V-Combiner: Speeding-up Iterative Graph Processing on a
Shared-Memory Platform with Vertex Merging

Azin Heidarshenas
heidars2@illinois.edu
University of Illinois at
Urbana-Champaign

Sasa Misailovic
misailo@illinois.edu
University of Illinois at
Urbana-Champaign

ABSTRACT

An iterative graph algorithm applies a vertex update operation
to all vertices in a graph in every iteration. For large graphs, this
computation is costly. However, in practice, not all the updates
contribute equally to the end result and, in fact, an exact result may
not be needed. In this work, we leverage these insights to speed-up
iterative graph algorithms. We propose a mechanism to identify
the less important vertices and omit computations for them.

Our scheme, called V-Combiner, is a deterministic, fast, and
application-transparent technique to construct an approximate
graph to enable faster execution. The main idea behind V-Combiner
is to merge certain vertices into hubs, which are vertices that have
many connections and contribute heavily to the end result of the al-
gorithm. We also propose an inexpensive correction step to recover
the contribution of the merged vertices to get higher accuracy.

We evaluate V-Combiner on 4 different applications and 5 datasets.
For 44-threaded runs, V-Combiner achieves an average end-to-end
speedup of 1.25X over the conventional system, with an accuracy of
91.8%. It also shows a better performance-accuracy trade-off than
the existing sparsification and k-core techniques.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies.

KEYWORDS

Graph processing, Shared-memory platforms, Approximations

ACM Reference Format:

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam
Morrison, and Josep Torrellas. 2020. V-Combiner: Speeding-up Iterative
Graph Processing on a Shared-Memory Platform with Vertex Merging. In
2020 International Conference on Supercomputing (ICS °20), June 29-Fuly 2,
2020, Barcelona, Spain. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3392717.3392739

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS °20, June 29-July 2, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7983-0/20/06....$15.00
https://doi.org/10.1145/3392717.3392739

Serif Yesil
syesil2@illinois.edu
University of Illinois at
Urbana-Champaign

Adam Morrison
mad@cs.tau.ac.il
Tel Aviv University

Dimitrios Skarlatos
skarlat2@illinois.edu
University of Illinois at
Urbana-Champaign

Josep Torrellas
torrella@illinois.edu
University of Illinois at
Urbana-Champaign

1 INTRODUCTION

Many graph processing applications used in the machine learn-
ing, social network, computational biology, and financial system
domains are inherently iterative. Examples include Belief Propa-
gation [18, 19], Community Detection [45], Page Rank [34], and
Hyperlink-Induced Topic Search [22]. They typically have a prop-
erty that gets propagated across vertices, and a metric for conver-
gence to a solution, which determines their time complexity.

Iterative algorithms are inherently costly for large graphs. For
example, running Page Rank on billion-vertex graphs can take
minutes in a 24-core shared-memory system [25]. In many envi-
ronments, this latency is unacceptable. On the other hand, many
applications can trade a small amount of accuracy for improved
performance [15, 32]. For example, in Page Rank, the user is often
interested in a very small subset of the computation results [10, 43]
— almost all queries only require to know the top-ranked pages.
Further, vertex classification algorithms such as Community Detec-
tion and Belief Propagation can tolerate small errors as long as the
final inferred vertex labels remain correct.

Providing high accuracy in approximate iterative graph compu-
tations is challenging, as the error introduced in one vertex can
propagate to its neighbors (and eventually to all other reachable
vertices), and gets accumulated across iterations. For this reason,
approximations used in non-iterative graph algorithms such as
Single-Source Shortest Path (SSSP) [41] or Triangle Counting [14]
are not suitable for iterative graph algorithms.

Previous works for iterative graph algorithms [12, 25, 33, 38]
apply program approximation techniques such as loop perfora-
tion [39] and task skipping [36] to the input graph [25, 33] or to the
program [12, 38]. These techniques speed-up the program. How-
ever, by dropping random vertices or connections in the graph, or
skipping their computation as the program runs, these techniques
introduce non-determinism, which makes debugging difficult and
may cause variability in the outputs of the application.

Graph summarization techniques [28] generate a simpler form
of the graph for faster processing and/or more efficient storage. The
most popular of these techniques include sketching [1, 7, 30, 37],
sparsification [3, 15] and k-core decomposition [13, 21, 35]. Sketch-
ing techniques summarize the graph information into a data struc-
ture that can be queried in the future to provide a fast approximate
answer after a few simple computations. However, sketching tech-
niques have a large overhead and, therefore, cannot be used for
performance-intensive tasks. The sparsification and k-core decom-
position techniques have a much smaller overhead. However, the

https://doi.org/10.1145/3392717.3392739
https://doi.org/10.1145/3392717.3392739
https://doi.org/10.1145/3392717.3392739

ICS 20, June 29-July 2, 2020, Barcelona, Spain

resulting graphs have performance and accuracy limitations for
certain applications. As we will see, these two techniques are unable
to achieve both high speedup and high accuracy.

Our Work. In this paper, we present V-Combiner, a general, de-
terministic technique for speeding-up iterative graph-processing
applications, while maintaining high-accuracy results. V-Combiner
is motivated by the observation that not all vertices contribute
equally in iterative graph processing algorithms. Therefore, the key
technical challenge is identifying and removing the vertices with a
small contribution, and still maintaining the graph properties that
dictate the accuracy of the graph algorithm.

During pre-processing, V-Combiner merges some vertices into
their neighboring hubs, which are vertices with many connections.
It then executes the unmodified original algorithm on the reduced
graph, speeding-up execution. Finally, it corrects the final result of
the program to account for the effect of the merged vertices.

V-Combiner has the following characteristics:

e Application Transparency. Unlike previous work that requires
changing the implementation of the graph algorithm [12, 38],
in V-Combiner the application is completely unaware of the
merging step applied to the input graph. The application treats
the approximate graph in the same way as the original graph. This
allows the programmer to develop graph algorithms as before.

o Low Overhead, High Performance, and High Accuracy. V-
Combiner has simpler pre-processing and lower overhead than
previous work such as k-core [13, 21, 35], GraphTuner [33] and
Input Reduction [25]. V-Combiner speeds up the execution by
creating a smaller approximate graph that needs fewer updates. It
retains high accuracy by maintaining important graph properties
and using a final correction step.

o Deterministic Behavior. V-Combiner uses a deterministic merg-
ing mechanism that produces identical approximate graphs every
time. All previous algorithms except k-core are non-deterministic
[12, 15, 25, 33, 38]. Compared to k-core, V-Combiner algorithm
maximizes the connectivity of the reduced graph.

Results. We evaluate V-Combiner on a 44-core shared-memory
machine running four iterative applications: Belief Propagation,
Community Detection, Hyperlink-Induced Topic Search, and Page
Rank. We execute each application with 5 real-world data sets. Our
main results are:

o Considering the algorithm-time only, V-Combiner speeds-up
the computation by an average of 1.55X over the exact baseline
algorithm at an accuracy level above 90%, compared to average
speedups of 1.46x with sparsification and 1.36X with k-core.

o Considering the end-to-end execution time, which includes one-
time overheads, the average speedup of V-Combiner over the
exact baseline algorithm is 1.25%, with an accuracy of 91.8%. The
performance of V-Combiner is equal to sparsification and signifi-
cantly better than k-core. Unlike sparsification and k-core, it can
successfully meet the accuracy bound on all the benchmarks.

e A trade-off exploration shows that V-Combiner can produce a
better set of points in the performance-accuracy trade-off space
than the other algorithms in the region above 90% accuracy.

e V-Combiner obtains better load balancing, preserves the average
length of the paths, produces deterministic results (unlike sparsi-
fication), and performs less work at high accuracy due to high
connectivity (unlike k-core).

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

Contributions. The main contributions of this paper are:

e We analyze and compare existing techniques for approximating
iterative graph algorithms.

e We develop V-Combiner, a novel general approximation tech-
nique to improve the performance of iterative graph algorithms
with acceptable accuracy losses.

e We evaluate V-Combiner on a shared-memory machine and com-
pare it to state-of-the-art approaches for approximate graph pro-
cessing.

2 BACKGROUND

A graph G consists of a set of vertices or vertices (V) and edges (E).
A graph can be directed or undirected. In directed graphs, an edge
can be incoming or outgoing. In undirected graphs, edges do not
have a direction. Therefore, each edge can be treated as two logical
edges: an incoming and an outgoing one. We refer to the incoming
edges of a vertex as in-edges, and to outgoing edges as out-edges.
The vertices at the other end of in-edges are the in-neighbors of a
vertex. Similarly, the end points of out-edges are the out-neighbors.
The number of in-edges of a vertex is its in-degree, and the number
of out-edges is its out-degree. For undirected graphs, the degree of
a vertex is equal to the number of physical edges of the vertex, and
is equal to the vertex’s in-degree and to the vertex’s out-degree. A
path in the graph is a sequence of edges that connects a series of
distinct vertices.

2.1 Iterative Graph Algorithms

Algorithm 1 shows the template of an iterative graph algorithm. The
algorithm is composed of multiple iterations. In an iteration, the
algorithm goes over all of the vertices in the graph (Line 3). For each
vertex, it applies an update function, which gathers information
from the neighbors of the vertex (Lines 5-7) — and potentially from
the edges. The value of each neighbor vertex is first multiplied by
W, which is a vertex-specific constant. For example, in Page Rank,
W for neighbor vertex v is equal to m. The result is
then aggregated, using an operand that varies across applications
(e.g., addition or multiplication) (Line-7). After that, the update
function refines the result stored for the vertex using C; and Cy
(Line 8). For Page Rank, C; and Cz are commonly set to 0.85 and
0.15. In every iteration, a change variable (Line 9) accumulates the
difference in the values of each vertex before and after the update
function. The iterations stop when change is less than a threshold
— i.e. the convergence criterion is met (Lines 10-11).

