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ABSTRACT

Modern replicated data stores aim to provide high availabil-
ity, by immediately responding to client requests, often by
implementing objects that expose concurrency. Such objects,
for example, multi-valued registers (MVRs), do not have se-
quential specifications. This paper explores a recent model
for replicated data stores that can be used to precisely spec-
ify causal consistency for such objects, and liveness prop-
erties like eventual consistency, without revealing details of
the underlying implementation. The model is used to prove
the following results:

e An eventually consistent data store implementing
MVRs cannot satisfy a consistency model strictly
stronger than observable causal consistency (OCC).
OCC is a model somewhat stronger than causal con-
sistency, which captures executions in which client ob-
servations can use causality to infer concurrency of op-
erations. This result holds under certain assumptions
about the data store.

e Under the same assumptions, an eventually consistent
and causally consistent replicated data store must send
messages of unbounded size: If s objects are supported
by n replicas, then, for every k > 1, there is an execu-
tion in which an Q(min{n, s}k)-bit message is sent.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Distributed
Systems
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1. INTRODUCTION

Distributed data storage provides fault-tolerant access to
objects by replicating them over a wide-area network. A
replicated data store needs to balance between availability
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of data (i.e. accesses to data return without delay), and its
consistency, while tolerating message delays. The CAP the-
orem [8l/18] demonstrates the difficulty of achieving this bal-
ance, showing that strong Consistency (i.e. atomicity) can-
not be satisfied together with high Availability and Partition
tolerance.

One aspect of data consistency is a safety property re-
stricting the possible values observed by clients accessing dif-
ferent replicas. The set of possible executions is called a con-
sistency model. For example, causal consistency [2| ensures
that the causes of an operation are visible at a replica no
later than the operation itself. (A precise definition appears
in Section[3]) A smaller set of possible executions means that
there is less uncertainty about the data. So, one consistency
model is strictly stronger than another if its executions are
a proper subset of the executions of the other.

Some weak consistency models can be trivially satisfied by
never updating the data. Therefore, another aspect of data
consistency is a liveness property, ensuring that updates are
applied at all replicas. The designers of many systems, e.g.,
Dynamo [13] and Cassandra [1], opt for a very weak live-
ness property called, somewhat confusingly, eventual con-
sistency |5195/10}/29]. Eventual consistency only ensures that
each replica eventually observes all updates to the object, a
property also referred to as update propagation |11].

Several data stores [4,|6}[16}/21}22] satisfy causal consis-
tency, motivated by the assumption that it is the strongest
consistency model possible with eventual consistency. To-
wards resolving this assumption, this paper shows that an
eventually consistent data store cannot satisfy a consistency
model strictly stronger than observable causal consistency
(OCC). This is done within a precise model of replicated
data stores, exposing assumptions and inherent costs.

A challenge in modeling replicated data stores is that
many of them implement objects that cannot be specified se-
quentially. For example, in a multi-value register (MVR) [13],
a read returns the set of values written by currently conflict-
ing writes, i.e., writes that are not causally related. Similarly,
an observed-remove set (ORset) [27] specifies that whenever
a remove and an add of the same element are concurrent,
the add “wins.” By exposing concurrency in the specifica-
tion, such objects are leaking low-level scheduling details to
the client.

Specifying these objects independently of their implemen-
tation is particularly challenging in the context of causal
consistency, whose definition relies on wvisibility of opera-
tions. Visibility of operations, in turn, depends on message
sending and delivery, which are governed by the implemen-



tation. Following [10], we separate the abstract execution, as
observed by clients of the replicated data store, from the
concrete execution, which happens “under the hood” of the
system.

This paper shows that a consistency model strictly
stronger than OCC cannot be satisfied by an eventually con-
sistent data store implementing MVRs. OCC captures ex-
ecutions in which client observations can use causality to
infer concurrency of operations (see Section . This result
holds under certain assumptions about the data store: read
operations do not modify the state, and messages are gen-
erated only following an operation. Without these assump-
tions, a data store may trivially satisfy a consistency model
stronger than OCC (and causal consistency) by ruling out
some causally consistent executions. For example, a data
store in which reads may modify replica state can prevent
the execution in which replica R writes a value v to an MVR
and then another replica R’ reads this value, by not expos-
ing v at R’ until K additional operations have been applied
at R'.

Our result is related to the CAC' theorem [23,24], showing
that natural causal Consistency is the strongest model that
can be satisfied together with high Availability and one-way
Convergence. (One-way convergence is a stronger liveness
property than eventual consistency.) Our proof, and the as-
sumptions it exposes, show that the CAC theorem has an
implicit model for the way implementations are structured.
Counter-example implementations like the one mentioned
above demonstrate that deviating from this structure allows
a consistency model stronger than causal consistency to be
satisfied. (A detailed comparison appears in Section )

We also prove that causally consistent and eventually con-
sistent stores implementing MVRs require messages of un-
bounded length. Specifically, if s objects are supported by
n replicas, then, for every k > 1, there is an execution,
whose length grows with &, in which an Q(min {n, s} lg k)-bit
message is sent. This extends a result of Charron-Bost [12],
showing that ordering Q(n?) events on n nodes using m-
tuples (i.e. vector clocks [17}25]) requires m > n. In contrast,
our result does not assume that messages have a particular
format, and we show that, even for a fixed number of replicas
and objects, the message length is unbounded.

2. MODEL

We model a highly-available replicated data store as a
message-passing system, consisting of replicas that handle
client operations on the replicated objects, and communi-
cate the changes to each other with messages. We assume
replicas broadcast their messages to all other replicas; repli-
cas can implement point-to-point communication by ignor-
ing messages for which they are not the intended recipient.
Our model is mostly standard, with the following excep-
tion: Replicas handle client operations immediately, without
communicating with other replicas. This models the crucial
high-availability property of the data store—completion of
a client operation must not depend on communication with
another replica, so that the data store remains available de-
spite network failures.

