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ABSTRACT
With hardware transactional memory (HTM) becoming available in
mainstream processors, lock-based critical sections may now initi-
ate a hardware transaction instead of taking the lock, enabling their
concurrent execution unless a real data conflict occurs. However,
just a few transactional aborts can cause the lock to be acquired
non-transactionally resulting in the serialization of all the threads,
severely degrading the amount of speedup obtained.

In this paper we provide two software extension mechanisms that
considerably improve the concurrency and speedup levels attained
by lock based programs using HTM-based lock elision. The first
sacrifices opacity to achieve higher levels of concurrency, and the
second retains opacity while reaching slightly lower levels of con-
currency.

Evaluation on STAMP and on data structure benchmarks on an
Intel Haswell processor shows that these techniques improve the
speedup by up to 3.5 times and 10 times respectively, compared to
using Haswell’s hardware lock elision as is.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—concurrent program-
ming

Keywords
Lock elision; Lock removal

1. INTRODUCTION
Hardware transactional memory (HTM) [16] is now available

on mainstream mass-market processors (e.g., Intel’s latest Haswell
microarchitecture, IBM POWER architecture [2, 8]), and program-
mers are expected to use the offered hardware-based lock elision [21]
to improve the performance of their (legacy) coarse-grained lock-
based programs [1]. However, naively using hardware lock elision
can lead to disappointing performance results. We therefore pro-
vide software techniques for assisting the hardware’s lock elision,
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to get around the limitations which introduce excessive serializa-
tion in an otherwise potentially concurrent application. Our tech-
niques significantly improve the performance of concurrent appli-
cations when using lock elision.

In HLE, lock protected code segments are executed speculatively
by starting a transaction and “taking” the lock without actually tak-
ing it. That is, the lock is read, and if its state is unlocked then it
is placed in the transaction read set as locked without affecting the
state of the lock, that remains unlocked. However, when a transac-
tion aborts (e.g., due to a conflict) it rolls back to acquire the lock
non-speculatively, writing the lock as taken. The globally visible
lock acquisition by the aborted thread conflicts with the speculative
loads of the lock that has been performed by the speculatively run-
ning HLE transactions, and causes all of them to abort because of
this conflict on the lock location. In addition, new threads arriving
at the critical section see that the lock is taken and thus they do not
start their transaction. In the case of fair locks this conflict on the
lock serializes the run until a quiescent period in which no thread
tries to access the lock. This lemming effect [12] which causes un-
necessary serialization limits the concurrency exposed. To mitigate
this effect, Intel recommends retrying an aborted transaction sev-
eral times [1]. However, our experiments (Section 7) reveal that this
simple technique does not completely alleviate the problem, espe-
cially when the lemming effect is severe such as with fair locks or
with a high degree of concurrency.

Software-assisted lock removal (SLR): Our first software tech-
nique to overcome this lemming effect can be viewed as a software
hardware hybrid implementation of the Rajwar Goodman hardware
lock removal technique [22]. They observed that one can simply
execute transactions with the same scope of the critical section
(i.e., start a transaction instead of acquiring the lock and commit
instead of releasing the lock) without accessing the lock at all, pro-
vided the TM offers some progress guarantee for conflicting trans-
actions. (Otherwise, livelock situations, in which transactions re-
peatedly abort each other, can occur.) However, Haswell’s HTM
has a simple “requestor wins” conflict resolution policy [1] which
is prone to livelock [7]. Our software-assisted lock removal SLR
scheme guarantees progress despite this by doing the following. It
uses the HTM to transactionally execute critical sections without
accessing the lock until it is ready to commit. Then it reads the lock
and commits if the lock is not taken; otherwise, it aborts and retries.
If it fails a few times it gives up and executes non speculatively, by
acquiring the lock. In SLR a thread acquiring the lock does not au-
tomatically conflict with running transactions nor does it prevent
an arriving thread from starting its transaction speculatively. Since
in SLR a speculative transaction may run concurrently to a trans-
action that holds the lock, the speculative transaction may see an
inconsistent state (which guarantees that it will fail to commit and



abort). In many cases this loss of opacity [14] is safe because of the
transactions sand boxing.

Software-assisted conflict management (SCM): To prevent the
lemming effect in HLE transactions without resorting to lock re-
moval, and without losing the opacity property, we propose a sim-
ple conflict management technique that allows the non-conflicting
threads to continue their speculative HLE-based run without any
interference from conflicting threads. To do this we add a serial-
izing path to the lock implementation, in which an aborted thread
has to acquire a distinct auxiliary lock (without using lock elision)
in order to rejoin the speculative execution with the other threads.
Using this approach conflicting threads are serialized among them-
selves and do not interfere with other threads. Only if the thread
fails due to a conflict many times it must give up and acquire the
original lock.

While SCM provides the most benefits when employed with HLE,
the two schemes, SCM and SLR can be combined together to fur-
ther reduce any progress problems caused when SLR threads give
up and acquire the lock non-transactionally. Furthermore, to the
best of our knowledge, SCM is the only scheme that enables HLE-
based fair locks, with starvation freedom and progress guarantees
and with no performance degradation.

We implemented our software-assisted methods in a library that
uses the standard pthreads lock interface. This allows using our
methods without requiring changing or recompiling the program.

