
Fast and Scalable Rendezvousing

Yehuda Afek, Michael Hakimi, and Adam Morrison

School of Computer Science
Tel Aviv University

Abstract. In an asymmetric rendezvous system, such as an unfair syn-
chronous queue and an elimination array, threads of two types, consumers
and producers, show up and are matched, each with a unique thread of
the other type. Here we present a new highly scalable, high through-
put asymmetric rendezvous system that outperforms prior synchronous
queue and elimination array implementations under both symmetric and
asymmetric workloads (more operations of one type than the other).
Consequently, we also present a highly scalable elimination-based stack.

1 Introduction

A common abstraction in concurrent programming is that of an asymmetric ren-
dezvous mechanism. In this mechanism, there are two types of threads that show
up, e.g., producers and consumers. The goal is to match pairs of threads, one of
each type, and send them away. Usually the purpose of the pairing is for a pro-
ducer to hand over a data item (such as a task to perform) to a consumer. The
asymmetric rendezvous abstraction encompasses both unfair synchronous queues
(or pools) [12] which are a key building block in Java’s thread pool implementa-
tion and other message-passing and hand-off designs [2, 12], and the elimination
technique [13], which is used to scale concurrent stacks and queues [7, 11].

In this paper we present a highly scalable asymmetric rendezvous algorithm
that improves the state of the art in both unfair synchronous queue and elim-
ination algorithms. It is based on a distributed scalable ring structure, unlike
Java’s synchronous queue which relies on a non-scalable centralized structure. It
is nonblocking, in the following sense: if both producers and consumers keep tak-
ing steps, some rendezvous operation is guaranteed to complete. (This is similar
to the lock-freedom property [8], while taking into account the fact that “it takes
two to tango”, i.e., both types of threads must take steps to successfully ren-
dezvous.) It is also uniform, in that no thread has to perform work on behalf of
other threads. This is in contrast to the flat combining (FC) based synchronous
queues of Hendler et al. [6], which are blocking and non-uniform.

Our algorithm is based on a simple and remarkably effective idea: the algo-
rithm itself is asymmetric. A consumer captures a node in the ring and waits
there for a producer, while a producer actively seeks out waiting consumers on
the ring. The algorithm utilizes a new ring adaptivity scheme that dynamically
adjusts the ring size, leaving enough room for all the consumers while avoiding
empty nodes that producers will futileness search. Because of the adaptive ring

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 16–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast and Scalable Rendezvousing 17

size, we can expect the nodes to be densely populated, and thus a producer that
starts to scan the ring and finds a node to be empty, it is likely that a consumer
will arrive there shortly. Yet simply waiting at this node, hoping that this will
occur, makes the algorithm prone to timeouts and impedes progress. We solve
this problem by introducing peeking a technique that lets the producer enjoy the
best of both worlds: as the producer traverses the ring, it continues to peek at
its initial node; if a consumer arrives there, the producer immediately tries to
partner with it, thereby minimizing the amount of wasted work.

Our algorithm avoids two problems found in prior elimination algorithms that
did not exploit asymmetry. In these works [1, 7, 13], both types of threads would
pick a random node in the hope of meeting the right kind of partner. Thus these
works suffer from false matches, when two threads of the same type meet, and
from timeouts, when a producer and a consumer both pick distinct nodes and
futilely wait for a partner to arrive. Most importantly, our algorithm performs
extremely well in practice. On an UltraSPARC T2 Plus multicore machine, it
outperforms Java’s synchronous queue by up to 60×, the FC synchronous queue
by up to 6×, and, when used as the elimination layer of a concurrent stack,
yields 3.5× improvement over Hendler et al.’s FC stack [5]. On an Intel Nehalem
multicore (supporting less parallelism), our algorithm surpasses the Java pool
and the FC pool by 5× and 2×, respectively.

The asymmetric rendezvous problem and our progress property are formally
defined in Sect. 2. Section 3 describes related work. The algorithm is presented
in Sect. 4 and empirically evaluated in Sect. 5. We conclude in Sect. 6.

2 Preliminaries

Asymmetric rendezvous: In the asymmetric rendezvous problem there are threads
of two types, producers and consumers. Producers perform put(x) operations
that return OK. Consumers perform get() operations that return some item
x handed off by a producer. Producers and consumers show up and must be
matched with a unique thread of the other type, such that a producer invoking
put(x) and a consumer whose get() returns x must be active concurrently.