Replicas: We model a replica as a state machine R =
(X, 00, E,A), where X is a set of states, oo € X is the initial
state, F/ is a set of possible events, and A : ¥ x E — X
is a (partial) transition function. We say that an event e is

enabled in state o if A(o,e) is defined. A state transition
is a local step of a replica, describing how the state of the
replica changes in response to an enabled event. Three kinds
of events model interactions of the replica with its clients and
with other replicas:

e do(o,0p,v): a client of the replica invokes operation op
on replicated object o and immediately receives re-
sponse v from the replica,

e send(m): the replica broadcasts message m, and

e receive(m): the replica receives message m.

The action, act(e), of an event e specifies which kind of event
(do, send, or receive) it is. Each send(m) and receive(m)
event e has message attribute msg(e) = m. Each do(o,0p,v)
event e has attributes obj(e) = o, which is the object the
client is operating on, op(e) = op, which is the operation of
the client, and rval(e) = v, which is the response the client
receives.

We assume that the content of a message sent by a replica
is a deterministic function of its state: if A(c, send(m1)) =
o1 and A(o, send(mz)) = o2, then mi1 = m2 and hence,
g1 = 02.

Executions: An ezecution is a (possibly infinite) sequence
of events occurring at the replicas. It is an interleaving of
a sequence of events occurring at each replica. We denote
by R(e) the replica at which an event e occurs. A (finite or
infinite) sequence of events, e1, €2, . .., occurring at a replica
R = (X, 00,A) is well-formed if there is a sequence of states,
01,02,..., such that o; = A(gs_1,¢;) for all 1 < ¢ < the
length of the sequence. If this sequence has length n, then
o, is the state of R at the end of the sequence.

We consider only well-formed executions.

DEFINITION 1. An execution « is well-formed if for every
replica R = (X, 00,A), (1) the subsequence of events at R,
denoted a|r, is well-formed, and (2) for every receive(m)
event e at R, a send(m) event at replica R' # R precedes e
in a. If a is finite then the state of replica R at the end of
« 1s the state of R at the end of a|r.

Well-formed executions only prohibit messages from ap-
pearing out of thin air or being received before they are
sent. Messages may be dropped, delivered out of order, or
delivered multiple times.

Recall the happens-before relation [20]:

DEFINITION 2. Let a be an execution. Fvent e € o hap-
pens before event ¢’ € a (written e M e, or simply
e 2 ¢! if the context is clear) if one of the following condi-
tions holds:

(1) Thread of execution: R(e) = R(e’) and e precedes €'
m o

(2) Message delivery: e =
receive(m).

send(m) and € =

(3) Transitivity: There is an event f € a, such that e LAN
hb.
fand f — €.

PROPOSITION 1. Let a be an execution, and e an event
in . Then the following sequences of events are well-formed
executions:

1. B, the subsequence of a consisting of all events e’ such

that e 22 ¢’.



2. v, the subsequence of a consisting of all events e’ such

that ¢ 22 e.
Further, for any replica R, B|r and y|r are prefizes of a|r.

Network partitions: Fventually consistent data stores
require that every operation eventually propagates to every
other replica. To facilitate eventual consistency, we must re-
quire that the network is not partitioned from some point
on. We assume that this cannot occur in infinite executions.
Specifically, we consider only infinite executions in which the
network is sufficiently connected, as defined below.

We say that a replica has a message pending in state o if
some event e with act(e) = send is enabled in 0. We assume
that a replica does not have a message pending following a
send event. In other words, a send event relays everything
the replica has to send. Given an execution « and an event
e € a, we say that a replica R has a message pending in e
if R has a message pending in the state at the end of &g,
where o/ is the prefix of o ending with e.

DEFINITION 3. The network is sufficiently connected in
an infinite well-formed execution « if the following condi-
tions hold:

(1) Eventual transmission: no replica has a message
pending in all events of some (infinite) suffix of o, and

(2) Eventual delivery: if replica R sends message m,
then every replica R’ # R eventually receives m.

Thus, if a replica wants to send a message, i.e. it has a
message pending in some state, then either it eventually
broadcasts the message or it transitions into a state with no
message pending without sending the message. This could
happen, for example, if a client invokes an operation which
cancels a previous operation that had not yet propagated to
other replicas.

3. REASONING ABOUT REPLICATED
DATA STORES

This section describes a framework for reasoning about
highly-available replicated data stores, following Burckhardt
et al. [10].

3.1 Specifying Replicated Objects

Replicated data stores are often used to implement objects
which have some underlying notion of concurrency, and so
cannot be specified sequentially. They generalize standard
sequential specifications [19] as follows. A sequential specifi-
cation of a deterministic object determines the return value
of an operation from the sequence of prior operations applied
to the object. However, with a replicated object, operations
executing at different replicas might have inconsistent no-
tions of “prior operations”, e.g., because updates made on
one side of a partition do not propagate to the other side.
We therefore specify the return value of an operation based
on operations that are wvisible to it: prior operations at the
same replica, and remote operations whose effects have prop-
agated to the replica through the network.

Visibility is defined in the context of an abstract execu-
tion. An abstract execution contains only the histories of
operations invoked by the clients, i.e., only do events:

DEFINITION 4. An abstract execution is a tuple (H,vis),
where H is a sequence of do events and vis C H x H 1is

an acyclic visibility relation (where (e1, e2) € vis is denoted
by er 25 e2) that satisfies (1) if ex precedes e2 in H and
R(e1) = R(e2), then ex Zis, e2, (2) ifex Lis, ea, ea precedes
es in H, and R(e2) = R(es), then ex 2% es, and (3) if

vSs .
e1 — ez then ei precedes ex in H.

