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ABSTRACT

Many parallel algorithms in domains such as graph analytics and
simulations rely on priority-based task scheduling. In such environ-
ments, the data structure of choice is a concurrent priority queue
(PQ). Unfortunately, PQ algorithms exhibit an undesirable tradeoff.
On one hand, strict PQs always dequeue the highest-priority task,
and thus fail to scale because of contention at the head of the queue.
On the other hand, relaxed PQs avoid contention by dequeuing
tasks that are sometimes so far from the head that the resulting
schedule misses the benefit of priority-based scheduling.

We propose a novel architecture for relaxing PQs without stray-
ing far from the priority-based schedule. Our chip-level architecture,
called Snug, distributes the PQ into subqueues, and maintains a set
of Work registers that point to the highest-priority task in each sub-
queue. Snug provides an instruction that picks a high-quality task
to execute. The instruction periodically switches between obtaining
an accurate global snapshot, and visiting only local subqueues to
reduce traffic. Overall, Snug dequeues high-quality tasks while
avoiding both hotspots and excessive network traffic. We evalu-
ate Snug on graph analytics and event simulation programs. On a
simulated 64-core chip, Snug reduces the average execution time
of the programs by 1.4×, 2.4× and 3.6× compared to state-of-the-
art concurrent skip list, SprayList, and software-distributed PQs,
respectively.
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1 INTRODUCTION

Many parallel algorithms in domains such as graph analytics [11,
35, 37], discrete event simulation [15], and machine learning [3]
rely on priority-based task scheduling. When the algorithm creates
a taskT , it assigns it a priority p, and ifT1.p < T2.p, thenT1 should
execute before T2. (That is, lower p values mean higher priorities.)
The data structure commonly used to implement priority-based task
scheduling is the concurrent priority queue (PQ). A PQ maintains
a collection of items, each associated with a priority. It supports
two basic operations: enqueue, which adds an item to the correct
position in the queue, and dequeue, which removes the item with
the highest priority from the head of the queue.

Unfortunately, concurrent PQs are not scalable. Since every
thread executing dequeue tries to remove the same highest-priority
item, the head becomes a synchronization hotspot [8, 21, 30–32, 43].
The resulting serialization and synchronization overheads can dom-
inate execution time.

To avoid this problem, researchers have proposed to relax PQ se-
mantics and allow dequeue to return an item that is not the highest-
priority one [2, 39, 47, 48]. Relaxed PQ algorithms use various
strategies to find the item to dequeue. For example, they perform
a short random walk on a skip list to find an item to dequeue [2],
or pick the highest-priority item between a thread-local PQ and a
global shared PQ [47]. These strategies alleviate the bottleneck at
the head.

Relaxed PQ algorithms face the danger of straying too much
from the desired task execution order and ending-up performing
wasted work. For example, in discrete event simulation, a threadmay
process an event that is far in the future, only to have to reprocess
it again later, as new events that occur from now until that time
change the system state. Thus, the key difficulty in designing a
relaxed PQ is to consistently return high-priority items.

In practice, existing relaxed PQs often fail to achieve this goal.
For example, the SprayList [2] returns an item among the first
O(t log3 t) ones in the PQ with high probability, where t is the
number of threads. For a 64-thread execution, this translates to
a weak guarantee of returning an item within the first 13, 824 in
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the queue (ignoring constant factors). Similarly, with the recom-
mended parameter k = 256, the k-LSM PQ [47] only guarantees
returning an item within the first 16, 384 in the queue in a 64-thread
execution. Current priority-based task scheduling algorithms thus
pose a synchronization vs. work-efficiency tradeoff: alleviating the
synchronization hotspot by using relaxed PQs leads to wasted work.

This paper introduces novel hardware support to address this
tradeoff. Our chip-level architecture, called Snug, relaxes the prior-
ity order in a PQ algorithm slightly, to alleviate contention while
inducing, on average, little wasted work. Snug distributes the PQ
into subqueues, and maintains a set of Work registers that point
to the highest-priority task in each subqueue. A new PickHead
instruction returns a high-priority task from the combined PQ.

PickHead employs an adaptive technique to pick a high-priority
task without congesting the network. Sometimes, PickHead reads
all Work registers in parallel, saves the result, and returns a random
task from within the R highest-priority ones observed. R is called
the Relaxation Count, and is dynamically adapted by Snug, based
on the rate of synchronization failures—which indicate the degree
of contention. In later PickHead invocations, PickHead reuses the
saved information to avoid rereading the Work registers. Finally,
PickHead sometimes reads only from a set of localWork registers, to
save traffic. Overall, PickHead performs high-quality task selection
while avoiding hotspots, minimizing wasted work, and consuming
acceptable network bandwidth.

Snug Effectiveness. We evaluate Snug on a simulated 64-core
chip using graph and discrete event simulation applications with
various inputs. We compare the execution time of the applications
using Snug and using several other PQ algorithms. Such algorithms
include software-only PQs based on a concurrent skip list, SprayList,
and distributed skip list; and a hardware-based centralized PQ. Snug
reduces the average execution time of the applications by 1.4×,
2.4× and 3.6× compared to state-of-the-art concurrent skip list,
SprayList, and software-distributed PQs, respectively. Compared
to the latter two relaxed PQ designs, Snug reduces the number of
wasted tasks by 3.3× and 36.8×, respectively.

Contributions. We make the following contributions:
• The Snug architecture, which consists of the PickHead instruction,
theWork registers, and other ISA andmicroarchitectural extensions.
This design adapts its degree of relaxation dynamically.
• Simulation-based evaluation of Snug using graph and discrete
event simulation applications, and a comparison to several other
software- and hardware-based PQs.

2 MOTIVATION AND BACKGROUND

2.1 Need for Priority-Based Task Scheduling

We target parallel algorithms that benefit from priority-based sched-
uling. Such algorithms decompose work into tasks (which can gen-
erate new tasks as they run) and execute them in order according
to some notion of priority. Processing a task out of priority order
leads to wasted work, where a task executes inefficiently and/or the
results of its computation are thrown away later.

Many parallel algorithms in a wide range of domains exhibit
the above structure. To name some examples, in discrete event
simulation, Time Warp [15, 22] optimistically executes simulated
events (i.e., tasks) in parallel, rolling back events that are discov-
ered to have been simulated before their dependencies are satisfied.
Priority-based scheduling minimizes such rollbacks. In machine

learning, task execution order significantly impacts convergence
time in residual belief propagation [3, 13], an algorithm for per-
forming inference on graphical models. Parallel algorithms for
important graph problems, such as Single-Source Shortest-Paths
(SSSP) [11, 35], Minimal Spanning Tree (MST) [6, 37], and Between-
ness Centrality [7], also leverage priority-based scheduling.

Here, we use SSSP as a running example. SSSP is a classic graph
problem that is used in many domains. SSSP is also a building block
for computing Betweenness Centrality which, in turn, has wide ap-
plication in network theory, social networks [49], and biology [50].

The SSSP Example. Given a weighted directed graph and a source
node s , SSSP finds the weight of the shortest path from s to every
other node in the graph. Most SSSP algorithms use relaxations [10],
in which the algorithm tests whether a shortest path found so far
can be improved. Each node v is associated with a dist(v) label
(initially 0 for s and∞ for all other nodes). A relaxation considers
an edge (u,v) of weightw . If dist(v) > dist(u) +w , the algorithm
updates dist(v) to be dist(u) + w . Updates of a node’s label are
synchronized (e.g., with atomic instructions), allowing relaxations
to run in parallel. The algorithm thus converges to the labels con-
taining the weights of the shortest paths from s .