Progress: To reason about progress while taking into account that rendezvous
inherently requires waiting, we consider both types of operations’ combined be-
havior. An algorithm A that implements asymmetric rendezvous is nonblocking
if some operation completes after enough concurrent steps of threads perform-
ing put() operations and of threads performing get(). Note that, as with the
definition of the lock-freedom property [8], there is no fixed a priori bound on
the number of steps after which some operation must complete. Rather, we rule
out implementations that make no progress at all, i.e., implementations where
in some executions, both types of threads take steps infinitely often and yet no
operation completes.

18 Y. Afek, M. Hakimi, and A. Morrison

3 Related Work

Synchronous queues: A synchronous queue using three semaphores was described
by Hanson [4]. Java 5 includes a coarse-grained locking synchronous queue, which
was superseded in Java 6 by Scherer, Lea and Scott’s algorithm [12]. Their algo-
rithm is based on a Treiber-style nonblocking stack [16] that at all times contains
rendezvous requests by either producers or consumers. A producer finding the
stack empty or containing producers pushes itself on the stack and waits, but
if it finds the stack holding consumers, it attempts to partner with the con-
sumer at the top of the stack (consumers behave symmetrically). This creates a
sequential bottleneck. Motivated by this, Afek, Korland, Natanzon, and Shavit
described elimination-diffracting (ED) trees [1], a randomized distributed data
structure where arriving threads follow a path through a binary tree whose inter-
nal nodes are balancer objects [14] and the leaves are Java synchronous queues.
In each internal node a thread accesses an elimination array in attempt to avoid
descending down the tree. Recently, Hendler et al. applied the flat combining
paradigm [5] to the synchronous queue problem [6], describing single-combiner
and parallel versions. In a single combiner FC pool, a thread attempts to become
a combiner by acquiring a global lock on the queue. Threads that fail to grab
the lock instead post their request and wait for it to be fulfilled by the combiner,
which matches between the participating threads. In the parallel version there
are multiple combiners that each handle a subset of participating threads and
then try to satisfy unmatched requests in their subset by entering an exchange
FC synchronous queue.

Elimination: The elimination technique is due to Touitou and Shavit [13]. Hendler,
Shavit and Yerushalmi used elimination with an adaptive scheme inspired by
Shavit and Zemach [15] to obtain a scalable linearizable stack [7]. In their scheme
threads adapt locally: each thread picks a slot to collide in from sub-range of the
collision layer centered around the middle of the array. If no partner arrives, the
thread eventually shrinks the range. Alternatively, if the thread sees a waiting
partner but fails to collide due to contention, it increases the range. In our adap-
tivity technique, described in Sect. 4, threads also make local decisions, but with
global impact: the ring is resized. Moir et al. used elimination to scale a FIFO
queue [11]. In their algorithm an enqueuer picks a random slot in an elimination
array and waits there for a dequeuer; a dequeuer picks a random slot, giving
up immediately if that slot is empty. It does not seek out waiting enqueuers.
Scherer, Lea and Scott applied elimination in their symmetric rendezvous sys-
tem [9], where there is only one type of a thread and so the pairing is between
any two threads that show up. Scherer, Lea and Scott also do not discuss adap-
tivity, though a later version of their symmetric exchanger channel, which is part
of Java [10], includes a scheme that resizes the elimination array. However, here
we are interested in the more difficult asymmetric rendezvous problem, where
not all pairings are allowed.

Fast and Scalable Rendezvousing 19

4 Algorithm Description

The pseudo code of the algorithm is provided in Fig. 1. The main data structure
(Fig. 1a) is a ring of nodes. The ring is accessed through a central array ring,
where ring[i] points to the i-th node in the ring.1 A consumer attempts to
capture a node in the ring and waits there for a producer, whereas a producer
scans the ring, seeking a waiting consumer. Therefore, to guarantee progress the
ring must have room for all the consumers that can be active simultaneously.
(We expand on this in Sect. 4.4.) For simplicity, we achieve this by assuming the
number of threads in the system, T , is known in advance and pre-allocating a
ring of size T . In Sect. 4.3 we sketch a variant in which the maximum number
of threads that can show up is not known in advance, i.e., adaptive also to the
number of threads.

Conceptually each ring node should only contain an item pointer that encodes
the node’s state:

1. Free: item points to a global reserved object, FREE, that is distinct from
any object a producer may enqueue. Initially all nodes are free.