We decouple visibility—when an operation becomes ob-
servable by the client—from the low-level happens-before
relation (Definition , defined for receiving and sending
messages between replicas, because having happens-before
imply observability of an operation would place excessively
strict demands on the data store. It would mean that re-
ceiving a message sent after an operation op makes op and
all its transitive dependencies observable. This disallows, for
example, buffering received information and not “exposing”
it immediately, an implementation technique used in many
causally consistent data stores to avoid sending the depen-
dencies with each message [4}[6l/16l/21}22] and to satisfy con-
sistency conditions [11}15,[26].

The reason for including both the visibility relation, vis,
and a total order of the events, H, is that some specifica-
tions need a total order on events to resolve conflicts created
by concurrent operations, i.e., those that are not related by
visibility.

DEFINITION 5. Let A = (H,vis) be an abstract execution.
An abstract execution A" = (H',vis') is a prefix of A if (1)
H' is a prefiz of H and (2) vis' = vis N (H' x H'). A set
S of abstract executions is prefixed-closed if A € S implies
that A’ € S for every prefix A’ of A.

An abstract execution A = (H, vis) is o-only if obj(e) = o,
for all e € H.

DEFINITION 6. A replicated object specification of an ob-
ject o is a prefiz-closed set S(0) of o-only abstract executions.

The specification, S(0), of an object o is defined using the
notion of an operation context [10]. The operation context of
an operation on an object o consists of the prior operations
on o that are visible to the operation:

DEFINITION 7. Let A = (H,vis) be an abstract execution,
and e € H. The operation context of e in A is the abstract
execution ctzt(A,e) = (H',vis N (Ve x Vo)), where Ve =

{e' €H | ¢ enobje) = obj(e)}U{e}, and H' is the

subsequence of H containing only events in V.. If ¢’ € H,
we say that ' € ctxt(A,e) iff ¢ € H'.

We specify the return value, rval(e), of a do event e ap-
plying an operation to object o as a function of its operation
context, ctxt(A,e):

rval(e) = fo(ctxt(A,e)).

Figure [1| shows examples of such functions, including those
of the multi-value register (MVR) and the observed-remove
set (ORset). In an MVR, a read returns the set of values
written by currently conflicting writes—i.e. writes that are
not causally related. Similarly, an ORset specifies that when-
ever a remove and add are concurrent, the add “wins"—i.e.,
remove only removes items that it observes.

The specification S(o) contains abstract executions in
which every operation’s response is as specified above:



k
fr/w reg(H,7UiS/76) = {o

v, where the last write event in H' is write(v)

if op(e)=write(v)
if op(e)=read

(a) Read/write register

ok
fMVR(H/y ’UiS/, 6) = {

{v|3e1 € H op(e1) = write(v) A —~Jes € H' op(e2) = write(:) A ex vis’, es}

if op(e)=write(v)
if op(e)=read

(b) Multi-valued register (MVR)

ok

fORset(Hl7 UiS/, e) = ( ok

{v|3e1 € H op(e1) = add(v) A —~Jez € H' op(ez) = remove(v) A e LN e2}

if op(e)=add(v)
if op(e)=remove(v)

if op(e)=read

(c) Observed-remove set (ORset)

Figure 1: Functions specifying replicated objects: ctzt(A,e) = (H',vis', e).

S(o) ={A | A= (H,vis) is an o-only abstract execution, and

Ve € H,rval(e) = fo(ctzt(A,e)) }

3.2 Consistency Models

Informally, a safety property ensures that nothing “bad”
happens in an execution, and hence, the same is true for
any of its prefixes. We are interested in safety properties
of abstract executions, e.g. correctness, which says that all
objects conform to their specification.

DEFINITION 8. An abstract execution A = (H,vis) is cor-
rect if for every object o,
Alo = (H|o,visN (H|o x Hlo)) € S(0),
where H|o is the subsequence of H consisting of events e
with obj(e) = o, and S(o) is the specification of o.

The definition of correctness, like other definitions soon to
follow, aims to restrict the responses returned by a data store
to high-level object operations, while leaving the low-level
details of message transmissions unspecified. We can apply
these definitions to a data store execution by considering
the abstract execution in which the high-level operations
occur in the same order on each replica and return the same
responses:

DEFINITION 9. FEzecution o complies with an abstract ex-
ecution A = (H,vis) if for every replica R, H|r = o|¥,
where a|dR° denotes the subsequence of do events by replica

R.

DEFINITION 10. A data store D is correct if every erecu-
tion o of D complies with a correct abstract execution.

Henceforth, we consider only correct data stores.

We say that abstract executions A = (H,vis) and A" =
(H',vis') are equivalent, or A = A’, if for every replica R,
H|r = H'|r. (Notice that if an execution a complies with
A, then any abstract execution A’ that o complies with it is
equivalent to A.) A consistency model is a prefix-closed set of
abstract executions that is closed under equivalence. It ex-
tends the concept of object specification to handle multiple
objects. Analogously, satisfying a consistency model extends
the concept of correctness for a data store:

DEFINITION 11. A data store D satisfies a consistency
model C if every execution o of D complies with some A € C.

Causal consistency guarantees that effects are visible only
after their causes. In other words, if e; is visible to e2 and
ez is visible to es, then e; is visible to es:

DEFINITION 12. A correct abstract execution A =
(H,vis) is causally consistent if vis is transitive: if e; ——»

vis vis
ez and ea — ez, then e; —> e3.

Causal memory [2| can be seen as a special case of this
definition, capturing only read/write registers. It has been
widely adopted in distributed key/value stores [4,|6]/14}|16]
211122}30], but extending to general, replicated data types
seems to require using a framework like the one used here.