Any relaxation that does not update a node’s label to its true
distance is wasted work, as it will be overwritten by the relaxation
that updates the label to the true distance. Dijkstra’s SSSP algo-
rithm [10, 11] relaxes each edge exactly once. It partitions the graph
into explored nodes, whose distance from s is known, and unex-
plored nodes. In each iteration, it picks the unexplored node u with
the smallest label, marks it explored, and relaxes every edge (u,v).

Priority-based Task Scheduling. By using node labels as priori-
ties and defining a task as relaxing every outgoing edge of a node,
we can approximate Dijkstra’s algorithm in a multiprocessor and
minimize wasted work. Note that due to parallelism, wasted work is
not guaranteed to disappear. This is because two tasks may perform
conflicting relaxations.

2.2 Concurrent Priority Queue Algorithms

Concurrent Priority Queues (PQs) are natural data structures to
implement priority-based task scheduling. A PQ maintains a col-
lection of items (i.e., tasks or nodes), each associated with its own
priority p. We consider lower p values to be higher priorities. A
PQ supports two operations: enqueue, which adds an item to the
collection in its correct position, and dequeue, which removes the
item with the highest priority from the collection and returns it.

PQs suffer from scalability problems, due to synchronization
hotspots resulting from the fact that every thread executing de-
queue tries to remove the same, highest-priority item. Motivated
by this scalability problem, researchers have proposed relaxed PQs,
which allow a dequeue to return a task that is not the highest-
priority one [2, 39, 47, 48]. Relaxed PQs alleviate the synchroniza-
tion hotspot, but increase the amount of wasted work. As a result,
the performance of the application may improve or degrade with a
relaxed PQ.

Contention in Standard PQs. Modern PQs [8, 14, 30, 32, 43] are
implemented based on the skip list data structure [38]. A skip list
is conceptually a sorted linked list in which some nodes contain
“hints” that enable searching in logarithmic time. PQs implement
enqueue by inserting an item into the skip list (which is sorted by
priority), and dequeue by removing the head item.
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For simplicity, we explain the PQ synchronization issues using
the simpler linked list-based PQ, rather than the skip list-based
PQ, and cover skip lists in the Appendix. Linked-list insertions are
performed by searching the sorted list for the correct place to insert
the new item, and linking a new node there. Searching is done using
only reads, without acquiring locks [17], and so enqueue operations
can proceed in parallel and scale well.

Linked-list deletions are done in two phases [17, 34]: the node
is first logically deleted by setting a “deleted” flag in the node, and
then physically deleted by updating the next pointer of its prede-
cessor. We explain the details in the Appendix. Both of these steps
involve synchronization, either through locks or atomic Compare-
And-Swap (CAS) instructions. Crucially, threads concurrently per-
forming a dequeue all attempt to delete the same node, resulting in a
significant synchronization bottleneck. PQ research has focused on
reducing the impact of this bottleneck—e.g., by batching physical
deletions [30]—but inevitably hits a scalability limit.

Relaxed PQs. Relaxed PQs eliminate the bottleneck at the PQ
head by distributing dequeue operations, often using randomization.
The SprayList [2] is based on a skip list, but a dequeue chooses
its target item by performing a short random walk on the list.
MultiQueues [39] and Sheaps [4, 29] distribute the data structure,
composing the logical PQ out of per-thread PQs. Dequeues are
performed from a remote queue only if the local one is empty [29],
or from a queue chosen randomly [39]. Other approaches combine
per-thread PQs with a global PQ [47].

Relaxed PQ designs trade off synchronization costs with in-
creased probability of wasting work, since the tasks returned by a
relaxed PQ may be far from the highest-priority one.

3 THE SNUG ARCHITECTURE

3.1 Main Idea

Our goal is to design architectural support for a PQ that mini-
mizes both wasted work and synchronization overhead. We ac-
complish it with Snug, which is a novel chip-level architecture
for high-performance, distributed PQs. Snug exists in the context
of a directory-based manycore. Each core (or core cluster) owns
a module of the distributed directory. Any programmer-declared
logical queue is distributed into multiple physical queues. Each
physical queue’s head is in a different directory module.

When a thread running on a core calls the enqueue operation, the
PQ library leverages the Snug hardware to enqueue the node at the
correct spot in the core’s local physical queue.When the thread calls
the dequeue operation, the PQ library leverages the Snug support
to return to the thread a node with one of the highest priorities
in the distributed PQ. As we will see, the hardware uses a special
algorithm, so as to minimize both wasted work and synchronization
overhead, and avoid excessive traffic. Overall, with Snug, enqueues
are fast because they are local, while dequeues are both fast and
return high-priority nodes thanks to special hardware.

Figure 1 shows the Snug architecture. In a tiled manycore, each
node has two hardware structures: a set of Work Registers in the
directory module, and a PickHead Module in the core. Each Work
register can function as the head of a work queue. Cores can access
all the Work registers in the chip as memory-mapped locations in
an uncacheable virtual address range. When aWork register is used,
it has two values: a pointer to the first node in the corresponding
queue, and that node’s priority. Any core in the chip can read aWork
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Snapshot
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Router
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Directory module

Node

Pointer PriorityCore
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Chip
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Figure 1: Snug architecture in a directory-based manycore.

Each directory module has a set of Work registers, and each

core has a PickHead module.

register without causing ping-ponging of cached data across the
network. In addition, there are instructions that read both pointer
and priority together, and that modify both pointer and priority
atomically.

When a thread calls the dequeue operation, the PQ library issues
a new instruction called PickHead. The instruction may access mul-
tiple queues, only the local queue, or no queue at all. For each of the
queues accessed, the network transaction returns the information
in the Work register.

The PickHead module in Figure 1 supports the PickHead instruc-
tion. When the instruction visits multiple queues, it issues parallel
requests that read each of the relevant Work registers in parallel.
The values returned (pointer to the node at the head and its pri-
ority) are stored in a small Snapshot Memory in the module. Then,
PickHead does not return to the software the pointer to the very
highest-priority node in the Snapshot memory. Doing so would
cause all the threads to attempt a CAS on the same node. Instead,
the Snug hardware sorts the pointers to the nodes in the Snapshot
memory based on their priority, considers only the top R of them,
and picks one of them at random to return to the software. The
software will then attempt to perform a CAS on the node.

R is the Relaxation count. It is stored in the R Register of the
PickHead module (Figure 1) and is dynamically adapted by Snug
based on the rate of synchronization failures.

Sometimes, PickHead chooses to visit no queue. It simply reuses
information in the Snapshot memory, returning another of the node
pointers there. This choice saves traffic, and is selected a few times
right after the Snapshot memory is refreshed. However, using this
choice several times in a row risks using stale data, which will result
in the failure of the subsequent CAS operation.

Finally, PickHead sometimes chooses to visit only the local queue.
This choice triggers a cheap transaction, which induces minimal
traffic and contention. However, it may or may not provide a pointer
to a high-priority node to dequeue. This choice is selected several
times after multiple entries from the Snapshot memory have been
used, to reduce traffic pressure.

After PickHead returns a pointer to a node, the library attempts
to dequeue the node with a CAS. If it fails, it calls PickHead again,
and the process repeats until a node is successfully dequeued.

3.2 PickHead Instuction and Module

The goal of the PickHead instruction is to return a pointer to one of
the highest-priority nodes in the PQ with minimal overhead. The
instruction uses the PickHead module shown in Figure 2. As the
instruction starts executing, a Decision Logic module makes one
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of three choices: issue a Global access to multiple Work registers,
issue a local access, or issue no network access at all.