2. Captured by consumer: item is NULL.
3. Holding data (of a producer): item points to the data.

In practice, ring traversal is more efficient by following a pointer from one node to
the next rather than the alternative, traversing the array. Array traversal suffers
from two problems. First, in Java reading from the next array cell may result in
a cache miss (it is an array of pointers), whereas reading from the (just accessed)
current node does not. Second, maintaining a running array index requires an
expensive test+branch to handle index boundary conditions or counting modulo
the ring size, while reading a pointer is cheap. The pointer field is named prev,
reflecting that node i points to node i−1. This allows the ring to be resized with
a single atomic compareAndSet (CAS) that changes ring[1]’s (the head’s) prev
pointer. To support mapping from a node to its ring index, each node holds its
ring index in a read-only index field.

For the sake of clarity we start in Sect. 4.1 by discussing the algorithm with-
out adaptation of the ring size. The adaptivity code, however, is included and
is marked by a � symbol in Fig. 1, and is discussed in Sect. 4.2. Section 4.3
sketches some practically-motivated extensions to the algorithm, e.g. support-
ing timeouts and adaptivity to the total number of threads. Finally, Sect. 4.4
discusses correctness and progress.

4.1 Nonadaptive Algorithm

Producers (Fig. 1b): A producer searches the ring for a waiting consumer, and
attempts to hand its data to it. The search begins at a node, s, obtained by
hashing the thread’s id (Line 19). The producer passes the ring size to the hash

1 This reflects Java semantics, where arrays are of references to objects and not of
objects themselves.

20 Y. Afek, M. Hakimi, and A. Morrison

function as a parameter, to ensure the returned node falls within the ring. It then
traverses the ring looking for a node captured by a consumer. Here the producer
periodically peeks at the initial node s to see if it has a waiting consumer (Lines
24-26); if not, it checks the current node in the traversal (Lines 27-30). Once
a captured node is found, the producer tries to deposit its data using a CAS
(Lines 25 and 28). If successful, it returns.

1 struct node {
2 item : pointer to object
3 index : node’s index in the ring
4 prev : pointer to previous ring node
5 }
6

7 shared vars:
8 ring : array [1,...,T] of pointers to nodes,
9 ring [1]. prev = ring[T],

10 ring[i]. prev = ring[i−1] (i > 1)
11

12 utils :
13 getRingSize() {
14 node tail := ring [1]. prev
15 return tail.index
16 }

(a) Global variables

17 put(threadId, object item) {
18

19 node s := ring[hash(threadId,
20 getRingSize())]
21 node v := s.prev
22

23 while (true) {
24 if (s.item == NULL) {
25 if (CAS(s.item, NULL, item))
26 return OK
27 } else if (v.item == NULL) {
28 if (CAS(v.item, NULL, item))
29 return OK
30 v := v.prev
31 }
32 }
33 }

(b) Producer code

34 get(threadId) {
35 int ringsize , busy ctr, ctr := 0
36 node s, u
37

38 ringsize := getRingSize()
39 s := ring[hash(threadId, ringsize)]
40 (u,busy ctr) := findFreeNode(s,ringsize)
41 while (u.item == NULL) {
42 � ringsize := getRingSize()
43 � if (u.index > ringsize and
44 � CAS(u.item, NULL, FREE) {
45 � s := ring[hash(threadId, ringsize)]
46 � (u,busy ctr) := findFreeNode(s, ringsize)
47 � }
48 � ctr := ctr + 1
49 }
50

51 item := u.item
52 u.item := FREE
53 � if (busy ctr < Td and ctr > Tw and ringsize>1)
54 � // Try to decrease ring
55 � CAS(ring[1].prev, ring[ringsize], ring [ringsize−1])
56 return item
57 }
58

59 findFreeNode(node s, int ringsize) {
60 � int busy ctr := 0
61 while (true) {
62 if (s .item == FREE and
63 CAS(s.item, FREE, NULL))
64 return (s,busy ctr)
65 s := s.prev
66 � busy ctr := busy ctr + 1
67 � if (busy ctr > Ti·ringsize) {
68 � if (ringsize < T) // Try to increase ring
69 � CAS(ring[1].prev, ring[ringsize], ring [ringsize+1])
70 � ringsize := getRingSize()
71 � busy ctr := 0
72 � }
73 }
74 }

(c) Consumer code

Fig. 1. Asymmetric rendezvous algorithm. Lines beginning with � handle the adaptiv-
ity process.

