
Order out of Chaos: Proving Linearizability Using
Local Views
Yotam M. Y. Feldman
Tel Aviv University, Israel

Constantin Enea
IRIF, Univ. Paris Diderot & CNRS, France

Adam Morrison
Tel Aviv University, Israel

Noam Rinetzky
Tel Aviv University, Israel

Sharon Shoham
Tel Aviv University, Israel

Abstract
Proving the linearizability of highly concurrent data structures, such as those using optimistic
concurrency control, is a challenging task. The main difficulty is in reasoning about the view of
the memory obtained by the threads, because as they execute, threads observe different fragments
of memory from different points in time. Until today, every linearizability proof has tackled this
challenge from scratch.

We present a unifying proof argument for the correctness of unsynchronized traversals, and
apply it to prove the linearizability of several highly concurrent search data structures, including
an optimistic self-balancing binary search tree, the Lazy List and a lock-free skip list. Our
framework harnesses sequential reasoning about the view of a thread, considering the thread as if
it traverses the data structure without interference from other operations. Our key contribution
is showing that properties of reachability along search paths can be deduced for concurrent
traversals from such interference-free traversals, when certain intuitive conditions are met. Basing
the correctness of traversals on such local view arguments greatly simplifies linearizability proofs.
At the heart of our result lies a notion of order on the memory, corresponding to the order
in which locations in memory are read by the threads, which guarantees a certain notion of
consistency between the view of the thread and the actual memory.

To apply our framework, the user proves that the data structure satisfies two conditions: (1)
acyclicity of the order on memory, even when it is considered across intermediate memory states,
and (2) preservation of search paths to locations modified by interfering writes. Establishing the
conditions, as well as the full linearizability proof utilizing our proof argument, reduces to simple
concurrent reasoning. The result is a clear and comprehensible correctness proof, and elucidates
common patterns underlying several existing data structures.

2012 ACM Subject Classification Computing methodologies → Shared memory algorithms,
Program reasoning → Program verification

Keywords and phrases concurrency and synchronization, concurrent data structures, lineariaz-
ability, optimistic concurrency control, verification and formal methods

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.23

Related Version An extended version appears in https://arxiv.org/abs/1805.03992.

© Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky and Sharon Shoham;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2018.23
https://arxiv.org/abs/1805.03992
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Proving Linearizability Using Local Views

1 Introduction

Concurrent data structures must minimize synchronization to obtain high performance [16,
28]. Many concurrent search data structures therefore use optimistic designs, which search
the data structure without locking or otherwise writing to memory, and write to shared
memory only when modifying the data structure. Thus, in these designs, operations that do
not modify the same nodes do not synchronize with each other; in particular, searches can
run in parallel, allowing for high performance and scalability. Optimistic designs are now
common in concurrent search trees [3, 10, 11, 14, 17, 19, 29, 37, 42], skip lists [13, 21, 27],
and lists/hash tables [23, 24, 36, 46].

A major challenge in developing an optimistic search data structure is proving lineariz-
ability [26], i.e., that every operation appears to take effect atomically at some point in
time during its execution. Usually, the key difficulty is proving properties of unsynchronized
searches [38, 33, 49, 28], as they can observe an inconsistent state of the data structure—for
example, due to observing only some of the writes performed by an update operation, or
only some update operations but not others. Arguing about such searches requires tricky
concurrent reasoning about the possible interleaving of reads and writes of the operations.
Today, every new linearizability proof tackles these problems from scratch, leading to long
and complex proofs.

Our approach: local view arguments. This paper presents a unifying proof argument
for proving linearizability of concurrent data structures with unsynchronized searches that
replaces the difficult concurrent reasoning described above with sequential reasoning about
a search, which does not consider interference from other operations. Our main contribu-
tion is a framework for establishing properties of an unsynchronized search in a concurrent
execution by reasoning only about its local view—the (potentially inconsistent) picture of
memory it observes as it traverses the data structure. We refer to such proofs as local view
arguments. We show that under two (widely-applicable) conditions listed below, the exis-
tence of a path to the searched node in the local view, deduced with sequential reasoning,
also holds at some point during the actual (concurrent) execution of the traversal. (This
includes the case of non-existence of a key indicated by a path to null.) Such reachability
properties are typically key to the linearizability proofs of many prominent concurrent search
data structures with unsynchronized searches [16]. Once these properties are established,
the rest of the linearizability proof requires only simple concurrent reasoning.

Applying a local view argument requires establishing two conditions: (i) temporal acyclic-
ity, which states that the search follows an order on the memory that is acyclic across inter-
mediate states throughout the concurrent execution; and (ii) preservation, which states that
whenever a node x is changed, if it was on a search path for some key k in the past, then it
is also on such a search path at the time of the change. Although these conditions refer to
concurrent executions, proving them for the data structures we consider is straightforward.

More generally, these conditions can be established with inductive proofs that are simpli-
fied by relying on the very same traversal properties obtained with the local view argument.
This seemingly circular reasoning holds because our framework is also proven inductively,
and so the case of executions of length N + 1 in both the proof that (1) the data structure
satisfies the conditions and (2) the traversal properties follow from the local view argument
can rely on the correctness of the other proof’s N case.

Simplifying linearizability proofs with local view arguments. To harness local view
arguments, our approach uses assertions in the code as a way to divide the proof between

YMY Feldman et al. 23:3

(1) the linearizability proof that relies on the assertions, and (2) the proof of the assertions,
where the challenge of establishing properties of unsynchronized searches in concurrent ex-
ecutions is overcome by local view arguments.

Overall, our proof argument yields clear and comprehensible linearizability proofs, whose
whole is (in some sense) greater than the sum of the parts, since each of the parts requires
a simpler form of reasoning compared to contemporary linearizability proofs. We use local
view arguments to devise simple linearizability proofs of a variant of the contention-friendly
tree [14] (a self-balancing search tree), lists with lazy [24] or non-blocking [28] synchroniza-
tion, and a lock-free skip list.

Our framework’s acyclicity and preservation conditions can provide insight on algorithm
design, in that their proofs can reveal unnecessary protections against interference. Indeed,
our proof attempts exposed (small) parts of the search tree algorithm that were not needed
to guarantee linearizability, leading us to consider a simpler variant of its search operation
(see Remark 1).

Contributions. To summarize, we make the following contributions:

1. We provide a set of conditions under which reachability properties of local views, estab-
lished using sequential reasoning, hold also for concurrent executions,

2. We show that these conditions hold for non-trivial concurrent data structures that use
unsynchronized searches, and

3. We demonstrate that the properties established using local view arguments enable simple
linearizability proofs, alleviating the need to consider interleavings of reads and writes
during searches.

2 Motivating Example

As a motivating example we consider a self-balancing binary search tree with optimistic,
read-only searches. This is an example of a concurrent data structure for which it is chal-
lenging to prove linearizability “from scratch.” The algorithm is based on the contention-
friendly (CF) tree [12, 14]. It is a fine-grained lock-based implementation of a set object with
the standard insert(k), delete(k), and contains(k) operations. The algorithm maintains
an internal binary tree that stores a key in every node. Similarly to the lazy list [24], the
algorithm distinguishes between the logical deletion of a key, which removes it from the set
represented by the tree, and the physical removal that unlinks the node containing the key
from the tree.

We use this algorithm as a running example to illustrate how our framework allows to lift
sequential reasoning into assertions about concurrent executions, which are in turn used to
prove linearizability. In this section, we present the algorithm and explain the linearizability
proof based on the assertions, highlighting the significant role of local view arguments in the
proof.

