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Abstract
Poor placement of data blocks in memory may negatively im-
pact application performance because of an increase in the cache
conflict miss rate [18]. For dynamically allocated structures this
placement is typically determined by the memory allocator. Cache
index-oblivious allocators may inadvertently place blocks on a re-
stricted fraction of the available cache indexes, artificially and
needlessly increasing the conflict miss rate. While some allocators
are less vulnerable to this phenomena, no general-purpose malloc
allocator is index-aware and methodologically addresses this con-
cern. We demonstrate that many existing state-of-the-art allocators
are index-oblivious, admitting performance pathologies for certain
block sizes. We show that a simple adjustment within the allocator
to control the spacing of blocks can provide better index cover-
age, which in turn reduces the superfluous conflict miss rate in var-
ious applications, improving performance with no observed nega-
tive consequences. The result is an index-aware allocator. Our tech-
nique is general and can easily be applied to most memory alloca-
tors and to various processor architectures.

Furthermore, we can reduce inter-thread and inter-process con-
flict misses for processors where threads concurrently share the
level-1 cache such as the Sun UltraSPARC-T2TMand Intel “Ne-
halem” by coloring the placement of blocks so that allocations for
different threads and processes start on different cache indexes.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Allocation/Deallocation Strategies

General Terms Performance,experiments,algorithms

Keywords Dynamic storage allocators, memory allocation, mal-
loc, caches, shared caches, conflict misses, placement policies

1. Introduction
Modern mallocmemory allocator designs tend to focus first on the
performance of the allocator itself, often ignoring the performance
of the application code that accesses blocks returned by the alloca-
tor. The design and policies of the allocator can, for instance, have a
significant influence on the data TLB (translation look-aside buffer
- a cache of virtual to physical page translations) and data cache
miss rates of applications accessing blocks returned from that allo-
cator. We identify key aspects of allocator performance as follows:
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• Latency and Scalability of the allocator itself
• Memory footprint – space-efficiency

Peak memory usage - capacity and consumption of system
resources

Data Cache and data TLB locality and span - reflecting
the density of the set of allocated blocks as measured by the
number of pages and cache lines underlying those blocks.
This measure also includes wastage, fragmentation and the
overheads imposed by the allocator such as block headers
(metadata - if present), malloc size quantization and heap
layout.

• Inter-block false sharing in concurrent environments
• Cache line relative block address alignment – the placement

of blocks by the allocator with respect to cache line boundaries
• Cache index placement

Our paper focuses on the final aspect – cache index placement.
In particular our concern is how blocks returned by malloc are
distributed over the set of possible cache indices. If the distribution
is imbalanced or non-uniform then repetitive access to those blocks
by the application might incur excessive conflict misses, which in
turn may degrade overall system performance.

As a concrete illustration of the problem consider a malloc
allocator that maintains arrays of 128-byte blocks – inclusive of
both header data (allocator metadata, if any) and the data area – that
may be used to satisfy malloc requests of sizes suitably close to
128 bytes. These arrays are private to the allocator implementation
and opaque to applications. As blocks are packed densely in the
array we find blocks starting every 128 bytes. If the base of the
array is B then the block addresses will be B, B + 128, B + 256, and
so on. Consider a data cache with 16-byte blocks and 128 indices.
Crucially, the set of level-1 data cache (L1D) indices associated
with the base addresses of the blocks within such arrays is restricted
to just 16 instead of the full complement of 128. That is, given
the way virtual addresses map to cache indices and because of
the regular consecutive spacing of the blocks in the array, blocks
of that particular size-class (128 bytes) can start on only 16 of
the 128 possible indices. If an application allocates a set of such
blocks and then repeatedly accesses just a few fields in a group of
blocks then it may suffer excessive conflict misses as some cache
indices are “hot” and others underutilized and “cold”. Conflict
misses, which arise from lack of cache associativity, cause the
application accessing blocks returned by interfaces such as malloc
to underutilize the data cache, robbing the application of potential
performance.

One aspect of our solution is to insert small spacer regions into
the array of blocks to better distribute the block indices, forming
a punctuated array and disrupting the regular ordering of block



addresses. We show that this approach is both effective and simple
to implement.

While we describe our techniques in terms of the implemen-
tation of a specific malloc allocator, it is general and can easily
be applied in other environments such as pool allocators [24] or
to the object allocators found in managed run-time environments
with automatic garbage collection. Furthermore, while we explain
our technique in terms of the Sun UltraSPARC-T2TMprocessor, it
carries to other architectures as well.

This paper starts with a discussion of modern malloc allocator
design and show how such allocators can easily cause cache index
imbalance – a poor distribution of blocks over the set of possible
cache indexes. We then proceed to describe a simple solution that
involves inserting spacers into the block arrays to provide a better
distribution, yielding an index-aware allocator. We provide experi-
mental data to support our claim. Next, we describe other varieties
of index conflicts and provide insight on how they can also be easily
avoided, followed by a survey of related work and conclude with a
discussion of future research directions related to our topic.

2. Modern malloc allocator design
The default SolarisTMlibc allocator uses a single global heap pro-
tected by one mutex. Memory is allocated from the operating sys-
tem by means of the sbrk system call. The global free list is orga-
nized as a splay tree [33] ordered by size and allocation requests are
serviced via a best-fit policy. The heap is augmented by a small set
of segregated free lists of bounded capacity, allowing many com-
mon requests to operate in constant-time. This results in an alloca-
tor with excellent heap density, reasonable single-threaded latency,
but poor scalability. Furthermore, applications using the libc allo-
cator may be subject to excessive allocator-induced false sharing,
where blocks allocated to different threads happen to abut in the
midst of a cache line.

Modern state-of-the-art allocators include Hoard [8], CLFMalloc
[27], LFMalloc [14], libumem [9], jemalloc [16] and tcmalloc
[6]. They are broadly categorized as segregated free-list [19] al-
locators as they maintain distinct free lists based on block size.
Such allocators round requested allocation sizes up to the nearest
size-class where a size-class is simply an interval of block sizes
and without ambiguity we can refer to a size-class by its upper
bound. The set of size-classes forms a partition on the set of possi-
ble allocation sizes. The choice of size-classes is largely arbitrary
and defined at the whim of the implementor, although a step size of
1.2x between adjacent size-classes is common [8] as the worst-case
internal fragmentation is constrained to 20%.