Figure 2: PickHead module.

Global Access. Under certain conditions, the PickHead instruction
issues as many network requests as there are physical queues in the
requested logical queue. These requests proceed in parallel, each
visiting a queue and returning a 3-tuple to the Snapshot memory
and Sorter & Selector module (Figure 2). A tuple has the queue ID
(i.e., the virtual address (VA) of the queue), and the two contents of
its Work register. Now, the PickHead module needs to pick one of
these node pointers to return to the software, which will then per-
form a CAS to attempt to dequeue the node from the corresponding
queue.

As indicated above, if the chosen node was always the highest-
priority one, we would induce high PQ contention. Hence, the
Sorter & Selector module (Figure 2) sorts the node pointers as
they arrive in decreasing priority, and then considers the subset
of them that have the highest priorities. This subset is called the
Inclusion Set. Its size is equal to the Relaxation count stored in the
R register (Figure 2). Finally, the hardware randomly selects one of
the node pointers in the Inclusion Set and returns it to the software.
Section 4.2 describes this step.

To set R, we would ideally use feedback from the contention for
the PQ and the amount of wasted work performed by the applica-
tion. Unfortunately, wasted work is very application dependent, and
programmers may find it difficult to estimate. On the other hand,
PQ contention is easy to measure. Hence, in Snug, the PickHead
instruction takes an operand (PrevFailed?) that is set if the CAS
on the node provided by PickHead in the previous Global access
failed. This operand is set and reset inside the PQ dequeue library.
In general, if the frequency of failures of CAS operations is high, we
increase R; if it is low, we decrease R. The Double Exponential Mov-
ing Average (DEMA) unit (Figure 2) uses the CAS success/failure
history to set R. Section 4.3 explains the algorithm used.

Local Access. In this case, PickHead accesses only the local queue.
This operation is inexpensive, but can potentially obtain a pointer
to a node with a lower priority than if we performed a Global access.
The returning data bypasses the Snapshot memory and Sorter &
Selector, and is returned to the software.

In networks organized in clusters, this transaction could involve
PickHead accessing all the queues in the local cluster. If so, this
case would proceed as explained for the Global access: the multiple
responses would be received in the Snapshot memory and sorted,
and one node pointer from the highest-priority ones would be
returned to the software.

To balance the desire to reduce the global traffic and to pick
high-priority nodes, we design PickHead to perform a fixed number

of local accesses between any pair of consecutive Global accesses.
Section 4.1 explains the algorithm used.

No Network Access. After a PickHead performs a Global access,
several subsequent PickHead executions reuse the information in
the Snapshot memory. The goal is to reduce the network traffic
without hurting the quality of node selection much. Specifically,
a prior Global access brought node pointers from all the queues,
sorted them, picked one, and consumed the corresponding node.
Now, the PickHead instruction reuses the sorted array of pointers in
the Sorter & Selector module as follows. The hardware re-considers
all the non-consumed entries in the Sorter & Selector module, and
randomly selects one to return to the software. That entry is then
marked as consumed. Note that the algorithm is otherwise not
selective in what nodes to re-consider—this is to maximize the
chances of attaining an available node. This process is repeated a
few times before the snapshot is discarded. Section 4.1 presents the
algorithm.

3.3 Interface to the Software

The Snug hardware is accessible with the API in Table 1. The table
lists the inputs and outputs of each of the four Snug operations.
While different implementations are possible, we envision Pick-
Head, UpdateHead, and FetchHead to be actual instructions, with
their operands placed in registers—some encoded in the instruction,
and some used implicitly. The other operation, AllocHeads, is a
subroutine that invokes the memory manager.

AllocHeads allocates Work registers. It takes two inputs and one
output. The inputs are the number of programmer-visible logical
queues to allocate, and an array with the number of physical queues
that each logical queue should have. The physical queues of each
logical queue are distributed into as many different directory mod-
ules as possible. AllocHeads returns the virtual addresses (VAs) of all
the physical queues allocated—i.e., the VAs of all the Work registers
allocated.

AllocHeads
input: # of logical queues
input: Array with the # of physical queues for each logical queue
output: VAs of all the physical queues allocated

PickHead
input: ID of the logical queue
input: Did the CAS after previous Global access to the queue fail?
output: VA of the chosen physical queue to dequeue from
output: Pointer to the node at the head of the chosen queue

UpdateHead
input: VA of the physical queue
input: Pointer to the node at the head of the physical queue
input: Pointer to the node to place at the queue’s head
input: Priority of the node to place at the queue’s head
output: Successful or failed outcome

FetchHead
input: VA of the physical queue
output: Pointer to the node at the head of the physical queue

Table 1: API of the Snughardware. VAmeans virtual address.

PickHead was described in Section 3.2. It takes as inputs the ID
of a logical queue and a boolean that indicates if the CAS on the
node provided by PickHead in the previous Global access to the
queue failed. The outputs are the VA of the chosen physical queue
to dequeue from, and a pointer to the node at the head of that queue.
In the worst case, the latency of this instruction is that of multiple
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1 void enqueue( int LogQueID, Node ∗new) {
2 Node ∗∗head = &queue[LogQueID][local]; // local queue
3 // head is the uncacheable address of the head of the queue
4 while (true) {
5 Node ∗∗prev = head;
6 Node ∗curr = FetchHead (head); // get node at head of queue
7 while (new−>priority > curr−>priority ) { // high num is low prio
8 prev = &curr−>next;
9 curr = curr−>next;
10 }
11 // insert node between prev and curr
12 new−>next = curr;
13 if (prev == head)
14 ok = UpdateHead (head, curr , new, new−>priority);
15 else

16 ok = CAS(prev, curr , new);
17 if (ok)
18 return; // success
19 } }

(a) Enqueue

20 PrevFailed? = no; // local variable , initially false
21 void∗ dequeue( int LogQueID) {
22 // " first " will get information on the node to dequeue:
23 // VA of its physical queue, and a pointer to the node
24 struct {
25 Node ∗∗physqueue;
26 Node∗ head;
27 } first ;
28 while (true) {
29 first = PickHead (LogQueID,PrevFailed?); // return node
30 if (first.head == NULL)
31 return NULL; // empty
32 Node ∗next = first.head−>next;
33 success = UpdateHead (first.physqueue , first.head , next , next−>priority );
34 if (Global)
35 PrevFailed? = ( success ? no : yes );
36 if ( success )
37 return first.head;
38 } }

(b) Dequeue

Figure 3: Code to enqueue (a) and dequeue (b) a node with Snug. Recall that enqueues are always local.

uncached accesses in parallel to directory modules, plus sorting the
incoming node priorities in hardware.

UpdateHead performs a CAS to modify a Work register and,
hence, change the head of the corresponding physical queue. It
changes the two fields of the Work register—i.e., the pointer to the
head node and its priority—atomically. It is used in both the enqueue
and dequeue PQ library operations. UpdateHead takes four inputs
(Table 1): the VA of the physical queue, the expected value of the
pointer to the node at the head of the queue, a pointer to the node
that the instruction wants to place at the head of the queue, and that
node’s priority. If UpdateHead succeeds, both pointer and priority
in the Work register are updated; if it fails, no change is made.
UpdateHead returns a boolean with the outcome of the operation.