3.3 Eventual Consistency

Informally, a liveness property promises that something
“good” eventually happens in an execution. The distinguish-
ing feature of liveness is that it cannot be violated by any
finite execution [3]—it is always possible that the required
“good thing” will occur in the future. In our context, a “good
thing” is an operation becoming visible.

DEFINITION 13. An infinite abstract execution A =
(H,vis) is eventually consistent if for every event e € H,
there are only finitely many events ¢’ € H such that obj(e’') =

obj(e) and e 225 ¢’

Observe that eventual consistency is a property of ab-
stract executions because visibility is defined for abstract
executions only. In other words, while our network model
guarantees eventual message delivery, the delivery of a mes-
sage about some operation does not guarantee that the data
store will choose to make that operation visible. As with
consistency models, we bridge the high-level and low-level
worlds using compliance:

DEFINITION 14. A data store D is eventually consistent
if, for every infinite execution o of D, every abstract execu-
tion that o complies with is eventually consistent.

3.4 Exposing Concurrency in Specifications

Perrin et al. have shown that a replicated object can be
implemented so that client operations appear to be totally



ordered (by breaking ties between concurrent operations in
the same manner in every replica). They thus argue that
replicated objects should be specified with sequential specifi-
cations [26]. Indeed, with a single object, concurrency can be
“hidden,” in the sense that the client cannot detect that con-
current operations exist and are being arbitrarily ordered.

Imagine that a data store implementing a single MVR
object arbitrarily orders concurrent writes and exposes only
one of them to the clients—in effect, implementing a read-
/write register instead of an MVR. The clients cannot detect
that this is happening, because there is always an MVR ab-
stract execution consistent with their observations.

In contrast, with multiple objects, the combination of
causal and eventual consistency allows clients to infer con-
currency of operations even if the data store tries to “hide”
it by ordering them. Figure [2| shows how the causal and
eventual consistency requirements enable the client to infer
concurrency of operations if multiple objects are supported.
In the execution depicted, there are three MVRs shown as
differently shaded circles. The data store must return L as a

response to r, since w, 7’Lb> r. (Proposition |2 in Section ,
and similarly for r,,. Suppose the data store orders w, before
w?, and thus reads from z return w2. The client can still in-
fer wl and w? are concurrent, because had w} been visible
at Ry when w2 was executed, ry should have returned w,.
(A symmetric argument applies if w2 is ordered before wy.)

Therefore, since we consider multiple objects and causal
consistency, we use replicated object specifications that in-
corporate concurrency.

Figure 2: Causal links (dashed arrows) implied by 75 returning
only the value of w2 contradict information flow in messages (solid
arrows), since they imply that ry should return wy’s value.

4. WRITE-PROPAGATING DATA STORES

A write-propagating data store is an eventually consistent
data store whose implementation (i.e., replica state machine)
satisfies two properties, invisible reads and op-driven mes-
sages, defined next. Every highly-available replicated data
storage system we are aware of [6l/10L|13}[141/16,[21}[28//30] has
these properties, when viewed in our model (i.e., ignoring is-
sues such as timeouts for retransmitting dropped messages).

A data store has op-driven messages if it generates mes-
sages only as a result of a client operation, and not in re-
sponse to a received message:

DEFINITION 15. A data store D has op-driven messages
if for any replica R = (2,00, E,A), (1) R does not have a
message pending in oo, and (2) if Aoy, receive(m)) = o2
and R does not have a message pending in o1, then R does
not have a message pending in os.

A data store has invisible reads if a client read operation
does not change the state of the replica:

DEFINITION 16. A data store D has invisible reads if for
any replica R = (X, 00, E,A), if A(o1,e) = o2 and op(e) =
read, then o1 = o2.

In this paper, we concentrate on data stores providing
MVRs, as they expose concurrency and are used in real sys-
tems [10}/13,21]. To simplify notation, we begin the names
of events invoking write operations with w and begin the
names of events invoking read operations with r. We as-
sume that each write event writes a different value, so we do
not distinguish between the event w = do(o, write,v) and
its value v; e.g., we say that w € rval(r), instead of saying
that the value written by the event w is in rval(r).

We proceed to prove several key properties of write-propa-
gating data stores, which serve as building blocks for the
proofs of our main results.

A basic property, which holds for any data store provid-
ing MVRs, is that if read r returns some write w, then w
happens before r.

PROPOSITION 2. Let D be a data store providing MVRs
and a be an execution of D. Let A = (H,vis) an abstract
execution that o complies with. Let v be a do(o,read, V')
event and w be a do(o, write,v) event such thatv € V.. Then

hb
w—r.

We show (in Corollary [4] below) that write-propagating
data stores, i.e. with invisible reads and op-driven messages,
satisfy the original definition of eventual consistency [29|,
i.e., that “if clients stop issuing update requests, then the
replicas will eventually reach a consistent state.” We first
define quiescent executions, in which no message is “in flight.”

DEFINITION 17. A finite execution « is quiescent if for
every replica R, (1) R does not have a message pending after
its last event in «, and (2) every message R sends in « is
received by every replica R # R.

Now we show that if the execution is quiescent, then all
replicas are in a consistent state, in the sense that a client
operation receives the same response regardless of the replica
that executes it.

LEMMA 3. Let D be an eventually consistent data store
with invisible reads. Let o be a quiescent execution of D. If
two reads of the same MVR at different replicas are appended
to a, then both reads return the same response.