We will use Hoard as a representative example of modern al-
locator design. Hoard uses multiple heaps to reduce contention.
Specifically, Hoard attempts to diffuse contention and improve
scalability by satisfying potentially concurrent malloc requests
from multiple local heaps – this strategy also mitigates the allocated-
induced false sharing problem. Each heap consists of an array of
references to superblocks, with one slot for each possible size-class.
A superblock is simply an array of blocks of a certain size class. Su-
perblocks are all the same size, a multiple of the system page size,
and are allocated from the system via the mmap interface which
allocates virtual address pages and associates physical pages to
those addresses. Mmap is used instead of the more traditional sbrk
operator as pages allocated through mmap may later be returned to
the system, if desired, through munmap. The superblock is the fun-
damental unit of allocator for Hoard. Each superblock has a local
singly-linked free list threaded through the free blocks and main-
tained in LIFO order to promote TLB and data cache locality. A
small superblock header at the base of the array contains the head of
the superblock-local free list. Superblocks and heaps are opaque to
the application that uses the allocator. The Hoard implementation

places superblocks on highly aligned addresses. The free operator
then uses address arithmetic – simple masking – on the block ad-
dress to locate the header of the enclosing superblock, which in turn
allows the operator to quickly push the block onto the superblock’s
free list. As such, in-use blocks do not require a header field. If a
superblock becomes depleted it can be detached from a heap and
moved to a global heap. The local heap can be reprovisioned from
either the global heap, assuming a superblock with sufficient free
space is available, or by allocating a new superblock from the sys-
tem. Superblocks can circulate between various local heaps and the
global heap, but will be associated with at most one local heap at
any one time. Allocator metadata is minimal, consisting of the heap
structures and superblock headers. The implementation associates
a malloc request with a heap by hashing the identity of the current
thread. To reduce collisions Hoard overprovisions the number of
heaps to be twice the number of processors. Concurrency control
is provided by per-heap locks.
Hoard’s malloc operator first quantizes the requested size to

an appropriate size-class, identifies a heap, locks the heap, locates
a superblock of the appropriate size-class in that heap, unlinks
a block from that superblock’s free list, unlocks the heap, and
finally returns the address of the block’s data area. As Hoard
employs segregated free lists (segregated by size), in the common
case finding a free block of a given size is a simple constant-time
operation. Given this allocation policy the returned addresses for a
given size-class may be regular in a manner that results in inter-
block cache index conflicts and excessive conflict misses if a group
of blocks of a size-class are accessed frequently by the application.
More generally, array-based superblock allocators coupled with
inopportune index-oblivious block sizes can easily result in patterns
of block addresses that map to only a few cache indices.

Superblock-based allocators of this design allow for good scal-
ing although their footprint is often somewhat larger than that of
libc as they attempt to diffuse contention by distributing requests
over multiple heaps. Latency varies but usually reflects path length
through malloc and free and metadata access costs, which are
properties of the implementation and not fundamental to the cate-
gory of segregated free list allocators.
CLFMalloc is structurally similar to Hoard, differing mostly

in the policy by which it associates malloc requests with heap
instances and in that CLFMalloc is lock-free.
Libumem and tcmalloc use a central heap but diffuse con-

tention via multiple local free lists. In the case of tcmalloc the
central heap uses segregated free lists which are populated by allo-
cating runs of pages and then splitting those pages into contiguous
arrays of the desired size-class.

3. CIF : Improving index distribution –
Punctuated arrays

We introduce a new index-aware segregated-free list allocator, CIF
(Cache-Index Friendly), which was derived from LFMalloc. CIF
and LFMalloc are structurally similar to Hoard. LFMalloc used
hardware transactional memory [15] or restartable critical sections
for concurrency control but for the sake of portability CIF uses
simple mutual exclusion locks. CIF is easily portable and currently
runs on Solaris SPARC and Linux x86 (32-bit and 64-bit).

In CIF each processor is associated with a processor-private
heap. A superblock consists of a coloring region (described below),
a header containing metadata and an array of blocks of the given
size-class. As in Hoard the superblock header contains a pointer
to the head of a LIFO free list of available blocks within that
superblock. All blocks in a superblock are of the same length.
Superblocks are 64KB in length.



CIF does not explicitly request large pages for superblocks.
Large pages, if supported by the processor and operating system,
can improve performance by decreasing TLB miss rates. Solaris
attempts to provision mappings with large pages as a best-effort op-
timization. On SPARC large pages must be physically contiguous
and both physically and virtually aligned to the large page size. The
UltraSPARC-T2 supports 8KB, 64KB, 4MB and 256MB pages.

Concurrency control in CIF is implemented by heap-specific
locks. Contention is rare and arises only by way of preemption.
The impact of contention can be reduced by using techniques such
as the Solaris schedctl mechanism [1] to advise the scheduler to
defer involuntary preemption by time slicing for threads holding
the heap lock.

Threads use the schedctl facility to efficiently identify the
processor on which the thread is running, thus enabling the use of
processor-specific heaps. On Linux/x86 CIF can be configured to
use the CPUID or RDTSCP instructions to select a heap.

In CIF threads instantiate superblocks via mmap. On CC-NUMA
systems that use a “first touch” page placement policy this means
that the pages in a superblock will tend to be local to the node where
the thread is running, improving performance.

All the allocators except Hoard, tcmalloc and jemalloc re-
quire at least a word-size metadata header field for in-use blocks.
In CIF, for instance, an in-use block consists of a header word –
a pointer to the enclosing superblock – followed by the data area.
Malloc returns the address of the data area, which by convention
must aligned on at least an 8-byte address boundary. The free op-
erator consults this header to locate the free list in the superblock’s
header. CIF places the header word on the last word of the cache
line preceding the address returned by malloc so the address re-
turned by malloc is always aligned on 16-byte boundaries.