Fig. 1 shows the code of the algorithm. (The code is annotated with assertions written
inside curly braces, which the reader should ignore for now; we explain them in Sec. 2.1.)
Nodes contain two boolean fields, del and rem, which indicate whether the node is logi-
cally deleted and physically removed, respectively. Modifications of a node in the tree are
synchronized with the node’s lock. Every operation starts with a call to locate(k), which
performs a standard binary tree search—without acquiring any locks—to locate the node
with the target key k. This method returns the last link it traverses, (x, y). Thus, if k is
found, y.key = k; if k is not found, y = null and x is the node that would be k’s parent if k

DISC 2018

23:4 Proving Linearizability Using Local Views

1 type N
2 int key
3 N left , right
4 bool del ,rem

6 N root←new N(∞);

8 N×N locate (int k)
9 x,y←root

10 while (y≠null ∧ y.key≠k)
11 x←y
12 if (x.key <k)
13 y←x.right
14 else
15 y←x.left

16
{x(root

k↝ x) ∧x(root
k↝ y)

∧ x.key ≠ k ∧ y ≠ null
Ô⇒ y.key = k}

17 return (x,y)

19 bool contains (int k)
20 (_,y)←locate (k)
21 if (y = null)

22 {x(root
k↝ null)}

23 return false

24 {x(root
k↝ y)}

25 if (y.del)

26 {x(root
k↝ y ∧ y.del) ∧ y.key = k}

27 return false

28 {x(root
k↝ y ∧ ¬y.del) ∧ y.key = k}

29 return true

30 bool delete (int k)
31 (_,y)←locate (k)
32 if (y = null)

33 {x(root
k↝ null)}

34 return false
35 lock (y)
36 if (y.rem) restart
37 ret ← ¬y.del

38 {root
k↝ y ∧ y.key = k ∧ ¬y.rem}

39 y.del←true
40 return ret

42 bool insert (int k)
43 (x,y)←locate (k)

44 {x(root
k↝ x) ∧ x.key ≠ k}

45 if (y≠null)

46 {x(root
k↝ y) ∧ y.key = k}

47 lock (y)
48 if (y.rem) restart
49 ret ← y.del

50 {root
k↝ y ∧ y.key = k ∧ ¬y.rem}

51 y.del←false
52 return ret
53 lock (x)
54 if (x.rem) restart
55 if (k < x.key ∧ x.left=null)

56 {root
k↝ x ∧ ¬x.rem

∧ k < x.key ∧ x.left = null}
57 x.left ← new N(k)
58 else if (x. right=null)

59 {root
k↝ x ∧ ¬x.rem

∧ k > x.key ∧ x.right = null}
60 x. right ← new N(k)
61 else
62 restart
63 return true

64 removeRight ()
65 (z,_) ← locate (*)
66 lock (z)
67 y ← z. right
68 if(y=null ∨ z.rem)
69 return
70 lock (y)
71 if (y.del)
72 return
73 if (y.left=null)
74 z. right ← y. right
75 else
76 if (y. right=null)
77 z. right ← y.left
78 else return
79 y.rem ← true

81 rotateRightLeft ()
82 (p,_) ← locate (*)
83 lock (p)
84 y ← p.left
85 if(y=null ∨ p.rem)
86 return
87 lock (y)
88 x ← y.left
89 if(x=null)
90 return
91 lock (x)
92 z ← duplicate (y)
93 z.left ← x. right
94 x. right ← z
95 p.left ← x
96 y.rem ← true

Figure 1 Running example. For brevity, unlock operations are omitted; a procedure releases
all the locks it acquired when it terminates or restarts. ∗ denotes an arbitrary key.

were inserted. A delete(k) logically deletes y after verifying that y remained linked to the
tree after its lock was acquired. An insert(k) either revives a logically deleted node or, if
k was not found, links a new node to the tree. A contains(k) returns true if it locates a
node with key k that is not logically deleted, and false otherwise.

Physical removal of nodes and balancing of the tree’s height are performed using auxiliary
methods.1 The algorithm physically removes only nodes with at most one child. The
removeRight method unlinks such a node that is a right child, and sets its rem field to notify
threads that have reached the node of its removal. (We omit the symmetric removeLeft.)
Balancing is done using rotations. Fig. 2a depicts the operation of rotateRightLeft, which
needs to rotate node y (with key k) down. (We omit the symmetric operations.) It creates
a new node z with the same key and del bit as y to take y’s place, leaving y unchanged
except for having its rem bit set. A similar technique for rotations is used in lock-free search
trees [10].

1 The reader should assume that these methods can be invoked at any time; the details of when the
algorithm decides to invoke them are not material for correctness. For example, in [12, 14], these
methods are invoked by a dedicated restructuring thread.

YMY Feldman et al. 23:5

y

A B

k

C

p

y

x
y

B C

p

x

k

z

A

k
y

y

B C

k

p

y

k

z

A

x
y

B C

x

k

z

A

b
k’

(a) Right rotation of y. (The bold green link is the one written in
each step. The node with a dashed border has its rem bit set.)

y

A B

k

C

p

y

x
y

B C

p

x

k

z

A

k
y

y

B C

k

p

y

k

z

A

x
y

B C

x

k

z

A

b
k’

(b) Node b is added after the
right rotation of y, when y is
no longer in the tree.

Figure 2 A right rotation, and how it can lead a search to observe an inconsistent state of the tree.
If b is added after the rotation, a search for k′ that starts before the rotation and pauses at x during the
rotation will traverse the path p, y, x, z, . . . , b, although y and b never exist simultaneously in the tree.

I Remark 1. The example of Fig. 1 differs from the original contention-friendly tree [12, 14]
in a few points. The most notable difference is that our traversals do not consult the rem
flag, and in particular we do not need to distinguish between a left and right rotate, making
the traversals’ logic simpler. Checking the rem flag is in fact unnecessary for obtaining
linearizability, but it allows proving linearizability with a fixed linearization point, whereas
proving the correctness of the algorithm without this check requires an unfixed linearization
point. For our framework, the necessity to use an unfixed linearization point incurs no
additional complexity. In fact, the simplicity of our proof method allowed us to spot this
“optimization.” In addition, the original algorithm performs backtracking by setting pointers
from child to parent when nodes are removed. Instead, we restart the operation; see Sec. 7
for a discussion of backtracking. Lastly, we fix a minor omission in the description of [14],
where the del field was not copied from a rotated node.

2.1 Proving Linearizability
Proving linearizability of an algorithm like ours is challenging because searches are performed
with no synchronization. This means that, due to interference from concurrent updates,
searches may observe an inconsistent state of the tree that has not existed at any point in
time. (See Fig. 2.) In our example, while it is easy to see that locate in Fig. 1 constructs
a search path to a node in sequential executions, what this implies for concurrent traversals
is not immediately apparent. Proving properties of the traversal—in particular, that a
node reached in the traversal truly lies on a search path for key k—is instrumental for the
linearizability proof [49, 38].

Generally, our linearizability proofs consist of two parts: (1) proving a set of assertions
in the code of the concurrent data structure, and (2) a proof of linearizability based on those
assertions. The most difficult part and the main focus of our paper is proving the assertions
using local view arguments, discussed in Sec. 2.2. In the remaining of this section we
demonstrate that having assertions about the actual state during the concurrent execution
makes it a straightforward exercise to verify that the algorithm in Fig. 1 is a linearizable
implementation of a set, assuming these assertions.

Consider the assertions in Fig. 1. An assertion {P} means that P holds now (i.e., in any
state in which the next line of code executes). An assertion of the form {xP} means that
P was true at some point between the invocation of the operation and now. The assertions
contain predicates about the state of locked nodes, immutable fields, and predicates of the

DISC 2018

23:6 Proving Linearizability Using Local Views

form root
k↝ x, which means that x resides on a valid search path for key k that starts at

root; if x = null this indicates that k is not in the tree (because a valid search path to k does
not continue past a node with key k). Formally, search paths between objects (representing
nodes in the tree) are defined as follows:

or
k↝ ox

def
= ∃o0, . . . , om. o0 = or ∧ om = ox ∧ ∀i = 1..m. nextChild(oi−1, k, oi) , and

nextChild(oi−1, k, oi) = (oi−1.key > k ∧ oi−1.left = oi) ∨ (oi−1.key < k ∧ oi−1.right = oi) .

