing the

victim to make an attacker-visible resizing action at every single

assessment (Section 6.2). Then, the victim leaks at a higher rate. To

study this environment, we measure the leakage under Untangle

without the optimized covert channelmodel of Section 5.3.4.We find

that the average leakage per assessment is 3.8 bits, averaged across

all the workloads from all the mixes. This leakage is higher than

with the optimization (0.7 bits). This worst-case leakage rate is very

rare in a benign execution. However, even if it occurs, Untangle still
upholds the security guarantees: at this increased leakage rate, the

user-defined leakage threshold will be reached sooner, which will

disable further resizings and, at worst, only hurt performance. This

is not a limitation of Untangle, since an active attacker can always

slow down the victim by forcing it to use the smallest partition.

10 RELATEDWORK

Types of Hardware Defenses. Hardware techniques to block mi-

croarchitectural side-channels fall into two categories. Randomization-

based schemes [13, 29, 34, 35, 42, 52, 54, 62] attempt to obfus-

cate victim resource usage. These schemes offer high performance,

but not comprehensive security guarantees. Partitioning-based

schemes [14, 27, 48, 51] provide comprehensive security guarantees,

but static partitioning incurs significant performance overhead [51].

Secure Dynamic Resource Partitioning. SecDCP [51] dynami-

cally partitions cache resources based on a tiered security model:

behaviors of sensitive programs cannot influence resizing decisions;

only non-sensitive programs do. This model does not apply to cases

where all programs are mutually distrusting and in the same se-

curity level (i.e., peers). In contrast, Untangle has a peer security
model.

SecSMT [43] dynamically partitions pipeline resources. It sup-

ports both the tiered and peer security models. In the peer model,

however, SecSMT only loosely bounds the leakage to 1 bit per

assessment (for 2 possible resizing actions). This is leakage overes-

timation. In contrast, Untangle’s leakage bounds are much tighter.

Quantifying the Leakage of Side Channels. Some works quan-

tify the leakage of side channels in the absence of partitioning. Dy-

namic approaches examine specific victim executions and quantify

their leakage trace [50, 53, 55, 56, 59, 60]. Thus, these approaches

cannot produce a worst-case leakage bound. Other approaches use

symbolic execution [3, 10] or abstract interpretation [18, 19, 49].

Although these approaches are sound, they cannot quantify leakage

that depends on program timing.

11 CONCLUSION

This paper presented Untangle, a framework for constructing low-

leakage, high-performance dynamic partitioning schemes. Untangle
formally splits the leakage into leakage from deciding what resizing

action to perform and leakage from deciding when each resizing

action occurs. Based on this breakdown, Untangle makes two con-

tributions. First, it introduces a set of principles for constructing

dynamic partitioning schemes that untangle program timing from

the action leakage. Second, Untangle introduces a novel way to

model the scheduling leakage without analyzing program timing.

With these techniques, Untangle is able to quantify the leakage in a

dynamic resizing scheme in a tighter way than prior work.

We applied Untangle to dynamic partitioning of the last-level

cache. On average, workloads leak 78% less under Untangle than
under a conventional dynamic partitioning approach, for approxi-

mately the same workload performance.
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A COMPUTING THE MAXIMUM DATA RATE

In this appendix, we describe how to compute the maximum data

rate 𝑅𝑚𝑎𝑥 of the covert channel model from Section 5.3.3. Recall

that the maximum data rate 𝑅𝑚𝑎𝑥 is:

𝑅𝑚𝑎𝑥 = max

𝑝 (𝑥 )
{𝐼 (𝑋𝑛

;𝑌𝑛)/𝑛𝑇𝑎𝑣𝑔}, (A.1)

where themaximization is taken over all possible input distributions

𝑝 (𝑥).
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The following discussion assumes that the random delay 𝛿 across

transmissions is independent and identically distributed (IID), and
that the input symbol 𝑋 follows that same input distribution 𝑝 (𝑥)
across transmissions. As a result, the output symbol 𝑌 follows the

same output distribution 𝑝 (𝑦) across transmissions.