In CIF the size-classes inclusive of the header are simple
powers-of-two starting at 16 bytes. We intentionally selected
powers-of-two for the purposes of comparison against other al-
locators, whereas a production-quality allocator would use finer-
grained size-classes.

To avoid undesirable index distributions and reduce the rate of
inter-block cache conflicts the CIF allocator inserts a cache line-
sized and aligned spacer into the superblock array when indices
start to repeat, yielding a punctuated array. This allows the alloca-
tor to retain its existing size-classes. Say we have a superblock with
768-byte blocks and a sequence of blocks within that superblock
that fall on addresses B, B + 768, B + 1536, B + 2304, B + 3072,
B + 3840, B + 4608, B + 5376, B + 6144, etc. The UltraSPARC-
T2 has 16-byte lines, 128 possible indices, and a 2048-byte cache
page size. (Refer to Appendix A for details on the UltraSPARC-
T2 cache organization). Our blocks would fall on indices I, I + 48,
I + 96, I + 16, I + 64, I + 112, I + 32, I + 80 and I, respectively,
where I is the cache index associated with block address B. If block
address B falls on index I then the N-th block beyond B falls on ad-
dress B+ (768∗N) having index I + (((768∗N)/16)mod128). In our
example the indices repeat after just 8 blocks or 6144 bytes as the
least common multiple of 2048 (the cache page size) and 768 (the
block size) is 6144 bytes. If an implementation inserts a spacer after
every 8 blocks, however, then a punctuated array of such blocks will
land on the full set of 128 indices. A more naive implementation
could simply insert a spacer after each contiguous run of blocks
totaling at least 2048 bytes. The implementation in CIF uses this
latter policy. In the worst case punctuated arrays require just one
cache line of spacer per cache page within the superblock, putting
a tight bound on wastage. Furthermore, the spacer lines are never
accessed, so while they might increase TLB pressure and physi-
cal RAM usage, they do not influence L1D pressure. Finally, we
note that we only need to employ spacers in superblocks that have
index-unfriendly size-classes, where a simple unpunctuated array

of blocks would otherwise land on only a subset of the possible
indices.

As an alternative to the punctuated array, changing the set of
size-classes to be index-aware can also provide relief by ensuring
that the block addresses within a superblock array fall on the full
complement of indices. We discuss this approach in more detail in
Appendix B.

To derive benefit from an index-aware allocator we presume
an access model where multiple instances of a structure type are
accessed repetitively and frequently, some fields in the type are
“hot” (accessed frequently relative to other fields) and those hot
fields tend to be clustered. Furthermore each instance is allocated
separately. That is, we assume temporal locality for blocks and
temporal and spatial locality within individual blocks. Such an
access pattern is not atypical. Bonwick et al. [9] calls out the kernel
inode construct as an example. The pattern is common in object
graphs with intrusive linkage where the linkage fields reside in a
“header” that precedes the body of the object.
CIF can also be configured by means of an environment variable

to use a simple “flat” array of blocks with no spacers. We refer
to this form as CIU – Cache-Index Unfriendly. This form yields
extremely poor cache index distribution similar to that which would
be achieved with a binary buddy allocator [23]. It serves as a useful
measure of cache index sensitivity.

4. Index placement survey
Using a simple program we show that a number of popular alloca-
tors are index-oblivious and that index-oblivious block placement
can result in performance pathologies.

In Figure 1 each point in the graph represents a distinct run of a
simple single-threaded benchmark program mcache that mallocs
256 blocks of size B byte. The program then reports the cache in-
dex of the base address for each of the blocks. The index can be
computed with simple address arithmetic. On the X-axis we vary
the block size B with a step of 16 bytes. The Y-axis values are the
number of distinct UltraSPARC-T2 L1D indices on which those
blocks were placed, reflecting cache index distribution. A value of
128 – the number of L1D indices – is ideal. (See Appendix A). Each
UltraSPARC-T2 core has a 128-way fully associative data TLB and
thus more than sufficient capacity to cover 1024 blocks of 256 bytes
for a reasonable heap layout without incurring TLB misses. Other
more descriptive statistics might better reflect index distribution,
such as a histogram, standard deviation or spread between maxi-
mum and minimum of the index population, but a simple count of
the number of distinct indices serves to illustrate our assertion that
many allocators have non-uniform index distribution.

The various allocators were configured by way of the LD PRELOAD
dynamic linking facility. Data was collected under actual execu-
tion, not simulation. Libumem and libc are provided with Solaris.
Hoard version 3.8 was obtained from [2] and CLFMalloc version
0.5.3 was obtained from [3]. We used jemalloc version 2.0.1 and
tcmalloc version 1.6 in the tcmalloc-minimal configuration
without call-site profiling. Where SPARC executables were not
available, source code was compiled with gcc version 4.4.1 at op-
timization level -O3. Unless otherwise noted all data in this paper
was collected with 32-bit programs under the Solaris 10 operating
system on a UltraSPARC-T2 processor model T5120 which has 8
cores and which exposes 64 logical processors.

As can be seen in Figure 1, all of the allocators except CIF have
one or more size values where blocks fall on only a fraction of
the 128 possible indices, potentially limiting the performance of
an application that repeatedly accesses a few “hot” fields (fields
exhibiting strong temporal locality) in a set of such blocks. CIF
gives an ideal uniform index distribution over all sizes.



The same experiment on a Linux/x64 Nehalem system revealed
index imbalance under the default libc allocator, itself based on
Lea’s dlmalloc [5], although the situation was not as dire for mid-
sized blocks as the cache has higher associativity. (The Nehalem
processor has an L1D with 64 indices, 8 ways, and 64-byte lines.
The cache page is 4KB so page coloring is not possible).