This paper’s contributions are therefore:

• Analyzing the performance dynamics of Haswell’s HLE and
quantifying the impact of the lemming effect on it (Section 4).
• Introducing software assisted lock removal (SLR) that re-

gains the concurrency and speedup that were lost due to the
HLE lemming effect (Section 5). SLR achieves higher levels
of concurrency while sacrificing opacity.
• Introducing the software assisted conflict management (SCM)

an alternative scheme that overcomes the lemming effect that
works well with fair locks, such as MCS, Ticket or CLH
locks (Section 6). SCM retains opacity while reaching slightly
lower levels of concurrency (compared to SLR).
• Evaluating the two schemes showing that they improve per-

formance by up to 3.5 times in the STAMP application bench-
marks and up to 10 times in data structures benchmarks as
compared to using Haswell’s HLE as is (Section 7).

2. RELATED WORK
Rajwar and Goodman [21] introduced the concept of speculative

lock elision (SLE). They subsequently proposed transactional lock
removal [22], which uses hardware-based conflict management to
serialize conflicting transactions. Our approaches achieve a similar
goal, but using software to assist the hardware implementation.

Dice et al. [12] studied transactional lock elision (TLE) using
Sun’s Rock processor and mentioned the lemming effect. In re-
sponse, they sketch a non-backoff software mechanism to speedup
recovery from the lemming effect. In contrast to their technique,
our conflict management scheme prevents the problem in the first
place and manages to prevent the continuous zigzag between spec-
ulative and standard executions altogether.

Implementing elision-friendly locks using Intel’s Haswell pro-
cessor is discussed in [1]. However Intel’s optimization guidelines
essentially turn fair locks into TTAS locks. This has two disadvan-
tages: (1) wasting time when arriving while the lock is taken (as our
experiments on STAMP show, this is significant), and (2) the lock
no longer guarantees starvation-freedom and loses its fairness.

1 shared variable:
2 lock : 1 bit (boolean ), initially FALSE
3

4 lock () {
5 while (TRUE) {
6 while ( lock = TRUE) {
7 // busy wait
8 }
9 ret := XACQUIRE test&set(lock)

10 if ( ret = FALSE)
11 return
12 } }
13

14 unlock() {
15 XRELEASE lock := FALSE
16 }

Figure 1: Applying hardware lock elision to a TTAS (Test&Test&Set) lock.

Roy et al. [23] and Afek et al. [5] implement lock elision com-
pletely in software, using specialized software transactional mem-
ory algorithms. These implementations instrument the critical sec-
tions to track read and written memory locations. In contrast, our
algorithms are based on hardware TM and thus do not require such
instrumentation.

We have sketched the software-assisted conflict management in
a previous poster publication [3]. Concurrently to the current work,
Calciu et al. [9] proposed using a mechanism similar to software-
assisted lock removal as a fallback for transactional memory sys-
tems.

3. BACKGROUND: INTEL’S HASWELL HTM
Intel’s transactional synchronization extensions (TSX) [2] de-

fines two interfaces to designate the scope of a transaction:

Hardware lock elision (HLE): In HLE, the scope of a lock-protect-
ed critical section defines a transaction’s scope. HLE is implemented
as a backward-compatible instruction set extension of two new pre-
fixes, XACQUIRE and XRELEASE. Upon executing an XACQU-
IRE-prefixed instruction that writes to memory (e.g., a store or
compare-and-swap) (see Figure 1), the processor starts a trans-
action and elides the actual store, treating it as a transactional read
instead (i.e., placing the lock in the read set). Internally, however,
the processor maintains an illusion that the lock was acquired: if
the transaction reads the lock, it sees the value stored locally. Upon
executing an XRELEASE store, the transaction commits. HLE re-
quires that an XRELEASE store restores the lock to its original
state; otherwise, it aborts the transaction. If an HLE transaction
aborts, the XACQUIRE store is re-executed non-transactionally to
acquire the lock in order to ensure progress. Notice that such a non-
transactional store conflicts with every concurrent HLE transaction
eliding the same lock, since such a transaction has the lock’s cache
line in its read set. This is the root cause for the lemming effect.

Restricted transactional memory (RTM): RTM is Haswell’s generic
TM interface with three new instructions: XBEGIN, XEND, and
XABORT. XBEGIN begins a transaction, XEND commits, and
XABORT allows a transaction to abort itself. Upon an abort a fall-
back code that is pointed by an operand of the XBEGIN instruction
is executed and uses an abort status register in which the processor
records the cause for the abort, whether due to an XABORT, a data
conflict, or an “internal buffer overflow” [2].

RTM can be used to implement custom lock elision algorithms [1]
by replacing the lock acquisition code with custom code that begins
a transaction and reads from the lock’s cache line. However, such
a lock elision scheme fails to maintain the illusion that the thread



wrote to the lock, as the lock’s cache line is indistinguishable from
any other line in the read-set.

3.1 Haswell’s TSX Implementation
Haswell appears to use a requestor wins conflict management

policy. A transaction aborts if either a coherency message (read or
write) arrives for a cache line in its write set, or if an eviction due
to a write arrives for a cache line in its read set.

Experiments we conducted (described in [4]) show that trans-
actions are prone to spurious aborts that are not explained by data
conflicts or read/write set overflow. Spurious aborts imply that even
in a perfect conflict free workload, degradation such as the lemming
effect, described below, is possible.