Finally, we show that if D has op-driven messages, we can
extend a finite execution a of D into a quiescent execution
o’ by (1) sending any message pending at any replica, and
then (2) delivering each message in flight to every replica but
its sender. There are no messages pending at the end of o,
since D has op-driven messages. Therefore, o/ is quiescent.
This establishes the following corollary of Lemma

COROLLARY 4. Let D be an eventually consistent data
store with invisible reads and op-driven messages. Let o be
a finite execution of D. Then « can be extended to an exe-
cution in which, for any object o, a read of o that occurs at
the end of the extended execution returns the same response
no matter at which replica it is performed.

In most real data store systems, a replica generates a mes-
sage following a client write operation to propagate the write



to remote replicas. We show that a write-propagating data
store must, in fact, do this, if the execution appears quies-
cent from the replica’s perspective. To reason about individ-
ual messages that a replica receives in a given execution, we
use the notation e =% ¢’ to denote that the first message
sent by R(e) after e is received by R(e’) before ¢’.

LEMMA 5. Let D be an eventually consistent data store
with invisible reads and op-driven messages. Let o be an
ezecution of D whose last event is a write w at replica R.

. hb rcv
Suppose that in a, e — w —> e — w for any do event
e. Then R has a message pending following w.

S. LIMITS OF SATISFIABLE CONSIS-
TENCY MODELS

We explore the strength of consistency models satisfiable
by eventually consistent replicated data stores. A consis-
tency model C’ is stronger than consistency model C if
C' C C, that is, C’' prohibits some abstract executions that
C admits, but not vice versa. We show that a strengthening
of causal consistency, observable causal consistency (OCC),
is the strongest consistency model satisfiable by a write-
propagating data store implementing MVRs. To prove that
no consistency model stronger than C is satisfied by a data
store D, it suffices to show that, for every A € C, at least
one execution a of D complies with A. (This is because any
execution A’ that o complies with is equivalent to A. Since
A € C and C is closed under equivalence, A’ € C. Thus,
it cannot be that D satisfies a stronger consistency model
c'cc)

5.1 Observable causal consistency

Intuitively, in an MVR abstract execution A = (H, vis),
vis specifies some information flow between replicas that dic-
tates which prior writes are visible to each executed read,
which dictates the return value of each read given this avail-
able information. Indeed, for write-propagating data stores,
one can construct an execution in which, for each (non-
transitive) vis edge (w,r) between events in distinct repli-
cas, R(w) transmits a message after w and R(r) receives
this message before r (Section . In other words, we can
reconstruct the information flow given in any MVR abstract
execution.

A data store wishing to avoid generating an execution that
complies with A = (H,vis) (e.g, to implement a stronger
consistency model that does not include A) must return dif-
ferent responses for some of the reads in this execution. How
can this be achieved? One way, for example, is to ignore the
received information (for a while). However, a data store
with invisible reads cannot do this (Section [5.3).

Another option is to “hide” concurrency. For example, if
read r returns {wo,wl} in A, the execution we construct
will have wo and w; concurrent according to happens-before.
The data store could still have r return just wi, but it must
make sure that the response it generates complies with some
abstract execution. As Figure [3al shows, this means finding
an abstract execution in which these writes are ordered. In-
tuitively, the data store is pretending that wo is visible to
wy even though wo 7Lb> wy.

This kind of pretense has casuality implications, as

demonstrated in Figure If wo % wi, then w) should
be visible to 7’ because of transitivity. However, " does not

know about w]. To remain correct, there has to be a write w
visible to ' which can be artificially ordered after w, just
like wg and w; were ordered.

Observable causal consistency (OCC) contains abstract ex-
ecutions whose induced information flow is such that con-
current writes cannot be “hidden” in this way. OCC contains
causally consistent abstract executions that expose concur-
rency between operations only when the clients can infer
this concurrency from their observations, and so it cannot
be hidden. OCC achieves this by requiring that whenever a
read returns {wo, wl}, there must exist writes w( and w} to
different objects, such that w} is visible to wo but not to w;
(and wy is visible to w1 but not to wp), and any write W
to obj(w}) that is visible to w; cannot be concurrent with
w}, i.e., must be visible to w] (again, symmetrically for wg).
This guarantees that wi cannot be ordered after wo nor wo
ordered after wi, as shown in Figure

DEFINITION 18. A causally consistent abstract execution
A = (H,vis) is observably causally consistent (OCC) if for
any read v of some MVR o for which rval(r) O {wo, w1},
there exist w(, and w} such that the following conditions hold:

1. w; is a write that is visible to wi_; but to a different

object than o: w}, =2 w;—1 and obj(w}) # o,

2. wi and wy are writes to different objects: obj(wy) #

obj(w1),

3. wh is not visible to w;: wi £ w;,

4. mo write to obj(w;) occurring concurrently with w; is

visible to w;: for any W, if obj(w) = obj(w}) and =

~ VIS ’
w;, then W — wj;.

5.2 Impossibility of Stronger Consistency
than occ

THEOREM 6. Let D be an eventually consistent data
store, providing MVRs, with invisible reads and op-driven
messages. Then D does mot satisfy a consistency model
stronger than observable causal consistency (OCC).

To prove the theorem it suffices to show that for any ab-
stract execution A € OCC, there is an execution a of D
that complies with A. Thus, let A = (H,vis) € OCC be
an observably causally consistent execution. (In particular,
A is causally consistent.) We will construct an execution o
that complies with A. We obtain « by a recursive process,
in which we deliver messages generated after events to en-
sure that hb(a) C vis. The crux of the proof is to show that
D cannot add “fake” visibility edges, and, hence, every read
returns the same response in « as it does in A.