In Figure 2 we configure mcache so that the 256 blocks are
configured in a ring by ascending virtual address. The first field in
the block contains a pointer to the next block in the ring. The re-
mainder of the block is not accessed during the run. Our program
runs for 10 seconds, traversing the ring and then reports the num-
ber of steps per millisecond on the Y-axis. Again, we vary the block
size on the X-axis. The only activity during the measurement inter-
val is “pointer chasing” over the ring of allocated nodes. As can
be seen, block placement greatly impacts performance. Note that
we selected 256 blocks intentionally, as the L1D can contain 512
distinct lines and, ideally, with uniform index distribution, could
accommodate all 256 blocks in cache without incurring any cache
misses. As expected, when we collect CPU performance counter
data when running mcache under the various allocators we see that
the L1D miss rate correlates strongly with the performance reported
by the application, supporting our claim that the slow-down, when
present, arises from cache misses.

5. Conflict varieties and remediation
This section provides a partial taxonomy of index conflict varieties
and enumerates various ways to lessen the rate of such conflicts.

Simple inter-block index conflicts, described above, may be
inter-superblock or intra-superblock. We can address and often
reduce the degree of intra-superblock conflicts by choosing index-
aware size-classes or insertion of spacers but note that such ap-
proaches also provide benefit against inter-superblock conflicts
simply by making index access more uniform and diluting hot
spots.

Inter-thread conflicts arise with the advent of shared level-
1 caches. Assume for instance that threads T1 and T2 run con-
currently on the same core and share the L1D. Both threads
malloc(100) immediately after they start. Each thread will typi-
cally access distinct CPU-private heaps and within those heaps, su-
perblock instances of the size-class appropriate for 100 bytes. The
superblocks will be instantiated via mmap which returns addresses
that will be at least page-aligned and in practice often have much
higher alignment. Thus, if the allocator creates the superblock at
the address returned from mmap it is very likely that the blocks
returned from the malloc requests by T1 and T2 will collide at
the same cache indices. We have intra-core, inter-thread, inter-
superblock, inter-heap index conflicts. One way to reduce the odds
of such inter-thread conflicts is to insert a randomly sized variable
length coloring area at the start of each superblock. We initially
placed the superblock header on the address returned by mmap and
then inserted the coloring region after the superblock header and
before the array of blocks, but noticed that the superblock header
itself was vulnerable to index conflicts. We ultimately placed the
coloring area before the header, providing better index distribution
for the cache lines underlying the superblock headers.

With shared level-1 caches, applications can also encounter
inter-process index conflicts where different processes have threads
running concurrently on the same core. One way to mitigate such
conflicts is to seed the pseudo-random number generator – used to
generate superblock colorings – differently for each process, per-
haps based on the time-of-day, process-ID, or a system random
number generator. Absent per-process seeding of the random num-
ber generator used for superblock coloring, allocations in similar
but distinct processes may fall on precisely the same virtual ad-
dresses, increasing the likelihood of inter-process conflicts. This

effect can be easily demonstrated by spawning a number of concur-
rently executing single-threaded processes, each of which iterates
over a small ring of malloc-ed blocks. Without seeding we can
find destructive interference in the L1D and degraded performance.
All of the allocators except CIF exhibited this problem.

We note that Solaris randomly colors the offset of the stack
for a process’s primordial thread, in part to lessen the odds
of inter-process conflict between stacks. Similarly, the HotSpot
JavaTMVirtual Machine explicitly colors the stacks for threads cre-
ated by the JVM.

The CIF and CIU allocators employ random superblock coloring
– 16 possible colors in the interval [0,15] with the length of the
coloring region taken as the color times the L1D line length -
– and process-specific seeding of the random number generator.
Ideally an implementation would provide one color for each of the
128 possible indices. Recall, however, that the coloring region is
never allocated from and never accessed. It exists solely to control
the offset of the array of blocks. As a practical concern to bound
wastage from the coloring area we restrict ourselves to just 16
colors.

6. Experimental results
We first establish the existence of index-sensitive applications, and
then show the efficacy of index-aware allocation on that set of
benchmarks. Next, we show the benefits of coloring on system
where multiple threads concurrently share caches. Finally, we re-
port on the scalability of various allocators.

While not shown for lack of space, we have tested various
allocators on a wide set of pointer-intensive benchmarks and found
the index-aware size-classes or punctuated arrays do no harm and
that no particular trade offs are required. CIF is competitive with
the current best-of-breed allocators.

We ran each benchmark 5 times and took the median result,
observing extremely low variation between runs.

6.1 Index-sensitive applications
In Figure 3 we report results from a set of single-threaded cache
index-sensitive applications. Formally, cache index sensitivity is an
aspect of application performance determined both by application
structure and allocator design choices. We define an application as
index sensitive under an allocator if it suffers excessive conflict
misses because of poor index distribution. Index distribution, in
turn, is largely determined by the allocator policies and design
choices. These applications are sensitive because of the block sizes
requested and access patterns to those blocks. Excluding CIF, no
one allocator is best over all the applications as each exhibits
different pathological index-unfriendly sizes as was previously seen
in Figure 1.

We intentionally selected the applications below as (a) they
were insensitive to malloc-free performance with such opera-
tions typically confined to a brief initialization phase; (b) they were
cache index-sensitive; (c) they were insensitive to cache line rel-
ative block alignment, and (d) they were sufficiently simple so as
to be amenable to direct analysis, allowing us to establish that the
benefit arose solely from index-aware allocation.