This operation is performed in a CAS hardware unit in the di-
rectory module. In this way, operands do not have to flow from the
directory module to the core and back. A similar unit is provided
in current GPUs to perform CASes in the cache hierarchy [27, 36].
Also note that, with this instruction, Snug can perform arbitrary
writes to the queue head. Overall, the overhead of this instruction
is an uncached access to a directory module that includes a CAS
operation.

FetchHead reads the pointer field of a Work register and, thus,
obtains the head of a physical queue. It is used as part of the enqueue
library, which needs to check the current value of the queue head
to be able to change it with UpdateHead. FetchHead takes as input
the VA of the physical queue. Its output is a pointer to the node
at the head of the queue. Its overhead is an uncached access to a
directory module.

3.4 Enqueue and Dequeue Operations

The previous instructions are not typically used directly by pro-
grammers. Instead, they are used in the PQ library to allocate
queues, and to enqueue and dequeue nodes. Figures 3(a) and (b)
show pseudo-code for the routines that enqueue and dequeue a
node, respectively. Programs that call the PQ library do not know
about physical queues; they reference logical queues.

For simplicity, Figures 3(a) and (b) focus on the physical deletions.
We omit the details of handling logical deletions (Section 2.2), which
are orthogonal to Snug. In addition, the figures use simple linked
lists. In practice, high-performance concurrent PQ libraries use the
more efficient skip list [32].

The enqueue routine (Figure 3(a)) is called with the ID of a logical
queue and a node to enqueue. The routine first determines the VA

of the local physical queue (Line 2); this is the queue where the
node will be enqueued. The routine then uses FetchHead to read
the pointer to the node at the head of the queue (Line 6). It then
follows the linked list of nodes, reading the priority of each node,
to find the place to insert the new node (Lines 7-10). If the node
needs to be placed at the head, it uses UpdateHead to do so and fill
the Work register (Line 14). Otherwise, it uses a plain CAS (Line
16). Either UpdateHead or CAS can fail; if it does, the routine goes
back to walking the queue to find where to enqueue.

The dequeue routine (Figure 3(b)) is called with the ID of a logical
queue. It returns one of the highest-priority nodes from the logical
queue (not necessarily the highest one), by dequeueing it from the
appropriate physical queue. The routine uses PickHead to find the
VA of the physical queue and a pointer to the node (Line 29). Then,
the routine tries to dequeue the node using UpdateHead on the
appropriate physical queue (Line 33). If this was a Global access, the
routine sets PrevFailed? based on whether UpdateHead succeeded or
failed (Line 35). PrevFailed?will be used the next time that PickHead
performs a Global access. In any case, if UpdateHead succeeds, the
routine returns a pointer to the dequeued node (Line 37). Otherwise,
the routine repeats the use of PickHead and UpdateHead until the
dequeue succeeds or there is no node to dequeue.

4 DETAILED ASPECTS OF SNUG DESIGN

4.1 Algorithm to Pick the Node to Process

Snug’s algorithm for picking the next node to dequeue maintains
a balance between two objectives. On one hand, Snug wants to
observe globally up-to-date information about the PQ, so that it can
pick a high-priority node and minimize wasted work. On the other
hand, Snug also wants to avoid generating excessive network traffic,
which would be the case if all PickHead invocations visited all the
Work registers. As per Section 3.2, Snug achieves this balance by
complementing Global accesses with (i) reuses of Snapshot memory
information, and (ii) accesses to the Local queue.

TheDecision Logic unit in the PickHeadmodule (Figure 2) divides
the stream of PickHead instruction executions into phases. Each
phase begins with a PickHead instruction that performs a Global
access, followed byU PickHead executions that reuse the snapshot,
and finally L PickHead executions that access the local queue.

A Global access reads many pointers to nodes, each of which is at
the head of a physical queue. One of these pointers is returned to the
software. However, many of the pointers read by the Global access
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are good candidates for processing. Hence, in the next U calls to
PickHead, we want it to return some of these nodes. Eventually, the
snapshot data becomes stale, as other cores have dequeued nodes
from the various queues. Therefore, after U PickHead executions,
Snug discards the snapshot.

Snug then switches to visiting only the local queue for L times.
This decision trades off the quality of the executed work for short
periods, in order to avoid excessive network traffic. If the network
is organized in clusters, each of these L PickHead executions could
access all of the local queues in the cluster, and return one of the
best nodes in them. In any case, following these L local accesses, a
new phase begins, and the next PickHead triggers a Global access.

4.2 Sorting the Nodes

The Sorter & Selector module sorts the 3-tuple responses as they
arrive from memory. We use an inexpensive sorter that performs
pipelined linear insertion sort (Figure 4). As each of the 3-tuples
arrives, a Tag Counter (Figure 2) assigns it a tag. Then, the incoming
priority and tag are fed to the Sorter & Selector module, where
the earlier arrivals are already sorted in registers. The incoming
priority is then compared to the existing priorities in sequence,
until the hardware determines its correct position (Figure 4). At that
point, the incoming priority and tag are stored in the corresponding
register, and all remaining existing priorities are shifted one position
to the right. Details of a similar system can be found in [33].

Figure 4: Sorter & Selector module.

The hardware complexity of this module and the sorting time
scale linearly with the number of physical queues. Specifically, for n
queues, the sorting network has n comparators. When the last tuple
is received, it takes n steps to complete the sorting. Our analysis
with design tools estimates that each step takes 1ns, or 2 processor
cycles. Hence, sorting takes 2n processor cycles after the last tuple
arrives.

After the sorting, some selection logic reads a register that con-
tains the current time and performs a modulo operation of the time
with the current value of R. The result is an index that the module
uses to select one of the top R entries from the sorted array of
priorities (Figure 4). The chosen tag is then passed to the Snapshot
Memory, and used to read the corresponding physical queue ID and
node pointer, which are then passed to the software. The sorted
list of priorities is kept latched in the Sorter & Selector module for
reuse by future PickHeads.

4.3 Setting the Relaxation Count (R)

The Relaxation count (R) is a parameter that determines the quality
of the nodes obtained by the Global accesses and the No-network
accesses. It is defined as the maximum number of sorted nodes in
the Sorter & Selector module from which one will be returned to
the software. If R is too high, it may induce wasted work; if it is

too low, it may cause UpdateHead failures in the dequeue routine
(Figure 3(b)) because many cores will collide. To set R, we use
real-time feedback from the application on how frequently these
UpdateHead operations fail. Since only a PickHead that performs
a Global access creates a fresh snapshot, we use the failure rate
of only the UpdateHead operation immediately following a Global
access, to decide how to change R. The value of R serves as an
indicator of the global contention in the system.

While the optimal R is likely to change across the execution
time of an application, it is important that its value be impervious
to short-term fluctuations of UpdateHead failure rate, and instead
reflect long-term trends. For this reason, we use the Double Ex-
ponential Moving Average (DEMA), which is based on the Expo-
nential Moving Average (EMA) [45], a widely used indicator in
statistical technical analysis. DEMA smoothing is preferred over
EMA smoothing, especially when the series exhibits some trends.

As shown in Figure 2, the PickHead module includes a DEMA
Unit, which receives information from the Decision Logic on how
frequently UpdateHead failures occur for a Global access. The in-
formation is a single bit: 1 for failure, 0 for success. Intuitively,
observing many occurrences of 1 suggests that R is too small, while
observing many 0 values suggests it is too high.