Consumers (Fig. 1c): A consumer searches the ring for a free node and attempts
to capture it by atomically changing its item pointer from FREE to NULL using
a CAS. Once a node is captured, the consumer spins, waiting for a producer
to arrive and deposit its item. Similarly to the producer, a consumer hashes its
id to obtain a starting point for its search, s (Line 39). The consumer calls the
findFreeNode procedure to traverse the ring from s until it captures and returns
node u (Lines 59-74). (Recall that the code responsible for handling adaptivity,
which is marked by a �, is ignored for the moment.) The consumer then waits

Fast and Scalable Rendezvousing 21

until a producer deposits an item in u (Lines 41-49), frees u (Lines 51-52) and
returns (Line 56).

4.2 Adding Adaptivity

If the number of active consumers is smaller than the ring size, producers may
need to traverse through a large number (linear in the ring size) of empty nodes
before finding a match. It is therefore important to decrease the ring size if the
concurrency level is low. On the other hand, if there are more concurrent threads
than the ring size (high contention), it is important to dynamically increase the
ring. The goal of the adaptivity scheme is to keep the ring size “just right” and
allow threads to complete their operations within a constant number of steps.

The logic driving the resizing process is in the consumer’s code, which detects
when the ring is overcrowded or sparsely populated and changes the size accord-
ingly. If a consumer fails to capture many nodes in findFreeNode() (due to not
finding a free node or having its CASes fail), then the ring is too crowded and
should be increased. The exact threshold is determined by an increase threshold
parameter, Ti. If findFreeNode() fails to capture more than Ti · ring size it
attempts to increase the ring size (Lines 67-72). To detect when to decrease the
ring, we observe that when the ring is sparsely populated, a consumer usually
finds a free node quickly, but then has to wait longer until a producer finds
it. Thus, we add a wait threshold, Tw, and a decrease threshold, Td. If it takes
a consumer more than Tw iterations of the loop in Lines 41-49 to successfully
complete the rendezvous, but it successfully captured its ring node in up to Td

steps, then it attempts to decrease the ring size (Lines 53-55).
Resizing the ring is made by CASing the prev pointer of the ring head

(ring[1]) from the current tail of the ring to the tail’s successor (to increase
the ring size) or its predecessor (to decrease the ring size). If the CAS fails, then
another thread has resized the ring and the consumer continues. The head’s
prev pointer is not a sequential bottleneck because resizing is a rare event in
stable workloads. Even if resizing is frequent, the thresholds ensure that the cost
of the CAS is negligible compared to the other work performed by the algo-
rithm, and resizing pays-off in terms of better ring size which leads to improved
performance.

Handling consumers left out of the ring: A decrease in the ring size may leave a
consumer’s captured node outside of the current ring. Therefore, each consumer
periodically checks if its node’s index is larger than the current ring size (Line
43). If so, it tries to free its node using a CAS (Line 44) and find itself a new
node in the ring (Lines 45-46). However, if the CAS fails, then a producer has
already deposited its data in this node and so the consumer can take the data
and return (this will be detected in the next execution of Line 41).

4.3 Pragmatic Extensions and Considerations

Here we sketch a number of extensions that might be interesting in certain
practical scenarios.

22 Y. Afek, M. Hakimi, and A. Morrison

Timeout support: Aborting a rendezvous that is taking more than a specified
period of time is a useful feature. Unfortunately, our model has no notion of
time and so we do not model the semantics of timeouts. We simply describe
the details for an implementation that captures the intuitive notion of a time-
out. The operations take a parameter specifying the desired timeout, if any.
Timeout expiry is then checked in each iteration of the main loop in put(),
get() and findFreeNode(). If the timeout expires, a producer or a consumer in
findFreeNode() aborts by returning. A consumer that has captured a ring node
cannot abort before freeing the node by CASing its item from NULL back to
FREE. If the CAS fails, the consumer has found a match and its rendezvous has
completed successfully. Otherwise its abort attempt succeeded and it returns.

Avoiding ring pre-allocation: Ring pre-allocation requires in advance knowledge
of the maximum number of threads that can simultaneously run, which may
not be known a priori. The maximum ring size can be dynamic by allowing
threads to add and delete nodes from the ring. To do this we exploit the Java
semantics, which forces the ring variable to be a pointer to the array. This allows
a consumer to allocate a new ring (larger or smaller) and CAS ring to point to
it. Active threads periodically check if ring has changed and move themselves
to the new ring. We omit the details due to space limitations.