Regarding (c), above, during our investigation we discovered
that some applications were extremely sensitive to how allocators
placed blocks with respect to cache line boundaries - whether,
for instance, the blocks were always aligned, never aligned, or
sometimes aligned for a given size. Our set of allocators used
various policies. By default CIF always returns blocks aligned on
cache line boundaries, but, as a test of sensitivity can be configured
otherwise. We only reported on applications that were not sensitive
to cache line relative block alignment.
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Figure 2. Pointer chasing performance : traversal rate over a list of 256 blocks

• llubenchmark [36] allocates groups of nodes and then iterates
over those nodes during the benchmark interval. We used the
version of llubenchmark found in the LLVM test suite version
2.7, and augmented it to report cache index distribution and
allow for variable-length node sizes. The original form from
Zilles allowed the node size to be specified on the command
line but used a custom allocator while the form in the LLVM
test suite used malloc but with a fixed node size. Our form
mallocs each node and allows the node size to be specified on
the command line. We used a command line of “-i 2000000 -n
1 -l 341 -g 0.0 -s 250” which specifies one list of 341 nodes
of 250 bytes and 2000000 iterations over the list. As configured
by the command line, all allocation is performed at startup time,
so differences in reported performance reflect the rate at which

the thread iterates over the list. We collect the elapsed time by
running the program under the time command. We note that
llubenchmark behaves similarly to our own mcache.
• egrep is GNU grep version 2.6.3, a regular expression search

utility based on deterministic finite automata. We timed the
search of a 500Mb text file containing nucleotide sequences.
The key block size malloc-ed by the application is 1024 bytes,
which represents arrays of 256 ints which serve as transition
tables for the state machine. Only a few indices are actually
accessed, however. All significant allocation occurs at startup
time and the run is dominated by pointer chasing operations
over the DFA graph structures. The performance differences in
the figure are almost entirely attributable to malloc placement



policies in the different allocators. All the other benchmarks
report elapsed time, but for egrep we report user-mode CPU
time to factor out the IO-time required to read the file. (For
reference, the run under libc took 11.2 seconds elapsed time
with 2.01 seconds IO time. An IO time of 2.01 seconds is
constant over the various allocators). Similar results were seen
with the Google RE2 regular expression package which is also
index-sensitive.
• dnapenny[7] is benchmark in the “phylip” Phylogenic Infer-

ence Package component of the BioPerf bioinformatics bench-
mark suite. It uses a branch-and-bound algorithm to compute
parsimonious trees. The source code was obtained from [4].
When starting, the application allocates 16 “tip” nodes. Each
contains 4 buffers of size 6872 which are allocated separately.
In the main loop there is an iteration that accesses a single buffer
in each tip node. The program is moderately long-running, re-
quiring more than 8 minutes under libc. Other phylip compo-
nents such as promlk are similarly index-sensitive.
• stdmap creates a std::map<int,int> standard template li-

brary collection at startup. The benchmark then times the col-
lection’s iterator. The key-space is [0,499] and is approximately
half populated. std::map<> is implemented as a red-black tree.
The tree nodes are 40 bytes in length which some allocators
round up to 64 bytes – a size that is cache index-unfriendly.
The benchmark is written in C++ and produces a 64-bit exe-
cutable. By default the C++ new and delete operators map di-
rectly to malloc and free. The tree implementation and nodes
are opaque to the application so we were unable to directly re-
port node addresses and indices, but instead used the Solaris
dtrace and truss -fl -t\!all -u ::malloc commands
to observe the allocation patterns.
• Xml is a 64-bit microbenchmark written in C that constructs an

in-memory XML document tree via the Solaris libxml2 pack-
age and then repeatedly iterates over the tree, reporting itera-
tion times. The xmlNode instances are individually allocated by
malloc and 120 bytes in length although only a few fields are
accessed by the iterator. The libxml2 library package parses
the XML document and directly allocates the nodes which form
the internal representation of the document.
• Gauss performs Gaussian elimination on 200x200 matrices of

64-bit floating point numbers using the partial-pivot method.
Each row is individually allocated.
• DotProduct computes the dot-product of a 200 vectors each of

200 elements.
Both Gauss and DotProduct have array accesses of the form
a[I][J] where an inner loop advances I and an outer loop ad-
vances J and each row is individually allocated. (That is, the
outer loop varies column and the inner loop varies row). There
is no temporal locality as each element is accessed just once,
although spatial locality is potentially available between iter-
ations. While processing index I the inner loop may access a
cache line underlying a row at address A only to find that same
line subsequently evicted later in the inner loop because of con-
flict displacement. On the next iteration of the outer loop the
code will access index I + 1 adjacent to I in that same line un-
derlying A, incurring a conflict miss. In this case our code is
iterating over multiple arrays simultaneously, in lock-step, and
there are no hot fields. Because of avoidable index conflicts, the
application may fail to leverage potential spatial locality. Cache
index-aware allocation can often avoid this problem.
This is a fundamentally different mode of benefit than is seen in
the other applications, where index aware allocation leverages
temporal locality in a small number of “hot” fields.

6.2 Superblock coloring
In Figure 4 we use mcache to demonstrate the efficacy of su-
perblock coloring to reduce inter-thread index conflicts. Each
thread mallocs two blocks of 100 bytes at startup and config-
ures them as a ring via intrusive “next” pointers. (The choice of
size is largely irrelevant in this benchmark). All the threads are
completely independent. During the 10 second measurement in-
terval each thread iterates over its private ring, visiting the two
nodes in turn. When finished, the program reports the aggregate
throughput rate of the threads. Figure 4 reports that throughput rate
on the Y-axis in steps per millisecond while varying the number
of threads on the X-axis. CIF-NoColor represents CIF configured
with superblock coloring disabled. In an ideal system we would
see perfect linear scaling but our real system has shared resources
such as the pipeline (2 per core), caches, memory channel, etc.
[34]. Beyond 8 threads, assuming ideal dispersion of those threads
by the scheduler [13], threads start sharing the L1D. At 32 threads
we have 4 threads per core. Recall that the L1D is 4-way set as-
sociative, so above 32 threads index collisions start to manifest
as misses and impede scaling, even to the extent of actually re-
ducing performance in some cases. As we can see the application
scales reasonably up to 32 threads under all the allocators. Beyond
32 threads we see that performance bifurcates: we still find rea-
sonable scaling under libc, tcmalloc, CIF and libumem, while
under Hoard, CLFMalloc, jemalloc and CIF-NoColor we find
that scaling fades. libc, tcmalloc and libumem are not vulner-
able as the blocks distributed to the various threads come from a
centralized heap instead of per-thread mmap-ed heaps.