One can prove linearizability from these assertions by, for example, using an abstraction
function A ∶ H → ℘(N) that maps a concrete memory state2 of the tree, H, to the abstract
set represented by this state, and showing that contains, insert, and delete manipulate
this abstraction according to their specification. We define A to map H to the set of keys
of the nodes that are on a valid search path for their key and are not logically deleted in H:
A(H) = {k ∈ N ∣H ⊧ ∃x.root

k↝ x∧x.key = k ∧¬x.del}. (H ⊧ P means that P is true in H.)
The assertions almost immediately imply that for every operation invocation op, there

exists a state H during op’s execution for which the abstract state A(H) agrees with op’s
return value, and so op can be linearized at H. We provide a more detailed discussion in
the extended version [20].

2.2 Proving the Assertions

To complete the linearizability proof, it remains to prove the validity of the assertions
in concurrent executions. The most challenging assertions to prove are those concerning
properties of unsynchronized traversals, which we target in this paper. In Sec. 3 we present
our framework, which allows to deduce assertions of the form of x(root

k↝ x) at the end
of (concurrent) traversals by considering only interference-free executions. We apply our
framework to establish the assertions x(root

k↝ x) and x(root
k↝ y) in line 16. In fact,

our framework allows to deduce slightly stronger properties, namely, of the form x(root
k↝

x∧ϕ(x)), where ϕ(x) is a property of a single field of x (see Remark 2). This is used to prove
the assertions x(root

k↝ y ∧ y.del) in line 26 and similarly in line 28. For completeness, we
now show how the proof of the remaining assertions in Fig. 1 is attained, when assuming
the assertions deduced by the framework. This concludes the linearizablity proof.

Reachability related assertions. In line 24 the fact that x(root
k↝ y) is true follows

from line 16.
The writes in insert and delete (lines 38, 50, 56 and 59) require that a path exists

now. This follows from the x(root
k↝ x) (known from the local view argument) and the fact

that ¬x.rem, using an invariant similar to preservation (see Example 7): For every location
x and key k, if root

k↝ x, then every write retains this unless it sets x.rem before releasing
the lock on x (this happens in lines 74, 77 and 95). Thus, when insert and remove lock x
and see that it is not marked as removed, root

k↝ x follows from x(root
k↝ x). Note that

the fact that writes other than lines 74, 77 and 95 do not invalidate root
k↝ x follows easily

from their annotations.

2 We use standard modeling of the memory state (the heap) as a function H from locations to values;
see Sec. 3.

YMY Feldman et al. 23:7

Additional assertions. The invariant that keys are immutable justifies assertions referring
to keys of objects that are read earlier, e.g. in line 50 and the rest of the assertion in line 28
(y.key is read earlier in locate). The rest of the assertions can be attributed to reading
a location under the protection of a lock. An example of this is the assertion that ¬y.rem
in line 38.

3 The Framework: Correctness of Traversals Using Local Views

In this section we present the key technical contribution of our framework, which targets
proving properties of traversals. We address properties of reachability along search paths
(formally defined in Sec. 3.1). Roughly speaking, our approach considers the traversal
in concurrent executions as operating without interference on a local view: the thread’s
potentially inconsistent picture of memory obtained by performing reads concurrently with
writes by other threads. For a property Sk,x = root

k↝ x of reachability along a search path,
we introduce conditions under which one can deduce that xSk,x holds in the actual global
state of the concurrent data structure out of the fact that Sk,x holds in the local view of a
single thread, where the latter is established using sequential reasoning (see Sec. 3.2). This
alleviates the need to reason about intermediate states of the traversal in the concurrent
proof.

This section is organized as follows: We start with some preliminary definitions. Sec. 3.1
defines the abstract, general notion of search paths our framework treats. Sec. 3.2 defines
the notion of a local view which is at the basis of local view arguments. Sec. 3.3 formally
defines the conditions under which local view arguments hold, and states our main technical
result. In Sec. 3.4 we sketch the ideas behind the proof of this result.

Programming model. A global state (state) is a mapping between memory locations
(locations) and values. A value is either a natural number, a location, or null. Without loss of
generality, we assume that threads share access to a global state. Thus, memory locations are
used to store the values of fields of objects. A concurrent execution (execution) is a sequence
of states produced by an interleaving of atomic actions issued by threads. We assume that
each atomic action is either a read or a write operation. (We treat synchronization actions,
e.g., lock and unlock, as writes.) A read r consists of a value v and a location read(r) with
the meaning that r reads v from read(r). Similarly, a write w consists of a value v and a
location mod(w) with the meaning that w sets mod(w) to v. We denote by w(H) the state
resulting from the execution of w on state H.

3.1 Reachability Along Search Paths

The properties we consider are given by predicates of the form Sk,x = root
k↝ x, denoting

reachability of x by a k-search path, where root is the entry point to the data structure.
A k-search path in state H is a sequence of locations that is traversed when searching for
a certain element, parametrized by k, in the data structure. Reachability of an object x
along a k-search path from root is understood as the existence of a k-search path between
designated locations of x, e.g. the key field, and root.

Search paths may be defined differently in different data structures (e.g., list, tree or
array). For example, k-search paths in Fig. 1 consist of sequences ⟨x.key, x.left, y.key⟩
where y.key is the address pointed to by x.left (meaning, the location that is the value
stored in x.left) and x.key > k, or ⟨x.key, x.right, y.key⟩ where y.key is the address pointed

DISC 2018

23:8 Proving Linearizability Using Local Views

to by x.right and x.key < k. This definition of k-search paths reproduces the definition of
reachability along search paths from Sec. 2.1.

Our framework is oblivious to the specific definition of search paths, and only assumes
the following properties of search paths (which are satisfied, for example, by the definition
above):

If `1, . . . , `m is a k-search path in H and H ′ satisfies H ′(`i) =H(`i) for all 1 ≤ i <m, then
`1, . . . , `m is a k-search path in H ′ as well, i.e., the search path depends on the values of
locations in H only for the locations along the sequence itself (but the last).
If `1, . . . , `m and `m, . . . , `m+r are both k-search paths inH, then so is `1, . . . , `m, . . . , `m+r,
i.e., search paths are closed under concatenation.
If `1, . . . , `m is a k-search path in H then so is `i, . . . , `j for every 1 ≤ i ≤ j ≤ m, i.e.,
search paths are closed under truncation.

I Remark 2. It is simple to extend our framework to deduce properties of the formx(root
k↝

x ∧ ϕ(x)) where ϕ(x) is a property of a single field of x. For example, ϕ(x) = x.del states
that the field del of x is true. As another example, the predicate root

k↝ x ∧ (x.next = y)
says that the link from x to y is reachable. See the extended version [20] for details.

3.2 Local Views and Their Properties

We now formalize the notion of local view and explain how properties of local views can be
established using sequential reasoning.

Local view. Let r̄ = r1, . . . , rd be a sequence of read actions executed by some thread. As
opposed to the global state, the local view of the reading thread refers to the inconsistent
picture of the memory state that the thread obtains after issuing r̄ (concurrently with
writes). Formally, the sequence of reads r̄ induces a state Hlv, which is constructed by
assigning to every location x which r̄ reads the last value r̄ reads in x. Namely, when r̄

starts, its local view H
(0)
lv is empty, and, assuming its ith read of value v from location `,

the produced local view is H(i)lv = H(i−1)
lv [` ↦ v]. We refer to Hlv = H(d)lv as the local view

produced by r̄ (local view for short). We emphasize that while technically Hlv is a state, it is
not necessarily an actual intermediate global state, and may have never existed in memory
during the execution.

Sequential reasoning for establishing properties of local views. Properties of the
local view Hlv, which are the starting point for applying our framework, are established
using sequential reasoning. Namely, proving that a predicate such as root

k↝ x holds in
the local view at the end of the traversal amounts to proving that it holds in any sequential
execution of the traversal, i.e., an execution without interference which starts at an arbitrary
program state. This is because the concurrent traversal constructing the local view can be
understood as a sequential execution that starts with the local view as the program state.

I Example 1. In the running example, straightforward sequential reasoning shows that
indeed root

k↝ x holds at line 16 in sequential executions of locate(k) (i.e., executions
without interference), no matter at which program state the execution starts. This ensures
that it holds, in particular, in the local view.