5.2.1 Revealing Executions

An MVR abstract execution A = (H,vis) is revealing,
if for every write operation w € H, the operation R(w)
performs immediately before w is a read operation r,, of the
same object and, for every e € H, 1y —5 ¢ = w —> ¢
if e # w, and e 25w = e 25 1y, if e # ry. That is, w
and r,, are identical with respect to the visibility relation.
Consequently, 7, “reveals” the state of the MVR when the
write w is applied. This enables us to reason about the write
operations that are visible to w, which is otherwise difficult.
(In contrast, writes visible to a read can be inferred from
the read’s response.) The following lemma, proved in the
full version, formalizes this intuition:
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(a) If » returns only wj, the data store (b)

effectively “pretends” that wq RN wi.

tend that w] 2%, 1% to make the return

value of 7’ valid.

wo —25 w, implies that w should be
visible to r’. Here, the data store can pre-

w

(¢) An OCC execution prevents pretend-
ing that w) %5, . In turn, this prevents

pretending that wo —— w;. Thus 7 is re-
quired to return {wo, w1 }.

Figure 3: Observable causal consistency: motivation for definition. Circles of the same color correspond to operations on the same

MVR object. Solid arrows represent is, edges induced by information flow in messages (i.e., are also hb, edges). Dashed arrows represent

additional 2% edges required to make the execution comply with the MVR specification.

LEMMA 7. Let A = (H,vis) be a causally consistent re-
vealing MVR abstract execution, r € H be a read operation
in A, and A’ = (H',vis"), be the operation context of v in
A (Definition @) Let B be an execution of D such that, for
all w € H', ry,w € B. Then for any causally consistent
MVR abstract ezecution A = (f[, vis) that 8 complies with,
w 2w = v L5 w for any w',w € H.

Without loss of generality, we assume the OCC abstract
execution A we consider in our proof is revealing. (Due to
invisible reads, we can always obtain a revealing abstract ex-
ecution A’ by adding the appropriate r,, operations and vis
edges to A, without affecting the response of existing reads
in A. Then, for any execution o’ of D that complies with
A’, the execution o obtained by removing the r,, operations
from o’ is an execution of D that complies with A.)

5.2.2  Recursive Construction of o

We construct the execution a by induction on the length of
H. In the base case, H = ¢, we take a = ¢. For the recursive
step, let H = H' e, and let R = R(e). That is, op = op(e) is
the last high-level operation invoked in «, and it is invoked
at replica R on the MVR obj(e). Let A" = (H',vis’) be a

prefix of A. (By Definition , if e; =5 ea, either eq Lé/> es
or ez = e.) Let o' be the execution of D our construction
returns for A’. We define o by extending o’ in three steps:
(1) Message delivery. Consider the events e’ such that

e % e, in the order they occur in H. Let m. be

the first message sent by R(e’) after €' in o/, if such a
message exists. If m./ is not delivered to R in o/, we
deliver it to R in a by appending a receive(m,) event
at R.

(2) Invoking op(e). Let é be the transition in which op(e)
is invoked at R on obj(e). We append é. (The crux of
the proof will be to show that é = e, i.e., that rval(é) =
rval(e).)

(3) Message sending. If R has a message m pending as
a result of é, we append a send(m) event at R.

Before proving that é = e, we state some properties of a.

hb
PROPOSITION 8. For any do events ep,e1 € o, eg —>
e1 = ey =5 m(e1) and, if eo and e1 are at different

. hb rcv
replicas, then eg — e1 = eg — w(e1), where w(e1) = e
if e1 = €, or e1 otherwise.

Write operations have an even stronger property: if a write

s . . hb .
w is visible to some operation €’ in A, then w — €’ in a:

; hb
PROPOSITION 9. Let w,e’ € H. If w 25 ¢/ then w =
7€), where n7 (/) = é if & = e or e otherwise.

5.2.3 «a Complies with A

We prove by induction on A that the constructed exe-
cution a of D complies with A. The base case, H = ¢,
is vacuously true. For the inductive step, let H = H'e,
A" = (H',vis") be a prefix of A, and o’ the output of our
construction on A’. From the induction hypothesis, o’ com-
plies with A’. We must therefore prove that &, the do event
we invoke at replica R when extending o’ to «, returns the
same response as the event e in A. If op(e) = write, then
rval(e) = ok because the only response the MVR specifica-
tion allows for a write is ok. Thus, because D is correct, it
is also the case that rval(é) = ok. The remaining case, when
op(e) = read, follows from the next two lemmas.

LEMMA 10. w € rval(é) = w € rval(e).

PROOF. Suppose that w € rval(é) but w ¢ rval(e). Then

w2 e (Proposition l and thus w -2 e (Proposition aj
But, as w & rval(e), there exists some w; € rval(e) such that
w ﬂi) w1 li&—) e. Then w1 E) é by Propositionlj

Let ap be the execution obtained by removing from « any
event ¢ such that e’ 7&> é. (By Proposition ag is an
execution of D.) Let ay = g é. Then «; is an execution
of D. R does not have a message pending at the end of a;
(by construction of a and since D has invisible reads and
op-driven messages). If R’ # R sends a message m in a1, R
receives m in a1 (by Proposition . Let 8 = a1 a2 be an
execution of D obtained by appending receive events to o
in some arbitrary order, so that, in 8 every replica receives



every message sent by another replica in ai. Then 8 is a
quiescent execution, and R receives no messages in asz, SO
its state at the of 3 is the same as its state at the end of a;.

Now, consider the execution foc = [ 172 ... in which
we append to 3 a sequence of read operations of the MVR
obj(é) at R. Then B is an execution of D and #; = é for
all ¢ > 1 (as D has invisible reads). Since D is eventually
consistent, Boo complies with some causally consistent MVR
abstract execution A = (H,wvis) such that, for some j > 1,

/] VIS A

for any do event €' € B8, ¢’ — 7.