To find the maximum data rate 𝑅𝑚𝑎𝑥 , the first step is to compute

the mutual information 𝐼 (𝑋𝑛
;𝑌𝑛). However, computing it directly

from the mutual information definition is not feasible, since the

number of transmissions 𝑛 can be unbounded. Hence, we perform

the following conservative simplification and approximation. By

the definition of mutual information (Equation 2.4), we have

𝐼 (𝑋𝑛
;𝑌𝑛) = 𝐻 (𝑌𝑛) − 𝐻 (𝑌𝑛 |𝑋𝑛). (A.2)

For the first term 𝐻 (𝑌𝑛), which is the joint entropy of 𝑌1, 𝑌2, ..., 𝑌𝑛 ,

we apply the chain rule [12]

𝐻 (𝑌𝑛) = 𝐻 (𝑌1) +
𝑛∑︁
𝑖=2

𝐻 (𝑌𝑖 |𝑌 𝑖−1) (A.3)

≤
𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖 ) = 𝑛𝐻 (𝑌 ) . (A.4)

For the second term 𝐻 (𝑌𝑛 |𝑋𝑛), by the definition of the conditional

entropy (Equation 2.3), we have

𝐻 (𝑌𝑛 |𝑋𝑛) = −
∑︁

𝑥𝑛∈X𝑛

∑︁
𝑦𝑛∈Y𝑛

𝑝 (𝑥𝑛, 𝑦𝑛) log𝑝 (𝑦𝑛 |𝑥𝑛) (A.5)

= −
∑︁

𝑥𝑛∈X𝑛

∑︁
𝛿𝑛∈Δ𝑛

𝑝 (𝑥𝑛, 𝛿𝑛) log 𝑝 (𝛿𝑛 |𝑥𝑛) (A.6)

= −
∑︁

𝑥𝑛∈X𝑛

∑︁
𝛿𝑛∈Δ𝑛

𝑝 (𝑥𝑛)𝑝 (𝛿𝑛) log𝑝 (𝛿𝑛) (A.7)

= −
∑︁

𝛿𝑛∈Δ𝑛

𝑝 (𝛿𝑛) log𝑝 (𝛿𝑛) (A.8)

= 𝐻 (𝛿𝑛) = 𝑛𝐻 (𝛿), (A.9)

where Equation A.6 substitutes 𝑦𝑛 with 𝛿𝑛 because 𝑦𝑛 is a function

of 𝛿𝑛 and 𝑥𝑛 , Equation A.7 holds because 𝛿𝑛 and 𝑥𝑛 are independent,

and Equation A.9 holds because random delays are IID.

Therefore,

𝐼 (𝑋𝑛
;𝑌𝑛) = 𝐻 (𝑌𝑛) − 𝐻 (𝑌𝑛 |𝑋𝑛) ≤ 𝑛(𝐻 (𝑌 ) − 𝐻 (𝛿)) . (A.10)

Using Equation A.10, we can conservatively approximate 𝐼 (𝑋𝑛
;𝑌𝑛)

without considering the whole sequences of 𝑋𝑛
and 𝑌𝑛

. Hence, the

goal becomes finding

𝑅′𝑚𝑎𝑥 = max

𝑝 (𝑥 )
{(𝐻 (𝑌 ) − 𝐻 (𝛿))/𝑇𝑎𝑣𝑔} (A.11a)

subject to

∑︁
𝑥

𝑝 (𝑥) = 1, 𝑝 (𝑥) > 0 (A.11b)

over all possible input distributions 𝑝 (𝑥). 𝑅′𝑚𝑎𝑥 is an upper bound

of 𝑅𝑚𝑎𝑥 . The optimization problem A.11 fits the standard single-

ratio fractional programming (FP) problem [40]. Dinkelbach’s trans-
form [17] can iteratively converge to the optimal input distribution

𝑝 (𝑥) that achieves 𝑅′𝑚𝑎𝑥 .

