
Deterministic Abortable Mutual Exclusion with Sublogarithmic
Adaptive RMR Complexity

Adam Alon

Blavatnik School of Computer Science

Tel Aviv University

Adam Morrison

Blavatnik School of Computer Science

Tel Aviv University

ABSTRACT
We present a deterministic abortable mutual exclusion algorithm

for a cache-coherent (CC) model with read, write, Fetch-And-Add

(F&A), and CAS primitives, whose RMR complexity is O(logW N),
whereW is the size of the F&A registers. Under the standard as-

sumption ofW = Θ(logN), our algorithm’s RMR complexity is

O(
logN

log logN); ifW = Θ(N ϵ), for 0 < ϵ < 1 (as is the case in real mul-

tiprocessor machines), the RMR complexity is O(1). Our algorithm
is adaptive to the number of processes that abort. In particular, if

no process aborts during a passage, its RMR cost is O(1).

ACM Reference Format:
Adam Alon and Adam Morrison. 2018. Deterministic Abortable Mutual

Exclusion with Sublogarithmic Adaptive RMR Complexity. In PODC ’18:
ACM Symposium on Principles of Distributed Computing, July 23–27, 2018,
Egham, United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3212734.3212759

1 INTRODUCTION
Mutual exclusion [9] is a fundamental problem in distributed com-

puting. A mutual exclusion object (henceforth, lock) prevents si-
multaneous entry to a critical section of code, in which some shared

resource is accessed. To execute the critical section, a process must

first acquire the lock by executing an entry section. The lock algo-

rithm guarantees that at any time, at most one process holds the

lock. After acquiring the lock and executing the critical section, a

process releases the lock by executing an exit section.
Classic locks do not allow a process waiting in the entry section

to abort its lock acquisition attempt and quit the lock protocol. Sev-

eral use cases, however, require this feature: (1) a process blocked

on a lock may wish to abandon its work chunk and switch to work-

ing on a different work chunk not subjected to serialization [8]; (2)

database systems use aborts to recover from deadlocks and to deal

with preemption of a lock holding process [25]; and (3) low-priority

processes can abort to expedite lock handoff to a high-priority

process [8, 24]. To meet these demands, an abortable lock [24, 25]
additionally allows a process to abort its lock acquisition attempt

in a finite number of its own steps.

We investigate the remote memory references (RMR) complexity

of abortable locks. The RMR complexity measure captures the fact

that the cost of a memory reference on shared-memory multipro-

cessor machines is not uniform. Some references can be satisfied

quickly from memory local to the processor, whereas the rest must

PODC ’18, July 23–27, 2018, Egham, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in PODC ’18: ACM
Symposium on Principles of Distributed Computing, July 23–27, 2018, Egham, United
Kingdom, https://doi.org/10.1145/3212734.3212759.

be satisfied from remote memory. For example, in a cache-coherent
(CC) system, each processor stores local copies of the shared vari-

ables it accesses in its cache; a cache coherence protocol maintains

the consistency of the copies in the different caches. A memory

access to a cached variable is local; otherwise, it is remote. In a

distributed shared-memory (DSM) system, each shared variable is

permanently locally accessible to a single processor and remote

to all other processors. References to remote memory are orders

of magnitude slower than local memory accesses, as they must

traverse the system’s interconnect, and so the performance of lock

algorithms critically depends on the number of remote memory

references they generate [5, 21]. The RMR complexity measure (or

RMR cost) therefore charges an algorithm only for RMRs; local mem-

ory accesses are considered free. RMR cost has been used almost

exclusively as the complexitymeasure in shared-memorymutual ex-

clusion research over the last 20 years [4, 6, 7, 10–12, 14, 15, 17, 23].

There is a gap between the known RMR cost of locks and of

abortable locks. For an N -process system with read, write, compar-

ison primitives [4] such as Compare-And-Swap (CAS), or LL/SC,

Yang and Anderson’s lock [26] and Jayanti’s abortable lock [17]

both have O(logN) RMR cost, which is optimal [6]. For mutual

exclusion, the Ω(logN) lower bound can be defeated by leverag-

ing additional synchronization primitives. The MCS lock [21], for

example, uses Fetch-And-Store (SWAP) in addition to the aforemen-

tioned primitives, and has RMR cost of O(1). For abortable mutual

exclusion, however, no algorithm with worst-case sublogarithmic

RMR cost is known. Lee’s abortable lock [19] leverages SWAP and

Fetch-And-Add (F&A) primitives to obtain an RMR cost of O(A2),

where A is the number of processes that abort. Lee’s algorithm

therefore incurs O(1) RMRs if no process aborts, but its worst-case

RMR cost is O(N 2). Sublogarithmic RMR cost can also be achieved

using randomization, both for locks [7, 11, 14, 15] and for abortable

locks [12, 23], but this paper considers deterministic algorithms.