YMY Feldman et al. 23:9

3.3 Local View Argument: Conditions & Guarantees
The main theorem underlying our framework bridges the discrepancy between the local view
of a thread as it performs a sequence of read actions, and the actual global state during the
traversal.

In the sequel, we fix a sequence of read actions r̄ = r1, . . . , rd executed by some thread,
and denote the sequence of write actions executed concurrently with r̄ by w̄ = w1, . . . ,wn.
We denote the global state when r̄ starts its execution by H(0)c , and the intermediate global
states obtained after each prefix of these writes in w̄ by H(i)c = w1 . . .wi(H(0)c).

Using the above terminology, our framework devises conditions for showing for a reach-
ability property Sk,x that if Sk,x(Hlv) holds, then there exists 0 ≤ i ≤ n such that Sk,x(H(i)c)
holds, which means that xSk,x holds in the actual global state reached at the end of the
traversal. We formalize these conditions below.

3.3.1 Condition I: Temporal Acyclicity
The first requirement of our framework concerns the order on the memory locations repre-
senting the data structure, according to which readers perform their traversals. We require
that writers maintain this order acyclic across intermediate states of the execution. For
example, when the order is based on following pointers in the heap, then, if it is possible
to reach location y from location x by following a path in which every pointer was present
at some point in time (not necessarily the same point), then it is not possible to reach x

from y in the same manner. This requirement is needed in order to ensure that the order
is robust even from the perspective of a concurrent reading operation, whose local view is
obtained from a fusion of fractions of states.

We begin formalizing this requirement with the notion of search order on memory.

Search order. The acyclicity requirement is based on a mapping from a state H to a
partial order that H induces on memory locations, denoted ≤H , that captures the order in
which operations read the different memory locations. Formally, ≤H is a search order :

I Definition 2 (Search order). ≤H is a search order if it satisfies the following conditions:

(i) It is locally determined: if `2 is an immediate successor of `1 in ≤H , then for every H ′

such that H ′(`1) =H(`1) it holds that `1 ≤H′ `2.
(ii) Search paths follow the order: if there is a k-search path between `1 and `2 in H, then

`1 ≤H `2.
(iii) Readers follow the order: reads in r̄ always read a location further in the order in the

current global state. Namely, if `′ is the last location read, the next read r reads a
location ` from the state H(m)c such that `′ ≤

H
(m)
c

`.
Note that the locality of the order is helpful for the ability of readers to follow the order:
the next location can be known to come forward in the order solely from the last value the
thread reads.

I Example 3. In the example of Fig. 1, the order ≤H is defined by following pointers from
parent to children, i.e., all the fields of x.left and x.right are ordered after the fields of x, and
the fields of an object are ordered by x.key < x.del < {x.left, x.right}. It is easy to see that
this is a search order. Locality follows immediately, and so does the property that search
paths follow the order. The fact that the read-in-order property holds for all the methods
in Fig. 1 follows from a very simple syntactic analysis, e.g., in the case of locate(k), children
are always read after their parents and the field key is always accessed before left or right.

DISC 2018

23:10 Proving Linearizability Using Local Views

I Remark 3. Different search orders may be used for different traversals and different k’s
when establishing x(root

k↝ x) at the end of the traversal. In Definition 2, condition (iii)
considers (just) the reads performed by the traversal of interest, and condition (ii) considers
the possible search paths it constructs in the local view (just) for the k of interest.

Accumulated order and acyclicity. The accumulated order captures the order as it may
be observed by concurrent traversals across different intermediate states. Formally, we define
the accumulated order w.r.t. a sequence of writes ŵ1, . . . , ŵm, denoted ≤∪

ŵ1...ŵm(H(0)
c), as the

transitive closure of ⋃
0≤s≤m

≤
ŵ1...ŵs(H(0)

c). In our example, the accumulated order consists of
all parent-children links created during an execution. We require:

I Definition 4 (Acyclicity). We say that ≤H satisfies acyclicity of accumulated order w.r.t. a
sequence w̄ = w1, . . . ,wn of writes if the accumulated order ≤∪

w1...wn(H(0)
c) is a partial order.

I Example 5. In our running example, acyclicity holds because insert, remove, and rotate
modify the pointers from a node only to point to new nodes, or to nodes that have already
been reachable from that node. Modifications to other fields have no effect on the order.
Note that rotate does not perform the rotation in place, but allocates a new object. There-
fore, the accumulated order, which consists of all parent-children links created during an
execution, is acyclic, and hence remains a partial order.

3.3.2 Condition II: Preservation of Search Paths
The second requirement of our framework is that for every write action w which happens
concurrently with the sequence of reads r̄ and modifies location mod(w), if mod(w) was
k-reachable (i.e., Sk,mod(w) was true) at some point in time after r̄ started and before w
occurred, then it also holds right before w is performed. We note that this must hold in the
presence of all possible interferences, including writes that operate on behalf of other keys
(e.g. insert(k′)). Formally, we require:

I Definition 6 (Preservation). We say that w̄ ensures preservation of k-reachability by search
paths if for every 1 ≤ m ≤ n, if for some 0 ≤ i < m, H(i)c ⊧ Sk,mod(wm) then H

(m−1)
c ⊧

Sk,mod(wm).

Note that H(m−1)
c ⊧ Sk,mod(wm) iff H

(m)
c ⊧ Sk,mod(wm) since the search path to mod(wm) is

not affected by wm (by the basic properties of Sk,mod(wm), see Sec. 3.1).

I Example 7. In our running example, preservation holds because wm either modifies a
location that has never been reachable (such as line 93), in which case preservation holds
vacuously, or holds the lock on x when ¬x.rem (without modifying its predecessor earlier
under this lock).3 In the latter case preservation holds because every previous write w′ re-
tains root

k↝ mod(wm) unchanged unless it sets the field rem of x to true before releasing the
lock on x. Therefore, root

k↝ mod(wm) is retained still when wm is performed. Preservation
follows.

We emphasize that the preservation condition only requires that k-reachability is retained
to modified locations ` and only at the point of time when the write w to ` is performed;

3 In line 94, because x is a child of y which is a child of p and ¬p.rem, it follows that ¬x.rem because a
node marked with rem loses its single parent beforehand.

YMY Feldman et al. 23:11

k-reachability may be lost at later points in time. In particular, locations whose reachability
has been reduced may be accessed, as long as they are not modified after the reachability
loss. For example, consider a rotation as in Fig. 2a. The rotation breaks the k-reachability
of y: root

k↝ y holds before the rotation but not afterwards. Indeed, our framework does
not establish root

k↝ y, but infers x(root
k↝ y), which does hold. In this example, the

preservation condition requires that the left and right pointers of y are not modified after
this rotation is performed.4 On the other hand, concurrent traversals may access y. In the
example, this happens when (1) the traversal continues beyond y in the search for k′ ≠ k,
and when (2) the traversal searches for k and terminates in y.

3.3.3 Local View Arguments’ Guarantee
We are now ready to formalize our main theorem, relating reachability in the local view
(Sec. 3.2) to reachability in the global state, provided that the conditions from Definitions 4
and 6 are satisfied.

I Theorem 8. If (i) ≤H is a search order satisfying the accumulated acyclicity property
w.r.t. w̄, and (ii) w̄ ensures preservation of k-reachability by search paths, then for every k
and location x, if Sk,x(Hlv) holds, then there exists 0 ≤ i ≤ n s.t. Sk,x(H(i)c) holds.

In the extended version [20] we illustrate how violating these conditions could lead to
incorrectness of traversals. Sec. 3.4 discusses the main ideas behind the proof.