Algorithm 1: Iterative graph algorithm.

input :Graph, Threshold, MaxIter, W, Cy, C,
output:values

1 for i « 1 to Maxlter do

2 change « 0;

3 for u in Graph.Vertices do

4 old « values[u];

5 gatheredVal « 0 or values[u];

6 for v in Graph.Neighbors(u) do

7 L gatheredVal « gatheredVal & (W X values[v]);
3 values[u] « C; X gatheredVal + Cy;

9 change « change + | old — values[u] [;

10 if change < threshold then

break;

v lL

V-Combiner: Speeding-up Iterative Graph Processing

The update function creates a notion of information propagation,
which can be weights or probabilities. Information propagation
generally follows the edges. In undirected graphs, the information
propagates in both directions of the edges, whereas in directed
graphs, it can propagate in the forward or reverse direction of the
edges. Overall, different algorithms differ in the definition of the
update function (which is also associated with the direction of
edges) and the convergence criterion. In this work, we select four
well-known algorithms with different characteristics.

Belief Propagation (BP): BP performs inference on a graphical
model [18]. BP calculates a random variable (i.e., the belief) for each
vertex, which indicates its most probable state. In BP, the update op-
eration works in both directions, and so propagates the information.
Community Detection (CD): CD finds the community struc-
ture of a network [23, 26, 42, 45]. It uses the label propagation
method. It takes a directed graph with a set of labeled vertices as
input, and propagates the known community IDs to the rest of the
vertices in the graph. The update operations happen only in the
direction of edges.

Hyperlink-Induced Topic Search (HITS): HITS takes as input a
directed graph (e.g., a social or web network) and identifies the most
relevant (aka authoritative) users/pages given a specific topic [2, 22].
It uses the graph structure to obtain two scores for each vertex,
namely the authority and hub. The authority score of a vertex is com-
puted using the hub scores of its in-neighbors, while its hub score
is computed using the authority scores of its out-neighbors. The up-
date operations happen both in the direction of edges to calculate au-
thority scores, and in the reverse direction to compute hub scores.
Page Rank (PR): PR [34] computes the ranks of all the vertices
based on the graph structure. The input can be any directed graph,
such as a social or web graph. At every iteration, the Page Rank
score of a vertex is computed by summing up the Page Ranks of its
in-neighbors divided by their out-degrees. The update operations
happen only in the direction of edges.

Other Graph Algorithms. Our focus is on iterative graph algo-
rithms whose time complexity is determined by their convergence
or number of iterations. A number of machine learning algorithms
on graphs also belong to this category. However, our observations
and techniques do not apply to Triangle Counting, Single Source
Shortest Path (SSSP), Betweenness Centrality, and similar problems
because their time complexity is independent of the number of it-
erations. Moreover, it is more challenging to provide high accuracy
for iterative algorithms, as the error in one vertex gets propagated
and accumulated to all the other reachable vertices across iterations.
Hence, approximations proposed for algorithms such as SSSP [41]
and Triangle Counting [14] are not suitable for iterative graph al-
gorithms. Finally, the running times of non-iterative algorithms are
relatively low compared to the iterative ones. Hence, there is less
opportunity to accelerate them using approximations.

2.2 Graph Pre-processing

A graph application has two main 1.00: Pre-processing [Algorithm

parts: pre-processing and computa-

0.75
tion. Existing work often ignores
N 0.50
the pre-processing time and only fo-
025

cuses on optimizing the computa-

tion. However, there exists a trade- 0.00-55 o HTS PR
off between pre-processing time Figure 1: Impact of
and algorithm execution time [29]. pre-processing time.

Thus, it is important to account for

ICS 20, June 29-July 2, 2020, Barcelona, Spain

the pre-processing time when optimizing computation time. Fig-
ure 1 shows that the pre-processing time is a significant fraction of
the total execution time for some of our applications. These results
are measured on a machine with 44 threads (Section 7.1).

3 OBSERVATIONS

V-Combiner is based on several observations we make on graphs.

3.1 Not All Vertices Contribute Equally

In Algorithm 1, the number of updates generated at a vertex is
equal to the number of neighbors it has. For directed graphs, it
is equal to the in-degree if updates happen in the direction of
edges, or to the out-degree if they happen in the reverse direction.
Therefore, vertices with higher degrees have a higher impact on
how information is propagated throughout the graph.

Typically, in real-world so-
cial and web graphs, a signif- ()
icant portion of the vertices l
have small degrees. For exam-
ple, for the large Twitter [27] 0 % o
and PLD [31] graph datasets,
we find that, on average, 97.4%
of the vertices are connected to
at most 100 other vertices. In
contrast, 0.00005% of the vertices are connected to at least 100,000
vertices. They are typically identified as hubs, and substantially
impact how information is propagated.

Figure 2 shows an example subgraph. It has three vertices that
are highly connected ((1),(3), and (3)), and one that is not ((2)). The

former have more impact on information flow.

3.2 A Subset of Results Is All That Is Needed

In many real-life applications of graph processing, the application
computes over many vertices, but the user is only interested in a
very small subset of the results. The subset of most popular vertices
is enough in many scenarios. For example, a company may want to
identify its most influential customers, or a researcher may want to
find the top authoritative researchers in some domain in the DBLP
network [43] or the top authoritative pages in a hyperlink environ-
ment [22]. In fact, the Page Rank algorithm in [10] returns only the
top ranked vertices. Therefore, it should often be acceptable for an
approximate implementation of the algorithm to return the same
top ranked vertices even though the ranking of the less popular
vertices may be different.

Figure 2: Illustration of

3.3 Applications Can Tolerate Small Errors

In applications such as Belief Propagation and Community Detec-
tion, the goal is to infer the broad category of each vertex, rather
than to compute an exact value for each vertex. Each vertex has a
vector of values, where each element of the vector corresponds to
the probability of the vertex belonging to a specific category. The
highest probability indicates the category of the vertex. As such,
small errors in the probability values can be tolerated as long as
the inferred vertex category remains the same.

3.4 Removing Some Vertices Can Be Effective

Removing some vertices or edges reduces the number and cost
of update operations. If the high-level structure of the graph is
preserved, the computation on the reduced graph could be a close

different vertex connectivity.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

approximation of that on the original graph. Our intuition is that,
since hub vertices shape most of the information flow in the graph,
vertices from their neighborhood that have a small degree can be
merged into the hubs, and the overall flow of information in the
graph be only marginally affected. Merging a vertex into a hub
involves removing the vertex and adding all (or a subset) of its
edges to the hub vertex.

4 LIMITATIONS OF CURRENT TECHNIQUES

For the types of algorithms that we consider, there are two main ex-
isting techniques that prune graphs. They are Sparsification [3, 15]
and K-core [13, 21, 35]. These techniques have a few limitations,
which act as a motivation for our work. In this section, we dis-
cuss these limitations. Later, in Section 7.1, we improve the two
techniques and, in Section 8, evaluate them against V-Combiner.

Sparsification selects some edges in the graph using a probabilisic
method and prunes them from the graph. It does not prune any
vertices. The pruned edges are chosen based on a sparsification
parameter, the shape of the graph, and some properties of the
edges. The pruning can be made more or less aggressive. Details
are provided in Section 7.1.

Since only edges are removed and not vertices, the algorithm
still has to loop over all the vertices. In addition, by removing edges,
it typically increases the length of the paths between vertices. As a
result, the number of iterations that a graph algorithm requires to
converge typically increases. For these reasons, it may be difficult
to obtain a high speedup with a high algorithm accuracy.

K-core takes a graph and removes as many vertices as needed so
that the remaining vertices have a degree equal or greater than k.
The result is the k-core graph. This technique prunes both vertices
and edges. Higher values of k imply that more vertices and edges
are dropped.

Since both edges and vertices are removed, this technique can
deliver higher speedups. It reduces the work without increasing
the number of iterations until convergence. However, the downside
is that, as k increases, more and more of the vertices remaining in
the graph become disconnected. As the graph loses connectivity,
the accuracy of the algorithm suffers.

As an illustration, Figures 3a and 3b show representative scenar-
ios. They correspond to runs of Page Rank (PR) using sparsification
(Figure 3a) and Community Detection (CD) using k-core (Figure 3b).
Section 7 describes the input graph used (PLD), the parameters
used, and the 44-core machine running the experiments. The fig-
ures show, for different levels of pruning (X axis, where the level
of pruning increases toward the right side), the accuracy as defined
in Section 7 (left Y axis) and the speedup relative to the execution
using the full graph (right Y axis).

100 100
9 —*— Speed-up 2.5 9 —%— Speed-up

80 80
8 o 2 2.5
:‘; 60 2,o§ i 60 5 0§
<] _ [o (7
© 40 *—, — o © 40 o
5 1.59 5 1.5¥
§ 20 ;& 20

0 1.0 0 1.0

09 07 05 03 017
Sparsification Parameter

2 5 101520 25304050
K (Degree Threshold)

(a) Sparsification with PR (b) K-core with CD

Figure 3: Illustration of sparsification and k-core.

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

We observe that, as the extent of pruning increases, the speedup
increases, but the accuracy decreases substantially. For these appli-
cations and input graph, we see that even with a small degree of
pruning (left side of X axis), the accuracy is already 90% or lower
and, for k-core, the speedup is minuscule.

5 VERTEX MERGING WITH V-COMBINER

Based on the previous discussion, an effective approach to reduce
the graph size needs to involve removing both edges and vertices.
In addition, as we remove them, we have to be careful to eliminate
(or at least reduce to a minimum) the possibility of disconnecting
parts of the graph. Consequently, our proposal is to merge some
vertices into nearby hubs, adding some of the edges of the removed
vertices to the hub. The result is both accuracy and speedups.

Our technique is called V-Combiner. V-Combiner proceeds in
two steps. First, it runs a vertex merging algorithm during graph pre-
processing time, to identify vertices that have few connections and
can be merged into their neighboring hubs. Then, after the applica-
tion completes execution, it runs a correction or recovery algorithm
to quickly obtain acceptable values for the merged vertices.