Our Contribution. We show that, as with mutual exclusion,

abortable locks can leverage additional primitives to obtain sublog-

arithmic worst-case RMR cost. We present an abortable lock al-

gorithm for a CC model with F&A in addition to read, write, and

CAS primitives, whose worst-case RMR cost is O(logW N), where
W is the size of the F&A registers. Under the standard assumption

ofW = Θ(logN), this time/space tradeoff implies that our algo-

rithm’s RMR cost is O(
logN

log logN). The RMR cost becomes O(1) if

W = Θ(N ϵ) for some 0 < ϵ < 1, as is the case in realistic mul-

tiprocessor systems.
1
Our algorithm is adaptive to the number of

processes that abort. The RMR cost of a complete passage (entry
and corresponding exit of the critical section) isO(logW Ai), where
Ai is the number of processes that abort during the passage. If no

1
E.g., for a system with a billion processes and 64-bit memory words,W ≈ N 1/5

.

https://doi.org/10.1145/3212734.3212759
https://doi.org/10.1145/3212734.3212759
https://doi.org/10.1145/3212734.3212759

Algorithm Model Primitives Space (#words) Fairness RMR cost of a passage through CS
Guarantee Worst-case No aborts Adaptive bound

Scott [24] CC/DSM SWAP, CAS unbounded FCFS unbounded O (1) O (#A), where #A is the number of aborts during

the execution

Jayanti [17] CC/DSM LL/SC or CAS O (N) FCFS O (logN) O (min(k, logN))
O (min(k, logN)), where k is the maximum num-

ber of processes active concurrently during the pas-

sage (i.e., point contention)
Lee [19] CC F&A, SWAP O (N 2) FCFS O (N 2) O (1) O (Ai · At)

This One-Shot CC/DSM F&A O (N)O (N)O (N) FCFS
O (logW N)O (logW N)O (logW N) O (1)O (1)O (1) O (logW Ai)O (logW Ai)O (logW Ai) for complete passage

Work O (logW At)O (logW At)O (logW At) for aborted passageLong-Lived CC F&A, CAS O (N 2)O (N 2)O (N 2)
Starvation
Freedom

Table 1: Comparison of abortable locks, showing their system model, required primitives, complexity, and fairness.

process aborts during a passage, its RMR cost is O(1). The RMR

cost of an aborted passage is O(logW At), where At is the number

of processes that abort during the entire execution. (Note that our

notion of adaptivity differs from that of Jayanti’s algorithm [17], in

which the RMR cost of a passage depends on the maximum number

of processes that are concurrently active during the passage, not

only on those that abort.)

We obtain our algorithm by composing two constructions. We

first design a one-shot abortable lock, which each process can at-

tempt to acquire at most once. This lock has the aforementioned

RMR cost and linear space complexity. We next present a generic

transformation that converts a one-shot abortable lock algorithm

with space complexity s(N), where s(N)/2W = O(1), into a long-

lived algorithm with the same asymptotic RMR cost and space

complexity O(N · s(N) + N 2
). Our final algorithm thus uses O(N 2)

memory words. The transformation does not maintain fairness

guarantees. While our one-shot algorithm is first-come-first-served

(FCFS) [18], the final algorithm is starvation-free. Table 1 compares

the final algorithm to prior work.

2 MODEL AND PROBLEM STATEMENT
Model. We consider an asynchronous shared-memory model, in

which a set of N deterministic processes communicate by executing

atomic operations on sharedW -bit words that support read, write,

CAS, and F&A operations. CAS(w,o,n) atomically changes w’s

value to n if w contains o, and returns true; otherwise, it returns
false without modifyingw . F&A(w,x) atomically updates the value

stored inw from v to v + x , and returns v . A configuration consists

of the state of all processes and memory words. An execution is a

(possibly infinite) sequence of steps. Each step consists of a process
invoking an operation on a shared variable and receiving its return

value, thereby moving the system to a new configuration.