Dinkelbach’s transform [17]. To simplify the discussion, we first

consider a general FP problem

maximize

𝑧
𝑁 (𝑧)/𝐷 (𝑧) (A.12a)

subject to 𝑧 ∈ Z, (A.12b)

where 𝑁 (𝑧) and 𝐷 (𝑧) are continuous and real-valued functions of

𝑧. Moreover, 𝐷 (𝑧) > 0 for all 𝑧 ∈ Z.

To solve Problem A.12, Dinkelbach’s transform introduces an

auxiliary variable 𝑞 and a helper function given by

𝐹 (𝑞) = max

𝑧∈Z
{𝑁 (𝑧) − 𝑞𝐷 (𝑧)}. (A.13)

The algorithm then iteratively updates 𝑞 according to the following

steps (with the value of 𝑞 in the 𝑖th iteration denoted by 𝑞𝑖 ):

(1) Set 𝑞1 = 0 and 𝑖 = 1.

(2) Solve 𝐹 (𝑞𝑖 ) for 𝑧𝑖 over 𝑧 ∈ Z.

(3) Update 𝑞𝑖+1 = 𝑁 (𝑧𝑖 )/𝐷 (𝑧𝑖 ), increment 𝑖 , and go to Step 2.

The algorithm iterates 𝑛 times until either 𝐹 (𝑞𝑛) < 𝜖 , where 𝜖 is a

positive real number representing the tolerance, or 𝑛 reaches the

maximum number of iterations. Subsequently, 𝑧𝑛 can be used as an

approximate solution to Problem A.12, and 𝑞𝑛 is an approximation

of max𝑧∈Z{𝑁 (𝑧)/𝐷 (𝑧)}.
To find a tight upper bound for max𝑧∈Z{𝑁 (𝑧)/𝐷 (𝑧)} using the

iterative solution 𝑞𝑛 , we observe that 𝐹 (𝑞) is strictly monotonic

decreasing with respect to 𝑞 [17]. Furthermore, it can be proven that

𝑞∗ = max𝑧∈Z{𝑁 (𝑧)/𝐷 (𝑧)} if and only if 𝐹 (𝑞∗) = 0 [17]. Therefore,

we can guess an upper bound 𝑞′ = 𝑞𝑛 +𝛿 , where 𝛿 is a small positive

real number. If we verify that 𝐹 (𝑞′) ≤ 0, then we know that 𝑞′ ≥ 𝑞∗

since 𝐹 (𝑞) is strictly monotonic decreasing. Otherwise, we increase

𝛿 and repeat the process.

Our implementation. We apply Dinkelbach’s transform to solve

Problem A.11 and find an upper bound of 𝑅′𝑚𝑎𝑥 . To do so, we need

to find a distribution 𝑝 (𝑥) that maximizes (𝐻 (𝑌 ) −𝐻 (𝛿)) − 𝑞𝑖𝑇𝑎𝑣𝑔
for each iteration (Step 2 of the algorithm). We begin with analyzing

the concavity of the target function by examining its individual

components. The first term, 𝐻 (𝑌 ), is the entropy of the output

symbols and is a concave function of 𝑝 (𝑦) [12]. Since 𝑝 (𝑦) is a
linear function of 𝑝 (𝑥) (i.e., 𝑝 (𝑦) = ∑

𝑥 𝑝 (𝑦 |𝑥)𝑝 (𝑥)), 𝐻 (𝑌 ) is also a

concave function of 𝑝 (𝑥). The second term 𝐻 (𝛿) is a constant for
a given random noise distribution. The last term, 𝑇𝑎𝑣𝑔 , is a linear

function of 𝑝 (𝑥) by the definition of 𝑇𝑎𝑣𝑔 (Equation 5.7). Therefore,

the target function (𝐻 (𝑌 ) −𝐻 (𝛿)) − 𝑞𝑖𝑇𝑎𝑣𝑔 is concave and can be

optimized with a standard concave programming method.

We implement the optimization using PyTorch’s [33] Adam op-

timizer [26] and have observed convergence. We then guess a tight

upper bound of 𝑅′𝑚𝑎𝑥 with 𝑞′ = 𝑞𝑛 + 𝛿 and use the same optimizer

to empirically verify that 𝐹 (𝑞′) < 0 after 10,000 iterations. We leave

proving 𝐹 (𝑞′) < 0 as an open problem for future work.