3.4 Proof Idea
We now sketch the correctness proof of Theorem 8. (The full details appear in the extended
version [20].) The theorem transfers Sk,x from the local view to the global state. Recall that
the local view is a fusion of the fractions of states observed by the thread at different times.
To relate the two, we study the local view from the lens of a fabricated state: a state resulting
from a subsequence of the interfering writes, which includes the observed local view. We
exploit the cooperation between the readers and the writers that is guaranteed by the order
≤H (which readers and writers maintain) to construct a fabricated state which is closely
related to the global state, in the sense that it simulates the global state (Definition 9);
simulation depends both on the acyclicity requirement and on the preservation requirement
(Lemma 11). Deducing the existence of a search path in an intermediate global state out of
its existence in the local view is a corollary of this connection (Lemma 10).

Fabricated state. The fabricated state provides a means of analyzing the local view and
its relation to the global (true) state. A fabricated state is a state consistent with the
local view (i.e. it agrees with the value of every location present in the local view) that is
constructed by a subsequence w̄f = wi1 , . . . ,wik

of the writes w̄. One possible choice for w̄f

is the subsequence of writes whose effect was observed by r̄ (i.e. r̄ read-from). For relating
the local view to the global state, which is constructed from the entire w̄, it is beneficiary
to include in w̄f additional writes except for those directly observed by r̄. In what follows,
we choose the subsequence w̄f so that the fabricated state satisfies a consistency property
of forward-agreement with the global state. This means that although not all writes are
included in w̄f (as the thread misses some), the writes that are included have the same
picture of the “continuation” of the data structure as it really was in the global state.

4 Modification of y.rem is allowed because this field does not affect search paths (see Sec. 3.1).

DISC 2018

23:12 Proving Linearizability Using Local Views

Construction of fabricated state based on order. Our construction of the fabricated
state includes in w̄f all the writes that occurred backward in time and wrote to locations
forward in the order than the current location read, for every location read. (In particular, it
includes all the writes that r̄ reads from directly). Formally, let mod(w) denote the location
modified by write w. Then for every read r in r̄ that reads location `r from global state
H
(m)
c , we include in w̄f all the writes {wj ∣ j ≤ m ∧ `r ≤∪

w1...wm(H(0)
c) mod(wj)} (ordered as

in w̄). We use the notation H(j)f = wi1 . . .wij(H
(0)
c) for intermediate fabricated states. This

choice of w̄f ensures forward-agreement between the fabricated state and the global state:
every write wij in w̄f , the states on which it is applied, H(ij−1)

c and H
(j−1)
f agree on all

locations ` such that mod(wij) ≤H
(j−1)
f

`.
In what follows, we fix the fabricated state to be the state resulting at the end of this

particular choice of w̄f . It satisfies forward-agreement by construction, and is an extension
of the local view, relying on the acyclicity requirement.

Simulation. As we show next, the construction of w̄f ensures that the effect of every
write in w̄f on Sk,x is guaranteed to concur with its effect on the real state with respect to
changing Sk,x from false to true. We refer to this property as simulation.

I Definition 9 (Simulation). For a predicate P, we say that the subsequence of writes
wi1 . . .wik

P-simulates the sequence w1 . . .wn if for every 1 ≤ j ≤ k, if ¬P(H(j−1)
f) but

P(wij(H
(j−1)
f)), then ¬P(H(ij−1)

c) Ô⇒ P(wij(H
(ij−1)
c)).

Simulation implies that the write wij in w̄f that changed Sk,x to true on the local view,
would also change it on the corresponding global state H(ij)

c (unless it was already true in
H
(ij−1)
c). This provides us with the desired global state where Sk,x holds. Using also the

fact that Sk,x is upward-absolute [45] (namely, preserved under extensions of the state), we
obtain:

I Lemma 10. Let w̄f be the subsequence of w̄ = w1, . . . ,wn defined above. If Sk,x(Hlv) holds
and w̄f Sk,x-simulates w̄, then there exists some 0 ≤ i ≤ n s.t. Sk,x(H(i)c).

Finally, we show that the fabricated state satisfies the simulation property. Owing to
the specific construction of w̄f , the proof needs to relate the effect of writes on states which
have a rather strong similarity: they agree on the contents of locations which come forward
of the modified location. Preservation complements this by guaranteeing the existence of a
path to the modified location:

I Lemma 11. If w̄ satisfies preservation of Sk,mod(w) for all w, then w̄f Sk,x-simulates w̄
for all x.

To prove the lemma, we show that preservation, together with forward agreement, implies the
simulation property, which in turn implies that Sk,x(H(j−1)

f) Ô⇒ ∃0 ≤ i ≤ ij−1 Sk,x(H(i)c)
(see Lemma 10). To show simulation, consider a write wij that creates a k-search path ζ to
x in H(j)f . We construct such a path in the corresponding global state. The idea is to divide
ζ to two parts: the prefix until mod(wij), and the rest of the path. Relying on forward
agreement, the latter is exactly the same in the corresponding global state, and preservation
lets us prove that there is also an appropriate prefix: necessarily there has been a k-search
path to mod(wij) in the fabricated state before wij , so by induction, exploiting the fact that
simulation up to j − 1 implies that Sk,x(H(j−1)

f) Ô⇒ ∃0 ≤ i ≤ ij−1. Sk,x(H(i)c), there has
been a k-search path to mod(wij) in some intermediate global state that occurred earlier

YMY Feldman et al. 23:13

than the time of wij . Since wij writes to mod(wij), the preservation property ensures that
there is a k-search path to mod(wij) in the global state also at the time of the write wij ,
and the claim follows.

4 Putting It All Together: Proving Linearizability Using Local Views

Recall that our overarching objective in developing the local view argument (Sec. 3) is to
prove the correctness of assertions used in linearizability proofs (e.g., in Sec. 2.1). We now
summarize the steps in the proof of the assertions. Overall, it is composed of the following
steps:

1. Establishing properties of traversals on the local view using sequential reasoning,
2. Establishing the acyclicity and preservation conditions by simple concurrent reasoning,

and
3. Proving the assertions when relying on local view arguments, augmented with some

concurrent reasoning.

For the running example, step 1 is presented in Example 1, and step 2 consists of Ex-
amples 5 and 7 (see the extended version [20] for a full formal treatment). Step 3 concludes
the proof as discussed in Sec. 2.2.
I Remark 4. While the local view argument, relying in particular on step 2, was developed
to simplify the proofs of the assertions in 3, this goes also in the other direction. Namely, the
concurrent reasoning required for proving the conditions of the framework (e.g., preservation)
can be greatly simplified by relying on the correctness of the assertions (as they constrain
possible interfering writes). Indeed, the proofs may mutually rely on each other. This is
justified by a proof by induction: we prove that the current write satisfies the condition in
the assertion, assuming that all previous writes did. This is also allowed in proofs of the
conditions in Sec. 3.3, because they refer to the effect of interfering writes, that are known
to conform to their respective assertions from the induction hypothesis. Hence, carrying
these proofs together avoids circular reasoning and ensures validity of the proof.

5 Additional Case Studies

5.1 Lazy and Optimistic Lists
We successfully applied our framework to prove the linearizability of sorted-list-based concur-
rent set implementations with unsynchronized reads. Our framework is capable of verifying
various versions of the algorithm in which insert and delete validate that the nodes they
locked are reachable using a boolean field, as done in the lazy list algorithm [24], or by
rescanning the list, as done in the optimistic list algorithm [28, Chap 9.8]. Our framework is
also applicable for verifying implementations of the lazy list algorithm in which the logical
deletion and the physical removal are done by the same operation or by different ones. We
give a taste of these proofs here.