Figure 4 shows the end-to-end execution timeline for both the
conventional exact approach and V-Combiner. The exact approach
includes pre-processing time (i.e., when the graph is built) and com-
pute time (i.e., when the graph algorithm runs). The V-Combiner
approach contains pre-processing time (which includes vertex merg-
ing and building the graph), compute time (i.e., when the graph
algorithm runs), and post-processing time (i.e., when the recovery
takes place). The shaded boxes are V-Combiner-specific steps.

Time
Pre-processing Compute
Exact ‘ Build Graph ‘ Graph Algorithm ‘
Pre-processing Compute Post-processing
V-Cambiner‘ Merging | Build Graph ‘ Graph Algorithm ‘ Recovery

Figure 4: End-to-end execution steps of a graph algorithm.

The performance benefits of V-Combiner come from the reduced

algorithm time due to the reduced number of vertices and edges.
More specifically, the graph algorithm can converge with fewer
iterations (because of the reduced vertices) and fewer update oper-
ations in each iteration (because of the reduced edges). Ideally, the
reduction in algorithm time should more than offset the additional
overheads of the pre- and post-processing steps.
Support for Different Graphs and Algorithms. V-Combiner
can be applied to both directed and undirected graphs with minimal
changes. Moreover, it can be used for a variety of graph algorithms
with different types of update propagation. For example, in Page
Rank, updates are always propagated from in-neighbors, whereas in
HITS [22], updates are propagated both from in- and out-neighbors.
Based on the update propagation, we classify algorithms into one-
way propagation and two-way propagation. For undirected graphs,
the propagation is naturally two-way. When merging, V-Combiner
takes into account the direction of update propagation used by the
algorithm, and tries to maintain the connectivity of the graph. The
goal is for the updates to continue to propagate through the edges
even after certain vertices are removed.

V-Combiner: Speeding-up Iterative Graph Processing

5.1 Merging Approach

During the merging step, V-Combiner proceeds to identify a subset
of the high-degree vertices that we call Supernodes. Then, for each
supernode, it considers the vertices in its input neighborhood (or
in its output neighborhood, if the updates are propagated from
out-neighbors). If these vertices have low in- and out-degrees, we
say that they are Subnodes of the supernode. The assumption is
that the contribution of such vertices to the final result of the
algorithm is likely to be small. Hence, the subnodes are merged
into the supernode, effectively being pruned away. The supernode
takes some of the edges of the merged subnodes, as explained in
Section 5.2.

The resulting graph has a set of supernodes with now higher
degrees, connected with what we call Regular vertices. The resulting
graph has a similar structure to the original one, but with many
fewer vertices and edges.

We now give the precise definitions of supernodes, subnodes,
and regular vertices in a given graph G. In the definitions, we use
three thresholds called a, f, and x. The a and f thresholds are
the lower and upper thresholds, respectively, for the degree of a
vertex that qualifies as a supernode. The 7 threshold is the upper
threshold for the degree of a vertex that qualifies as a subnode. We
describe how to obtain such thresholds in Section 5.6.

Definition 1: Supernodes (V) are vertices with an in-degree
higher than « and lower than S,

Vsup ={ v | v €G.V A InDegree(v) >« A InDegree(v) < 8 }.

Vertices with in-degree higher than or equal to f§ are not considered
supernodes. This is because we do not want them to increase their
degree further by taking-in edges from merged subnodes. Vertices
with very high degree can cause load imbalance and slow down the
execution. Hence, these vertices remain unchanged in the graph.

For two-way algorithms in directed graphs, supernodes are ver-
tices where the sum of in-degree and out-degree is higher than
a and lower than . Further, a supernode is an in-supernode if its
in-degree is higher than or equal to its out-degree, and an out-
supernode if the opposite is true.

For undirected graphs, supernodes are vertices with a degree
between a and S.
Definition 2: Subnodes (V;,;) are vertices that have an in-degree
lower than 7 (where 7 <), an out-degree lower than =, and at
least one output that connects them to a supernode,

Veaur = { v | v € G.V A InDegree(v) < m A OutDegree (v) <
A 3w € Vsyp . w € OutNeigh (v) }.

A vertex with an in-degree or an out-degree higher than r is
not a subnode because it is too important to be merged into a
nearby supernode. Also, it is possible that a subnode is connected
to two supernodes; in this case, it can be merged into either with a
deterministic algorithm.

For two-way algorithms in directed graphs, subnodes are vertices
where the sum of in-degree and out-degree is less than 7, and have
at least one edge that connects them to a supernode. Further, a
subnode is an in-subnode if it has at least one output that connects
it to an in-supernode, and is an out-subnode if it has at least one
input that connects it to an out-supernode. A subnode can be both
an in-subnode and an out-subnode.

For undirected graphs, subnodes are vertices with a degree lower
than 7 and at least one edge that connects them to a supernode.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Definition 3: Regular vertices (Vyeg) are the remaining vertices,
Vreg =G.V - (Vsub U Vsup)-

V-Combiner leaves those vertices intact.

5.2 Vertex Merging Algorithm

V-Combiner performs vertex merging to generate the approximate
graph. The algorithm involves merging each subnode into a neigh-
boring supernode. In the following, without loss of generality, we
describe the vertex merging algorithm assuming one-way graph
algorithms in directed graphs where updates are propagated from
in-neighbors. In Section 5.5, we describe scenarios with other types
of directed and undirected graphs.

Merging a subnode into a supernode involves removing the subn-
ode and altering the edges as follows. First, the input edges of the
subnode now become input edges of the supernode. This opera-
tion may create duplicated edges — i.e., multiple edges connecting
the same input vertex to the same output vertex; such duplication
will be later eliminated when the graph is built. Second, the out-
put edges of the subnode are dropped. V-Combiner chooses this
design over a possible alternative where the output edges of the
subnode become output edges of the supernode. Such alternative is
undesirable because it could create a new, previously-nonexistent
path.

Figure 5 shows an example of vertex merging. Figure 5(a) shows
an original subgraph, where V-Combiner wants to merge subnode
(2) into supernode (3). Figure 5(b) shows the approximate graph
after merging.

' O
(O—)—O (1} (3)
(a) Original

(b) Approximate
Figure 5: Vertex merging in V-Combiner.

As V-Combiner merges subnode (2) into (3), it transforms edge
@ — (@) into 1) — 3). Next, V-Combiner discards edge (2) — (@).
Had V-Combiner chosen to transform it into an edge 3) — (@), it
would be creating a new, previously nonexisting path between (3)
and (4). Hence, V-Combiner does not create such an edge.
Algorithm Description. Algorithm 2 shows the pseudo code of
the merging algorithm in V-Combiner. The algorithm takes as input
the number of vertices, the list of edges, and the in-degrees and
out-degrees of the vertices. The output of the algorithm is the new
in- and out-degrees of the vertices, and an array called superNodes.
This array has as many entries as vertices in the original graph. If
a vertex has become a subnode, its entry in superNodes has the ID
of its supernode; if a vertex has become a supernode, its entry in
superNodes has its own ID; for the remaining vertices, the entry in
superNodes holds -1. The output of the algorithm will be later used
in the step that builds the graph.

The merging algorithm consists of three sections. Each section
can be executed in parallel:

o Identify supernodes: First, all vertices are scanned in parallel to
identify any vertex that has an in-degree higher than « and lower
than f (Lines 1-3).

e Identify subnodes: The second parallel section (Lines 4-10) consists
of processing the list of edges in parallel. For every edge e, such

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

Algorithm 2: Merging algorithm in V-Combiner.

Algorithm 3: Overall V-Combiner algorithm.

inputs : N (number of vertices), edges (list of edges), inDegrees,
outDegrees, a, B,
outputs: newInDegrees, newOutDegrees, superNodes

1 fori —0toN -1 do

2 if inDegrees [i] > @ and inDegrees [i] < f then
3 L superNodes [i] = i

4 for e in edges do

5 if superNodes [e.dst] = e.dst

6 and inDegrees [e.src] <

7 and outDegrees [e.src| < 7 then

8 superNodes [e.src] = e.dst;

9 newlnDegrees [e.src] « 0;

10 newOutDegrees [e.src] «— 0

1 for e in edges do

12 if e.dst is a subnode and e.src is NOT a subnode then

s |

14 if e.src is a subnode and e.dst is NOT a subnode then
15 L newlnDegrees [e.dst] -= 1

newlnDegrees [superNodes[e.dst]] += 1

that e.dst is a supernode, we check if e.src qualifies to become a
subnode. If so, the superNodes entry of e.src is set to e.dst. Also,
we prune the in- and out-edges of e.src. Therefore, the new in-
and out-degrees of e.src are set to 0.

e Merge Vertices and Update Degrees: Finally in Lines 11-15, the
algorithm computes the new in- and out-degrees of all affected
vertices. Recall that merging affects both the in-neighbors and
the out-neighbors of the subnode. Each in-neighbor has to be
connected to the supernode. Hence, we increase the in-degree
of the supernode in Lines 12-13. Moreover, the out-edges of the
subnode have to be eliminated, and the out-neighbors have to
update their in-degrees (Lines 14-15).

Delta Graph Construction. After merging, when the graph is

built, V-Combiner also constructs a small graph named the Delta

graph. The Delta graph contains only the subnodes and their imme-
diate in-neighbors. The Delta graph will be used to generate good
final values for the subnodes in the recovery step.

5.3 Recovery Step

Recall that the subnodes do not have any values after the graph
algorithm completes. The goal of V-Combiner’s recovery step is to
assign the final values to these subnodes.

To compute the values of the subnodes, the recovery algorithm
takes the Delta graph and proceeds as follows. The in-neighbors
of subnodes in the Delta graph are given the values computed by
the computation on the approximate graph. Such values are close
to their exact values. Then, we run the recovery algorithm, which
is specified by the developer. It simply uses the basic operator of
the corresponding graph algorithm to generate the values of the
subnodes using the values of their in-neighbors in the Delta graph.