HLE compatible locks Haswell’s HLE mechanism conservatively
requires that the store releasing the lock restores the lock to its
original state prior to the acquisition [2]. Unfortunately, the pop-
ular (fair) ticket lock [18] (used in the Linux kernel [20]) and CLH
lock [17, 11] do not meet this requirement. As an additional con-
tribution, we adapt these locks for use under HLE, thus enabling
HLE-based code to maintain the progress guarantees fair locks pro-
vide, and making HLE applicable to programs that use ticket locks
or CLH locks.

We adjust both locks in a way that guarantees that a thread run-
ning alone (which is the illusion given by HLE) restores the lock
to its original state when it releases the lock. The idea is that a
thread releasing the lock first tries to optimistically restore the orig-
inal state using a compare-and-swap instruction. If this fails the
thread reverts to using the standard lock algorithm. But if the CAS
succeeds, the lock’s state is restored, which is exactly what HLE
requires. The algorithms appear in Appendix A and (due to space
constraints) their correctness proofs appear in [4].

4. LEMMING EFFECT IN HASWELL HLE
In this section we experimentally quantify the serialization penalty

due to transactional aborts during an HLE execution. We focus our
analysis on the HLE-based test-and-test-and-set (TTAS) lock (Fig-
ure 1) and the fair HLE-based MCS [18] lock. We use the MCS lock
as the representative of the class of fair locks because it is compat-
ible with HLE, unlike other fair locks such as ticket locks or CLH
locks. However, we have verified that both these locks suffer from
the same problems reported below for the MCS lock.

We use a red-black tree data structure protected by a single global
lock. Varying the number of threads, the operation mix, and the tree
size allows us to control the conflict level and the length and amount
of data accessed in the critical section. Small tree and/or many mu-
tating insert/delete threads result in higher conflict levels. In-
creasing the size of the tree reduces the chance that two operations’
data accesses conflict, as the elements accessed are more sparsely
distributed. For a given size, s, we initially fill the tree with ran-
dom elements from a domain of size 2s. Then, we run for a period
of 3 seconds in which each thread continuously performs random
insert, delete and lookup operations, according to a specified
distribution. (We use an equal rate of inserts and deletes so that
on average the tree size does not change.)

Experiments were performed on a Core i7-4770 3.4 GHz Haswell
processor, with 4 cores, each with 2 hyperthreads. Each core has
private L1 and L2 caches, whose sizes are 32 KB and 256 KB re-
spectively. There is also an 8 MB L3 cache shared by all cores.
Each test point is the average on 10 runs (with little observed vari-
ance). We measured: (1) the total number of operations completed,
(2) S, the number of successful speculative operations, (3) A, the
number of aborted speculative operations and (4) N, the number of
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Figure 2: Impact of aborts on executions under different lock implemen-
tations. For each tree size we show the average number of times a thread
attempts to execute the critical section until successfully completing a tree
operation, and the fraction of operations that complete non-speculatively.
CLH and ticket results are omitted, as they are similar to the MCS lock
results.

operations that complete via a non-speculative execution. The total
number of operations performed is S+N. In some lock implemen-
tations an operation can start and abort several speculation attempts
before completing, so there is no formula relating A to S and N.

Figure 2 shows the amount of serialization caused by aborts, as a
function of the tree size, for a moderate level of tree modifications
(20%). In addition to the fraction of operations that complete non-
speculatively (i.e., N

N+S ), we report the amount of work required to
complete an operation, i.e., A+N+S

N+S , the number of times a thread
tries to complete the critical section before succeeding.

As Figure 2 shows, the serialization dynamics for each lock type
are quite different. With an MCS lock, the benchmark executes vir-
tually all operations non-speculatively after an initial speculative
section aborts. As a result, an HLE MCS lock offers little if any
speedup over a standard MCS lock, even when there is little under-
lying contention.

The TTAS lock, on the other hand, manages to recover from
aborts. At high conflict levels (on small trees) it requires 2− 3.5
attempts to complete a single operation, but nevertheless a fraction
of 30% to 70% of the operations complete speculatively. As the tree
size increases and conflict levels decrease, HLE shines and nearly
all operations complete speculatively. We now turn to analyze the
causes for these differences.

TTAS spinlock (the boxed line in Figure 2 ) The first thread
to abort acquires the lock non-speculatively. As for the remain-
ing threads, we distinguish between two behaviors. First, a thread
that aborts because of this lock acquisition re-executes its acquir-
ing TAS instruction, which returns 1 because the lock is held. The
thread then spins, and once it observes the lock free re-issues its
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MCS lock: All operations complete non-speculatively. TTAS lock: Most operations complete speculatively
but there are periods of serialization.

Figure 3: Normalized throughput and serialization dynamics over time. We divide the execution into 1 millisecond time slots. Top: Throughput obtained in
each time slot, normalized to the average throughput over the entire execution. Bottom: Fraction of operations that complete non-speculatively in each time
slot.
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Figure 4: The HLE speedup of 8 threads with different types of locks. The base-line of each speedup line is the standard version of that specific lock (the
horizontal dotted black line at y=1). By mixing different access operations we vary the amount of contention: (i) lookups only – no contention, (ii) moderate
contention – 10% of the tree accesses are insertions and 10% are deletions and (iii) extensive contention – all the accesses are insertions or deletions.