Fig. 3 shows an annotated pseudo-code of the lazy list algorithm. Every operation
starts with a call to locate(k), which performs a standard search in a sorted list—without
acquiring any locks—to locate the node with the target key k. This method returns the
last link it traverses, (x, y). Fig. 3 includes two variants of contains(k): In one variant, it
returns true only if it finds a node with key k that is not logically deleted (line 139), while
in the second variant it returns true even if that node is logically deleted (the commented
return at line 141). Interestingly, the same annotations allow to verify both variants, and

DISC 2018

23:14 Proving Linearizability Using Local Views

97 type N
98 i n t key
99 N next

100 bool mark

102 N root←new N(−∞) ;

104 N×N locate (i n t k)
105 x , y← root
106 whi le (y≠nu l l ∧ y.key<k)
107 x←y
108 y←x.next
109 {x(root

k↝ x ∧ x.next = y)}
110 {x.key < k ∧ (y ≠ null Ô⇒ y.key ≥ k)}
111 return (x , y)

113 bool insert (i n t k)
114 (x , y)← locate (k)
115 i f (y≠nu l l ∧ y.key=k)
116 {x(root

k↝ y) ∧ y.key = k}
117 return f a l s e
118 lock (x)
119 lock (y)
120 i f (x.mark ∨ x.next≠y)
121 restart
122 {¬x.mark ∧ x.next = y}
123 z←new N(k)
124 {y ≠ null Ô⇒ k > y.key}
125 z.next←y

126
{root

k↝ x ∧ x.next = y ∧ x.key < k ∧
z.next = y ∧ ¬z.mark ∧
(y ≠ null Ô⇒ k > y.key)}

127 x.next←z
128 return true

129 bool contains (i n t k)
130 (_, y)← locate (k)
131 i f (y=nu l l)
132 {x(root

k↝ null)}
133 return f a l s e
134 i f (y . key≠k)
135 {x(root

k↝ x ∧ x.next = y) ∧ k < x.key ∧ y.key > k}
136 return f a l s e
137 i f (¬y . mark)
138 {root

k↝ y ∧ y.key = k ∧ ¬y.mark}
139 return true
140 {x(root

k↝ y) ∧ y.key = k ∧ y.mark}
141 return f a l s e // return true

143 bool delete (i n t k)
144 (x , y)← locate (k)
145 i f (y=nu l l)
146 {x(root

k↝ null)}
147 return f a l s e
148 i f (y . key≠k)
149 {x(root

k↝ x ∧ x.next = y) ∧ x.key < k ∧ y.key > k}
150 return f a l s e
151 {y.key = k}
152 lock (x)
153 lock (y)
154 i f (x.mark ∨ y.mark ∨ x.next≠y)
155 restart
156 {root

k↝ x ∧ x.next = y ∧ y.key = k ∧ ¬x.mark ∧ ¬y.mark}
157 y.mark←true
158 {root

k↝ x ∧ x.next = y ∧ y.key = k ∧ ¬x.mark ∧ y.mark}
159 x.next←y.next
160 return true

Figure 3 Lazy List [24]. The code is annotated with assertions written inside curly braces.
For brevity, unlock operations are omitted; a procedure releases all the locks it acquired when it
terminates or restarts.

the proof differs only in the abstraction function mapping states of the list to abstract sets.
Modifications of a node in the list are synchronized with the node’s lock. An insert(k)
operation calls locate, and then links a new node to the list if k was not found. delete(k)
logically deletes y (after validating that y remained linked to the list after its lock was
acquired), and then physically removes it.

As in Sec. 2, the assertions contain predicates of the form root
k↝ x, which means that x

resides on a valid search path for key k that starts at root; the formal definition of a search
path in the lazy list appears below. Note that root

k↝ null indicates that k is not in the list.

or
k↝ ox

def
= ∃o0, . . . , om. o0 = or ∧ om = ox ∧ ∀i = 1..m. oi−1.key < k ∧ oi−1.next = oi

We prove the linearizability of the algorithm using an abstraction function. One abstrac-
tion function we may use maps H to the set of keys of the nodes that are on a valid search
path for their key and are not logically deleted in H:

Alogical(H) = {k ∈ N ∣H ⊧ ∃x.root
k↝ x ∧ x.key = k ∧ ¬x.mark} .

Another possibility is to define the abstract set to be the keys of all the reachable nodes:

Aphysical(H) = {k ∈ N ∣H ⊧ ∃x.root
k↝ x ∧ x.key = k} .

We note that Alogical(H) can be used to verify the code of contains as written, while
Aphysical(H) allows to change the algorithm to return true in line 141. In both cases, the

YMY Feldman et al. 23:15

proof of linearizability is carried out using the same assertions currently annotating the code.
In the rest of this section, we discuss the verification of the code in Fig. 3 as written, and
thus use A(H) = Alogical as the abstraction function. The assertions almost immediately
imply that for every operation invocation op, there exists a state H during op’s execution for
which the abstract state A(H) agrees with op’s return value, and so op can be linearized at
H; we need only make the following observations. First, contains() and a failed delete()
or insert() do not modify the memory, and so can be linearized at the point in time in
which the assertions before their return statements hold. Second, in the state H in which a
successful delete(k) (respectively, insert(k)) performs a write, the assertions on line 156
(respectively, line 126) imply that k ∈ A(H) (respectively, k /∈ A(H)). Therefore, these
writes change the abstract set, making it agree with the operation’s return value of true.
Finally, it only remains to verify that the physical removal performed by delete(k) in state
H does not modify A(H). Indeed, as an operation modifies a field of node v only when it
has v locked, it is easy to see that for any node x and key k, if root

k↝ x held before the
write, then it also holds afterwards with the exception of the removed node y. However,
delete(k) removes a deleted node, and thus does not change A(H).

The proof of the assertions in Fig. 3 utilizes a local view argument for the x assertion
in line 109 for the predicate root

k↝ x ∧ x.next = y, using the extension with a single field
discussed in Remark 2. The conditions of the local view argument are easy to prove: The
acyclicity requirement is evident, as writes modify the pointers from a node only to point to
new nodes, or to nodes that have already been reachable from that node. Preservation holds
because a write either (i) marks a node, which does not affect the search paths; (ii) modifies
a location that has never been reachable (such as line 125), in which case preservation holds
vacuously; (iii) removes a marked node y (line 159) which removes all the search paths that
go through it. However, as y is marked, its fields are not going to be modified later on, and
thus y cannot be the cause of violating preservation. Furthermore, all search paths that
reach y’s successor before the removal are retained and merely get shorter; or (iv) adds a
reachable node z in between two reachable nodes x and y (line 127). However, as z’s key
is smaller than y’s, the insertion preserves any search paths which goes through y’s next
pointer.

As for the rest of the assertions, when insert and delete lock x and see that it is not
marked, the root

k↝ x property follows from the x(root
k↝ x) deduced above by a local

view argument using the same invariant in preservation above.5 The remainder assertions
are attributed to reading a location under the protection of a lock, e.g. ¬x.mark in line 122.

5.2 Lock-free List and Skip-List

We used our framework to prove the linearizability a sorted lock-free list-based concurrent
set algorithm [28, Chapter 9.8] and of a lock-free skip-list-based concurrent set algorithm [28,
Chapter 14.4]. In these proofs we use local view arguments to prove the concurrent traversals
of the contains method, which is the most difficult part of the proofs: add and remove use
the internal find which traverses the list and also prunes out marked nodes, and thus their
correctness follows easily from an invariant ensuring the reachability of unmarked nodes.

5 As in Sec. 5.2, these assertions could also be deduced directly from a slightly stronger invariant that
unmarked nodes are reachable and that the list is sorted. This is not the case in the optimistic list
of [28, Chap 9.8] which rescans instead of using a marked bit. In both cases contains requires a local
view argument.

DISC 2018

23:16 Proving Linearizability Using Local Views

The proofs appear in [20].

6 Related Work

Verifying linearizability of concurrent data structures has been studied extensively. Some
techniques, e.g., [1, 2, 18, 52, 51], apply to a restricted set of algorithms where the lineariza-
tion point of every invocation is fixed to a particular statement in the code. While these
works provide more automation, they are not able to deal with the algorithms considered
in our paper where for instance, the linearization point of contains(k) invocations is not
fixed. Generic reductions of verifying linearizability to checking a set of assertions in the
code have been defined in [5, 6, 7, 35, 25, 50, 54]. These works apply to algorithms with
non-fixed linearization points, but they do not provide a systematic methodology for proving
the assertions, which is the main focus of our paper.