We define a segment as a series of bits of the same value (either 1
or 0) passed by the Decision Logic to the DEMA unit. On a segment
termination, the DEMA unit uses the length of the segment to
compute the following:

EMA = α ∗ siдn ∗ lenдth + (1 − α) ∗ EMA

DEMA = β ∗ EMA + (1 − β) ∗ DEMA

where length is the number of entries in the segment, and α and
β are constants. The variable sign is 1 for a segment of 1s and -1
for a segment of 0s. With this setup, UpdateHead failures tend to
push the DEMA slowly in the positive direction, while a string of
UpdateHead successes move it in the opposite direction. Note that
the DEMA changes only slowly.

When the application starts, the DEMA unit uses a default initial
value R0. During execution, the unit divides the time into windows
of fixed size, and keeps calculating the DEMA. It keeps a positive
DEMA threshold (Tpos ) and a negative one (Tneд ). If the DEMA
has been above Tpos anytime in each of the previous two windows,
the DEMA unit increases R one notch; if the DEMA has been below
Tneд anytime in each of the previous two windows, R decreases by
one notch. Figure 5 shows an example of this algorithm.

R=R0

Tpos

DEMA
Value

Tneg

0

Window

Increase R Increase R

Decrease R

Time

Figure 5: Example of how Snug sets R.

Since each core computes its DEMA value independently, each
core modulates its own R independently. Interestingly, relaxation
by one core has the serendipitous effect of reducing contention for
sibling cores. As such, in most scenarios, some cores converge on
smaller R values than others.



Snug: Architectural Support for Relaxed Concurrent Priority Queueing in Chip Multiprocessors ICS ’20, June 29-July 2, 2020, Barcelona, Spain

R changes as the application executes different sections, and as
different applications execute. However, this process is invisible to
the programmer. After each context switch, R is reset to R0.

4.4 Multi-Socket Configuration

Snug does not have any centralized hardware and relies on hard-
ware cache coherence. Consequently, it can also be implemented in
a cache-coherent multi-socket system. In such a system, the Pick-
Head requests may need to obtain the data from remote sockets,
like regular loads. The software needs no changes.

5 EVALUATION ENVIRONMENT

5.1 Architecture Modeled

We perform our evaluation with cycle-level simulation of a 64-core
chip using the gem5 simulator [5]. Table 2 shows the baseline archi-
tecture modeled. We model a hierarchical network with clustering:
every 8 cores share a single L2, and the 8 cache-coherent L2s are
connected to a shared, 8-banked L3 with a crossbar.
Parameter Value
Architecture 64 cores on chip, 2GHz cores
Private L1 Caches 32KB-I, 32KB-D WB, 8-way, 2 cycles hit latency
Per-cluster L2 Cache 1MB WB, 16-way, 12 cycles hit latency
Shared L3 16MB WB, 8 banks, 16-way, 30 cycles hit latency
Cache line size 64B
Coherence Two-level MOESI directory protocol
Network 32B wide, hierarchical, crossbar with snoop filters
Main memory ≈ 200 cycles
Snug Parameters
Reuses (U ); Local acc. (L) 4; 4
R0 ; DEMA Window 32; 100K cycles
DEMA thresholds/constants Tpos = 5, Tneд = -2.5, α = 0.6, β = 0.6
Sorting network delay 64 ns = 128 cycles

Table 2: Parameters of the architecture evaluated.

The latency of the new instructions is modeled as follows. Fetch-
Head is an uncached access to one directory module. UpdateHead
is like FetchHead plus 4 cycles for a CAS. PickHead’s latency de-
pends on the operation: in a Global access, it is n parallel uncached
accesses to directories, plus 2n cycles to sort the incoming mes-
sages (Section 4.2) plus 4 cycles to return the node pointer to the
instruction; in a Local access, it is one uncached accesses to a di-
rectory plus 4 cycles to return the node pointer to the instruction;
in a No-network access, it is 4 cycles to return the node pointer
to the instruction. AllocHeads is invoked before the section of the
application that is timed.

5.2 Concurrent PQs Compared

We compare the following concurrent PQs:
Concurrent Skip List (SW-SK). This is a skip list implementa-
tion [30] where the levels for new skipnodes are chosen based on a
geometric distribution. The maximum number of levels is 24.
Concurrent Spraylist (SW-SP). This SprayList builds on top of
the skip list by spraying the pops over a range of starting nodes in
the list. We use the SprayList parameters as advised by the authors
in [2]. The spray is started at the height of

⌊
log2 t

⌋
+ 1, and the

jump length at each level is
⌊
log2 t

⌋
+ 1, where t is the number of

threads. The number of levels to descend between jumps is 1, and
the maximum number of levels is 24.
Distributed Software (SW-D). This is a software distributed PQ
with a per-core skip list. Threads always enqueue to their local

skip list. For dequeue, the local skip list is tried first. If the queue is
empty, the thread attempts to steal work from nearby skip lists.
Centralized Hardware (HW-C). This is a centralized version of
Snug. It consists of a single shared skip list with a single, centralized
Work register. It uses FetchHead and UpdateHead to access theWork
register. A single Work register obviates the need for PickHead.
Distributed Hardware (HW-D). This is Snug. It uses per-core
skip lists, each of which is supported by a Work register at the
directory. Threads always enqueue to their local queue. For dequeue,
a PickHead instruction returns the node to dequeue as described in
Section 4.1. For the L local accesses, PickHead visits the local queue.
However, if the data in the Snapshot memory indicates that the
local queue is empty, PickHead instead randomly visits one of the
queues that the Snapshot memory indicates are not empty. Table 2
lists Snug’s parameters.
Software Version of Snug. In this case, a global dequeue scans
in software all the heads of the distributed queues. This PQ is an
order of magnitude slower than SW-D, due to the overhead of
serially scanning all the queue heads. Therefore, we omit it from
the evaluation.
Omitted PQs. We have also evaluated the OBIM priority-based
scheduler from Galois [35]. OBIM trades off synchronization time
in exchange for executing tasks out of priority order and poten-
tially performing unnecessary work. OBIM has been tuned for
multi-socket platforms, which have sizable synchronization costs.
For the manycore architecture considered in our paper, with a sin-
gle chip and very low synchronization costs, we find that OBIM
sometimes performs substantially worse than most of the other
PQ implementations—even after careful parameter tuning. Hence,
since we are unable to tune OBIM well for our hardware, we do not
include it in the evaluation.

We also do not include a comparison to the k-LSM PQ [47]. k-
LSM is a two-level software PQ where the access frequency to the
top-level PQ is controlled by the k parameter. As k grows, fewer
accesses go to the top-level queues and the quality of returned tasks
decreases. We do not present the k-LSM PQ because we found that
on our inputs, SW-SK is on average 1.45× faster than k-LSM (even
for the best value of k we found, which is k = 256) in experiments
on a real machine with 64 threads. We remark that prior work [46]
only evaluated the k-LSM PQ on a random graph input, whereas
we use more realistic inputs, as described below.

5.3 Applications Evaluated

We execute four applications with a variety of inputs. The applica-
tions come from graph analytics (SSSP, BFS, and A*), and from an
event-driven simulation model (SIMUL).
Graph Analytics. SSSP uses Dijkstra’s algorithm [10] to compute
the shortest distance to all graph nodes, starting from a source node
(Section 2.1).We base our implementation on the push-operator [35],
since we found it to outperform the pull-operator based approach.
Breadth-First Search (BFS) uses breadth-first search in graphs where
the weight of all the edges is 1, which drastically changes the task
scheduling behavior compared to SSSP. A-star (A*) is a pathfinding
algorithm used to compute the shortest distance from a source to a
target node. It relaxes only a subset of the graph nodes, and uses
heuristics to guide the searching process.
Event-driven Simulation. SIMUL is a system-modeling program
with a variety of use cases [20, 25]. We model the execution of
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Figure 6: 64-core execution time of the evaluated applications and inputs on different priority queue implementations.