5.4 Overall V-Combiner Algorithm

Algorithm 3 shows the overall V-Combiner algorithm. First, the
subnode vertices are merged using Algorithm 2. Then, the out-
put of the Merging algorithm, including the superNodes array, is
passed to a Build step. This step constructs both the Delta and the
approximate graphs (Line 2). After that, the graph algorithm, out-
lined in Algorithm 1 executes on the approximate graph using the

input : merging_arguments, algo_params
output: final_results
merging_output = Merging(merging_arguments);

-

N

approx_graph, delta_graph = Build(merging_output);

()

results = GraphAlgo(approx_graph, algo_params);

'

final_results = Recovery(results, delta_graph, algo_params);

user-specified algorithm parameters (Line 3), and returns its results.
Finally, in Line 4, the recovery algorithm receives these results and
recovers the values for the subnode vertices using the Delta graph.

5.5 Other Scenarios of the Merging Algorithm

Section 5.2 only described how to perform merging for the most
common scenario — i.e. directed graphs and one-way algorithms.
In the example algorithm, V-Combiner picks subnodes from the
inputs of the supernode, and merges subnodes into supernodes in
the forward direction of the edges. In the case where information
flows only in the reverse direction of the edges in a directed graph, V-
Combiner would pick subnodes from the outputs of the supernode.
However, we are unaware of an example for this scenario.

Table 1 shows a taxonomy with two other possible scenarios that
V-Combiner can support: (i) directed edges where the information
flows in both directions; (ii) undirected edges. V-Combiner supports
both scenarios using the same merging techniques.

Table 1: Graph processing scenarios V-Combiner supports.

‘ Example application ‘ Edges ‘ Information flow ‘
‘ Page Rank, Community Detection ‘ Directed ‘ One-way ‘
‘ Hyperlink-Induced Topic Search ‘ Directed ‘ Two-way ‘
‘ Belief Propagation ‘ Undirected ‘ Two-way ‘

Directed graphs and two-way algorithms. Since the goal of
V-Combiner is to preserve connectivity in the direction of the up-
date propagation, in this case where updates propagate in both
directions, V-Combiner merges subnodes into supernodes in both
directions. Recall from Section 5.1 that supernodes are vertices
where the sum of in-degree and out-degree is higher than « and
lower than f, and that subnodes are vertices where the sum of
in-degree and out-degree is less than s, and have at least one edge
that connects them to a supernode. We further classified supern-
odes into in-supernodes and out-supernodes, and subnodes into
in-subnodes and out-subnodes. Intuitively, in-supernodes are better
connected through their inputs (compared to their outputs), and
out-supernodes are better connected through their outputs (com-
pared to their inputs). In these graphs and algorithms, V-Combiner
merges in-subnodes into in-supernodes, and out-subnodes into out-
supernodes. We call the first kind of merging forward merging and
the second kind reverse merging.

Figure 6 shows an example of reverse merging, where out-subnode
(2) is merged into out-supernode (3). In this case, edge @) — (D) is
transformed into (3) — (1), and edge (4 — (2) is dropped.

(a) Before merging

(b) After merging
Figure 6: Merging out-subnode (2) into out-supernode (3).

V-Combiner: Speeding-up Iterative Graph Processing

Intuitively, merging in both directions provides better connec-
tivity than merging only in one direction. We perform forward
merging of subnodes into supernodes that have better connectiv-
ity through their inputs, and reverse merging of subnodes into
supernodes that have better connectivity through their outputs.
Undirected graphs. Recall from Section 5.1 that supernodes are
vertices whose degree is higher than « and lower than f, and that
subnodes are vertices whose degree is less than 7, and have at least
one edge that connects them to a supernode. In this algorithm, when
a subnode is merged into a supernode, all the edges of the subnode
are added to the supernode. V-Combiner does not drop any edges
because paths do not have a specific direction. Duplicate edges are
removed. This operation is also known as vertex-contraction [20].

Figure 7 shows how subnode (2) is merged into supernode (3)
and its edges are also added to (3). All the edges of the former are
added to the latter.

(a) Before merging

(b) After merging

Figure 7: Merging subnode (2) into supernode (3).

5.6 Choosing the Merging Parameters

To effectively reduce a graph, V-Combiner needs to choose a good
set of supernodes. The number of supernodes is directly controlled
by thresholds o and . To find good values of @ and f, we perform
the following experiment. We first rank the vertices based on their
in-degree, from lower to higher. We then accumulate the number
of edges of the vertices, in order.

Figure 8 shows the resulting Cumulative Density Function (CDF)
of edges as a function of the in-degrees of vertices in the Friendster
graph [24]. We divide the plot into three regions. In the leftmost
region, the curve has a sharp slope. This part accounts for the
majority of the edges. These edges connect many vertices with
small in-degrees.

CDF
Only a few vertices with
ultra large in-degree
CDF Fewer larger in-degree vertices

Many small in-degree
vertices connecting to
many other vertices

Cumulative Edge Distribution (%)

a 1k B 2K 3K
In-degrees
Figure 8: Finding o and based on the cumulative edge dis-
tribution.

In the second region, the curve goes through the knee. Finally,
in the third region, the curve flattens up. We argue that supernodes
should be chosen from the knee region. This region has many
vertices with substantial, but not excessive, in-degrees. Supernodes
should not be chosen from the third region. In this region, vertices

ICS 20, June 29-July 2, 2020, Barcelona, Spain

have very large in-degrees. Increasing their in-degrees further is
likely to cause load imbalance.

In Section 8.5, we study different ranges for the knee region, to
pick the most profitable one. The boundaries of such a region are
the values of @ and f.

Once we have picked the values of a and 5, we need to pick a
value of 7. Higher values of 7 mean that more vertices qualify as
subnodes. More subnodes typically translates into lower accuracy,
because the elimination of subnodes with large in- and out-degree
affects many neighboring vertices. However, more subnodes also
translates into more time savings in processing the graph. Therefore,
given « and f values, 7 can be considered as a knob to directly
control the trade-off between accuracy and speedup.

6 COMPARISON OF TECHNIQUES

Table 2 qualitatively compares sparsification, k-core, and V-Combiner
in terms of their impact on connectivity, length of paths, load bal-
ancing, pre- and post-processing overhead, and overall speedup.

Table 2: Qualitative comparison of different techniques. In
the table, a check mark means that the technique is doing
well; a cross means the opposite.

[e | comney | [t P | ol
‘ Sparsiﬁcation‘ v ‘ X ‘ X ‘ vv ‘ v ‘
‘ K-Core ‘ X ‘ X ‘ (4 ‘ b 4 ‘ X ‘
‘ V-Combiner ‘ v ‘ 4 ‘ v ‘ ‘ v ‘

Connectivity. To attain high accuracy, the reduced graph should
strive to maintain connectivity between the remaining vertices. As
discussed in Section 4, aggressive k-core easily ends-up causing
graph disconnectivity. Sparsification and V-Combiner do not. V-
Combiner minimizes disconnectivity by merging a subnode into
a hub, and making the in-neighbors of the subnode to become
in-neighbors of the hub.

Average Length of Paths. Retaining the length of the paths be-
tween vertices in the reduced graph is sometimes important for
performance and accuracy. Specifically, if paths are longer, graph al-
gorithms typically take more iterations to converge. Furthermore, in
some algorithms, changing the length of the paths causes distortions
that result in low accuracy. Generally, all these three algorithms
change the average length of the paths. As discussed in Section 4,
since sparsification removes edges, it typically increases the length
of the paths between vertices. Since k-core and V-Combiner remove
vertices, they tend to reduce the average length of the paths. We
observe, however, that V-Combiner is the one that changes the
average length of the paths the least. Intuitively, this is because it
includes two opposite effects: it reduces the length of paths by re-
moving some vertices, but increases the length of paths by dropping
some edges.

Load Balancing. To attain high speedups, graph algorithms should
keep a good balance of the load between threads. As shown in
Algorithm 1, a graph algorithm can be parallelized by assigning
a subset of the vertices to each thread to process. The amount of
work performed per vertex is proportional to its degree. It is well
known that many graphs present a very skewed distribution of the
vertices: there are many small-degree vertices and few high-degree
ones. We observe that both k-core and V-Combiner improve load
balancing by making the distribution less skewed. Specifically, they
remove many of the small-degree vertices, either by pruning (in

ICS 20, June 29-July 2, 2020, Barcelona, Spain Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

k-core) or by merging (in V-Combiner). Sparsification largely keeps
the same distribution.

Pre- and Post-Processing Overhead. To attain good speedups,
it is important that the graph reduction techniques have minimal
impact on the pre- and post-processing steps, including the building
of the graph. Sparsification has the least pre-processing overhead.
k-core has the largest pre-processing overhead: even though we use
the state-of-the-art k-core implementation [6], pruning until the
remaining vertices have a degree of at least k has substantial over-
head. The overhead of the pre- and post-processing in V-Combiner
is higher than in sparsification. We show the numbers in Section 8.
Overall Speedup. Based on all the factors considered, the last
column of Table 2 outlines the expected relative performance of
the techniques.

7 EXPERIMENTAL SETUP

We implement V-Combiner in C++ using OpenMP. We use the
Page Rank code from GAP [4], and implement Community Detec-
tion [26, 45], Belief Propagation [18], and Hyperlink-Induced Topic
Search [22] ourselves.

7.1 Methodology

Machine Specification and Graph Datasets. To evaluate the ef-
fectiveness of V-Combiner and the other techniques, we perform ex-
periments on a 2-socket shared-memory system with 44 Intel Xeon
Gold 6152 cores and 192GB of memory. We disable the Dynamic
Voltage and Frequency Scaling (DVFS) mechanism to minimize
run-time variation, and use the numactl library with the interleave
all option to average out the numa effects on the programs. Table 3
shows our graph datasets, which are chosen from several different
domains. The Belief Propagation (BP) benchmark uses undirected
graphs. Unfortunately, we could not run BP on our largest two
graphs, namely FS and TW, as their memory requirements exceed
the machine’s memory capacity.