Verifying linearizability has also been addressed in the context of defining program logics
for compositional reasoning about concurrent programs. In this context, the goal is to
define a proof methodology that allows composing proofs of program’s components to get
a proof for the entire program, which can also be reused in every valid context of using
that program. Improving on the classical Owicki-Gries [40] and Rely-Guarantee [30] logics,
various extensions of Concurrent Separation Logic [4, 9, 39, 41] have been proposed in order
to reason compositionally about different instances of fine-grained concurrency, e.g. [31, 34,
15, 43, 47, 48]. However, they focus on the reusability of a proof of a component in a larger
context (when composed with other components) while our work focuses on simplifying
the proof goals that guarantee linearizability. The concurrent reasoning needed for our
framework could be carried out using one of these logics.

The proof of linearizability of the lazy-list algorithm given in [38] is based on establishing
the conditions required by the hindsight lemma [38, Lemma 5.2]. The lemma states that
every link traversed during an unsynchronized traversal was indeed reachable at some point
in time between the beginning of the traversal and the moment the link was crossed. This
enables verifying the correctness of the contains method using, effectively, sequential rea-
soning. The hindsight lemma is a specific instance of the extension discussed in Remark 2,
and its assumptions narrows its application to concurrent set algorithms implemented using
sorted singly-linked lists. In contrast, we present a fundamental technique which is based on
far more generic properties which is applicable to list and tree-based data structures alike.

The proof methodology for proving linearizability of [33] relies on properties of the data
structure in sequential executions. The methodology assumes the existence of base points,
which are points in time during the concurrent execution of a search in which some predicate
holds over the shared state. For instance, when applying the methodology to the lazy list,
they prove the existence of base points using prior techniques [38, 53] that employ tricky
concurrent reasoning. Our work is thus complementary to theirs: our proof argument is
meant to replace the latter kind of reasoning, and can thus simplify proofs of the existence
of base points.

The Edgeset framework of Shasha and Goodman [44], which has recently been formalized
using concurrent separation logic [32], provides conditions for the linearizability of concur-
rent search data structures. It relies on a precondition that for any operation on key k,
root

k↝ x holds when the operation looks for, inserts, or deletes k at x. However, the
optimistic data structures that we consider often do not satisfy this precondition, making
the Edgeset framework inapplicable. (Example 7 describes how this precondition does not
hold in our search tree example, and a similar issue exists in the lazy-list.) Moreover, the

YMY Feldman et al. 23:17

Edgeset precondition implies that the linearization point of an operation occurs at one of its
own atomic steps. Our framework does not have this requirement. Shasha and Goodman
also describe three algorithm templates and prove, using concurrent reasoning, that these
templates satisfy the preconditions of the Edgeset framework. In contrast, our argument
uses sequential reasoning for traversals, and our concurrent proofs consider only the effects
of interleaving writes—not both reads and writes.

7 Conclusions and Future Work

This paper presents a novel approach for constructing linearizability proofs of concur-
rent search data structures. We present a general proof argument that is applicable to
many existing algorithms, uncovering fundamental structure—the acyclicity and preserva-
tion conditions—shared by them. We have instantiated our framework for a self-balancing
binary search tree, lists with lazy [24] or non-blocking [28] synchronization, and a lock-free
skip list. To the best of our knowledge, our work is the first to prove linearizability of a
self-balancing binary search tree using a unified proof argument.

An important direction for future work is the mechanism of backtracking. Some algo-
rithms, including the original CF tree [12, 14], backtrack instead of restarting when their
optimistic validation fails. In the CF tree, backtracking is implemented by directing pointers
from child to parent, breaking our acyclicity requirement. A similar situation arises in the
in-place rotation of [8]. Handling these scenarios in our proof argument is an interesting
direction for future work.

An additional direction to explore is validations performed during traversals. For ex-
ample, the SnapTree algorithm [8] performs in-place rotations which violate preservation.
The algorithm overcomes this by performing hand-over-hand validation during a lock-free
traversal. This validation, consisting of re-reading previous locations and ensuring version
numbers have not changed, does not fit our approach of sequential reasoning on traversals.

The preservation of reachability to location of modification arises naturally out of the cor-
rectness of traversals in modifying operations, ensuring that the conclusion of the traversal—
the existence of a path—holds not only in some point in the past, but also holds at the time
of the modification. We show that, surprisingly, preservation, when it is combined with
the order, suffices to reason about the traversal by a local view argument. We base the
correctness of read-only operations on the same predicates, and so rely on the same prop-
erty. It would be interesting to explore different criteria which ensure the simulation of the
fabricated state constructed based on the accumulated order.

Finding ways to extend the framework in these directions is an interesting open problem.
This notwithstanding, we believe that our framework captures important principles under-
lying modern highly concurrent data structures that could prove useful both for structuring
linearizability proofs and elucidating the correctness principles behind new concurrent data
structures.

Acknowledgments. This publication is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreements No [759102-SVIS] and [678177]). The research was
partially supported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik
Interdisciplinary Cyber Research Center, Tel Aviv University, the United States-Israel Bi-
national Science Foundation (BSF) grants No. 2016260 and 2012259, and the Israeli Science
Foundation (ISF) grant No. 2005/17. We thank the anonymous reviewers whose comments
helped improve the paper.

DISC 2018

23:18 Proving Linearizability Using Local Views

References

1 Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. An
integrated specification and verification technique for highly concurrent data structures. In
TACAS, pages 324–338, 2013.

2 Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Com-
parison under abstraction for verifying linearizability. In CAV ’07, volume 4590 of LNCS,
pages 477–490, 2007.

3 Maya Arbel and Hagit Attiya. Concurrent Updates with RCU: Search Tree As an Example.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC
’14, pages 196–205, New York, NY, USA, 2014. ACM. URL: http://doi.acm.org/10.
1145/2611462.2611471, doi:10.1145/2611462.2611471.

4 Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson.
Permission accounting in separation logic. In Jens Palsberg and Martín Abadi, edi-
tors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005,
pages 259–270. ACM, 2005. URL: http://doi.acm.org/10.1145/1040305.1040327,
doi:10.1145/1040305.1040327.

5 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Verifying concurrent
programs against sequential specifications. In ESOP ’13, volume 7792 of LNCS, pages
290–309. Springer, 2013.

6 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing lin-
earizability to state reachability. In Automata, Languages, and Programming - 42nd Inter-
national Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II,
pages 95–107, 2015.

7 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Prov-
ing linearizability using forward simulations. In Rupak Majumdar and Viktor Kuncak,
editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidel-
berg, Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes
in Computer Science, pages 542–563. Springer, 2017. URL: https://doi.org/10.1007/
978-3-319-63390-9_28, doi:10.1007/978-3-319-63390-9_28.

8 Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2010, Bangalore, India, January
9-14, 2010, pages 257–268, 2010.

9 Stephen D. Brookes. A semantics for concurrent separation logic. In Gardner and
Yoshida [22], pages 16–34. URL: https://doi.org/10.1007/978-3-540-28644-8_2,
doi:10.1007/978-3-540-28644-8_2.

10 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In PPoPP, 2014.

11 Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Scalable address spaces
using RCU balanced trees. In ASPLOS, 2012.

12 Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary search tree.
In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors, Euro-Par 2013 Parallel Processing,
pages 229–240, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

13 Tyler Crain, Vincent Gramoli, and Michel Raynal. No Hot Spot Non-blocking Skip List.
In ICDCS, 2013.

14 Tyler Crain, Vincent Gramoli, and Michel Raynal. A fast contention-friendly binary search
tree. Parallel Processing Letters, 26(03):1650015, 2016. doi:10.1142/S0129626416500158.

http://doi.acm.org/10.1145/2611462.2611471
http://doi.acm.org/10.1145/2611462.2611471
http://dx.doi.org/10.1145/2611462.2611471
http://doi.acm.org/10.1145/1040305.1040327
http://dx.doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-63390-9_28
http://dx.doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-540-28644-8_2
http://dx.doi.org/10.1007/978-3-540-28644-8_2
http://dx.doi.org/10.1142/S0129626416500158

YMY Feldman et al. 23:19

15 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic
for time and data abstraction. In Richard E. Jones, editor, ECOOP 2014 - Object-
Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - Au-
gust 1, 2014. Proceedings, volume 8586 of Lecture Notes in Computer Science, pages
207–231. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44202-9_9, doi:
10.1007/978-3-662-44202-9_9.