RMR complexity. In a cache-coherent (CC) model, each processor

maintains local copies of shared variables it accesses in its cache, and

a coherence protocol ensures the consistency of cached variables by

invalidating cached copies when a variable is written. A memory

access to an uncached variable is called a remote memory reference
(RMR): Each write, CAS, or F&A incurs an RMR. A read by process

p of a shared variablew incurs an RMR if (1) it is p’s first read ofw ,

or (2) after p’s last read of w , another process performed a write,

CAS, or F&A tow . In a distributed shared-memory (DSM) model,

each register is (forever) local to some processor and remote to all

others. An access to a remote register is an RMR.

Abortable mutual exclusion. An abortable lock supports the meth-

ods Enter and Exit . A process attempts to acquire the lock by ex-

ecuting Enter . If Enter returns true, the process acquires the lock
and enters the critical section (CS). While inside Enter , a process
can receive an external signal to abort its attempt, in which case

Enter may return false.2 Once a process completes the CS, it exits
the CS by invoking Exit and thereby releases the lock. A passage
is the sequence of steps in which a process executes Enter , the CS,
and Exit . A process not executing Enter , Exit , or the CS is said to

be in the remainder section.

Problem statement. The goal is to design an abortable lock algo-

rithm satisfying the following requirements: (1)mutual exclusion: at
any time, at most one process is in the CS; (2) starvation-freedom: if
no process crashes outside the remainder section and every process

that enters the CS eventually leaves it, then if a process p invokes

Enter and does not abort its attempt, p eventually enters the CS in

that attempt; (3) bounded exit: a process completes an Exit call in a

finite number of its own steps; and (4) bounded abort: if a process p
busy waiting in Enter receives a signal to abort its attempt, then

p’s execution of Enter returns (either true or false) within a finite

number of p’s steps.

3 ONE-SHOT ALGORITHM
Here, we describe our one-shot abortable lock, which is the main

building block of our algorithm. Unless noted otherwise, we assume

the CC complexity model.

The one-shot lock implements an array-based queue lock [5,

13], augmented with a data structure that tracks which processes

have aborted and thus given up their place in the queue. Our high-

level design is similar to Jayanti’s algorithm [17], with the main

difference being in the augmenting data structure. Whereas Jayanti

uses a linearizable priority queue [16], we use a tree-based ordered

set that is not linearizable. The semantics of ourTree data structure
cannot be cleanly captured by a sequential specification, as they

depend on the concurrency between operations.

Figure 1 shows the pseudo-code of the lock algorithm. Its un-

derlying data structures are an array-based queue, дo, and a Tree
whose implementation we describe in Section 4. We assume that

each process attempts to perform at most one pass through the

critical section. To acquire the lock, a process first increments Tail
using F&A to obtain an index to a slot in the дo array. We will

identify each process with its index 0 ≤ i ≤ N − 1. Process i spins

2
Returning false is not mandatory because a process can receive the signal after

being handed the lock, but before noticing the handoff. Formulations in which an abort

signal moves the process to some Abor t method [17] similarly require this method

to detect and handle such a scenario.

Shared Variables:
Head = 0; Tail = 0; LastExited = −1; дo = [1, 0, ..., 0]; T ree (see Section 4)

Algorithm 3.1 Enter ()

1: i ← F&A(Tail, 1)
2: while ¬дo[i] do
3: if Abor tSiдnal then
4: Abor t (i)
5: return f alse
6: Head ← i
7: return true

Algorithm 3.2 Exit ()

8: head ← Head
9: LastExited ← head
10: SiдnalN ext (head)

Algorithm 3.3 Abor t (i)

11: T ree .Remove(i)
12: head ← Head
13: if head , LastExited then
14: return

15: SiдnalN ext (head)

Algorithm 3.4 SiдnalN ext (head)

16: j ← T ree .F indNext (head)
17: if j ∈ {⊤, ⊥} then
18: return

19: дo[j] ← true

Figure 1: One-shot abortable lock algorithm

on its slot until being signaled that it owns the lock, and then sets

the queue’s Head to i and enters the CS. (Initially, дo[0] is set, so
process 0 immediately enter the CS.)