XACQUIRE TAS and re-enters a speculative execution. Second, a
newly arriving thread initially observes the lock as taken and spins.
Once the thread in the critical section releases the lock, the waiting
thread issues an XACQUIRE TAS as in the first case. The bottom
line is that all threads are blocked from entering a speculative exe-
cution until the initial aborted thread exits the critical section, but
then all the threads resume execution speculatively. The flip side
of this behavior is that a thread may thus abort several times be-
fore successfully completing its operation, either speculatively or
non-speculatively.

MCS Fair lock (the circled line in Figure 2 ) The MCS lock rep-
resents the lock as a linked list of nodes, where each node repre-
sents a thread waiting to acquire the lock. An arriving thread uses
an atomic SWAP [15] to atomically append its own node to the tail
of the queue, and in the process retrieves a pointer to its predecessor
in the queue. It then spins on the locked field of its node, waiting
for its predecessor to set this field to false.

In the case of the HLE-based MCS lock the lemming effect is
much worse because all the threads that were aborted form a chain,
each spinning on a different location waiting for the predecessor
to release the lock. Neither an aborted thread nor newly arriving
thread can now enter the critical section speculatively. In either case
the thread spins and once its turn arrives enters the critical section
non-speculatively. Thus, a single abort causes the serialization of

all concurrent critical sections, as well as newly arriving threads, all
of which will now execute non-speculatively. Essentially, because
of the fairness guarantees provided by the MCS lock, it “remem-
bers” conflict events and makes it harder to resume a speculative
execution. Even when the original lock holder releases the lock, it
moves it into a state that does not allow new threads to speculatively
execute. The MCS lock requires a quiescence period, in which no
new threads arrive, so that all waiting threads acquire the lock, ex-
ecute the critical section and leave. Only then does the MCS lock
return to a state that allows the next arriving threads execute spec-
ulatively.

Performance impact In Figure 3 we divide the benchmark’s ex-
ecution into 1 millisecond time slots and show the throughput ob-
tained in each slot, normalized to the throughput over the entire
execution. We also show the fraction of operations that completed
via a non-speculative execution in each time slot. As can be seen,
TTAS performance can fluctuate severely, sometimes falling by as
much as 2.5×. These throughput drops are correlated with periods
in which more critical sections finish non-speculatively, i.e., after
serialization caused by an abort. The MCS performance reinforces
the results of the previous benchmark (Figure 2): the benchmark
executes virtually all operations non-speculatively due to serializa-
tion caused by an abort. Finally, Figure 4 depicts the performance
advantage of the lock elision usage with different types of locks.



As observed, MCS lock gains no benefit with HLE usage. On the
other hand the TTAS lock gains performance boost while using the
HLE mechanism.

5. SOFTWARE-ASSISTED LOCK REMOVAL
The lemming effect demonstrated in the previous section arises

because an HLE transaction runs with the lock in its read set. That
is, although HLE only pretends to hold a lock without globally
locking, still the lock creates an abort chain effect once one thread
aborts. One then wonders why bother touching the lock: if the hard-
ware already detects conflicts (through the coherency protocol),
how about starting the transaction without touching the lock at all?
Two problems are created when we naively eliminate any reference
to the lock, first the threads may easily get into a live-lock scenario,
where they keep aborting each other due to data conflicts without
any thread making progress. Second, if concurrently to the trans-
actional threads another thread runs non-transactionally with the
lock, some transactions may observe an inconsistent state (in which
partial writes of the non-transactional thread are observed). In this
section we take this approach of trying to eliminate any usage of
the lock, sacrificing opacity but ensuring there is no live-lock.

Rajwar and Goodman observed [22] that given transactional ca-
pabilities, one can simply run transactions with the same scope as
the critical section without accessing the lock. They relied on a
hardware conflict management scheme that guarantees starvation
freedom to prevent the live-lock problem. Unfortunately, Haswell’s
TM “requestor wins” conflict management policy guarantees nei-
ther starvation freedom nor livelock freedom [7].

Our solution to this progress problem is to go back to using the
lock, as a progress-guaranteeing mechanism, but only at commit
time. However, simply having an aborted thread acquire the lock
(to avoid starvation) can lead to an incorrect execution due to the
non-atomicity of a thread running in the critical section in a non-
speculative manner, as depicted in the following erroneous exam-
ple. Memory updates performed by such a thread are made globally
visible one at a time, making it possible for concurrent transactions
to observe an inconsistent state.

Erroneous Example: Consider two code segments protected by
the same lock L, as depicted on the right. Suppose now that thread
T1 transactionally executes C1 without accessing L and reads X = 0.
Now another thread, T2, executes C2 non-transactionally, acquiring
L and then storing 1 to Y . Following this T1 reads Y from memory.
Since Y is not in T1’s read set, there is no conflict with T2’s previous

C1: C2:
lock(L) lock(L)

load(X) store(Y,1)

load(Y) store(X,1)

unlock(L) unlock(L)

store and T1 observes Y = 1.
T1 then commits. Thus T1 ob-
serves an inconsistent state,
X = 0 and Y = 1. (Had thread
T2 run transactionally in the
above example, T1 would ob-
serve either both or none of
T2’s stores.)