Figure 7: Breakdown of the tasks in the applications into good and wasted tasks. The bars in each application and input are

ordered as in Figure 6.

discrete events, some of which have dependencies on other events.
It uses a BFS-style graph traversal on the dependency graph. When
a thread dequeues an event, it checks if all the event’s dependencies
have been executed. If true, the event executes and the dependents
are pushed to the PQ; otherwise the event is ignored. For inputs,
we generate a matrix of dependencies between events based on the
approach outlined in [2]. The number of events that are dependent
on a given event is parameterized with δ , and the mean distance
between the source and dependent node is parameterized with γ .

Table 3 shows the inputs evaluated. By default, runs are with 64
threads. The distributed PQs use 64 queues, one local to each core.
HW-D, which is Snug, uses 64 Work registers.

Input Description
Graphs for SSSP and BFS:
NY Road (NY) Road network for New York City with edge weights as

the travel time [12]. |V | = 264,346, |E | = 733,846
Amazon (Ama) Amazon product co-purchasing network from the SNAP

dataset [41]. |V | = 262,111, |E | = 1,234,877
Scalefree (Sf) Graph with power law degree distribution, built with

R-MAT [9, 35]. |V | = 260,237, |E | = 2,097,152
Matrices for SIMUL:
M1 Number of events = 12K, δ = 15, γ = 100
M2 Number of events = 12K, δ = 15, γ = 200
Grid for A*:
TaleofTwoCities (T2C) 2D Grid map from Starcraft benchmark set [42]

Table 3: Program inputs.

In the applications, a thread repeatedly dequeues a task from the
PQ, processes it, and (possibly) enqueues one or more tasks to the
PQ. We categorize the work into Good Work and Wasted Work. For
SSSP, BFS and A*, good work consists of graph edge relaxations
that update the label of a node to its true distance (Section 2.1),
and wasted work consists of all the remaining, redundant relax-
ations. Wasted work occurs either due to thread concurrency or,
most notably, relaxed PQ semantics. For SSSP and BFS, the num-
ber of tasks performing good work remains constant across the
different PQ designs since all the graph nodes are reduced to their
shortest distance. In contrast, A* terminates when the target node

is relaxed to its shortest distance. Since different PQs explore the
grid in different ways, the number of tasks performing good work
can change with different PQs. For SIMUL, good work consists of
dequeueing an event after all of its dependencies have executed,
thereby enabling its own execution. Otherwise, the task is classified
as wasted. The number of tasks performing good work remains
constant across the different PQ designs.

6 EVALUATION

6.1 Execution Time

Figure 6 compares the execution time of the applications and inputs
under the different PQ implementations. For each application and
input, we show, from left to right, SW-SK , SW-SP , SW-D, HW-C, and
HW-D, all normalized to SW-SK . The time is broken down into Pop
synchronization (the time spent in PQ dequeue operations), Push
synchronization (the time spent in PQ enqueue operations), runtime
(the execution of auxiliary code, such as thread termination), wasted
work, and good work.

To help understand these bars, Figure 7 provides a breakdown
of the total tasks executed in the program, classified into good and
wasted tasks. The total number of tasks is normalized to the number
in SW-SK . The bars are ordered as in Figure 6. Note that wasted
tasks affect the execution in two ways. First, they induce redundant
processing of graph edges or events. These cycles appear as wasted
work in Figure 6. Second, they cause extraneous PQ enqueues and
dequeues, hence increasing Push and Pop times in Figure 6.

In the following, we discuss all the PQ implementations in detail
except for HW-C. HW-C differs from SW-SK mostly by having a
single Work register, pointing to the highest-priority task. HW-C’s
overall performance is similar to SW-SK . On average, it performs
slightly worse than SW-SK due to the extra overheads of the new
instructions. Recall that HW-D is Snug.

SSSP. As shown in Figure 6, HW-D performs better than the other
PQs. On average across the three inputs, it reduces the execution
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Figure 8: Average bandwidth consumption in each of the global crossbar ports connected to the core clusters. The bars in each

application and input are ordered as in Figure 6.

time by 1.2×, 1.8×, and 5.1× compared to SW-SK , SW-SP , and SW-
D, respectively. Compared to SW-SK , HW-D reduces the Pop time
substantially, while only increasing the Push time slightly. HW-D
reduces Pop because it eliminates the contention on the queue head
with the use of distributed queues and the PickHead instruction,
avoiding contention. HW-D’s Push time is slightly higher than SW-
SK because HW-D is more relaxed, and ends up creating slightly
more bad work (Figure 7) and enqueuing more tasks.

HW-D performs much better than SW-SP and SW-D, as SW-SP
suffers from Pop time, and SW-D fromwasted work. SW-SP does not
work well for the relatively short PQs in these applications. SW-SP
returns tasks from among the first O(t log3 t) ones in the PQ (with
high probability), where t is the number of threads (Section 2.1). SW-
SP’s random walks often reach the end of list; when this happens,
SW-SP performs a linear scan of the PQ, to make sure no work was
missed [2], and this increases Pop time. In addition, in sparse graphs
like NY-Road, the short PQ causes SW-SP to return a random task,
ignoring priorities, and causing wasted work.

SW-D has significant wasted work for all three graphs. This is
because, in this relaxed PQ, each thread takes tasks from its own
queue, without looking for the highest-priority task. The lack of
synchronization overheads in SW-D is unable to compensate for
this wasted work.

BFS. HW-D also performs well in BFS, reducing the average exe-
cution time by 1.7×, 3.1×, and 3.7× compared to SW-SK , SW-SP ,
and SW-D, respectively (Figure 6). In BFS, all the edges of the graph
have a weight of 1. This increases the available parallelism, since
there are now multiple paths of the same distance from the source
node to each destination. This changes the behavior of the PQ
implementations.

HW-D attains better performance than SW-SK and SW-SP be-
cause of reduced synchronization. The Push time is very high for
these PQs, because many tasks now have the same priority and so
get pushed to the same region of the skip list—leading to contention.
HW-D reduces the Push time because enqueues do not contend
with each other and, in addition, each enqueue traverses a shorter
local queue.

SW-D has substantial wastedwork. The reason is that each thread
dequeues tasks from its local queue, and so is less likely to find
the highest-priority tasks. HW-D eliminates most of the wasted
work because dequeuing with PickHead enables a global view of
available tasks, and provides higher-priority tasks. Note that on
average, the wasted work with SW-D in BFS is lower than in SSSP.
This is because in BFS, many more tasks have the same priority, and
so the local queue is more likely to have one of the globally-highest
priority tasks.

SIMUL. HW-D reduces the average execution time by 1.9×, 2.7×,
and 1.5× compared to SW-SK , SW-SP and SW-D, respectively. The
SW-SK and SW-SP PQ implementations have significant synchro-
nization overheads. Specifically, SW-SK has Push contention sim-
ilar to BFS, and SW-SP has high Pop time due to the previously-
discussed issue of a sub-optimal spray. SW-D is the best software
alternative. It reduces the Push and Pop times by using local en-
queues and dequeues. Local dequeues, however, lead to many task
dependency violations—a task is dequeued for execution before its
dependencies have executed. This causes wasted work with SW-
D (Figure 7). HW-D has lower contention overheads compared to
the SW-SK and SW-SP PQs, and less task dependency violations
compared to SW-D.