Busy waiting: Both producers and consumers rely on busy waiting, which may
not be appropriate for blocking applications that wish to let a thread sleep until
a partner arrives. Being blocking, such applications may not need our strong
progress guarantee. We plan to extend our algorithm to blocking scenarios in
future work.

4.4 Correctness

We consider the point at which both put(x) and the get() that returns x take
effect as the point where the producer successfully CASes x into some node’s
item pointer (Line 25 or 28). The algorithm thus clearly meets the asymmetric
rendezvous semantics. We next sketch a proof that, assuming threads do not
request timeouts, the algorithm is nonblocking (as defined in Sect. 2). Assume
towards a contradiction that there is an execution in which both producers and
consumers take infinitely many steps and yet no rendezvous successfully com-
pletes. Since there is a finite number of threads T , there must be a producer/-
consumer pair, p and c, each of which runs forever without completing. Suppose
c never captures a node. Then eventually the ring size must become T . This is
because after c completes a cycle around the ring in findFreeNode(), it tries
to increase the ring size (say the increase threshold is 1). c’s resizing CAS (Line
69) either succeeds or fails due to another CAS that succeeded in increasing,
because the ring size decreasing implies a rendezvous completing, which by our
assumption does not occur. Once the ring size reaches T , the ring has room
for c (since T is the maximum number of threads). Thus c fails to capture a
node only by encountering another consumer twice at different nodes, implying

Fast and Scalable Rendezvousing 23

this consumer completes a rendezvous, a contradiction. It therefore cannot be
that c never captures a node. Instead, c captures some node but p never finds
c on the ring, implying that c has been left out of the ring by some decreasing
resize. But, since from that point on, the ring size cannot decrease, c eventually
executes Lines 43-46 and moves itself into p’s range, where either p or another
producer rendezvous with it, a contradiction.

5 Evaluation

We evaluate the performance of our algorithm in comparison with prior unfair
synchronous queues (Sect. 5.1) and demonstrate the performance gains due to
the adaptivity and the peeking techniques). Then we evaluate the resulting stack
performance against other concurrent stacks (Sect. 5.2).

Experimental setup: Evaluation is carried out on both a Sun SPARC T5240 and
on an Intel Core i7. The Sun has two UltraSPARC T2 Plus (Niagara II) chips.
Each is a multithreading (CMT) processor, with 8 1.165 HZ in-order cores with
8 hardware strands per core, for a total of 64 hardware strands per chip. The
Intel Core i7 920 (Nehalem) processor has four 2.67GHz cores, each multiplexing
2 hardware threads. Both Java and C++ implementations are tested.2 Due to
space limitations, we focus more on the Sun platform which offers more paral-
lelism and better insight into the scaling behavior of the algorithm. Unless stated
otherwise, results are averages of ten 10-second runs of the Java implementation
on an idle machine, resulting in very little variance.

Adaptivity parameters used: Ti = 1, Td = 2, and Tw = 64. A modulo hash
function, hash(t) = t mod ringsize, is used since we don’t know anything
about the thread ids and consider them as uniformly random. If however thread
ids are sequential the modulo hash achieves perfect coverage of the ring with few
collisions and helps in pairing producers/consumers that often match with each
other. We evaluate these effects by testing our algorithms with both random and
sequential thread ids throughout all experiments.

5.1 Synchronous Queues

Our algorithm (marked AdaptiveAR in the figures) is compared against the
Java unfair synchronous queue (JDK), ED tree, and FC synchronous queues. The
original authors’ implementation of each algorithm is used.3 We tested both JDK
2 Java benchmarks were ran with HotSpot Server JVM, build 1.7.0-ea-b137. C++

benchmarks were compiled with Sun C++ 5.9 on the SPARC machine and with gcc

4.3.3 (-O3 optimization setting) on the Intel machine. In the C++ experiments we
used the Hoard 3.8 [3] memory allocator.

3 We remove all statistics counting from the code and use the latest JVM. Thus,
the results we report are usually slightly better than those reported in the original
papers. On the other hand, we fixed a bug in the benchmark of [6] that miscounted
timed-out operations of the Java pool as successful operations; thus the results we
report for it are sometimes lower.

24 Y. Afek, M. Hakimi, and A. Morrison

and JDK-no-park: a version that always uses busy waiting instead of yielding
the CPU (so-called parking), and report its results for the workloads where it
improves upon the standard Java pool (as was done in [6]).