Table 3: Graph datasets.

Graph dataset ‘ Vertices ‘ Directed Edges ‘ Undirected Edges
Friendster (FS) [24] 65.6M 1715.7M -
Twitter (TW)[27] 61.5M 1456.1M -
Page-Level Domain (PLD) [31] 42.9M 623.1M 582.6M
Arabic-2005 (AR)[5] 22.7M 631.2M 553.9M
Dbpedia (DB) [24] 18.3M 136.5M 126.9M

Evaluation Configurations. We perform end-to-end execution
time analysis of our benchmarks. We run each benchmark using
both exact and approximate graphs in several different configura-
tions. For each configuration, we measure the time spent in each
step of execution by averaging out the results of five runs. The
following steps are measured:

e Prune/Merge. Identify the vertices/edges to prune or merge.
e Build. Construct the approximate (and Delta) graph.
e Algorithm. Execute the graph algorithm.

e Recovery. Generate the values of the eliminated vertices (V-
Combiner and k-core only).

We evaluate the following configurations:

o Exact. This is the baseline execution, which is running on the
unmodified (original) graph dataset. All the approximate execu-
tions are compared to this baseline. The output of this execution
is also used as the ground truth for evaluating accuracy.

o Sparsification. Sparsification prunes one of many edges from

vertices with large degrees. For each edge (u, v), it calculates the

probability of keeping it using the formula % Here, S

is the Sparsification parameter, which is suggested to be in the
interval [0.1, 0.9] [15]. Also, dgqvg is the average degree of the
graph, defined as the ratio of the number of edges over the num-
ber of vertices. dg and d are the out-degree and in-degree of
the vertices at the two ends of the edge, respectively. The denom-
inator is the minimum of the two degrees. The equation applies
to undirected graphs too. Unlike V-Combiner, sparsification does
not require a recovery step, since the values for all the vertices
are computed on the approximate graph.

Optimization: Figure 3a shows that the accuracy achieved by spar-
sification at 0.9 sparsification is 83%. This low accuracy is because
a significant number of edges were dropped. To fix this problem,
in our evaluation in Section 8, we constrain sparsification using
a second parameter (Percent_E_Remain), which enforces that a
certain fraction of edges remain in the approximate graph.
Sweeping parameters: We use three sparsification parameter s
values (0.9, 0.7, and 0.5), each with 5 different Percent E_Remain
parameter values (90%, 80%, 70%, 60% and 50%).

o K-core. We follow the state-of-the-art implementation of k-
core[6] to identify all the vertices that have to be dropped given
a certain k. When a vertex is dropped, all of its in- and out-edges
are dropped too.
Optimization: In our evaluation in Section 8, we add a recovery
step to assign values to the removed vertices. This is similar to
the algorithm described in Section 5.3 for V-Combiner.
Sweeping parameters: We try k values equal to 2, 5, 10, 15, 20, 25,
30, 40, and 50. We only consider k-core configurations that have
a percentage of remaining edges over 50%.

e V-Combiner. V-Combiner uses a combination of pruning and
merging, unlike sparsification and k-core, which are pruning-only.
Sweeping parameters: The (a,) interval is selected to create a
subrange of edge CDF in the curve of Figure 8 within the (65%,
95%) interval. This corresponds to the knee region of the curve.
For all benchmarks except HITS, we consider intervals of length
10% each, i.e. (65%, 75%), (75%, 85%) and (85%, 95%). HITS is a
two-way algorithm with directed edges and, therefore, there is
more merging and edge dropping. For this reason, we experiment
with half-sized intervals for HITs, i.e. (65%, 70%),... , (90%, 95%).
Given an interval, we sweep the value of 7 so that the CDF of
edges ranges from 5% to CDF(«)%-5%. Finally, we only consider
V-Combiner configurations that have a percentage of remaining
edges over 50%.

7.2 Accuracy Metrics

We target an accuracy threshold of 90% for all the benchmarks,
which is a common threshold used by past work [8, 39].

CD. In CD, each vertex will be assigned a label, indicating the prob-
ability of that vertex to belong to a specific community. To measure
accuracy, we compute the fraction of initially-unlabeled vertices
that end-up being identified to belong to the correct community.
We determined the correct community by the exact computation
on the original graph.

HITS and PR. We measure the top-k accuracy [32], which is the
fraction of the vertices in the top k ranks of the exact output that are
also in the top k ranks of the approximate output. k is application-
dependent, and is given relative to the number of graph’s vertices.

V-Combiner: Speeding-up Iterative Graph Processing

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Table 4: Algorithm execution time (time), and speedup (sp), accuracy (acc), and percentage of work done (work) relative to the
baseline for the three techniques. Each row corresponds to one benchmark and graph. In each row, the technique with the
highest speedup is shown in bold. An empty row means that the technique could not run the benchmark and graph with an

accuracy equal to or higher than the threshold.

Benchmark V-Combiner sparsification k-core

& Graph time sp(sp) acc work | time sp(sp) acc work | time sp(sp) acc work
BP-PLD 150.51 1.78(1.87)x 90.1% 53.4% | 138.88 1.93(1.93)x 90.9% 51.7% - - - -
BP-AR 93.24 1.83(2.06)x 90.8% 48.6% | 102.20 1.67(1.89)x 90.3% 53.0% | 149.90 1.14(1.13)% 97.0% 88.5%
BP-DB 26.05 1.35(1.63)x 94.9% 61.4% 19.39 1.81(1.81)x 959% 55.2% - - - -
CD-FS 74.66 1.21(1.24)x 90.0% 80.5% 52.76 1.72(2.08)x 94.8% 48.0% 90.59 1.0(1.0)x 90.1% 99.4%
CD-TW 96.29 2.3(237)x 90.5% 42.1% | 117.63 1.88(2.89)x 91.9% 34.6% | 216.92 1.02(1.06)x 98.8% 94.2%
CD-PLD 101.49 1.10(1.09)x 91.3% 91.9% 82.27 1.38(1.46)x 90.2% 68.5% | 110.77 1.0(1.0)x 90.4% 99.8%
CD-AR 64.82 1.0(1.0)x 99.3% 99.9% | 47.16 1.38(1.82)x 92.6% 54.9% | 62.40 1.04(1.07)x 93.3% 93.7%
CD-DB 31.11 1.31(1.34)x 90.0% 74.6% 31.26 1.30(1.72)x 92.6% 58.2% - - - -
HITS-FS 47.42 1.76(1.72)x 95.8% 58.2% | 76.29 1.09(1.13)x 94.6% 88.6% | 46.79 1.78(1.67)x 99.9% 60.0%

HITS-TW 51.67
HITS-PLD 11.88

1.21(1.18)x 90.1% 84.8% | 65.34
1.65(1.54)x 90.6% 64.9% -

0.95(1.0)x 95.5% 99.6% | 56.13

LII(LIDX 99.8% 90.0%

- - 6.93 2.82(239)x 97.3% 41.8%

HITS-AR 842 131(131)X 97.2% 764% | 972 1.14(1.2)x 94.9% 83.1% | 748 148(155)x 98.1% 64.4%
HITS-DB 678 146(1.25)x 91.1% 80.0% | 8.17 1.21(1.08)x 91.2% 923% | 501 197(1.67)x 904% 59.8%
PR-FS 1580 2.55(2.62)x 90.1% 38.2% | 2159 1.87(2.03)x 90.2% 49.2% | 33.01 1.22(1.22)x 90.5% 81.8%
PR-TW 2057 1L75(174)x 904% 57.6% | 2953 1.22(1.26)x 90.2% 79.1% | 27.14 132(135)x 91.8% 73.8%
PR-PLD 887 1.51(1.35)x 90.3% 73.8% | 10.36 1.30(1.43)x 90.4% 70.0% | 1235 1.09(1.09)x 98.3% 91.5%
PR-AR 396 1.29(1.27)X 90.0% 78.9% | 3.21 1.59(2.02)x 90.5% 49.4% | 5.12 1.0(1O)X 98.1% 99.6%
PR-DB 092 1.55(1.89)x 90.3% 52.8% | 1.0 1.42(145)x 90.5% 69.2% - - - -

Average 4525 1.55(1.48)X 91.8% 67.6% | 48.04 146(1.54)x 92.2% 64.9% | 5932 1.36(1.23)x 953% 81.3%

BP. Based on past work [11, 16, 17, 19, 44], we divide BP use cases
into two main categories: (i) classification of vertices based on
the class they belong to, and (ii) ranking of the vertices based on
information such as user trustworthiness and influence. For the
classification scenario, since we are only able to run the algorithm
for belief vectors of size 2 (due to not enough memory), we observe
high accuracy in most cases. Therefore, we choose the ranking
scenario, where we can capture the accuracy better. We use the
top-k accuracy metric.

8 EVALUATION

We first compare V-Combiner’s performance-accuracy trade-offs to
sparsification’s and k-core’s, both for algorithm-time (Section 8.1)
and for end-to-end time (Section 8.2). We then present statistics on
the approximate graphs (Sections 8.3 and 8.4), and an analysis of
the best pruning or merging parameters (Section 8.5).

To compare V-Combiner, sparsification, and k-core, we pick
their best parameter configurations from Section 7.1 that, for each
individual benchmark and input graph, deliver the highest end-to-
end speedup over the baseline. The accuracy is required to be equal
to or higher than the 90% threshold. We call these configurations
the best end-to-end configurations.