A*. HW-D also performs best, reducing the execution time by 1.1×,
2.8×, and 2.1× compared to SW-SK , SW-SP and SW-D, respectively.
In A*, the priority with which a task is inserted in the PQ includes
an extra heuristic cost, which is the Euclidean distance to the target.
We see that SW-SP and SW-D have significant wasted work due to
the relaxation of nodes away from the optimal path from source to
target. SW-SK performs worse than HW-D due to higher Push time.

Overall. The data illustrates the main PQ tradeoff: the SW-SK and
SW-SP PQs suffer from Push and Pop contention, while the SW-D
PQ suffers from wasted work due to bad task selection. HW-D ad-
dresses both problems. Averaged across all applications and inputs,
HW-D in Figure 6 reduces the execution time by 1.4×, 2.4×, and
3.6× compared to state-of-the-art skip list, SprayList, and software
distributed PQs, respectively. These are substantial execution time
reductions, as they correspond to 64-core executions. Compared
to the latter two PQ designs, HW-D reduces the number of wasted
tasks by 3.3× and 36.8×, respectively.

6.2 Network Traffic

To assess Snug’s network traffic, Figure 8 shows the the average
bandwidth consumption in the ports of the global crossbar that
connect to the core clusters, in bytes per cycle.

We see that HW-D consumes more bandwidth than the other
concurrent PQs. The average increase ranges from 2.2× relative
to SW-SP , to 5.6× relative to SW-SK . However, HW-D’s bandwidth
consumption is modest in absolute terms. On average across all
applications, Snug consumes 1.13 bytes per cycle, or 3.5% of the
crossbar’s 32 bytes per cycle link capacity, which is the same link ca-
pacity assumed in related work [24] and deployed in Intel’s Haswell.

Table 4 examines the behavior of the PickHead instruction ac-
cesses, averaged over all the cores. GA is the percentage of PickHead
accesses that are Global. We can see that, typically, about 1 in 6
accesses are Global. TS is the average number of instructions per
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Figure 9: Priority distribution for applications and inputs.

(a) SSSP_NY (b) BFS_NY

Figure 10: Difference between the priority returned by PickHead and the best priority in snapshot.

task. We see that this number is about 1300-4400. Next, we show the
failure rate of PickHead accesses, broken down by access type. GF,
RF and LF are the failure rates for Global, Reuse and Local accesses,
respectively. On average, we observe that Local accesses have the
least failure rate, followed by Global and Reuse. Reuse accesses fail
often.

SSSP BFS SIMUL A*
NY Ama Sf NY Ama Sf M1 M2 T2C

GA 19% 15% 21% 18% 15% 43% 16% 19% 18%
TS 2717 3993 4438 1297 1633 2144 2017 1895 3750
GF 48% 28% 45% 38% 32% 92% 35% 30% 21%
RF 73% 80% 71% 76% 81% 75% 55% 56% 74%
LF 11% 8% 13% 12% 14% 5% 7% 8% 5%

Table 4: PickHead accesses in HW-D and task size.

6.3 Analysis of Wasted Work

Figure 6 showed that SW-D suffers from substantial wasted work
in SSSP and, for the NY input, in BFS. To understand why, recall
that a thread in SW-D dequeues tasks from its local queue. If it
obtains tasks with priority far from the globally-highest priority,
SW-D will have wasted work. However, if the application is such
that there is a large number of tasks for each priority, then there is
a greater chance that the locally-best task has a priority similar to
the globally-best priority. In that case, SW-D will have much less
wasted work.

Figure 9 explains the different behavior of the applications and
input data sets. For SSSP and BFS, it shows the number of nodes in
the graph that are at a certain distance from the source node (i.e.,
their priority). Figures 9a and 9b show the Sf graph (SSSP_Sf and
BFS_Sf). We see that the distribution of priorities is different. In
SSSP_Sf, the edge weights yield 250 priorities, most with only few
nodes. In BFS_Sf, there are only a handful of priorities, each with
tens of thousands of nodes. Hence, SW-D has less wasted work in
BFS_Sf than in SSSP_Sf.

In contrast, Figures 9c and 9d show the NY graph (SSSP_NY and
BFS_NY). There are few nodes for each priority—especially in SSSP.

SW-D has a high chance of picking tasks with priority far from
the globally-highest priority. As a result, SW-D has wasted work in
SSSP_NY and BFS_NY. In HW-D, the PickHead instruction obtains
a global view of the tasks in all the queues. Thanks to this, HW-D
picks high quality tasks, and has negligible wasted work.

Figure 10 visualizes the degree of priority relaxation by the Pick-
Head instruction. Specifically, we plot the difference between the
priority returned by PickHead and the best priority in the snapshot,
across time. The figure shows data for SSSP and BFS, on the NY
graph, and for Global, Reuse, and Local accesses. We see that the
only accesses that get tasks far from the best are Local accesses
in SSSP. Local accesses greedily exploit the local queue and can
dequeue low-quality tasks.

6.4 SNUG Scalability

To understand the scalability of Snug with the number of cores,
Figure 11 shows the speed-ups of our applications and inputs as we
change the core count from 1 to 64. The figure shows data for our
baseline SW-SK (Figure 11a) and for HW-D (Figure 11b). In both
figures, the speed-ups are relative to a 1-core sequential skip-list
PQ design which, unlike 1-core SW-SK , does not use CAS instruc-
tions. Figure 11a shows that SW-SK does not scale for about half of
the configurations, namely the BFS and SIMUL applications. These
applications push many tasks with identical priorities, leading to
contention in skip list nodes, which leads to high Push times (Fig-
ure 6). In contrast, Figure 11b shows that the speed-ups in HW-D
scale better for most configurations. The distributed queues in HW-
D mitigate the push contention in BFS and SIMUL (Figure 6), as
different tasks are pushed to different queues. Hence, HW-D is more
scalable.

6.5 Sensitivity Analysis

Sensitivity to L and U . Snug’s algorithm for picking the next
node to process (Section 4.1) has two parameters: following a global
access, there are U snapshot reuses and L local accesses. HW-D
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(a) SW-SK (b) HW-D
Figure 11: Speed-ups of SW-SK (a) and HW-D (b).

sets both parameters to 4. We do sensitivity analysis varying L
and U , and measure the execution time and the network traffic.
Specifically, we fix U to 4 and change L to 0 and 8. Then, we fix L
to 4 and change U to 0 and 8.

Figure 12a shows the execution time, and Figure 12b the network
traffic, as we vary L and U from 0 to 4 and 8. Specifically, the first
set of bars is HW-D (L=4, U=4). In the next two sets of bars, U is
fixed to 4 and L varies to 0 and 8. In the final two sets of bars, L is
fixed to 4 and U varies to 0 and 8. For each (L,U ) setting, we have
a bar for each application and input. For a given application and
input, the bars are normalized to the (L=4,U=4) setting.

(a) Execution time.

(b) Network traffic. Values for truncated bars are 2.3, 1.8, 1.3, 2.7, 2.0, 1.6, 1.9,

2.2, 1.8, and 2.0 from left to right.

Figure 12: Sensitivity to the number of local accesses (L) and
reuses of a snapshot (U ).

We see that changing L alters the behavior of the system. When
L=0, Snug dequeues better tasks, by issuing more Global accesses.
However, the execution time does not generally go down because
the traffic increases. At the other end, when L=8, Snug dequeues
more low-priority tasks from the local queue. While the traffic
generally decreases, the execution time does not go down because
there is more wasted work. Overall, L=4 is slightly better.