Producer/Consumer Throughput

N : N producer/consumer symmetric workload: We measure the throughput
at which data is transferred from N producers to N consumers. We focus first
on single chip results in Figs. 2a and 2e. The Nehalem results are qualitatively
similar to the low thread counts SPARC results. Other than our algorithm, the
parallel FC pool is the only algorithm that shows meaningful scalability. Our
rendezvous algorithm outperforms the parallel FC queue by 2 × −3× in low
concurrency settings, and by up to 6 at high thread counts.

Hardware performance counter analysis (Fig. 2b-2d) shows that our ren-
dezvous completes in less than 170 instructions, of which one is a CAS. In the
parallel FC pool, waiting for the combiner to pick up a thread’s request, match
it, and report back with the result, all add up. While the parallel FC pool hardly

Fig. 2. Rendezvousing between N pairs of producers and consumers. Performance
counter plots are logarithmic scale. L2 misses are not shown; all algorithms but JDK
had less than one L2 miss/operation on average.

Fast and Scalable Rendezvousing 25

performs CASes, it does require between 3× to 6× more instructions to complete
an operation. Similarly, ED tree’s rendezvous operations require 1000 instruc-
tions to complete and incur more cache misses as concurrency increases. Our
algorithm therefore outperforms it by at least 6× and up to 10× at high thread
counts. The Java synchronous queue fails to scale in this benchmark. Figures 2b
and 2c show its serializing behavior. Due to the number of failed CAS operations
on the top of the stack (and consequent retries), it requires more instructions
to complete an operation as concurrency grows. Consequently, our algorithm
outperforms it by more than 60×.

Adaptivity and peeking impact: From Fig. 2c we deduce that ring resizing oper-
ations are a rare event, leading to an average number of one CAS per operation.
Thus resizing does not adversely impact performance here. Throughput of the
algorithm with and without peeking is compared in Figure 4a. While peeking
has little effect at low thread counts, it improves performance by as much as
47% once concurrency increases. Because, due to adaptivity, a producer’s initial
node being empty usually means that a consumer will arrive there shortly, and
peeking increasing the chance of pairing with that consumer. Without it a pro-
ducer has a higher chance of colliding with another producer and consequently
spending more instructions (and CASes) to complete a rendezvous.

NUMA test: When utilizing both processors of the Sun machine the operating
system’s default scheduling policy is to place threads round-robin on both chips.
Thus, the cross-chip overhead is noticeable even at low thread counts, as Fig.
2f shows. Since the threads no longer share a single L2 cache, they experience
an increased number of L1 and L2 cache misses; each such miss is expensive,
requiring coherency protocol traffic to the remote chip. The effect is catastrophic
for serializing algorithms; for example, the Java pool experiences a 10× drop in
throughput. The more concurrent algorithms, such as parallel FC and ours, show
scaling trends similar to the single chip ones, but achieve lower throughput. In
the rest of the section we therefore focus on the more interesting single chip case.

1 : N asymmetric workloads: The throughput of one producer rendezvousing
with a varying number of consumers is presented in Figs. 3a and 4c. Nehalem
results (Fig. 4c) are again similar and not discussed in detail. Since the through-
put is bounded by the rate of a single producer, little scaling is expected and
observed. However, for all algorithms (but the ED tree) it takes several con-
sumers to keep up with a single producer. This is because the producer hands
off an item and completes, whereas the consumer needs to notice the rendezvous
has occurred. And while the single consumer is thus busy the producer cannot
make progress on a new rendezvous. However, when more consumers are ac-
tive, the producer can immediately return and find another (different) consumer
ready to rendezvous with. Unfortunately, as shown in Figure 3a, most algorithms
do not sustain this peak throughput. The FC pools have the worst degradation
(3.74× for the single version, and 3× for the parallel version). The Java pool’s
degradation is minimal (13%), and it along with the ED tree achieves close to

26 Y. Afek, M. Hakimi, and A. Morrison

Fig. 3. Single producer and N consumers rendezvousing. Left: Default OS scheduling.
Right: OS constrained to not co-locate producer on same cores as consumers.

peak throughput even at high thread counts. Yet this throughput is low: our
algorithm outperforms the Java pool by up to 3× and the ED tree by 12× for
low consumer counts and 6× for high consumer counts, despite degrading by
23% − 28% from peak throughput.