B COMPLETE EVALUATION

The complete evaluation results are shown in Figures 11–17.
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Figure 11: LLC sensitivity study of all 36 SPEC17 benchmarks. IPCs are normalized to the IPCs with an 8MB partition. LLC-

sensitive benchmarks are bolded.

exc
ha

ng
e2

_0+

AES
-12

8
lbm

_0
+

AE
S-
25
6

pe
rlb

en
ch_

0+

Cha
cha

20
wr
f_0
+

Ed
DS
A

x2
64

_1+

RSA
-20

48
x2

64
_2+

RSA
-40

96

xa
lan

cbm
k_0

+

EC
DSAxz_

1+

SH
A-2

56

Geo
. M

ea
n

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d 
IP

C

0
1
2
3

Le
ak

ag
e 

pe
r

As
se

ss
m

en
t

(b
it)

128kB
512kB

2MB
4MB
8MB

Pa
rti

tio
n 

Si
ze

Mix 5: 2 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 13.1MB

lbm
_0
+

AE
S-
12
8
mc
f_0
+

AE
S-
25
6

pa
re
st_
0+

Ch
ac
ha
20

pe
rlb

en
ch_

0+

Ed
DSA
wr
f_0
+

RS
A-
20
48
x2

64
_2+

RSA
-40

96

xa
lan

cbm
k_0

+

EC
DSAxz_

1+

SH
A-2

56

Geo
. M

ea
n

STATIC
TIME
UNTANGLE
SHARED

TIME
UNTANGLE

Mix 6: 4 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 19.9MB

TIME
UNTANGLE

0.8
1.0
1.2
1.4
1.6
1.8

0
1
2
3

128kB
512kB
2MB
4MB
8MB

Figure 12: Comparing different partitioning schemes for workloads Mix 5 and Mix 6.
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Figure 13: Comparing different partitioning schemes for workloads Mix 7 and Mix 8.
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Figure 14: Comparing different partitioning schemes for workloads Mix 9 and Mix 10.
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Figure 15: Comparing different partitioning schemes for workloads Mix 11 and Mix 12.
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Figure 16: Comparing different partitioning schemes for workloads Mix 13 and Mix 14.
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Total LLC size: 16MB; Total LLC demand: 25.6MB
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Figure 17: Comparing different partitioning schemes for workloads Mix 15 and Mix 16.

REFERENCES

[1] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and N. Tuveri. 2019.

Port Contention for Fun and Profit. In 2019 IEEE Symposium on Security and
Privacy (SP). 870–887.

[2] Aslan Askarov, Danfeng Zhang, and Andrew C Myers. 2010. Predictive black-

box mitigation of timing channels. In Proceedings of the 17th ACM conference on
Computer and communications security. 297–307.

[3] Qinkun Bao, Zihao Wang, Xiaoting Li, James R Larus, and Dinghao Wu. 2021.

Abacus: Precise side-channel analysis. In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE). IEEE, 797–809.

[4] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable software-defined

caches. In Proceedings of the 22nd international conference on Parallel architectures
and compilation techniques. IEEE, 213–224.

[5] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil

Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos V. Rozas, Adam

Morrison, Frank McKeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Ab-

hishek Basak, and Alaa R. Alameldeen. 2021. Speculative interference attacks:

breaking invisible speculation schemes. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1046–1060.

[6] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-

Spectre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
785–800.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News (2011).

[8] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.

2019. CaSym: Cache aware symbolic execution for side channel detection and

mitigation. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE.
[9] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:

Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering. 41–42.

[10] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. 2019.

Quantifying the information leakage in cache attacks via symbolic execution.

ACM Transactions on Embedded Computing Systems (TECS) 18, 1 (2019), 1–27.
[11] OpenSSL Contributors. 2022. OpenSSL 3.0.5. https://github.com/openssl/openssl/

releases/tag/openssl-3.0.5.