Software-assisted lock removal (SLR, Figure 5) Our solution to
the non-atomicity problem uses the lock to verify that a transaction
commits only if it has observed a consistent state. A transaction
starts without accessing the lock. Once it reaches the end of the
critical section, it reads the lock. If the lock is free, the transaction
commits (no transaction wrote on a value read by it); otherwise,
there is a concurrent non-speculative transaction, and the transac-
tion aborts itself using XABORT. Returning to our example, the
scenarios depicted in Figure 6 demonstrate how SLR enforces cor-
rect executions, though sometimes the transaction can observe an
inconsistent state. This is usually not a problem, as the transaction

1 shared variables:
2 lock : speculative lock
3

4 thread local variables:
5 retries : int
6

7 lock () {
8 retries := 0
9 // speculative path

10 XBEGIN (Line 14) // jump to Line 14 on abort
11 return
12

13 // fallback path
14 retries ++
15 if ( retries < MAX_RETRIES)
16 goto Line 10
17 else
18 lock . lock () // standard lock acquire
19 }
20

21 unlock() {
22 if (XTEST()) { // returns TRUE if the run is speculative
23 if ( lock is locked)
24 XABORT // aborts the speculative run
25 else
26 XEND
27 } else {
28 lock .unlock() // standard lock release
29 }
30 }

Figure 5: Software-Assisted Lock Removal

is sandboxed by the TM, but program correctness may be violated
if inconsistent reads cause the transaction to compromise the lock
check. For example, this can happen if the transaction erroneously
writes to the lock itself, or jumps directly to an XEND instruction
without checking the lock first, and so on. Therefore, to use SLR
one must verify that the observable inconsistent states a transaction
might encounter cannot cause the transaction to misbehave in such
ways. Most common transaction types, such as those used in data
structures and STAMP, are safe for SLR.

Performance impact SLR alleviates the two problems that lead
to the HLE lemming effect. First, with SLR a thread that non-
transactionally acquires the lock does not automatically cause all
running transactions to abort. If it manages to complete the critical
section before these transactions try to commit, they may success-
fully commit, given they do not conflict on the data. Second, while
a thread is executing non-transactionally in the critical section, ar-
riving threads continue to enter speculative transactional execution
and are not forced to wait.

Correctness Haswell’s TM conflict detection checks guarantee that
once a transaction accesses a cache line, a conflicting access by a
lock holding thread will abort the transaction. In the other direc-
tion, if the transaction accesses a memory location following a lock
holder’s access and yet successfully commits, then the lock was
released before the transaction ended. Thus the transaction’s exe-
cution is indistinguishable from the case in which the entire critical
section (of the lock holder) ran before the transaction.

6. SOFTWARE-ASSISTED CONFLICT MAN-
AGEMENT

In this section we propose a software-assisted conflict manage-
ment (SCM) scheme which serializes conflicting threads that can-
not run concurrently, but does this without acquiring the lock to



Scenarios ending in abort Successfully committing scenario

T1 T2
begin SLR txn
load(X)

lock(L)
store(Y)

load(Y)
load(L)
L is locked: ABORT

T1 T2
begin SLR txn
load(X)

lock(L)
store(Y)
store(X)

ABORT: conflict
on X

T1 T2
begin SLR txn

lock(L)
store(Y)
store(X)

load(X)
unlock(L)

load(Y)
load(L)
COMMIT

Figure 6: How SLR enforces correct executions in different scenarios.

avoid impact on the other speculatively running threads in the sys-
tem. This scheme is compatible with any lock implementation, and
resolves the lemming effect problem in HLE transactions without
resorting to using lock removal, and without sacrificing opacity.

For example, when using lock removal in highly contended work-
loads with lots of aborts, new threads keep starting transactions and
causing more aborts and wasted work. Here HLE’s ability to grab
the lock and stop newly arriving threads from entering speculative
execution turns out to be extremely helpful and greatly improves
performance (as shown in Section 7). Our conflict management
scheme thus maintains this ability of HLE, and prevents the lem-
ming effect in less contended scenarios.

Preventing livelock, the SCM scheme: Our scheme uses two locks,
the original main lock which is taken using the HLE/SLR mecha-
nism and an auxiliary standard lock which is only acquired in a
standard non-transactional manner. The auxiliary lock groups all
the threads that are involved in a conflict and serializes them (see
Figure 8). When a transaction is aborted, the aborted thread non-
transactionally acquires the auxiliary lock and then rejoins the spec-
ulative execution of the original critical section. The process of ac-
quiring the auxiliary lock in order to rejoin the speculative run is
called the serializing path. As with previous schemes, the thread
may retry its transaction before going to the serializing path.

To see why this scheme prevents livelock, consider two transac-
tions, T1 and T2, which repeatedly abort each other. Once T1 ac-
quires the auxiliary lock and re-joins the speculative execution, one
of the following can happen: (1) T1 aborts again, but T2 commits,
or (2) T2 aborts and thus tries to acquire the auxiliary lock, where
it must wait for T1 to commit and release the auxiliary lock. Gener-
alizing this, once a thread T acquires the auxiliary lock any trans-
action that conflicts with T either commits or gets serialized to run
after T . Thus the system makes progress.