We encountered an interesting performance phenomenon where
access performance dropped precipitously under jemalloc at
thread counts above 32. The problem manifested both under
mmicro and mcache. We observed that only a fraction of the
currently executing threads were afflicted, and those threads suf-
fered extremely high level-2 cache (L2) miss rates. Investigation
revealed that jemalloc requests memory in units of 4MB chunks
via mmap – each thread that invokes malloc will have at least one
such thread-private 4MB region. 4MB happens to precisely coin-
cide with a large page size on our platform. Indeed, the pmap -s
command confirmed that Solaris was placing those 4MB regions
on 4MB pages. jemalloc does not provide any type of superblock
coloring, so when a homogeneous set of threads invoke malloc
they will obtain addresses that are the same offset from the base
of their 4MB block. 4MB pages must start on 4MB physical ad-
dress boundaries. Thus the physical addresses underlying the 4MB
blocks are extremely regular, differing in only a small number of
bits between threads. The set of addresses returned by malloc to
the threads thus tend to conflict as they select only a small set of the
possible L2 banks and L2 indices, resulting in conflict misses in the
L2. The UltraSPARC-T2 applies an XOR-based hash to physical
addresses to avoid such behavior, but in our case the physical ad-
dresses were so regular that the hash did not avoid the problem. We
confirmed our suspicion by using an unsupported Solaris API to
translate virtual addresses to physical addresses within our bench-
mark program, allowing us to analyze the distribution of physical
addresses underlying the blocks allocated within the 4MB regions.
Once the problem was understood we could avoid the issue by
setting the MALLOC CONF environment variable to “lg chunk:20”
which directs jemalloc to use 1MB regions instead of its default
4MB regions. All jemalloc data in this paper was collected in this
mode (1MB). We could also induce the same performance problem
under CIF by forcing the superblock size to 4MB and disabling
superblock coloring, further illustrating the benefits of coloring.
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6.3 Allocator Scalability
Here, we show that making an allocator index-aware does not af-
fect its performance or scalability. In Figure 5 we use the mmicro
benchmark from [15] and [14] which runs concurrent threads
within a single process, each of which invokes malloc and free
repetitively over a 50 second measurement interval, reporting the
aggregate throughput rate of the threads in malloc-free pairs per
millisecond. The threads are completely independent and do not
communicate or write to any shared data. The UltraSPARC-T2 has
only two pipelines per core, so scaling above 16 threads is modest
and arises largely from memory-level parallelism [12]. As we can
see from the graph all the allocators scale well except libc, which
uses a single heap with a centralized lock. Broadly, the ratio of per-
formance between the allocators observed at 1 thread holds as the
number of threads increases, suggesting that path length through
the malloc and free dominates multithreaded performance, and
that the allocators have no substantial scaling impediments. As is
made obvious in the graph, the application is insensitive to cache
index placement as CIU effectively yields the same results as CIF.
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7. Related work
The literature is rich with studies that show how layout and place-
ment can influence cache behavior and impact performance for
pointer-based programs [25][37]. Petrank [29] shows that cache-
conscious data placement is, in the general case, NP-hard. By ex-
ploiting common access patterns and behavior found in applica-
tions we can still, however, provide benefit in many circumstances.
Broadly, the optimization techniques involve changing the access
pattern; intra-object field layout changes; and inter-object place-
ment policies. Calder et al. [10] introduce cache conscious data
placement which reduces cache misses by profiling an application,
building a temporal relationship graph of data accessed, and finally
using the temporal access patterns discovered in the profiling stage
to refine data placement. Kistler et al. [22] develop an algorithm
that clusters data members to promote and enhance spatial locality.
Chilimbi et al. [11] show the benefit of cache-conscious data lay-
out and field placement. Their allocator interface is non-standard,
however, and does not allow drop-in binary replacement under the
standard malloc-free interface.

Lvin et al. [26] use object-per-page allocation in the archipelago
allocator to probabilistically detect errors in the heap arising from
software flaws. Naively, if all objects were to start on page-aligned



virtual address boundaries then applications accessing such ob-
jects could suffer from excessive conflict misses. To reduce the
conflict miss rate their allocator randomly colors the offset of the
object with the page. Coloring was used to salve the impact of page
alignment, and not applied in a general and principled fashion that
minimizes wastage. Furthermore, an object-per-page allocator may
impose high TLB pressure.

Bonwick et al. [9] (section 4.1-4.3) also suggested superblock
coloring, but only as remedy for inter-superblock intra-thread cache
index conflicts and to relieve bus and bank imbalance for systems
with multiple memory channels. Their paper predates commodity
CMT (chip multithreading) systems with shared caches. We believe
that index-aware size-classes or punctuated block arrays largely
obviate and supersede the use of superblock coloring for the pur-
pose of addressing inter-superblock intra-thread conflicts. That is,
index-aware size-classes or punctuated arrays reduce both intra-
and inter-superblock conflicts for a given thread accessing a set
of superblocks. Superblock coloring remains useful, however, as
it provides a new mode of benefit for intra-core inter-thread inter-
superblock conflicts on modern shared cache CMT platforms. Bon-
wick also noted that binary buddy allocators are pessimal with re-
spect to cache index distribution. We concur and generalize to sizes
other than simple powers-of-two. We also note that facilities such
as memalign should be used judiciously as excessive unneeded
alignment can induce conflict misses.

Page coloring [30] operates at the level of the operating system
or virtual machine monitor by influencing the choice of physical
pages to assign to virtual addresses. The color of a physical page
is just the value in the intersection of the physical page number
field and the cache index field of the page address. Page coloring
attempts to provide a uniform distribution of page colors for the
physical pages assigned to a set of virtual pages, which in turn
promotes balanced utilization of the set of available cache indices.
Say that in the physical address layout we find that the page number
field overlaps the cache index field by 2 bits, giving 4 possible
page colors. If the kernel does not provide ideal page coloring and
inadvertently mapped virtual pages V0, V1, V2 and V3 to physical
pages P0, P1, P2 and P3, respectively, and those physical pages
happened to be of the same page color, then cache lines underlying
V0, V1, V2 and V3 would be able to reside in just one quarter of the
available cache indices, possibly underutilizing parts of the cache
and creating a “hot spot” in other sectors. Page coloring attempts
to avoid such unfavorable assignments of physical pages to virtual
addresses.