8.1 Algorithm Performance and Accuracy

Best Design Points. In this section, to understand the trade-offs
between the different algorithms, we take the best end-to-end con-
figurations but recompute the speedups without considering the
pre-processing time. The “pruning” or “merging” part of the pre-
processing time is highly variable across different techniques and
overshadows the savings obtained by reducing algorithm time.
However, we do consider the post-processing time since it con-
tributes to the final accuracy in both V-Combiner and k-core. In
Section 8.2, we will analyze the speedups of the best end-to-end
configurations with all the times included.

Table 4 shows the resulting algorithm execution time (time),
and the speedup (sp), accuracy (acc), and percentage of work done
(work) relative to the baseline for the three techniques. The amount
of work done is proportional to the number of edges multiplied by
the number of iterations. We also report the “expected” speedup
(sp) next to each speedup number, which is computed as %]?(%).
It largely indicates the speedup that would be achieved without
considering any load imbalance effects in the approximate graph.

In the table, each row corresponds to one benchmark and graph.
In each row, the technique with the highest speedup is in bold. An
empty row means that the technique could not run the benchmark
and graph with an accuracy equal to or higher than the threshold.

Comparing V-Combiner to sparsification. V-Combiner attains an
average speedup of 1.55%, while sparsification attains 1.46X. Sur-
prisingly, this happens regardless of the fact that sparsification
performs less work on average — i.e. 64.9% compared to 67.6%. The
reason is the better load balancing of the work in V-Combiner due
to the merging of small vertices. We observe that, on average in
V-Combiner, the speedup is 4.7% higher than the expected speedup,
while it is 5.2% lower than the expected speedup in sparsification.
Additionally, V-Combiner satisfies the accuracy threshold across
all the benchmarks, while sparsification fails to meet the accuracy
threshold in HITS-PLD.

V-Combiner ensures high speedups by dropping both vertices
and edges, as compared to sparsification which only drops edges.
We can observe the higher speedups in all of PR and HITS exper-
iments (except PR-AR) and some of BP and CD experiments, i.e.
BP-AR, CD-TW, and CD-DB.

Comparing V-Combiner to k-core. k-core obtains a significantly lower
average speedup than V-Combiner, i.e. 1.36X. This is because k-core
performs more work than V-Combiner (81.3%) to reach an accuracy
of above the 90% threshold. Furthermore, k-core fails to satisfy
the accuracy threshold in four experiments. Another interesting
observation is that both V-Combiner and k-core achieve average
higher speedups than their expected speedups. This is because both

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

00

00

2.0 20 % 2.0 2.0 2.0 ® 2.0
g s » ,g g s s s
B1s B1s § B1s * 31 %1‘5““ }‘ B1s
& & # & q«& & ® & % & my
1.0 1.0 “ 1.0 10 1.0 1.0 ¢ g0 mooe
05 05 05 05 05
P85 0.90 095 1.00 085 90 095 1.00 P85 090 095 100 o °85 090 095 1.00 °85 090 095 L.
Accuracy Accuracy Accuracy 05-35 0.90 0.95 1.00 Accuracy Accuracy
Accuracy
(a) BP-PLD (b) BP-AR (c) BP-DB (d) CD-FS (e) CD-TW (f) CD-PLD
25 25 25 25 25 25
20 20 20 20 2% sexenge 20
3 2 3 o 3 2 % 3
215 315 215 # %15 g15| e VR W 215
a 2 & & 2 a %
I @ & & & @ b3 3 o » @ - I
10l PR S 1.0 = 1.0 * 1.0 1.0 1.0
x RN®
0P85 090 095 1.00 Opg5 —0.90 005 1.00 0P85 090 095 1.00 0P85 090 005 1.0 0P85 060 095 1.00 OPs5 080 095 L.
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(g) CD-AR (h) CD-DB (i) HITS-FS (j) HITS-TW (k) HITS-PLD (1) HITS-AR
25 255 25 25 25 25
20 o 2.0 2.0 2.0 2.0 2.0
s s Sl s |ou s s
B1s “ B1s Bis/ % B1s % B1s B1s ®
& 3 & & & e & M & ®
1.0 10 1.0 m 1.0 % 1.0 1.0 =
0P85 090 0.95 1.00 0pgs 090 005 1.00 0P85 090 0.95 1.00 0P85 090 095 1.00 0P85 090 095 L.00 OPs5 090 095 L.
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(m) HITS-DB (n) PR-FS (o) PR-TW (p) PR-PLD (q9) PR-AR (r) PR-DB

Figure 9: Pairs of (speedup, accuracy) for V-Combiner (%), k-core (®) and sparsification (#). Speedups only include algorithm
execution time. The vertical line shows the 0.9 accuracy threshold.

techniques perform small-degree vertex pruning/merging, which
helps load balancing the work better than the original graph.

Compared to k-core, V-Combiner relies on the high connectiv-
ity of its approximate graph and recovery algorithm to achieve
higher speedup-accuracy operating points. The recovery algorithm
is more effective in V-Combiner than in k-core. k-core’s recovery
is performed using other removed vertices with their initial values,
while V-Combiner’s recovery is performed using vertices that have
been already involved in the computation. Except in HITS-FS, HITS-
PLD, HITS-AR, and HITS-DB, V-Combiner achieves comparable
or higher speedups than k-core. For these graphs, k-core performs
less work with higher accuracy.

Overall, V-Combiner attains the highest average speedup in
8 out of 18 benchmarks. The reasons are better load balancing
and the preservation of the average length of paths (relative to
sparsification), and performing less work at high accuracy due to
better connectivity (relative to k-core).

Speedup-Accuracy Trends. To further compare V-Combiner, spar-
sification, and k-core, Figure 9 shows pairs of (speedup, accuracy)
for the techniques. In the charts, the X-axis shows accuracy from
0.85 (low) and 1.00 (high), and the Y-axis shows speedup over the
baseline algorithm. We obtain these points by sweeping the pa-
rameters of each technique according to Section 7.1. As before, we
include the post-processing time but not the pre-processing time,
since we focus on the algorithm speedup only. Note that some of the
data points in Figure 9 show higher speedups than in Table 4. This
is because Table 4 only shows the best end-to-end configurations.
Comparing V-Combiner to sparsification. In the figure, the closer the
(speedup, accuracy) pairs are to the top right of each plot, the better
the trade-off is. For all HITS and PR experiments except PR-AR,
V-Combiner achieves better results than sparsification. Typically in

PR, sparsification is more likely to achieve better trade-offs on more
“skewed” graphs — i.e. graphs that have many small-degree vertices
and few extraordinarily-large degree vertices. In such input graphs,
there is not much room to merge subnodes without creating discon-
nectivity, since those large vertices are not picked as supernodes
(according to Algorithm 2). However, in practice, most real-world
graphs are less skewed and thus more suitable for V-Combiner. For
BP, both schemes have similar results. Finally, for CD, sparsifica-
tion generally gets better results, especially for highly dense graphs
such as CD-FS. In contrast, V-Combiner achieves better results in
sparser graphs such as CD-TW.

Comparing V-Combiner to k-core. Figure 9 shows that in most experi-
ments, V-Combiner exhibits better performance-accuracy trade-offs
than k-core. The exceptions are HITS-FS, HITS-PLD, HITS-AR, and
HITS-DB, for the reason indicated before. However, we will see
in Section 8.2 that the end-to-end time of k-core is significantly
affected by the pre-processing overhead.

8.2 End-to-End Analysis

Figure 10 shows the total execution time of the best end-to-end
configurations for the different benchmark-graph pairs and differ-
ent techniques. For each benchmark-graph pair, we show, from
left to right, bars for the Exact, V-Combiner, sparsification, and
k-core techniques, all normalized to Exact. The numbers on top of
the bars are the end-to-end speedups over Exact. The missing bars
(sparsification in HITS-PLD, and k-core in BP-PLD, BP-DB, CD-BD,
and PR-BD) are for configurations that failed to reach the threshold
accuracy. The accuracy of each experiment was shown in Table 4.

The bars are broken down into the different components of the
execution time as shown in the steps of Figure 4: (i) pruning or
merging, (ii) building the graph, (iii) executing the graph algorithm,

00

V-Combiner: Speeding-up Iterative Graph Processing

1.6 ‘
[Prune/Merge Bui
vld
"21.2 2 3
o o @ o 3 e u
‘51.0 2 S s B R o Nid
X0.8 3 P CL
nhg o @ = 2 =
°) R3 R o i
0.6 =% ka - gl
e = -
204
S
Z0.2
0.0 = =
AP o P (<© SIS
& & @ o 00,«\“ o o o

o N
‘(\\(6 \e&(c) ‘(\\'(6’

ICS 20, June 29-July 2, 2020, Barcelona, Spain

>

Igorithm Recovery

o
"]
S S

0.27
0.52

1.29
117
125
1.25
0.37

1.03
0.92
1.26
1.20
1.03
1.25
117

O & P 5 a0 & P e
N \’\\((,» \)\\(5,0 o QQ««\“ QWQ» & ?Q\,o w‘&g

Figure 10: Total execution time of the best end-to-end configurations for the different benchmark-graph pairs and different
techniques. For each benchmark-graph pair, we show, from left to right, bars for the Exact, V-Combiner, sparsification, and k-
core techniques, all normalized to Exact. The numbers on top of the bars are the end-to-end speedups over Exact. The missing
bars (one in sparsification and four in k-core) are for configurations that failed to reach the threshold accuracy.

and (iv) post-processing or recovering. From the figure, we see that
the prune/merge step is cheap in V-Combiner and sparsification.
However, it is very expensive in most of the k-core experiments:
even though we use the state-of-the-art k-core implementation [6],
pruning until the remaining vertices have a degree of at least k has
substantial overhead.

The Build step takes, on average, 20%, 22.6%, 16.4%, and (not
shown) 19.7% of the total Exact time, in Exact, V-Combiner, spar-
sification, and k-core, respectively. The Build time in V-Combiner
is higher than in sparsification because, in this step, V-Combiner
performs the actual vertex merging and generates the Delta graph.
(Recall that, in the merge step, V-Combiner executes Algorithm 2,
which computes the new vertex degrees). However, the algorithm
time is often shorter in V-Combiner than in sparsification, as we
saw in Table 4. The recovery overheads are negligible.