[12] Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory (2nd
edition). Wiley.

[13] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Secure TLBs. In Proceedings
of the 46th International Symposium on Computer Architecture (ISCA’19).

[14] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:

Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In

29th USENIX Security Symposium (USENIX Security 20).
[15] Ghada Dessouky, Emmanuel Stapf, Pouya Mahmoody, Alexander Gruler, and

Ahmad-Reza Sadeghi. 2022. Chunked-Cache: On-Demand and Scalable Cache

Isolation for Security Architectures. In 29th Annual Network and Distributed
System Security Symposium, NDSS.

[16] Peter W Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S Emer,

and Mengjia Yan. 2022. DAGguise: mitigating memory timing side channels. In

Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 329–343.

[17] Werner Dinkelbach. 1967. On nonlinear fractional programming. Management
science 13, 7 (1967), 492–498.

[18] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke.

2013. CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In

Proceedings of the 22th USENIX Security Symposium. 431–446.

[19] Goran Doychev and Boris Köpf. 2017. Rigorous analysis of software countermea-

sures against cache attacks. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 406–421.

[20] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,

and Srinivas Devadas. 2014. Suppressing the oblivious RAM timing channel

while making information leakage and program efficiency trade-offs. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 213–224.

[21] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation

Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.

In USENIX Security.
[22] The PostgreSQL Global Development Group. 2023. PostgreSQL: The world’s

most advanced open source database. https://www.postgresql.org/.

[23] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279–
299.

[24] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:

Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[25] Intel. 2021. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual. https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html.

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[27] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative

execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974–987.

[28] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks

in cloud computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406–418.

[29] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’14).

[30] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and

Nathaniel Nystrom. 2006. Jif 3.0: Java information flow. http://www.cs.cornell.

edu/jif

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In Topics in Cryptology – CT-RSA 2006, David
Pointcheval (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–20.

[32] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord of

the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are

https://github.com/openssl/openssl/releases/tag/openssl-3.0.5
https://github.com/openssl/openssl/releases/tag/openssl-3.0.5
https://www.postgresql.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

Practical. In 30th USENIX Security Symposium (USENIX Security 21).
[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[34] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-

tematic Analysis of Randomization-based Protected Cache Architectures. In IEEE
Symposium on Security and Privacy (S&P’21).

[35] Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address

cache. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 360–371.

[36] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared caches.

In 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE, 423–432.

[37] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi. 2021. Bespoke

cache enclaves: Fine-grained and scalable isolation from cache side-channels via

flexible set-partitioning. In 2021 International Symposium on Secure and Private
Execution Environment Design (SEED). IEEE, 37–49.

[38] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,

and Daniel Gruss. 2020. ConTExT: A Generic Approach for Mitigating Spectre.

In 27th Annual Network and Distributed System Security Symposium (NDSS).
[39] Brian C Schwedock and Nathan Beckmann. 2020. Jumanji: The Case for Dynamic

NUCA in the Datacenter. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 665–680.

[40] Kaiming Shen and Wei Yu. 2018. Fractional programming for communication

systems—Part I: Power control and beamforming. IEEE Transactions on Signal
Processing 66, 10 (2018), 2616–2630.

[41] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level

information-flow tracking system for Android runtime. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 331–342.

[42] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscating

Cache Conflicts with Localized Randomization. In 27th Annual Network and
Distributed System Security Symposium (NDSS).

[43] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.

SecSMT: Securing SMT processors against contention-based covert channels. In

USENIX Security Symposium.

[44] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos. 2022. TLB;DR:

Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering.

In 31st USENIX Security Symposium (USENIX Security 22). 989–1007.
[45] Mohit Tiwari, HassanM. G.Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.

Chong, and Timothy Sherwood. 2009. Complete information flow tracking from

the gates up. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS. ACM, 109–

120.

[46] Daniel Townley, KeremArıkan, YuDavid Liu, Dmitry Ponomarev, and Oguz Ergin.

2022. Composable Cachelets: Protecting Enclaves from Cache Side-Channel

Attacks. In 2022 USENIX Security Symposium.