Preventing starvation In the above scheme starvation remains pos-
sible due to one of two scenarios: (1) a thread fails to acquire the
auxiliary lock (as can happen with a TTAS lock), or (2) a thread
holding the auxiliary lock fails to commit. To solve issue (1) we
require that the auxiliary lock be a starvation-free (or “fair”) lock,
such as an MCS lock. Our scheme then inherits any fairness prop-
erties of the auxiliary lock. To solve issue (2), the auxiliary lock
holder non-transactionally acquires the main lock after failing to
commit a given number of times. If all accesses to the main lock
go through the HLE/SLR mechanism, then only the auxiliary lock
holder can ever try to acquire the main lock and is therefore guar-
anteed to succeed. Otherwise (i.e., if the program sometimes ex-
plicitly acquires the lock non-transactionally), the main lock must
be starvation-free as well.

While SCM provides the most benefits when employed with HLE,
the two schemes, SCM and SLR can be combined together to fur-

1 shared variables:
2 main_lock : elided main lock
3 aux_lock : auxiliary standard lock
4

5 thread local variables:
6 retries : int
7 aux_lock_owner : boolean, initially FALSE
8

9 lock () {
10 retries := 0
11 // primary path
12 XBEGIN (Line 17) // jump to Line 17 on abort
13 call HLE or SLR lock() as appropriate
14 return
15

16 // serializing path
17 if (aux_lock_owner = FALSE) {
18 retries ++
19 } else {
20 aux_lock. lock () // standard lock acquire
21 aux_lock_owner := TRUE
22 }
23 if ( retries < MAX_RETRIES)
24 goto Line 12
25 else
26 main_lock.lock () // standard lock acquire
27 }
28

29 unlock() {
30 if (XTEST()) { // returns TRUE if the run is speculative
31 call HLE or SLR unlock() as appropriate
32 XEND
33 } else {
34 main_lock.unlock() // standard lock release
35 }
36 if (aux_lock_owner = TRUE) {
37 aux_lock.unlock() // standard lock release
38 aux_lock_owner := FALSE
39 }
40 }

Figure 7: Software-Assisted Conflict Management

ther reduce any progress problems caused when SLR threads give
up and acquire the lock non-transactionally.

Implementation and HLE compatibility (Figure 7) Our scheme
maintains HLE-compatibility by nesting an HLE transaction within
an RTM transaction. When used with HLE, we first start an RTM
transaction which “acquires” the lock with an XACQUIRE store.
Because TSX provides a flat nesting model [2], an abort will abort
the parent RTM transaction and execute the fall-back code instead
of re-issuing the XACQUIRE store and aborting all the running
transactions.



 
Serializing path 

optimistic unlock 

optimistic lock 

standard unlock 

standard lock 
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Figure 8: A block diagram of a run using our software scheme. The entry
point of a speculative section is the ‘speculative run’ rectangle. All threads
acquire the original main lock using the lock-elision mechanism. If a con-
flict occurs (described by ‘x’), the conflicting threads are sent to the seri-
alizing path. Once a thread acquires the auxiliary standard lock in a non-
speculative manner, it rejoins the speculative run.

Unfortunately, the initial implementation of TSX in Haswell does
not support nesting of HLE within RTM. Therefore, in our ex-
periments we use RTM to implement lock elision (by reading the
lock address), which does not provide the self-illusion that the lock
is taken. More precisely, in our current implementation we omit
Line 31 of the Unlock() function in Figure 7, and perform the fol-
lowing at Line 12 of the Lock():

1: // put the main_lock in the read set
2: // and check that it is free
3: if (main_lock is locked) then
4: XABORT(‘non-speculative run’)
5: end if

Remark In principle, grouping the conflicting threads in one group
may be too strict since a single conflicting thread does not have
to conflict with the entire group. A natural extension (left for fu-
ture work) to explore is dividing the conflicting threads to differ-
ent groups, each containing only threads that conflict among them-
selves.

7. EVALUATION
In this section we evaluate the benefit provided by our lock eli-

sion schemes using two data structure benchmarks and applica-
tions from the STAMP suite (commonly used for evaluating hard-
ware TM implementations [12, 24, 19]), which consists of eight
applications that cover a variety of domains and exhibit different
characteristics in terms of transaction lengths, read and write set
sizes and amounts of contention. The premise of HLE is to en-
able simple coarse-grained programming with the performance of
fine-grained locks, thus obviating the need for fine-grained locking.
Therefore, we deliberately use coarse-grained benchmarks. Our ex-
perience with fine-grained benchmarks, such as those in the PAR-
SEC [6] suite, is that in general applying HLE there shows little
performance impact because the benchmarks are already optimized
to avoid contention (see [4]).

Methodology We evaluate our methods on both the MCS lock
and the TTAS lock. For each lock type we test the following six
schemes: (1) Standard (non-speculative) version of the lock, (2)
HLE version of the lock, (3) HLE-retries version, based on Intel’s

recommendations [1], in which a thread acquires the lock non-
speculatively only after retrying speculatively 10 times, (4) HLE
version of the lock with conflict management (HLE-SCM), (5) Op-
timistic SLR version, in which a thread only acquires the lock non-
speculatively after retrying speculatively 10 times (Opt SLR), and
(6) Optimistic SLR version with conflict management applied (SLR-
SCM). As in Section 4, we use a Core i7-4770 3.4 GHz processor
with 4 cores, each with 2 hyperthreads. We run the benchmarks on
an otherwise idle machine using the jemalloc memory allocator
which is tuned for multi-threaded programs.