When process i exits the CS, it hands the lock off to the next slot
in the queue, which is the minimal j > i such that slot j has not been
abandoned by its process due to an abort. The Tree data structure
facilitates this handoff. It maintains the (ordered) set of queue slots

that have not been abandoned by aborting processes. (Initially,

Tree = {0, . . . ,N − 1}.) The handoff of process i’s lock ownership

to the next slot is performed by SiдnalNext(i). This procedure calls
Tree .FindNext(i) to find the next slot, j , in order to setдo[j] to true .
FindNext(i) might return ⊥, indicating that all possible successor

slots have been abandoned and thus the lock is now unusable.

Finally, FindNext(i)may also return⊤, indicating that its successor

search “crossed paths” with an aborting process k removing itself

fromTree . In such a case, as described next, some aborting process

will assume responsibility for performing the handoff on behalf of

process i .
Aborts are performed by the Abort() procedure, which a process

busy waiting in Enter calls when it detects the externalAbortSiдnal .
An aborting process i abandons its queue slot by removing itself

from Tree . It then reads Head to obtain the id of the process in the

CS, h, and compares h to the LastExited variable, which contains

the id of the last process to release the lock. If h = LastExited ,
then process h may be in the middle of exiting the CS, and its

FindNext() might have crossed paths with process i’s Remove and
thus returned ⊤. Therefore, process i assumes responsibility for h’s
lock handoff and executes SiдnalNext(h). Of course, it can then

cross paths with some aborting process j and so fail to complete

the handoff, but then process j would assume responsibility for

the handoff. The crux of our correctness proofs is to show that

eventually, some aborting process that assumes responsibility for

the handoff manages to complete it.

DSM variant. In the DSM model, we cannot guarantee that the

дo slot of a process is local, since the slot is determined at run time.

As a result, a process might incur an unbounded number of RMRs

while busy waiting. We use indirection to address this problem, by

having the process spin on a local spin bit that it publishes in an

announce array. To synchronize with a concurrent lock handoff,

process i publishes its spin bit s by writing announce[i] = s , and
then, if дo[i] , 1, spinning locally on s . A SiдnalNext() hands the

lock to process i by writing дo[i] = 1, reading s = announce[i], and
if s , ⊥, writing s = 1.

4 TREE DATA STRUCTURE
TheTree data structure maintains aW -ary tree with N leafs, whose

height is H = ⌈logW N ⌉. A tree node u contains aW -bit word,

initially 0, in which the j-th most significant bit is associated with

u’s j-th child, counting from the left (so the leftmost bit in u is

associated with u’s leftmost child). We number the leafs from left to

right starting with 0, and identify leafp with processp (equivalently,
queue slot p). Tree has the property that if some queue slot in the

subtree rooted at u has not been abandoned by an aborting process,

then the bit associated with u in u’s parent is clear. To maintain

this property, an aborting process p ascends the tree starting from

its leaf, performing a F&A to set the bit associated with its subtree

in each visited node u. If all bits in u are then set, the process keeps

ascending to u’s parent; otherwise, it stops.
FindNext(p) needs to find the first leaf to the right of p that

has not been abandoned. To find this leaf, it simply walks up the

tree until finding a clear bit to the right of p, and then walks down

towards the relevant leaf. If FindNext(p) does not find a zero bit

during its ascent, it returns ⊥. If it encounters a node in which all

bits are set after starting to descend, then it has “crossed paths”

with a Remove() ascending the subtree and so returns ⊤. Figure 2

depicts these scenarios.

Figure 3 presents the pseudo-code of the algorithm. Because the

tree structure is static, we do not need pointers in the nodes; parent

or child nodes are computed by the processes. Leaf nodes act as

static sentinels. Only the values stored in non-leaf nodes need to be

stored in shared memory. The size of the tree is thus O(NW) words.
For 0 ≤ j ≤W − 1, we denote the j-th child (from left to right) of

node u by Child(u, j); if u is a leaf, Child(u, j) = ⊥. We denote the

parent of node u by Parent(u); if u is the root, Parent(u) = ⊥. The
i-th leaf is denoted Leaf (i). TheW bits maintained in a node are

stored in a field namedvalue . For leafs,value contains the id of the
associated process (i.e., Leaf (p).value = p for 0 ≤ p ≤ N − 1).

We use the following notation to associate bits with processes

(equivalently, queue slots). The level of node u, denoted Lvl(u), is 0
ifu is a leaf; otherwise, Lvl(u) = Lvl(Child(u, 0))+1. Let 1 ≤ l ≤ H .