Overall, we see that V-Combiner obtains an average end-to-end
speedup of 1.25X over the baseline across the 18 benchmarks. It
does so with an average accuracy of 91.8% (Table 4). Sparsifica-
tion typically has a slower algorithm but a shorter pre-processing
time. The resulting average end-to-end speedup of sparsification
over baseline is like V-Combiner in Figure 10. However, one of the
benchmark-graph pairs (HITS-PLD) does not reach the required
accuracy in sparsification. Specifically, it can be shown that HITS-
PLD only reaches 71% accuracy in sparsification. Such experiment
is not included in the average sparsification bar of Figure 10. As a
result, V-Combiner is preferable over sparsification. Finally, K-core
exhibits a substantial slowdown over baseline on average due to its
large pruning overhead.

8.3 Analysis of the Connectivity

Table 5 shows pruning or merging statistics for different techniques
with the configurations of Table 4. For V-Combiner, we show the
breakdown of the vertices in the original graph into supernodes,
subnodes, and regular vertices. On average, the fraction of supern-
odes, subnodes, and regular vertices is 0.1%, 18.5%, and 81.4%, respec-
tively. The percentage of vertices that remain in the approximate
graph is equal to the percentage of supernodes plus regular vertices.
On average, it is 81.5%. The percentage of edges remaining in the
V-Combiner approximate graph is 71.4% on average.

For sparsification, the table shows the percentage of remaining
edges (since no vertex is removed). On average, such number is

Table 5: Pruning or merging statistics.

Benchmark V-Combiner sparsif. k-core

& Graph super sub regular edges | edges | vertices edges
BP-PLD 0.0% 21.6% 78.3% 53.4% 51.7% - -
BP-AR 0.1% 37.3% 62.6% 50.6% 53.1% 90.2% 99.6%
BP-DB 0.4% 20.9% 78.7% 61.4% 55.2% - -
CD-FS 0.4% 27.6% 72.0% 83.9% 50.0% 84.2% 99.4%
CD-TW 0.0% 7.5% 92.5% 59.1% 50.0% 65.5% 98.8%
CD-PLD 0.0% 4.6% 95.4% 79.0% 68.0% 81.1% 99.2%
CD-AR 0.0% 0.6% 99.3% 99.8% 54.4% 92.7% 99.7%
CD-DB 0.0% 3.7% 96.3% 90.4% 54.3% - -
HITS-FS 0.7% 30.6% 68.7% 54.4% 80.0% 24.4% 76.5%
HITS-TW 0.1% 10.4% 89.5% 78.1% 84.8% 22.9% 84.1%
HITS-PLD 0.0% 254% 74.6% 75.3% - 8.1% 55.8%
HITS-AR 0.1% 15.0% 84.9% 86.1% 89.9% 31.7% 75.8%
HITS-DB 0.0% 8.9% 91.1% 87.6% 90.1% 11.8% 65.4%
PR-FS 0.1% 36.6% 62.7% 51.4% 50.0% 41.1% 91.7%
PR-TW 0.1% 21.3% 78.6% 63.0% 80.2% 38.1% 94.1%
PR-PLD 0.0% 192% 80.8% 723% | 70.0% 77.4% 98.9%
PR-AR 0.0% 20.4% 79.6% 82.6% 50.4% 90.2% 99.6%
PR-DB 0.2% 15.6% 84.2% 57.4% 90.1% - -
Average 0.1% 18.5% 81.4% 71.4% 66.0% 54.4% 87.6%

66.0%. Finally, for k-core, the table shows the percentages of re-
maining vertices and edges. On average, they are 54.4% and 87.6%.

V-Combiner keeps more remaining vertices in the approximate
graph than k-core. This explains why V-Combiner provides better
connectivity than k-core. We also see that, on average, the tech-
niques generate approximate graphs with 65%-90% of the edges,
which provide the most profitable performance-accuracy trade-off.
Finally, sparsification has the lowest percentage of edges remaining.
Because it does not remove vertices, it can tolerate dropping so
many edges while still preserving good connectivity.

8.4 Analysis of the Average Length of Paths

Table 6 compares the average length of the paths in each benchmark-
graph pair in the original and approximate graphs. To compute the
average path length in each original graph, we select and run 10,000
shortest path queries and average out all the shortest path distances.
Next, we use the same queries to measure the average length of
the paths in the approximate graphs that the different techniques
generated using the configurations of Table 4. Finally, we compute
the error as the difference between the values in the original and
approximate graphs, as a percentage.

V-Combiner preserves the average length of paths much more
than sparsification or k-core. On average, the error in average path
length in V-Combiner is only 3.8%, while it is 30.1% and 37.6% in

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Table 6: Average length of the paths in different graphs. The
percentage numbers show the percentage of error relative
to the original graph.

Benchmark | original | V-Combiner | sparsification k-core

& Graph

BP-PLD 3.73 3.25(12.9%) 4.68(25.5%) -
BP-AR 7.18 6.18(13.9%) 8.43(17.4%) | 4.66(35.1%)
BP-DB 3.81 3.39(11.0%) 5.33(39.9%) -
CD-FS 5.82 6.13(5.3%) 8.29(42.4%) | 4.28(26.5%)
CD-TW 4.21 4.22(0.2%) 5.30(25.9%) | 2.19(48.0%)
CD-PLD 434 4.36(0.5%) 5.54(27.6%) | 0.58(86.6%)
CD-AR 17.64 17.62(0.1%) | 21.10(19.6%) | 4.38(75.2%)
CD-DB 5.20 5.06(2.7%) 8.63(66.0%) -
HITS-FS 5.82 5.95(2.2%) 7.73(32.8%) | 4.69(19.4%)
HITS-TW 4.21 4.29(1.9%) 4.77(13.3%) | 3.15(25.2%)
HITS-PLD 4.34 4.35(0.2%) - 1.76(59.4%)
HITS-AR 17.64 17.86(1.2%) 18.47(4.7%) | 16.86(4.4%)
HITS-DB 5.20 5.10(1.9%) 6.65(27.9%) | 4.22(18.9%)
PR-FS 5.82 6.06(4.1%) 8.27(42.1%) | 5.09(12.5%)
PR-TW 4.21 4.39(4.3%) 530(25.9%) | 3.55(15.7%)
PR-PLD 4.34 4.36(0.5%) 5.55(27.9%) 4.23(2.5%)
PR-AR 17.64 18.02(2.2%) 20.80(17.9%) 0.5(97.2%)
PR-DB 5.20 5.05(2.9%) 8.60(55.0%) -
Mean error - 3.8% 30.1% 37.6%

sparsification and k-core, respectively. Generally, k-core reduces
the average length of the paths, while sparsification increases it.
The reason is that k-core prunes vertices and therefore reduces
the number of hops to go from one vertex to another. Moreover,
k-core often disconnects parts of the graph, causing longer paths to
disappear, and the average path length to decrease. In contrast, spar-
sification increases the number of hops between vertices because it
reduces the connections between the vertices by removing edges.

8.5 Analysis of Pruning/Merging Parameters

Table 7 shows the pruning or merging parameters that we use to
generate the best end-to-end configurations for each benchmark-
graph pair and technique. In V-Combiner, the parameters are the
supernode thresholds « and f, and the subnode threshold 7. The
table shows these parameters as the corresponding values in the
CDF of number of edges (Figure 8). We observe that, for CD and
BP, the best (a,) values are mostly (85%, 95%). For HITS, the best
values are mostly (65%, 70%), and for PR, they are mostly (75%,
85%). The m parameter shows more variation, as it generally ranges
between 60% and 20%. In contrast, for sparsification and k-core, we
do not see a clear trend on how to set the s and k parameters; hence
a full sweep of parameters is required.

Table 7: Best parameters of the different techniques.

Benchmark V-Combiner sparsification k-core
& Graph a p L4 s param k param
BP-PLD 85% 95% 80% 0.7 -
BP-AR 85% 95% 60% 0.7 2
BP-DB 75% 85% 70% 0.9 -
CD-FS 85% 95% 70% 0.7 2
CD-TW 8% 95% 75% 0.5 5
CD-PLD 85% 95% 20% 0.9 2
CD-AR 85% 95% 5% 0.9 2
CD-DB 85% 95% 20% 0.9 -
HITS-FS 65% 70% 60% 0.7 40
HITS-TW 70% 75% 50% 0.9 25
HITS-PLD 65% 70% 30% - 40
HITS-AR 65% 70% 20% 0.7 30
HITS-DB 65% 70% 30% 0.7 25
PR-FS 75% 85% 60% 0.7 15
PR-TW 75% 85% 60% 0.5 10
PR-PLD 75% 85% 40% 0.9 2
PR-AR 85% 95% 15% 0.5 2
PR-DB 75% 85% 40% 0.9 -

Azin Heidarshenas, Serif Yesil, Dimitrios Skarlatos, Sasa Misailovic, Adam Morrison, and Josep Torrellas

9 RELATED WORK

Previous research focused on algorithm-specific approximations
such as FrogWild [32] for Page Rank and approximate K-level asyn-
chronous Breadth-First Search [9]. While these approximations are
effective for one algorithm, they often lack the generality to be
applied to a broad range of algorithms. More general approaches
include graph summarization techniques [1, 3, 7, 21, 28, 30, 37],
and other graph processing approximate frameworks [25, 33, 38],
or general-purpose frameworks that can be applied to graph pro-
cessing domains too [12, 40]. Compared to the general-purpose
frameworks, V-Combiner is deterministic and provides application
transparency.