16 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized Concurrency:
The Secret to Scaling Concurrent Search Data Structures. In ASPLOS, 2015.

17 Dana Drachsler, Martin Vechev, and Eran Yahav. Practical Concurrent Binary Search
Trees via Logical Ordering. In PPoPP, 2014.

18 Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. Automatic linearizability
proofs of concurrent objects with cooperating updates. In CAV ’13, volume 8044 of LNCS,
pages 174–190. Springer.

19 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
Binary Search Trees. In PODC, 2010.

20 Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon
Shoham. Order out of chaos: Proving linearizability using local views. CoRR,
abs/1805.03992, 2018. URL: http://arxiv.org/abs/1805.03992, arXiv:1805.03992.

21 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, Computer Lab-
oratory, University of Cambridge, Computer Laboratory, February 2004.

22 Philippa Gardner and Nobuko Yoshida, editors. CONCUR 2004 - Concurrency Theory,
15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings,
volume 3170 of Lecture Notes in Computer Science. Springer, 2004. URL: https://doi.
org/10.1007/b100113, doi:10.1007/b100113.

23 Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In DISC,
2001.

24 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Bill Scherer, and Nir Shavit.
A lazy concurrent list-based set algorithm. In OPODIS, 2005.

25 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented linearizability
proofs. In CONCUR, pages 242–256, 2013.

26 M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3), 1990.

27 Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A Simple Optimistic Skiplist
Algorithm. In SIROCCO, 2007.

28 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

29 Shane V. Howley and Jeremy Jones. A Non-blocking Internal Binary Search Tree. In
SPAA, 2012.

30 Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages
321–332, 1983.

31 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, pages 637–650. ACM, 2015. URL:
http://doi.acm.org/10.1145/2676726.2676980, doi:10.1145/2676726.2676980.

32 Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. Go with the flow: compositional
abstractions for concurrent data structures. PACMPL, 2(POPL):37:1–37:31, 2018. URL:
http://doi.acm.org/10.1145/3158125, doi:10.1145/3158125.

DISC 2018

https://doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://arxiv.org/abs/1805.03992
http://arxiv.org/abs/1805.03992
https://doi.org/10.1007/b100113
https://doi.org/10.1007/b100113
http://dx.doi.org/10.1007/b100113
http://doi.acm.org/10.1145/2676726.2676980
http://dx.doi.org/10.1145/2676726.2676980
http://doi.acm.org/10.1145/3158125
http://dx.doi.org/10.1145/3158125

23:20 Proving Linearizability Using Local Views

33 Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. A constructive approach for proving
data structures’ linearizability. In Yoram Moses, editor, Distributed Computing - 29th In-
ternational Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, volume
9363 of Lecture Notes in Computer Science, pages 356–370. Springer, 2015. URL: https:
//doi.org/10.1007/978-3-662-48653-5_24, doi:10.1007/978-3-662-48653-5_24.

34 Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained
concurrency. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, pages 561–574. ACM, 2013. URL: http:
//doi.acm.org/10.1145/2429069.2429134, doi:10.1145/2429069.2429134.

35 Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed lin-
earization points. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 459–470, 2013.

36 Maged M. Michael. High Performance Dynamic Lock-free Hash Tables and List-based Sets.
In SPAA, 2002.

37 Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-free Binary Search Trees. In
PPoPP, 2014.

38 P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying lineariz-
ability with hindsight. In 29th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 85–94, 2010.

39 Peter W. O’Hearn. Resources, concurrency and local reasoning. In Gardner and
Yoshida [22], pages 49–67. URL: https://doi.org/10.1007/978-3-540-28644-8_4,
doi:10.1007/978-3-540-28644-8_4.

40 Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976. URL: http://doi.acm.org/10.1145/
360051.360224, doi:10.1145/360051.360224.

41 Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verification of
a non-blocking stack. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of
the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2007, Nice, France, January 17-19, 2007, pages 297–302. ACM, 2007. URL: http:
//doi.acm.org/10.1145/1190216.1190261, doi:10.1145/1190216.1190261.

42 Arunmoezhi Ramachandran and Neeraj Mittal. A Fast Lock-Free Internal Binary Search
Tree. In ICDCN, 2015.

43 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying and verifying con-
current algorithms with histories and subjectivity. In Jan Vitek, editor, Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in
Computer Science, pages 333–358. Springer, 2015. URL: https://doi.org/10.1007/
978-3-662-46669-8_14, doi:10.1007/978-3-662-46669-8_14.

44 Dennis E. Shasha and Nathan Goodman. Concurrent search structure algorithms. ACM
Trans. Database Syst., 13(1):53–90, 1988. URL: http://doi.acm.org/10.1145/42201.
42204, doi:10.1145/42201.42204.

45 Joseph R Shoenfield. The problem of predicativity. In Mathematical Logic In The 20th
Century, pages 427–434. World Scientific, 2003.

46 Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, Scalable, Concurrent
Hash Tables via Relativistic Programming. In USENIX ATC, 2011.

47 Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-style rea-
soning in a logic for higher-order concurrency. In Greg Morrisett and Tarmo Uustalu,
editors, ACM SIGPLAN International Conference on Functional Programming, ICFP’13,

https://doi.org/10.1007/978-3-662-48653-5_24
https://doi.org/10.1007/978-3-662-48653-5_24
http://dx.doi.org/10.1007/978-3-662-48653-5_24
http://doi.acm.org/10.1145/2429069.2429134
http://doi.acm.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134
https://doi.org/10.1007/978-3-540-28644-8_4
http://dx.doi.org/10.1007/978-3-540-28644-8_4
http://doi.acm.org/10.1145/360051.360224
http://doi.acm.org/10.1145/360051.360224
http://dx.doi.org/10.1145/360051.360224
http://doi.acm.org/10.1145/1190216.1190261
http://doi.acm.org/10.1145/1190216.1190261
http://dx.doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://doi.acm.org/10.1145/42201.42204
http://doi.acm.org/10.1145/42201.42204
http://dx.doi.org/10.1145/42201.42204

YMY Feldman et al. 23:21

Boston, MA, USA - September 25 - 27, 2013, pages 377–390. ACM, 2013. URL:
http://doi.acm.org/10.1145/2500365.2500600, doi:10.1145/2500365.2500600.

48 V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2008.

49 V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In PPoPP, 2006.

50 Viktor Vafeiadis. Automatically proving linearizability. In CAV ’10, volume 6174 of LNCS,
pages 450–464.

51 Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI ’09: Proc.
10th Intl. Conf. on Verification, Model Checking, and Abstract Interpretation, volume 5403
of LNCS, pages 335–348. Springer, 2009.

52 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness of
highly-concurrent linearisable objects. In PPOPP ’06, pages 129–136. ACM.

53 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. A safety proof of a lazy
concurrent list-based set implementation. Technical Report UCAM-CL-TR-659, University
of Cambridge, Computer Laboratory, 2006.

54 He Zhu, Gustavo Petri, and Suresh Jagannathan. Poling: SMT aided linearizability proofs.
In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part II, pages 3–19, 2015.

DISC 2018

http://doi.acm.org/10.1145/2500365.2500600
http://dx.doi.org/10.1145/2500365.2500600

	Introduction
	Motivating Example
	Proving Linearizability
	Proving the Assertions

	The Framework: Correctness of Traversals Using Local Views
	Reachability Along Search Paths
	Local Views and Their Properties
	Local View Argument: Conditions & Guarantees
	Condition I: Temporal Acyclicity
	Condition II: Preservation of Search Paths
	Local View Arguments' Guarantee

	Proof Idea

	Putting It All Together: Proving Linearizability Using Local Views
	Additional Case Studies
	Lazy and Optimistic Lists
	Lock-free List and Skip-List

	Related Work
	Conclusions and Future Work