The node of process p in level l , denoted Node(p, l), is Leaf (p) if
l = 0; otherwise, Node(p, l) = Parent(Node(p, l − 1)). The offset of
process p in level l , denoted O f f set(p, l) is the number o such that

Child(Node(p, l),o) = Node(p, l − 1). The bit of process p in level
l , denoted Bit(p, l), is the o-th MSB of Node(p, lvl).value , where
o = O f f set(p, l).

00

00

01 01

p

10

11 01

q

(a) Found successor
(return q)

01

00

01 01

p

11

11 11

(b) No successor
(return ⊥)

00

00

01 01

p

11

11 11

q

R
em

ov
e
(q
)

(c) Cross paths with
ascending Remove

(return ⊤)

Figure 2: Possible F indNext (p) scenarios

Algorithm 4.1 T ree .F indNext (p)

20: for lvl ← 1 to H do
21: node ← Node(p, lvl)
22: of f set ← Of f set (p, lvl)
23: snap ← node .value
24: if HasZeroToTheRiдht (snap, of f set) then
25: break

26: if HasZeroToTheRiдht (snap, of f set) = false then
27: return ⊥ // reached root and found no candidate

28: index ← Get F ir stZeroToTheRiдht (snap, of f set)
29: node ← Child (node, index)
30: for dummy ← lvl − 1 to 1 do
31: snap ← node .value
32: if snap = EMPTY then
33: return ⊤

34: index ← Get F ir stZero(snap)
35: node ← Child (node, index)
36: return node .value

Algorithm 4.2 T ree .Remove(p)

37: for lvl ← 1 to H do
38: j ← word with only Of f set (p, lvl)-th MSB set

39: snap ← F&A(Node(p, lvl).value, j)
40: if snap + j , EMPTY then
41: break

Algorithm 4.3 T ree .AdaptiveF indNext (p)

42: node ← Node(p, 1)
43: of f set ← Of f set (p, 1)
44: for lvl ← 1 to H do
45: if of f set =W − 1 then
46: node ← RiдhtCousin(node)
47: of f set ← −1
48: snap ← node .value
49: if HasZeroToTheRiдht (snap, of f set) then
50: break

51: if of f set = −1 then
52: of f set ← of f setAtParent (node) − 1
53: else
54: of f set ← of f setAtParent (node)
55: node ← Parent (node)
56: Continue as in F indNext () (from Line 26 of Algorithm 4.1)

• HasZeroToTheRiдht (snap, of f set) returns true if and only if there is a zero
bit in snap to the right of of f set .

• Get F ir stZeroToTheRiдht (snap, of f set) returns the offset of the first zero
bit in snap to the right of of f set .

• Get F ir stZero(snap) returns the offset of the first zero bit in snap .
• EMPTY is the all-ones word, 2

W − 1.
• RiдhtCousin(node) is the node to the right of node at the same level.

• of f setAtParent (node) is the offset of the bit associatedwithnode at its parent,
i.e., o such that Child (Parent (node), o) = node .

Figure 3: Tree data structure

4.1 Adaptive FindNext()FindNext()FindNext()
It is easy to see that the RMR cost of Remove() is O(logW At),
where At is the number of processes that abort during the ex-

ecution. However, FindNext() is not adaptive to the number of

aborts. When invoked on a leaf v that is the rightmost node in

its subtree, FindNext() ascends to the root of the subtree—which

can be of height logW N—even if the leaf of the next non-aborted

process is immediately to the right of v (just in another subtree).

We introduce a novel (though small) change to the way

FindNext(p) walks up the tree that improves its RMR cost to

O(logW Ai (p)), where Ai (p) is the number of processes that abort

during process p’s passage. Algorithm 4.3 presents the pseudo-code

of the adaptive algorithm. Instead of ascending along a path from

the leaf to the root, whenever we reach a node u that is the right-

most child of its parent, we “sidestep” to v , the node right to u’s
parent at the same level, as depicted in Figure 4. The idea is that

because we cannot hope to find a zero bit to the right of u’s bit in
Parent(u), we instead optimistically check whetherv has a zero bit.