Why our algorithm degrades is not obvious. The producer has its pick of
consumers in the ring and should be able to complete a hand-off immediately.
The reason for this degradation is not algorithmic, but due to contention on chip
resources. A Niagara II core has two pipelines, each shared by four hardware
strands. Thus, beyond 16 threads some threads must share a pipeline — and
our algorithm indeed starts to degrade at 16 threads. To prove that this is
the problem, we present in Fig. 3b runs where the producer runs on the first
core and consumers are scheduled only on the remaining seven cores. While the

Fig. 4. Top left: Impact of peeking on N : N rendezvous. Top right: Rendezvous-
ing between N producers and a single consumer. Bottom: Intel 1 : N and N : 1
producer/consumer workloads throughput.

Fast and Scalable Rendezvousing 27

trends of the other algorithms are unaffected, our algorithm now maintains peak
throughput through all consumer counts.

Results from the opposite workload (which is less interesting in real life sce-
narios), where multiple producers try to serve a single consumer, are given in
Figs. 4b and 4d. Here the producers contend over the single consumer node and
as a result the throughput of our algorithm degrades as the number of producers
increases (as do the FC pools). Despite this degradation, our algorithm outper-
forms the Java pool up to 48 threads (falling behind by 15% at 64 threads) and
outperforms the FC pools by about 2×.

Bursts: To evaluate the effectiveness of our adaptivity technique, we measure
the rendezvous rate in a workload that experiences bursts of activity (on the
Sun machine). For ten seconds the workload alternates every second between
31 thread pairs and 8 pairs. The 63rd hardware strand is used to take ring
size measurement. Our sampling thread continuously reads the ring size, and
records the time whenever the current read differs from the previous read. Fig-
ure 5a depicts the result, showing how the algorithm continuously resizes its
ring. Consequently, it successfully benefits from the available parallelism in this
workload, outperforming the Java pool by at least 40× and the parallel FC pool
by 4× to 5×.

Varying arrival rate: In practice, threads do some work between rendezvouses.
We measure how the throughput of the producer/consumer pairs workload is
affected when the thread arrival rate decreases due to increasingly larger amounts

Fig. 5. Top: Synchronous queue bursty workload throughput. Left: Our algorithm’s
ring size over time (sampled continuously using a thread that does not participate in
the rendezvousing). Right: throughput. Bottom: N : N rendezvousing with decreasing
arrival rate due to increasing amount of work time operations.

28 Y. Afek, M. Hakimi, and A. Morrison

of time spent doing “work” before each rendezvous. Figures 5c and 5d show that
as the work period grows the throughput of all algorithms that exhibit scaling
deteriorates, due to reduced parallelism in the workload. E.g., on the SPARC
the parallel FC degrades by 2× when going from no work to 1.5μs of work, and
our algorithm degrades by 3.4× (because it starts much higher). Still, on the
SPARC there is sufficient parallelism to allow our algorithm to outperform the
other implementations by a factor of at least three. (On the Nehalem, by 31%.)

Work uniformity: One clear advantage of our algorithm over FC is work unifor-
mity, since the combiner in FC is expected to spend much more time doing work
for other threads. We show this by comparing the percent of total operations
performed by each thread in a multiple producer/multiple consumer workload.
In addition to measuring uniformity, this test is a yardstick for progress in prac-
tice: if a thread starves, we will see it as performing very little work compared to
other threads. We pick the best result from five executions of 16 producer/con-
sumer pairs, and plot the percent of total operations performed by each thread.
Figure 6 shows the results. In an ideal setting, each thread would perform 3.125%
(1/32) of the work. Our algorithm comes relatively close to this distribution, as
does the JDK algorithm. In contrast, the parallel FC pool experiences much
larger deviation and best/worst ratio.

Fig. 6. Percent of total operations performed by each of 32 threads in an N : N test

5.2 Concurrent Stack

Here we use our algorithm as the elimination layer on top of a Treiber-style
nonblocking stack [16] and compare it to the stack implementations evaluated in
[5]. We implemented two variants. In the first, following [7], rendezvous is used
as a backoff mechanism that threads turn to upon detecting contention on the
main stack, thus providing good performance under low contention and scaling
as contention increases. In the second variant a thread first visits the rendezvous
structure, accessing the main stack only if it fails to find a partner. If it then

Fast and Scalable Rendezvousing 29

Fig. 7. Comparing stack implementations throughput. Each of N threads performs
both push and pop operations with probability 1/2 for each operation type.

encounters contention on the main stack it goes back to try the rendezvous, and
so on.