In the final two sets of bars, we changeU . WhenU=0, the traffic
and contention is higher because there is no snapshot reuse. This
results in an increase in the execution time.WithU=8, the execution
time also goes slightly up, likely due to the fact that the snapshot is
reused past the point when it is useful. In summary,U=4 is a good
design point.

Sensitivity to application input.The characteristics of distributed
PQs and how SNUG interacts with them could change appreciably
depending on the size of input graphs or matrices. Although the
computational costs for cycle-level gem5 simulation of 64 cores
prohibit us from using datasets much larger than those in Table 3,
we measure their impact indirectly by downsizing the L1, L2 and
L3 caches instead. Generally, we find that SNUG does not unreason-
ably exploit any effects due to caching of inputs. For example, for
BFS_NY, we reduce all the caches to half (or a quarter) of their orig-
inal capacities. We find that SNUG is 2.13× (or 2.08× for the quarter
cache) faster than SW-SK, compared to 2.05× in the unmodified
architecture.

6.6 Characterizing R Adaptivity

The PickHead module in each core adjusts the Relaxation Count R
based on the rate of synchronization failures, which indicate the
degree of contention. Figure 13 shows two representative examples
of R’s behavior as the application executes: SSSP_NY and SIMUL_-
M2. In the figure, the X-axis represents time. At each point in time,
the figures show the average value of R across all cores. The shaded
area around the mean shows the minimum and maximum values
across cores. In both cases, we start with our default R0 = 32.

(a) SSSP_NY (b) SIMUL_M2

Figure 13: Average value of R as execution progresses.
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SSSP_NY demonstrates how Snug automatically adjusts R. At
the beginning of the application, there are few tasks and, as pro-
cessors contend for them, R goes up. Gradually, the queues obtain
tasks. Dequeuing occurs concurrently across many queues, and syn-
chronizations succeed. This triggers a decrease in R. The descent
continues as long as the cores do not observe enough dequeue con-
flicts. Finally, as the application runs out of work and most queues
become empty again, the contention increases, and R has a final
spike.

SIMUL_M2 (Figure 13b) shows a different behavior. There is an
initial hump in R as in SSSP_NY. However, the rate of descent of R
is slow. The reason is that SIMUL_M2 has a smaller average task
size than SSSP_NY (Table 4). This increases the frequency of CASes
attempting to dequeue the same task. The result is higher CAS
failures. Snug adapts to this contention by keeping R sufficiently
high to avoid hotspots, while dequeuing high-quality tasks.

6.7 Area and Power Analysis

We estimate the area and power overhead of the PickHead mod-
ule by considering the overhead of the Sorter & Selector and the
Snapshot memory units. We use the Synopsys DC with the 32nm
technology library for logic, and CACTI [44] with the 32nm ITRS-
hp technology for memory components. For the design in this paper,
the Snapshot memory holds 64 entries, and each entry is 16 bytes
(head pointer and queue ID). It is implemented as a single-ported
RAM structure. The Sorter & Selector is composed of 64 registers
and 64 comparators, to process 70-bit data (priority and tag).

Our estimates show that the area of the PickHead module is about
0.23mm2 and its power consumption 61.1mW in 32 nm. To put these
numbers in context, we compare to existing processors. Publicly-
available information indicates that the core area (processing unit,
L1 and L2) of a Sandy Bridge processor and a Power7+ processor
at 32nm are 18.18mm2 and 21.14mm2, respectively. Using data
from [16], we estimate that the per-core power of a Sandy Bridge
core is 7.54W. Therefore, we estimate the area of the PickHead
module to be 1.27% of a Sandy Bridge core and 1.09% of a Power7+
core. We estimate the power consumption of the PickHead module
to be 0.81% of a Sandy Bridge core.

7 RELATEDWORK

Providing hardware support for queueing in multiprocessors has
received much interest [1, 24, 26, 28, 40]. Carbon [28] is an archi-
tecture for efficient task queueing and scheduling in hardware. It
focuses on applications with fine-grained tasks. It provides cores
with dedicated hardware queues and orchestrates the movement of
tasks between the queues. ADM [40] accelerates fine-grained task
scheduling by providing a per-core hardware messaging module.
Bypassing the memory hierarchy, the module enables communica-
tion between threads, which manage task queues in software. Snug
focuses on speeding-up concurrent priority queueing.

Swarm [23, 24] mines parallelism from sequential programs writ-
ten in a task-based programming model. Swarm builds on prior TLS
and HTM schemes. It executes tasks speculatively and out of order,
and efficiently speculates thousands of tasks ahead of the earliest
task to uncover ordered parallelism. In contrast, Snug targets par-
allel programs, which already synchronize explicitly, and thus has
simpler hardware mechanisms that are not based on speculation.
Swarm also supports task queueing in hardware. In Swarm, cores
enqueue tasks to a randomly chosen remote queue, and dequeue

tasks from their local queue. In Snug, cores enqueue locally and
dequeue either remotely or locally.

TheGalois [35] graph analytics system contains theOBIMpriority-
based scheduler, which has been shown to outperform PQ designs
based on Intel’s TBB library [29]. Like relaxed PQs, OBIM can exe-
cute tasks out of priority order. In the Galois system, OBIM has been
highly tuned to multi-socket NUMA platforms, with sizable syn-
chronization costs. As indicated in Section 5, we evaluated OBIM
but found it not competitive in the single-chip architecture with
low synchronization costs that we consider.

8 CONCLUSIONS

Priority-based task scheduling algorithms pose a tradeoff: allevi-
ating the synchronization hotspot by using relaxed PQs leads to
wasted work. To address this tradeoff, we introduce the Snug ar-
chitecture. Snug distributes the PQ into subqueues, maintains a
set of Work registers that point to the highest-priority task in each
subqueue, and provides an instruction that picks a high-quality
task to execute.

We evaluated Snug on a simulated 64-core chip. We compared
the execution time of graph and discrete event simulation appli-
cations under Snug and several other PQ algorithms. We found
that Snug selects high-quality tasks while avoiding hotspots, mini-
mizes wasted work, and consumes acceptable network bandwidth.
Snug reduces the average execution time of the applications by
1.4×, 2.4× and 3.6× compared to concurrent skip list, SprayList,
and software-distributed PQs, respectively. Moreover, compared
to the latter two relaxed PQ designs, Snug reduces the number of
wasted tasks by 3.3× and 36.8×, respectively.
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APPENDIX: CONCURRENT PQ DETAILS

Logical Deletions. Deleting a node x by updating only its prede-
cessor’s next pointermight undo the effect of a concurrent operation
that updates x . To prevent such an atomicity violation, an operation
should only update the predecessor’s next pointer (physical dele-
tion) after first logically deleting the target node, which prevents
concurrent operations from updating the node. Logical deletion is
performed by atomically setting a flag bit co-located with the LSB
of the next field [17, 34]. Updates fail (and retry) if they observe
that their target node has this flag bit set.
Supporting Skip Lists. A skip list is a sorted linked list where in-
dividual nodes have an array of next pointers, linked into multiple
sorted lists, in an effort to speed-up searches by “skipping over”
irrelevant nodes. Thanks to skipping, a skip list search traverses n
nodes in O(logn) time (expected). Concurrent skip list algorithms
support scalable read-mostly searches and insertions, and can ac-
cess the highest-priority node in O(1) time [14, 18, 19, 43]. Snug’s
mechanisms are compatible with a skip list-based PQ. In this case,
the Work register stores the head of the bottom-level list. The heads
of the other, higher-level lists, remain located in memory and are
maintained by the software PQ library.
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