If this is the case, then FindNext(p)’s ascent would have stopped

atw , the lowest common ancestor of u and v , and would have then

started descending until eventually reaching v . If, however, v does

not contain a zero bit, then all leafs between p and the rightmost

leaf in v’s subtree have been abandoned. Therefore, it is safe to

resume the ascent from v .
A subtle point in Algorithm 4.3 is that if we “sidestep” to v , fail

to find a zero bit there, and ascend to v’s parent, we still need the

w

. . .

. . . u . . .

. . .

(a) F indNext ascent

w

. . .

. . . u

v

. . .

. . .

(b) AdaptiveF indNext ascent

Figure 4: Comparison of F indNext () ascent algorithms

search for a zero bit in v’s parent to include v’s subtree. (Hence the
use of o f f setAtParent(v) − 1 in line 52, after “sidestepping.”) The

reason is that the Remove() which has set the last bit in v might

not have set v’s bit in the parent yet. In such a case, FindNext()
would have returned ⊤, as it would descend towards v (which it

would find EMPTY) after going through Parent(v) (where v’s bit
is zero). Therefore, AdaptiveFindNext() mimics this property.

We can thus show that AdaptiveFindNext() is equivalent to
FindNext() in the following sense: (The proof appears in the full

version [3].)

Lemma 1. Let E be an execution of the one-shot algorithm using
AdaptiveFindNext(). Then there exists an execution E ′ of the one-
shot algorithm using FindNext(), such that (1) process p invokes
FindNext(q) in E ′ if and only if it invokes AdaptiveFindNext(q) in
E; (2) process p’s FindNext(q) in E’ returns x ∈ [N] ∪ {⊥,⊤} if and
only if its AdaptiveFindNext(q) in E returns x ; and (3) the order of
FindNext() invocation/responses in E ′ is the same as the order of
AdaptiveFindNext() invocation/responses in E.

5 CORRECTNESS AND COMPLEXITY OF THE
ONE-SHOT ALGORITHM

Here, we prove that our one-shot algorithm satisfies mutual ex-

clusion, starvation freedom, and the first-come-first-served (FCFS)

fairness condition (formally defined later). Then we show that the

algorithm has sublogarithmic adaptive RMR cost. We assume that

W ≥ ⌈logN ⌉. The following theorem summarizes these properties.

Theorem 2. The one-shot lock of Figure 1 and Figure 3 satisfies
mutual exclusion, starvation freedom, bounded exit, bounded abort,
and FCFS. Each passage of the algorithm incurs O(logW Ai) RMRs,
whereAi is the number of processes that abort during the passage. An
aborted attempt incurs O(logW At) RMRs, where At is the number
of processes that abort during the entire execution.

Lemma 1 implies that any correctness result obtained for the

one-shot algorithm using FindNext() (Algorithm 4.1) also holds

for AdaptiveFindNext() (Algorithm 4.3). Therefore, for simplicity,

the following proofs consider the one-shot lock with FindNext().

Notation. Let E be an execution. We denote by Et the prefix of E
consisting of the first t steps in E. The value of variable v at time
t is the value of v in the configuration following Et . Step s occurs
at time t if it is the t-th step in E. We identify a process with the

index it obtains from the F&A on Head (Algorithm 3.1, line 1).

5.1 Tree Properties
We begin the proof of Theorem 2 by proving some properties of the

Tree data structure. We assume a well-formed execution, in which

(1) each process invokes FindNext() at most once; (2) Remove(p)
is invoked only by process p, and at most once; and (3) if process p
invokes both Remove(p) and FindNext(u), then it invokes them in

this order. An execution of the one-shot algorithm is well-formed.

5.1.1 Preliminaries. Abusing notation, we say that p ∈ u if

Node(p,Lvl(u)) = u, i.e., if Leaf (p) is in the subtree rooted at u.

Definition 1. The lowest common level of leafs p and q, denoted
LCL(p,q), is the lowest level in whichp andq have a common ancestor,
i.e., LCL(p,q) = min{lvl ∥ Node(p, lvl) = Node(q, lvl)}. The lowest
common level of leaf p and internal node u is LCL(p,u) = LCL(p,q)
for some leaf q ∈ u.

The structure of the tree immediately implies that for any leafs

p < q with L = LCL(p,q), the following hold: (1) O f f set(p,L) <
O f f set(q,L); (2) ∀ lvl > L.O f f set(p, lvl) = O f f set(q, lvl); (3)
∀ lvl ≥ L.Node(p, lvl) = Node(q, lvl); and (4) ∀p < r <
q. LCL(p, r) ≤ L, LCL(r ,q) ≤ L.