By Proposition |9 for any w € ctxt(A,e), w LLN é, and so

Rb. ., . hb
rv — € (since ry — w). Thus, rw,w € B (and so rv,w €
Boo). Since w AN w1, Lemma |7]implies that w 2% w1, Yet

w € rval(7;) = rval(é), although w RILRPILN 7, which
contradicts the MVR specification. []

LEMMA 11. wo € rvalle) = wo € rval(é).

PROOF. Suppose that wo € rval(e) but wo ¢ rval(é).
Let rval(é) = {w1,...,wr}. Observe that wo,w1,...,wr €
ctwt(A,e). This follows because (1) for any w’ € rval(e),
w 2% ¢ (MVR specification), (2) wo € rval(e) by defini-
tion, and (3) for 1 <4 <k, w; € rval(e) by Lemma

Now, for any 1 < ¢ < k, {wo,w;} C rval(e), and A €
OCC, so, by Definition there exists a write w; by R(wo)
preceding wo such that obj(w}) # obj(wo) and w; £ w;.
Notice that w] € ctat(A,e) since w] 22 wo ~= e.

Let aig be the execution obtained by removing from « any
event ¢’ such that ¢/ £% é. (By Proposition , ap is an
execution of D.) Let a1 = apé. Then oy is an execution
of D. R does not have a message pending at the end of a;
(by construction of « and since D has invisible reads and
op-driven messages). If R’ # R sends a message m in ai, R
receives m in a1 (by Proposition . Let 8 = aj a2 be an
execution of D obtained by appending receive events to a
in some arbitrary order, so that, in 8 every replica receives
every message sent by another replica in «;. Then g is a
quiescent execution, and R receives no messages in a2, so
its state at the of 3 is the same as its state at the end of ;.

Let 8/ be the execution obtained from 8 by adding a read
r; of the MVR obj(wj) at R(w;) immediately after w;. (Since
D has invisible reads, 3’ is a quiescent execution of D.)

Now, consider the execution Bo, = ' #1 72 ... in which
we append to B’ a sequence of read operations of the MVR
obj(é) at R. Then [ is an execution of D and #; = é for
all ¢ > 1 (as D has invisible reads). Since D is eventually
consistent, Boo complies with some causally consistent MVR
abstract execution A = (H, vis) such that for some j > 1,
for any do event ¢’ € ', ¢/ X% #;.

Notice that for any w € ctxt(4,e), w LN (by Propo-

sition @), and SO T, LN (since Ty LN w). Thus, ry,w €
ctrt(Aje) = Ty, w €L = rw,w € B = ry,w €
Boo. We can thus apply Lemma [7] to Boc.

Since R(w;) does not receive any messages between w;

hb(B’ hb(B hb
and 7}, w), Mr{ = w, #)wi = w, — w;.

. . hb(B’ .
However, w, € rval(r;) implies w) ), r; (by Proposi-
tion , which implies w], 2% w; and, thus, w, 2% w;
(by Proposition , which is impossible since w; £ w;.
Thus w; & rval(r}) for all 1 <7 < k.

Now, since wo - 7; yet wo ¢ rval(;) = rval(é), it must
be that wo 2 w; -2 7; for some 1 < i < k (by the
MVR specification). However, w) LN (from w; RALN

and Lemmal7)). Since A is causally consistent and wo —— w;,
wi 25 w; 2% ], Yet w) & rval(r}). Hence, there must exist
. -~ ;) vis. . vis ’ N ’
a write W such that w; — 1w — r{, for some W € rval(r;).
. hb(p’ .. . . . hb(B
Thus, W LLICON r} (Proposition , implying LAIGIN s,
A . 4. . hb .
which in turn implies @ — w; (as R(w;) receives no mes-
sages between w; and r;). Thus, @ 5w, (Proposition E)

Then W 225 wj by the definition of OCC (Definition .

Lemmaimplies that @ 2% w]. But w, 2% 0 (by defini-
tion of w above), which means that vis is cyclic—a contra-

diction. [

This implies that é = e, proving Theorem [f]

5.3 Comparison to the CAC Theorem

Mahajan, Alvisi and Dahlin’s CAC theorem [23]/24] shows
that a certain class of data stores cannot implement a con-
sistency model stronger than natural causal consistency, in
which the causal order (i.e., visibility) does not violate the
real-time order of operations. Respecting real-time order is
a stronger demand than we make: interpreted in our frame-
work, natural causal consistency requires that an execution
complies with an abstract executions in which events occur
in exactly the same order, as opposed to our requirement for
identical per-replica order.

Our result applies to eventually consistent data stores,
whereas the CAC theorem applies to one-way convergent
data stores. These satisfy a stronger liveness property, es-
sentially stating that any pair of replicas can converge to the
same state with two steps of one-way communication. This
difference is relevant in practice, as some systems weaken
their liveness guarantee to satisfy stronger consistency than
natural causal consistency—e.g., GSP, which globally orders
write operations [9/11].

Both proofs construct an execution meant to comply with
a specific abstract execution, by delivering messages accord-
ing to the visibility relation. Both proofs require invisible
reads; ours also requires op-driven messages.

Having invisible reads is inherently required for The-
orem [6] and the CAC theorem to hold. Without invis-
ible reads, the data store D can avoid producing cer-
tain causally consistent executions and thus satisfy a
consistency model which is stronger than causal consis-
tency (and OCC). For example, suppose that D does
not “expose” a write by returning it in response to a
read until K read operations have been applied locally.
This is illustrated in the
top figure, where a wvis
edge is shown as a dashed
arrow and an hb edge that
is not a vis edge is shown
as a solid arrow. Then
D still satisfies eventual
consistency, but no execu-
tion of D complies with
the causally consistent ab-
stract execution in which




for all s €[1,...,n/]
for all j€[1,...,K]
do; (zi, write((j, 7)), ok)

for all 1 €[1,...,n/]
for all j € [1,. - ,9(1)]
receive, 1 (m; )

for all p#£i,1<p<n’
for all j€[1,...,k]
P

receiven (m)

send; (m) dop—1(z4,read,v) // v = (j,i) receivey, (my)

for all j€[1,...,k]

dop—1(y, write(1), ok) receiven (m;, ;)

sendp—1(my) don (y, read, v)

if v=1
don, (xiv read, (uv 7‘>) // u= g(l)

output g(i) = u
(a) B (b) 7 (c) di

Figure 4: Generating execution oy = 4, which encodes g, and the transition sequence d;, which decodes g(z). We subscript an event

with the id of its replica, e.g., do; for a do event at R;.