We compare a C++ implementation of our algorithm to the C++ implemen-
tations evaluated in [5]: a lock-free stack (LF-Stack), a lock-free stack with a
simple elimination layer (EL-Stack), and an FC based stack. We use the same
benchmark as [5], measuring the throughput of an even push/pop operation mix.
Unlike the pool tests, here we want threads to give up if they don’t find a partner
in a short amount of time, and move to the main stack. We thus need to set Tw

to a value smaller than the timeout, to enable a decrease of the ring size. Figure
7 shows the results. Our second (non-backoff) stack scales well, outperforming
the FC and elimination stacks by more than 3.5×. The price it pays is poor
performance at low concurrency (2.5× slower than the FC stack with a single
thread). The backoff variant fails to scale above 32 threads due to contention on
the stack head, illustrating the cost incurred by merely trying (and failing) to
CAS a central hotspot.

6 Conclusion

We have presented an adaptive, nonblocking, high throughput asymmetric ren-
dezvous system that scales well under symmetric workloads and maintains peak
throughput in asymmetric (more consumers than producers) workloads. This is
achieved by a careful marriage of new algorithmic ideas and attention to imple-
mentation details, to squeeze all available cycles out of the processors.

Several directions remain open towards making the algorithm even more
broadly applicable and practical. In ongoing work we are extending the algorithm
so that it maintains peak throughput even when there are more producers than
consumers, and pursuing making the algorithm’s space consumption adaptive.
Adapting the algorithm to blocking applications (i.e., avoiding busy waiting)
and dynamically choosing the various threshold parameters are also interesting
questions.

Our results also raise a question about the flat combining paradigm. Flat
combining has a clear advantage in inherently sequential data structures, such
as a FIFO or priority queue, whose concurrent implementations have central

30 Y. Afek, M. Hakimi, and A. Morrison

hot spots. But as we have shown, FC may lose its advantage in problems with
inherent potential for parallelism. It is therefore interesting whether the FC tech-
nique can be improved to match the performance of our asymmetric rendezvous
system.

Availability: Our implementation is available on Tel Aviv University’s Multicore
Algorithmics group web site at http://mcg.cs.tau.ac.il/.

Acknowledgments: We thank Hillel Avni, Nati Linial and Nir Shavit for helpful
discussions, and the anonymous reviewers for their comments.

References

[1] Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer
pools based on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M.,
Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg
(2010)

[2] Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-
Cummings Publishing Co. Inc., Redwood City (1991)

[3] Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: a scalable
memory allocator for multithreaded applications. SIGARCH Computer Architec-
ture News 28(5), 117–128 (2000)

[4] Hanson, D.R.: C interfaces and implementations: techniques for creating reusable
software. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

[5] Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 355–364.
ACM, New York (2010)

[6] Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based syn-
chronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 79–93. Springer, Heidelberg (2010)

[7] Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2004, pp. 206–215. ACM, New York (2004)

[8] Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13, 124–149 (1991)

[9] Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange
channel. In: Workshop on Synchronization and Concurrency in Object-Oriented
Languages, SCOOL 2005 (October 2005)

[10] Lea, D., Scherer III, W.N., Scott, M.L.: java.util.concurrent.exchanger source code
(2011), http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/

java/util/concurrent/Exchanger.java

[11] Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free fifo queues. In: Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2005,
pp. 253–262. ACM, New York (2005)

[12] Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Proceed-
ings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2006, pp. 147–156. ACM, New York (2006)

http://mcg.cs.tau.ac.il/
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/Exchanger.java
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/Exchanger.java

Fast and Scalable Rendezvousing 31

[13] Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks:
preliminary version. In: Proceedings of the Seventh Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA 1995, pp. 54–63. ACM, New York
(1995)

[14] Shavit, N., Zemach, A.: Diffracting trees. ACM Transactions on Computer Sys-
tems (TOCS) 14, 385–428 (1996)

[15] Shavit, N., Zemach, A.: Combining funnels: A dynamic approach to software com-
bining. Journal of Parallel and Distributed Computing 60(11), 1355–1387 (2000)

[16] Treiber, R.K.: Systems programming: Coping with parallelism. Tech. Rep. RJ5118,
IBM Almaden Research Center (2006)

	Fast and Scalable Rendezvousing
	Introduction
	Preliminaries
	Related Work
	Algorithm Description
	Nonadaptive Algorithm
	Adding Adaptivity
	Pragmatic Extensions and Considerations
	Correctness

	Evaluation
	Synchronous Queues
	Concurrent Stack

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