Conflict management tuning Because SLR and HLE behave dif-
ferently when the main lock is taken non-speculatively, we tune the
conflict management as appropriate for each technique. Taking the
lock non-speculatively in an HLE-based execution has large perfor-
mance impact, and so the thread holding the auxiliary lock retries to
complete its operation speculatively 10 times before giving up and
acquiring the main lock. In contrast, SLR is much less sensitive to
the main lock being taken and so if the bits in the abort status reg-
ister indicate the transaction is unlikely to succeed, we switch to a
non-speculative execution. We have verified that using other tuning
options only degrade the schemes’ performance.

7.1 Red-black Tree Data Structure Benchmark
We evaluate our methods using two data structure benchmarks,

the red-black tree (described in Section 4) and a hash table. In
each test, we measure the average number of operations per sec-
ond (throughput) when running the benchmark 20 times on an oth-
erwise idle machine. The results of the two data structure bench-
marks are comparable, as hash table transactions are always short
and therefore “zoom in” on the short transaction portion of the red-
black workload spectrum. We therefore discuss only the red-black
tree.

Red-black tree Figure 9 shows the speedup (relative to a single
thread with no locking) obtained by the various methods on a 128-
node tree under moderate contention (20% updates). With HLE
the MCS lock does not scale at all, and even the TTAS does not
scale past 4 threads. Simply adding speculative retries allows HLE-
TTAS to scale, but when the lemming effect is more severe—as
with HLE-MCS at 8 threads—merely retrying the transactions no
longer works. We believe that with higher amounts of concurrency,
the simple retry policy will not be effective even with TTAS. In
contrast, using our schemes, the throughput always scales with the
number of threads.

Figure 10 depicts the speedup that our methods obtain (relative
to the HLE version of the specific lock) across the full spectrum
of workloads. Notice that increasing the tree size also increases the
size of the critical section, resulting in a lower conflict probabil-
ity but also lower throughput. Our software schemes improve the
speedup compared to the plain HLE version of the specific lock
(especially on fair locks).

TTAS lock On the lookup only (no contention) workload, the HLE-
based TTAS is good enough, and none of the software-assisted
methods improve on its performance. However, as we increase the
level of contention by increasing the fraction of mutating opera-
tions, our methods outperform the plain HLE-based TTAS by up
to 3.5×. This is the result of letting new arriving threads immedi-
ately enter the critical section speculatively, instead of waiting for
the aborted thread currently in the critical section to leave.

In general, the HLE-SCM and SLR versions of TTAS give com-
parable performance, which is also similar to the simple HLE-retries
policy. The exception is short transactions, where HLE-SCM out-
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Figure 9: The execution results on a small tree size (128 nodes) under moderate contention. The two graphs are normalized to the throughput of a single thread
with no locking (the horizontal dotted black line at y=1). The software assisted schemes scale well and the performance gap between MCS and TTAS is closed.
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Figure 10: The speedup of our generic software lock elision schemes compared to Haswell HLE. The base-line of each speedup line is the HLE version of that
specific lock (the horizontal dotted black line at y=1): on the left – TTAS lock and on the right – MCS lock. Since the performances are scaled using different
base lines, the reader can not compare between the performance of the different lock types.

performs SLR, SLR-SCM and HLE-retries by up to 2×, exactly
because of the serialization it induces.

MCS lock Our software-assisted schemes increase throughput by
2− 10× in every MCS workload (even in a read-only workload,
the MCS lock experiences a severe lemming effect behavior due to
spurious aborts). We again see comparable results for HLE-SCM
and SLR, with a 50% advantage to HLE-SCM in short transactions.
In contrast to the TTAS case, here the HLE-retires policy does not
alleviate the lemming effect. In fact, under high contention HLE-
retries does not do better than the plain HLE. Our software-assisted
methods thus outperform HLE-retries significantly, by 4× under
moderate contention (20% updates) and 2− 10× under high con-
tention.

Analysis Detailed analysis of the number of attempts per successful
operation and fraction of operations that complete in a speculative
execution is deferred to [4], due to space constraints.

7.2 STAMP
To apply our methods to the STAMP suite of benchmark pro-

grams [10], we replace the transactions with critical sections that
use the same global lock. Figure 11 shows the runtime of the STAMP
programs at maximum concurrency (8 threads) with the various
lock elision methods, normalized to the execution time using the
plain non-speculative lock. (We exclude the bayes benchmark due
to its non-deterministic behavior, as done in prior work using STAMP [13].)

As with the red-black tree data structure benchmark, MCS lock
gains no benefit from HLE usage. But, MCS lock provides con-
siderable benefit when used with HLE combined with our conflict
management scheme. The HLE-SCM scheme typically improves
the performance by up to 2.5×.

On the other hand, TTAS lock gains some benefit of HLE usage
(up to 2× in intruder) but the HLE-SCM scheme with TTAS
gives modest improvement with the exception of genome (up to
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Figure 11: Normalized run time of STAMP applications (lower is better) using standard locking, HLE, and our software-assisted methods.

1.5×). Here too we see that the benefit of HLE usage in TTAS
depends on the workload’s characteristics.