Ry writes and R; immediately reads the value written (il-
lustrated in the bottom figure). In contrast, we do not have
an example of a data store without op-driven messages that
satisfies a stronger consistency model than OCC. Whether
this assumption can be relaxed is an interesting question.

6. LOWER BOUND ON MESSAGE SIZE

We bound the size of messages used by write-propagating
eventually consistent data stores. If s MVRs are supported
by n replicas, then, for every k > 1, there is an execution in
which an Q(min{n, s}k)-bit message is sent. When s > n,
this matches the complexity of the causal consistency al-
gorithm of [2]. Messages in their algorithm contain vector
timestamps [171[25] of n components, each of which is loga-
rithmic in the number of operations in the respective replica,
yielding messages of size O(nk), when there are 2* opera-
tions. This leaves open the question of designing a data store
using O(sk)-bit messages, when s € o(n).

THEOREM 12. Let D be a causally consistent and eventu-
ally consistent data store with invisible reads and op-driven
messages. Suppose that D provides s MVRs and has n repli-
cas. Then for every k > min{n —2,s — 1} there is an ezxe-
cution ax in which D sends a message containing
min{n —2,s — 1}1gk bits.

PROOF. Let n’ = min{n —2,s — 1}. For every g : [n'] —~
[k], we construct an execution a4 that ends with a message
mg being sent. We prove that g can be decoded given myg,
which implies that for some g, m, contains at least n'lgk
bits. The basic idea is that, in «g4, each replica R;, 1 <
i < n/, performs k writes, wi, ..., wi to the MVR x;. R_1
performs a write wy to the MVR y after observing the g(i)-
th write of R;, for every 1 < ¢ < n/. The message R,_1
subsequently broadcasts is my. We can decode g using my as
follows. To output g(¢) for some 4, we start with all replicas
in their initial state, and execute the writes wi, ..., w} for
all 4. (They are independent of g.) We deliver to R, all
messages but those sent by R;, followed by m4. Due to causal
consistency, R, cannot return w, in response to a read of
y, since wy depends on w;(i), and R, does not “know” this
value. But if we now deliver R;’s messages to R,, reading
y after each message is received, the result of the read of y
will contain wy after the g(7)-th message has been delivered.
Thus, we can find g(7) given only my.

Now we describe the construction and decoding procedure
more formally.

Construction of ao4: For any g, ag = B4, where  is
independent of g, and 7,4 ends with R, _; sending mg. In 8
(Figure , the sequence of events for each replica R; con-
sists of a write operation wj— writing (j,7) to MVR z; followed
by broadcasting a message mg, for 1 < j <k . (Lemma

implies each m? exists.) In v (Figure , R,—1 receives,
for each R;, the messages mi,..., my;, while performing a
read rf of x; after rece_ziving each message. In the full ver-
sion, we prove that wj € rval(r;). Finally, by Lemma

R, _1 writes 1 to register y and broadcasts my.

Decoding g from m, (Figure [dd): Decoding g(i) given
myg is performed by going through a sequence of transi-
tions at R, that ends with a do(xz;,read, (g(i),4)), which
provides g(i). We begin by having R, receive the messages
mY,...,m¥ for each p # 4. (These messages can be obtained
from B, which does not depend on g, so do not need to be
provided explicitly.) We then obtain ¢(i) by delivering mé
for j in increasing order, performing a read of y after each
message delivery. If R, reads 1, we read (u,4) from z; and
return g(i) = u. Let d; = e1, ..., e, be this sequence of tran-
sitions at R,. To show that the execution o’ = Bgdi is
well-formed, we prove in the full version that o|R, = d;.
Thus, g(7) can be computed given mg, which implies g can
be computed given mgy, and the theorem follows. [

One can prove Proposition [2] Lemma[3} and Lemma [5] for
read/write registers (see Section, and these imply analogs
of Theorem for a data store providing read/write regis-
ters, as well as a combination of MVRs and registers.

7. SUMMARY

We present a framework for specifying highly-available
replicated data stores, for objects that can expose concur-
rency. For write-propagating data stores, representing many
real systems, we show that an eventually consistent data
store cannot satisfy a consistency model strictly stronger
than OCC. An important open question is to implement an
eventually consistent OCC data store, which will show that
OCC is the strongest possible consistency model for even-
tually consistent data stores. We also prove that the data
store must send messages whose size grows with the number
of replicas and the number of operations.

In the full version of the paper, we also extend the space
lower bounds proved by Burckhardt et al. [10] for replicas
implementing certain objects, like MVRs and ORsets. While



their results seemingly imply the space optimality of existing
implementations of these objects [7}[27], they hinge on prop-
erties that many networks do not exhibit: redelivery and re-
ordering of messages. We extend these lower bound proofs so
that they do not require message redelivery and reordering.
Thus, they hold even for relatively well-behaved networks
that only delay or delete messages.

We have focused on MVRs, and left other objects, like
read/write (last-writer wins) registers and ORsets, to future
work. It would be interesting to determine whether Theo-
rem applies to ORsets, and more importantly, if Theo-
rem [6] holds for other objects besides MVRs.
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