Graph summarization techniques vary widely from algorithm-
specific such as sketching algorithms [1, 7, 30, 37] to more general-
purpose such as sparsification [3, 15] and k-core [21]. The original
proposal of sparsification [3] provides bounds for the Page Rank
algorithm. However, it is not applicable in practice. First, it requires
the graph input to be undirected, while most of the real-world
graphs are directed. Second, it requires the knowledge of the graph
eigenvalues, which will take much higher time to compute than
the actual Page Rank values. A practical implementation of sparsi-
fication [15] replaced the eigenvalues with a tunable sparsification
parameter and average degree of the graph that provides end-to-end
performance gains, but with no accuracy guarantees.

The idea behind sketching algorithms is to summarize the graph
information tailored to a specific application into a data structure
that can be queried later to return a fast approximate answer after
simple computations. Unfortunately, while sketching techniques
provide high accuracy, their end-to-end performance is much worse
than the exact baseline due to their high pre-processing overheads.
V-Combiner has lower overhead and hence provides higher end-
to-end performance at high accuracy. In contrast to some popular
sketching algorithms that are tailored to specific graph algorithms,
V-Combiner can be applied to a wide variety of graph algorithms,
without modifying their code.

10 CONCLUSION

Fast graph processing has an important role in many applications
where a small level of inaccuracy is acceptable. To speed-up iterative
graph processing algorithms, we propose to merge certain graph
vertices into hub vertices next to them — i.e. vertices with many
connections. Our novel scheme, V-Combiner, systematically and
deterministically constructs an approximate graph using pruning
and merging. It also includes an inexpensive correction step after
the graph algorithm executes, to recover the contribution of the
pruned vertices. The result is faster execution at acceptable accuracy
levels.

We evaluated V-Combiner on a 44-core shared-memory platform.
On average across 4 applications and 5 graph datasets, V-Combiner
attained an end-to-end speed-up of 1.25X over the exact baseline
system, with an accuracy of 91.8%. We also showed that V-Combiner
provides an overall better performance-accuracy trade-off than the
sparsification and k-core techniques.

ACKNOWLEDGMENTS

This research was funded in part by the National Science Founda-
tion under grants CCF-1629431 and CCF-1703637.

V-Combiner: Speeding-up Iterative Graph Processing

REFERENCES

(1]

(2]

[10

(1

[12]

[13]

[14

[15

[16]

[17]

[18]

[19]
[20]

[21]

[22]

Takuya Akiba and Yosuke Yano. 2016. Compact and scalable graph neighborhood
sketching. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 685-694.

Hongji Bao and Edward Y Chang. 2010. AdHeat: An influence-based diffusion
model for propagating hints to match ads. In Proceedings of the 19th international
conference on World wide web. ACM, 71-80.

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. 2013.
Spectral sparsification of graphs: theory and algorithms. Commun. ACM 56, 8
(2013), 87-94.

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1-25.

Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures. ACM,
293-304.

Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-pairs almost shortest paths.
SIAM . Comput. 29, 5 (2000), 1740-1759.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
acceleration for general-purpose approximate programs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 449-460.

Adam Fidel, Francisco Coral Sabido, Colton Riedel, Nancy M Amato, and
Lawrence Rauchwerger. 2016. Fast approximate distance queries in unweighted
graphs using bounded asynchrony. In International Workshop on Languages and
Compilers for Parallel Computing. Springer, 40-54.

Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and
Makoto Onizuka. 2013. Fast and exact top-k algorithm for pagerank. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Wolfgang Gatterbauer. 2017. The linearization of belief propagation on pairwise
markov random fields. In Thirty-First AAAI Conference on Artificial Intelligence.
Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. 2015.
ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 383-397.

Priya Govindan, Chenghong Wang, Chumeng Xu, Hongyu Duan, and Sucheta
Soundarajan. 2017. The k-peak decomposition: Mapping the global structure of
graphs. In Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 1441-1450.
Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, and Ion Stoica. 2018. ASAP: Fast, Approximate Graph Pattern Mining
at Scale. In 13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). 745-761.

Anand Padmanabha Iyer, Aurojit Panda, Shivaram Venkataraman, Mosharaf
Chowdhury, Aditya Akella, Scott Shenker, and Ion Stoica. 2018. Bridging the
GAP: towards approximate graph analytics. In Proceedings of the 1st ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA). ACM, 10.

Min-Hee Jang, Christos Faloutsos, Sang-Wook Kim, U Kang, and Jiwoon Ha. 2016.
Pin-trust: Fast trust propagation exploiting positive, implicit, and negative infor-
mation. In Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. ACM, 629-638.

Kyomin Jung, Wooram Heo, and Wei Chen. 2012. Irie: Scalable and robust influ-
ence maximization in social networks. In 2012 IEEE 12th International Conference
on Data Mining. IEEE, 918-923.

U Kang, Duen Horng Chau, and Christos Faloutsos. 2011. Mining large graphs:
Algorithms, inference, and discoveries. In 2011 IEEE 27th International Conference
on Data Engineering. IEEE, 243-254.

U Kang, Duen Horng, et al. 2010. Inference of beliefs on billion-scale graphs.
Workshop on Large-scale Data Mining: Theory and Applications (2010).

David R Karger and Clifford Stein. 1996. A new approach to the minimum cut
problem. Journal of the ACM (JACM) 43, 4 (1996), 601-640.

Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-core decomposition of large networks on a single PC. Proceedings of the VLDB
Endowment 9, 1 (2015), 13-23.

Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604-632.

(23]

[26

[27

[28

[29

[30

[31

[32

(33]

[34

[35

[36

w
=)

[38

[39

[40

N
furg

[42

[43

[44

S
)

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki Kitagawa. 2017. GPU-
Accelerated Graph Clustering via Parallel Label Propagation. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management. ACM,
567-576.

Jéréme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. ACM, 1343-1350.

Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. 2016. Efficient
processing of large graphs via input reduction. In Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed Computing.
ACM, 245-257.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale

Graph Computation on Just a PC. In Symposium on Operating Systems Design
and Implementation (OSDI 12). 31-46.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph summa-
rization methods and applications: A survey. ACM Computing Surveys (CSUR)
51,3 (2018), 62.

Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything
you always wanted to know about multicore graph processing but were afraid
to ask. In 2017 USENIX Annual Technical Conference (USENIXATC 17). 631-643.
Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD
Record 43, 1 (2014), 9-20.

Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna.
2019. Web Data Commons - Hyperlink Graphs. http://webdatacommons.org/
hyperlinkgraph/.

Toannis Mitliagkas, Michael Borokhovich, Alexandros G Dimakis, and Constan-
tine Caramanis. 2015. FrogWild!: Fast PageRank approximations on graph engines.
Proceedings of the VLDB Endowment 8, 8 (2015), 874-885.

Hamza Omar, Masab Ahmad, and Omer Khan. 2017. GraphTuner: An input
dependence aware loop perforation scheme for efficient execution of approx-
imated graph algorithms. In 2017 IEEE International Conference on Computer
Design (ICCD). IEEE, 201-208.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

Ali Pinar, Tamara G Kolda, and Changbin Peng. 2014. Accelerating Community
Detection by using k-core subgraphs. Technical Report. Sandia National Lab.(SNL-
CA), Livermore, CA (United States).

Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. In Proceedings of the 20th annual international conference
on Supercomputing. ACM, 324-334.

Tamas Sarlés, Adras A Benczur, Karoly Csalogany, Daniel Fogaras, and Balazs
Racz. 2006. To randomize or not to randomize: space optimal summaries for
hyperlink analysis. In Proceedings of the 15th international conference on World
Wide Web. ACM, 297-306.

Zechao Shang and Jeffrey Xu Yu. 2014. Auto-approximation of graph computing.
Proceedings of the VLDB Endowment 7, 14 (2014), 1833-1844.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
2011. Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, 124-134.

Xin Sui, Andrew Lenharth, Donald S Fussell, and Keshav Pingali. 2016. Proactive
control of approximate programs. ACM SIGOPS Operating Systems Review 50, 2
(2016), 607-621.

Konstantin Tretyakov, Abel Armas-Cervantes, Luciano Garcia-Bafuelos, Jaak
Vilo, and Marlon Dumas. 2011. Fast fully dynamic landmark-based estimation
of shortest path distances in very large graphs. In Proceedings of the 20th ACM
international conference on Information and knowledge management. 1785-1794.
Johan Ugander and Lars Backstrom. 2013. Balanced label propagation for parti-
tioning massive graphs. In Proceedings of the sixth ACM international conference
on Web search and data mining. ACM, 507-516.

Biao Xiang, Qi Liu, Enhong Chen, Hui Xiong, Yi Zheng, and Yu Yang. 2013.
Pagerank with priors: An influence propagation perspective. In Twenty-Third
International Joint Conference on Artificial Intelligence.

Jaemin Yoo, Saehan Jo, and U Kang. 2017. Supervised Belief Propagation: Scal-
able Supervised Inference on Attributed Networks. In 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 595-604.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. Technical Report. Carnegie Mellon University.

http://snap.stanford.edu/data
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/

	Abstract
	1 Introduction
	2 Background
	2.1 Iterative Graph Algorithms
	2.2 Graph Pre-processing

	3 Observations
	3.1 Not All Vertices Contribute Equally
	3.2 A Subset of Results Is All That Is Needed
	3.3 Applications Can Tolerate Small Errors
	3.4 Removing Some Vertices Can Be Effective

	4 Limitations of Current Techniques
	5 Vertex Merging with V-Combiner
	5.1 Merging Approach
	5.2 Vertex Merging Algorithm
	5.3 Recovery Step
	5.4 Overall V-Combiner Algorithm
	5.5 Other Scenarios of the Merging Algorithm
	5.6 Choosing the Merging Parameters

	6 Comparison of Techniques
	7 Experimental Setup
	7.1 Methodology
	7.2 Accuracy Metrics

	8 Evaluation
	8.1 Algorithm Performance and Accuracy
	8.2 End-to-End Analysis
	8.3 Analysis of the Connectivity
	8.4 Analysis of the Average Length of Paths
	8.5 Analysis of Pruning/Merging Parameters

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