[47] Daniel Townley and Dmitry Ponomarev. 2019. SMT-COP: Defeating Side-Channel

Attacks on Execution Units in SMT Processors. In 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT’19). 43–54.

[48] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Diestelhorst,

Bashir M. Al-Hashimi, and Geoff V. Merrett. 2019. BRB: Mitigating Branch

Predictor Side-Channels. In IEEE International Symposium on High Performance
Computer Architecture (HPCA’19).

[49] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao

Wu. 2019. Identifying Cache-Based Side Channels through Secret-Augmented

Abstract Interpretation. In 28th USENIX security symposium (USENIX security 19).
657–674.

[50] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017.

CacheD: Identifying Cache-Based Timing Channels in Production Software. In

26th USENIX Security Symposium (USENIX Security 17). 235–252.
[51] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward

Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel

protection. In Proceedings of the 53rd Annual Design Automation Conference. 1–6.
[52] Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture. 494–505.

[53] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Man-

gard, and Georg Sigl. 2018. DATA–Differential Address Trace Analysis: Finding

Address-based Side-Channels in Binaries. In 27th USENIX Security Symposium
(USENIX Security 18). 603–620.

[54] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via

Cache Set Randomization. In USENIX Security.
[55] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018.

Microwalk: A framework for finding side channels in binaries. In Proceedings of
the 34th Annual Computer Security Applications Conference. 161–173.

[56] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. Stacco:

Differentially analyzing side-channel traces for detecting SSL/TLS vulnerabilities

in secure enclaves. In Proceedings of the 2017 ACM SIGSACConference on Computer
and Communications Security. 859–874.

[57] Zhemin Yang and Min Yang. 2012. Leakminer: Detect information leakage on

Android with static taint analysis. In 2012 Third World Congress on Software
Engineering. IEEE, 101–104.

[58] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX
Security Symposium.

[59] Yuanyuan Yuan, Zhibo Liu, and Shuai Wang. 2023. CacheQL: Quantifying and

Localizing Cache Side-Channel Vulnerabilities in Production Software. In 32nd
USENIX Security Symposium (USENIX Security 23).

[60] Yuanyuan Yuan, Qi Pang, and ShuaiWang. 2022. Automated side channel analysis

of media software with manifold learning. In 31st USENIX Security Symposium
(USENIX Security 22). 4419–4436.

[61] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2011. Predictive mitiga-

tion of timing channels in interactive systems. In Proceedings of the 18th ACM
conference on Computer and communications security. 563–574.

[62] Lutan Zhao, Peinan Li, Rui Hou, Michael C. Huang, Jiazhen Li, Lixin Zhang,

Xuehai Qian, and DanMeng. 2021. A Lightweight IsolationMechanism for Secure

Branch Predictors. In 58th ACM/IEEE Design Automation Conference (DAC’21).

Received 2022-10-20; accepted 2023-01-19


	Abstract
	1 Introduction
	2 Background
	2.1 Microarchitectural Side Channels and Defenses
	2.2 Entropy and Mutual Information

	3 Leakage of Dynamic Partitioning Schemes
	3.1 Generalizing Dynamic Partitioning Schemes
	3.2 Leakage with Dynamic Partitioning
	3.3 Limitations of Prior Work
	3.4 Our Approach and Challenges

	4 Threat Model
	5 Untangle: Secure Dynamic Partitioning
	5.1 Decoupling the Two Types of Leakage
	5.2 Eliminating Action Leakage
	5.3 Bounding Scheduling Leakage

	6 Discussion
	6.1 Timing-Dependent Dynamic Instruction Sequences
	6.2 Other Attacks
	6.3 Partitioning Other Hardware Resources
	6.4 Extending the Threat Model
	6.5 Using Existing Static Analyses for Annotation

	7 Hardware Implementation
	8 Experimental Methodology
	9 Evaluation
	10 Related Work
	11 Conclusion
	Acknowledgments
	A Computing the Maximum Data Rate
	B Complete Evaluation
	References