Both locks benefit considerably from lock removal usage. In
most of the tests, the optimistic SLR scheme gives the highest im-
provement (with one exception of kmeans-high MCS HLE-SCM
lock), sometimes up to 2× compared to the HLE-based scheme
and up to 4× compare to the plain non-speculative version of the
lock. The HLE-retries scheme generally performs comparable to
SLR, except on genome, yada and vacation where it is slower:
marginally so on TTAS (about 10%-30%), but drastically slower
when using MCS, where HLE-retries obtains almost no speedup
over the standard MCS lock.

For the most part, when the SCM scheme is used with SLR,
the performance gain is negligible with only one exception. In the
vacation-low test, the SLR-SCM gives 15% improvement over
the Opt-SLR.

Summary: Our SCM scheme improves the performance of HLE-
based locks in both data structure benchmarks and STAMP no mat-
ter what the contention level is. MCS lock (or any other fair lock)
gains the highest performance boost since these locks need quies-
cence period in order to overcome the lemming effect and return to
speculative execution. The impact of our SCM method on the SLR
is more modest and depends on the characteristics of the execution
(such as transaction length and contention level).

8. CONCLUSION
We have described several lightweight software techniques to

considerably improve the performance of lock-based code when
executed over HTM. Moreover, our techniques, enable HLE-based
fair locks with starvation freedom and progress guarantee and with
no performance degradation. Our evaluation on a Haswell proces-
sor is encouraging, improving the run time of applications from the
STAMP suite by up to 3.5 times and of data structure benchmarks
by up to 10 times.

As we show, even very few aborts are enough to trigger the
lemming effect for some lock implementations. Hence, any pro-
cessor that may cause the HLE to abort and acquire the lock non-
speculatively is likely to benefit from our techniques.

In the future, we plan to explore more refined conflict manage-
ment policies. In particular, utilizing abort information provided by
the hardware (such as the location in which a conflict occurs, and/or
the identify of the conflicting thread) appears to be a promising di-
rection.

Availability
Our implementation is available on Tel Aviv University’s Multicore
Algorithmics group web site at http://mcg.cs.tau.ac.il/.
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APPENDIX
A. ADJUSTING LOCKS TO WORK WITH

HLE: DETAILS
Ticket Lock (Figure 12) Adjustments The new implementation
(Figure 13) handles both speculative and standard (non-speculative)
runs. We use a compare-and-swap (CAS) primitive [15] in order to
distinguish between the two cases: the release attempts to CAS the
lock back to its original value, i.e., decrement the next counter in-
stead of incrementing the owner. If successful, it removes all traces
of the lock acquisition; this occurs in either a speculative execution
or a non-speculative single-thread execution. An unsuccessful CAS
indicates a standard run with multiple requesters.

The only difference in the lock acquiring function is the XAC-
QUIRE usage. In the adjusted unlock function (Figure 13), if Line 8
is successfully executed, either: (1) the lock is taken in a standard
manner and the lock owner is the only running thread (no other re-
questers) or (2) the lock is taken in speculative manner and the lock
owner (can be one of many) removes all traces of its run. Line 9 is
used to release the lock when the lock is taken in a standard man-
ner and the lock owner is not the only requester. This behavior is
identical to the original implementation.

CLH Lock (Figure 14) Adjustments The pseudo-code of the CLH
lock implementation, adjusted to the HLE mechanism, is depicted
in Figure 15. As in the ticket lock, we need to adjust the CLH lock
so that the lock reverts to its original state when released in a solo
run. Again, we use a CAS to do this, in an attempt to place pred at
the tail of the queue, effectively erasing the presence of our node.

1 shared variables:
2 next : integer , initially 0
3 owner : integer , initially 0
4

5 lock () {
6 current := F&A(&next, 1)
7 while (owner 6= current) {
8 // busy wait
9 } }

10

11 unlock() {
12 owner := owner + 1
13 }

Figure 12: Ticket lock.

1 lock () {
2 current := XACQUIRE F&A(&next, 1)
3 while (owner 6= current) {
4 // busy wait
5 } }
6

7 unlock() {
8 if (!XRELEASE CAS(&next, owner+1, owner)) {
9 owner := owner + 1

10 } }

Figure 13: Lock elision adjusted ticket lock.

1 shared variable:
2 struct Node {
3 locked : 1 bit (boolean)
4 next : pointer to Node
5 }
6 tail : pointer to Node, initially points to T =< FALSE,NULL >
7

8 thread-local variables:
9 myNode : pointer to Node, initially points to thread−local Node

10 pred : pointer to Node
11

12 lock () {
13 myNode.locked := TRUE
14 pred := SWAP(&tail, myNode)
15 while (pred . locked) {
16 // busy wait
17 } }
18

19 unlock() {
20 myNode.locked := FALSE
21 myNode := pred
22 }

Figure 14: CLH lock.

1 lock () {
2 myNode.locked := TRUE
3 pred := XACQUIRE SWAP(&tail, myNode)
4 while (pred . locked) {
5 // busy wait
6 } }
7

8 unlock() {
9 if (!XRELEASE CAS(&tail, myNode, pred)) {

10 myNode.locked := FALSE
11 myNode := pred
12 } }

Figure 15: Lock elision adjusted CLH lock.
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