Hardware-based means of reducing the rate of conflict misses
were suggested Seznec [32] (skew-associative caches) and later by
by Gonzales [17] and Wang [35]. All entail changes to the hash
function that maps addresses to cache indices and none is currently
available in commodity processors. Min and Hu [28] suggest com-
pletely decoupling memory addresses from cache addresses in or-
der to reduce conflict misses while Sanchez and Kozyrakis [31]
subsequently suggest decoupling ways and associativity.

Our approach is most similar to that of page coloring except
that it is implemented entirely in user-space within the virtual ad-
dress malloc allocator and operates only on low-order bits of the
cache index field of addresses that are not part of the physical page
number field. Page coloring and cache index-aware allocation are
complementary optimizations. Like page coloring our approach is
non-intrusive in that it operates without any need to profile the ap-
plication or modify the application’s source code. If the malloc li-
brary is implemented as a separately deliverable dynamically load-
able module, as is the case on most platforms, then our approach
can be used by simply substituting a new malloc library, eliminat-
ing the need to recompile and providing benefit to legacy binary
applications. In addition, our technique is orthogonal to but ben-

efits from complementary mechanisms that change field layout to
promote spatial locality [22]. Instead of specifically increasing lo-
cality it simply leverages ambient locality already present in the
application.

8. Conclusion
Optimal index placement - like optimal field placement – is NP-
hard. Techniques such index-aware allocation can, however, still
benefit index-sensitive applications, avoiding a performance pitfall.
Not all applications will benefit from an index-aware allocator but
our approach is benign and has no observed negative impact. We
make no general claims or guarantees about performance but note
that all other factors being equal, balanced index distribution, like
balanced page coloring, is preferable, given that it is relatively easy
to avoid the vagaries of index-oblivious allocators. Finally, in most
allocators, application of our technique requires extremely simple
modifications, often changing just a few lines of code.

The phenomena of index sensitivity has been noticed before,
and solutions along similar lines have been proposed but here
we approach the issue methodologically, providing guidelines to
future designers and developers. We clarify, explain and analyze
the behavior and provide general solutions.

8.1 Contributions of this paper
• We identify the problem of inter-block cache index conflicts

arising from excessive regularity in addresses returned by mem-
ory allocators. We show that the placement policies of malloc
and related allocators, by virtue of conflict miss rates, can have
a significant impact on application performance.
• We provide a simple solution to inter-block conflicts through

index-aware size-classes or punctuated superblocks arrays with
interspersed spacers. While not all applications are cache index-
sensitive and thus show no benefit from an index-aware allo-
cator, we claim our solution has no observed negative conse-
quences reflecting the principle of “first, no harm” and argue
that it should be used in new and existing allocators.
• We note that superblock coloring provides new benefits for

CMT systems with shared caches, reducing both intra-thread
and inter-thread inter-superblock index conflicts.
• We propose process-specific color seeding to avoid inter-

process cache index conflicts that can come to be on CMT sys-
tems where concurrently executing threads share a data cache.
• We provide a partial taxonomy for allocator-based index con-

flicts.
• Taken collectively index-aware size-classes, punctuated block

arrays, superblock coloring, and process-specific color random-
ization provide index-aware block placement and allow the con-
struction of index-aware allocators.

We note that cache line relative block alignment has an impact
on performance but is largely neglected in the literature. We found
many applications to be sensitive to whether blocks were returned
on addresses that coincide with cache line boundaries. The least
significant nibble of addresses returned by malloc must be either
0 or 8. Some allocators always return addresses of the latter form
for certain size-classes. We recommend that allocators should, to
the extent possible and reasonable, return addresses aligned on
cache line boundaries – this policy minimizes the number of cache
lines underlying an object and decreases cache pressure, as well as
reducing the odds of allocator-induced false sharing.



8.2 Future work
We plan to further explore using our techniques in other malloc
allocators as well as in a Java Virtual Machine, where we can
enforce index-aware size-classes in the object layout manager and
provide random coloring either at the start of or within thread
local allocation buffers (TLABs), which are contiguous thread-
local object allocation regions managed by a simple bump pointer.
Initial testing with mcache transliterated to Java has shown that
the HotSpot JVM exhibits index unfriendly placement for certain
object sizes with reduced performance and increased L1D miss
rates.

We believe that cache index-aware allocation should be partic-
ularly helpful for hardware transactional memory implementations
where the address-sets are tracked in the L1D and where conflict
misses cause transaction aborts.

When multiple processors share a cache it may be useful to
modify the hardware to mark cache lines with the identity of the
processor that inserted a given line into the cache. It is possible
that identity could be inferred from the tag value, depending on the
address space layout. New performance counters and performance
sampling facilities could be implemented that could differentiate
intrinsic (intra-processor) and extrinsic (inter-processor) cache line
displacement. If processor 1 displaced a line that was installed
by processor 2 then we have extrinsic eviction, for instance. That
information, in turn, could be useful to the developer or perhaps
to the operating system scheduler in order to better place threads
within the system topology in order to reduce miss rates. If the
index and CPU ID (or tag) were made visible to a sampling facility
then software could also measure rates of intra-core inter-thread
conflict misses.

We hope to extend our analysis to the level-2 cache and also
to determine if our approach might yield better DRAM bank and
channel balance, admitting more parallelism in the memory sub-
system for accesses that miss in caches.

Instead of using random number generators to assign color, it
may be profitable to track the population of superblock colors and
assign the least used color when creating a superblock.

A source of surprise was that, holding all other parameters
fixed, using widely-spaced size-classes (2x) often yielded better
performance than the more traditional 1.2x stepping recommended
in the literature, which bounds fragmentation at 20%. For a given
set of malloc requests, a coarse 2x set of size-classes may result in
fewer underlying pages but more intra-block fragmentation. This
suggests that TLB span might be more important in some cases
than the wastage and increased data cache span arising from using
coarse-grained size-classes. We hope to investigate this effect -
– the tensions between wastage and data cache-span versus TLB
span - in the future, possibly implementing size-class schemes that
adaptively refine the set of size-classes and superblock sizes at
runtime.

8.3 Observations
We note that address-space randomization (ASR), while often used
for security purposes to make programs less vulnerable to exploits
such as buffer overrun attacks, may have a beneficial effect as it
provides implicit coloring.

Caches with much higher levels of associativity largely obviate
our approach of index-aware size-classes, but the trend of platform
design is not toward such complex implementations. Similarly,
victim caches [20] would provide relief, but these are not found
in commodity systems.

The UltraSPARC-T2 has 8 replicated L2 Banks. Each L2 bank
has 512 indices with 64-byte lines and is 16-way set associative.
The L2 cache line is the unit of coherence. L2 banks are physically-
indexed and physically tagged. The L2 is unified, caching both

code and data. Pairs of L2 banks share a DRAM channel. A central
cross-bar resides between the cores and the L2 banks and routes
physical addresses from cores to the appropriate L2 bank based on
the value of physical address bits [8:6]. To help improve L2 index
distribution the cross-bar applies a hash to the physical address by
XORing high-order physical address bits into bits [17:11], which
overlap the L2 index field. Physical address bits [17:9] constitute
the L2 index field. Virtual address bits [10:0] pass through verbatim
into the physical address. As such, the L2 bank select field of the
physical address is a sub-field of the L1 index field, and the low
2 bits of the L2 cache index field overlap the 2 highest of the L1
index field. Thus, better and more uniform L1 index distribution
yields better L2 bank distribution (inter-bank benefit) and better
L2 index distribution within a bank (intra-bank benefit). Better
L2 bank balance may admit more memory-level parallelism by
reducing contention on the channel or path between the cores and
L2 banks. Better L2 index distribution within a bank may lower
the L2 miss rate. Cache index-aware allocation reduces L1 conflict
misses, but accesses that miss in the L1 may also enjoy benefits
from index-aware allocation.
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A. UltraSPARC-T2 “Niagara” Level-1 Data
Cache Organization

The UltraSPARC-T2 level-1 data cache is organized as follows:

• 16-byte lines
• 4-way set associative
• 128 sets per cache – 128 possible indices
• 8KB cache with 512 lines
• Shared over 8 logical processors in a core [34]
• Physically-indexed and physically-tagged : PIPT
• Physical addresses map to cache indices by way of a hash function that shifts the

address 4 bits to the right and then masks off the low 7 bits to form the index.
Physical addresses presented to the cache by the processor have the following
format: bits [3:0] form the cache line offset; bits [10:4] form the Level-1 cache
index, and the remainder form the tag.
• Addresses A and B that refer to distinct cache lines map to the same index in the

L1D if and only if (A/16)mod128 = (B/16)mod128. We say A and B conflict
in the L1D. If more than 4 addresses map to the same index then we have index
contention and repetitive accesses to those addresses can result in conflict misses.
• 2KB cache page size : 128 indices * 16 bytes per line. A cache page is the set of

addresses that share a common value in the tag field. Address A and A+2KB map
to the same index in the L1D.
• L1D-based page coloring [21] is not applicable as there is no overlap between the

physical page number and index fields. That is, the cache page size is less than
the system base page size of 8KB.

B. Cache index-aware size-classes
To avoid the undesirable behavior exhibited above by index-oblivious allocators we
can simply choose, as an alternative to punctuated arrays, a slightly different set of
size-classes that is less prone to inter-block conflicts. That is, we simply avoid block
sizes that underutilize the available indices. We can apply the adjustments, below,
either statically at compile-time or at run-time, to transform a set of size-classes to be
index-aware, producing an index-aware allocator.

Simplifying the problem slightly for the purposes of exposition, we will assume
the effective block size S inclusive of any header is always an integer multiple of
16 bytes (the cache line size). We define the cache index of a block as the index
of that block’s base address. Within a given superblock the constituent blocks will
have addresses of the form (S ∗ n) + B where B is the base of the block array in the
superblock and n ∈ N up to the number of blocks in the superblock. Given S , the
number of distinct indices for blocks in a sufficiently long superblock of size-class S is
2048/GCD(2048, S ) where 2048 is the cache page size. Equivalently, we can state the
number of usable indices for S as 128/GCD(128, S/16). Notice that we have a cyclic
subgroup Z/(128) where 128 is the number of indices in the cache and the cycle length
of the size corresponds to the number of indices on which blocks of that size can fall.
As such, to provide an ideal tessellation we want to ensure GCD(128, S/16) = 1. That
is, S/16 should be coprime with 128 and thus a generator of Z/(128), in which case
blocks of size S will land uniformly on all possible indices. The following simple
transformation will adjust any size S to be index-aware :

if GCD(2048,S) > 16 then S += 16

CIF can be configured to use index-aware size-classes instead of the punctuated
array. And in fact the form with index-aware size-classes yields the same performance
as the form that uses the punctuated array. In this mode CIF uses size-classes of the
form (2N + 1) ∗ 16 for N=0,1,2,3 etc., yielding a favorable index distribution.

In the case of CLFMalloc only 4 lines of codes – an array of ints that defines
the size-classes – needed change to render CLFMalloc cache index-aware. While not
reported for lack of space, we constructed both an intentionally index-unfriendly form
of CLFMalloc with power-of-two size-classes and an cache index-friendly form using
the transformation described above. With respect to index sensitivity, the performance
of these two forms parallels that of CIU and CIF but we opted to report data from CIU
and CIF as those allocators show better latency and scalability than the CLFMalloc-
based forms and because CLFMalloc does not expose the memalign interface, which
is required by some applications.

We note that even a small change in size-classes can have a profound impact on
footprint and greatly perturb the heap layout, possibly resulting in large changes in
the conflict miss rate and confounding causal analysis. One set of size-classes might
simply be a better fit for the choice of sizes used by the application, resulting in less
wastage. Paradoxically, adjusting each size-class upward to create an index-friendly
allocator might decrease footprint.