Claim 3. In any execution E, Bit(p, lvl) = 1 if and only if
some process performs F&A(Node(p, lvl).value, j) in Remove() (Al-
gorithm 4.2, line 39), where j is a word whose only set bit is the
O f f set(p, lvl)-th MSB.

Proof. Appears in the full version of the paper [3]. �

Lemma 4. For every execution E, process p, and 1 ≤ lvl ≤ H , if
Bit(p, lvl) = 1 at time t , then for all l < lvl andm ∈ Node(p, lvl −1),
Bit(m, l) = 1 at time t .

Proof. We prove by induction over lvl . The base case of

lvl = 1 is vacuously true. For the induction step, assume the

claim holds for levels 1, . . . , lvl − 1. Suppose that Bit(p, lvl) =
1 at time t . Claim 3 implies that Bit(p, lvl) = 1 because of a

F&A performed on Node(p, lvl).value by some process q. Then
Node(q, lvl) = Node(p, lvl) and O f f set(q, lvl) = O f f set(p, lvl).
Therefore, q ∈ Node(p, lvl − 1). For process q to have accessed

Node(p, lvl) to set Bit(p, lvl), it must have reached iteration lvl
in Remove(q). Consider iteration lvl − 1 of Remove(q). Process q
wrote Node(q, lvl − 1).value = EMPTY at time t1 < t . Because
Node(q, lvl − 1) = Node(p, lvl − 1), this means that for every

m ∈ Node(p, lvl − 1), Bit(m, lvl − 1) = 1 at time t1 < t . Let
m ∈ Node(p, lvl − 1). We know Bit(m, lvl − 1) = 1 at time t1.
Sincem ∈ Node(m, lvl − 2), by the induction assumption, for every

l < lvl − 1, Bit(m, l) = 1 at time t1. The claim follows, as t1 < t . �

Corollary 5 (Remove Invariant). For every execution E, process
p, and 1 ≤ lvl ≤ H , if Bit(p, lvl) = 1 at time t , then (1) for every
q ∈ Node(p, lvl−1), processq invokesRemove(q) at some time t ′ ≤ t ;
and (2) if Remove(p) is not invoked in Et , then for all 1 ≤ lvl ≤ H ,
Bit(p, lvl) = 0 in Et .

5.1.2 FindNext() Properties. Let E be an execution of the algo-

rithm. We now prove several properties provided by Tree during
E. We identify the invocation (respectively, completion) of a Tree
method with the first (respectively, last) memory operation per-

formed by the method’s code. If process p invokes methodM , we

denote by Mp the subsequence of E that starts at M’s invocation

and ends at its completion (or, ifM does not complete, at the end

of E). We say that Mp happens before M ′q , denoted Mp → M ′q , if

the completion of Mp occurs before the invocation of M ′q (i.e., p
performs the last memory operation in Mp ’s code before q per-

forms the first memory operation of M ′q). We say that a method

Mp starts before method M ′q completes, denoted Mp M ′q , if the

invocation of Mp occurs before the completion of M ′q in E. Note

that Mp M ′q ⇐⇒ ¬(M ′q → Mp). We use the fact implied by

this equivalence, that if A B and B → C , then A C .
The first three properties say that FindNext(p)a returns the first

process q > p that did not yet invoke Remove(v).

Property 6. If FindNext(p)a returns q < {⊥,⊤}, then p < q.

Property 7. If FindNext(p)a returns q < {⊥,⊤} and Remove(q) is
invoked in E, then FindNext(p)a → Remove(q).

Proof. Let t1 be the time a executes the last step of FindNext(p).
Code inspection shows that this step reads Bit(q, 1) = 0. The

first step of Remove(q) is a F&A that sets Bit(q, 1) to 1. It fol-

lows that Remove(q) cannot perform its first step before t1, i.e.,
FindNext(p)a → Remove(q). �

Corollary 8. IfRemove(q) FindNext(p) then FindNext(p) does
not return q.

Property 9. If FindNext(p)a returns q < {⊥,⊤}, then for all p <
w < q, Remove(w) FindNext(p)a .

Proof. Let t be the time a executes the last step of FindNext(p).
Assume towards a contradiction, that for some p < w < q,
Remove(w) does not perform its first memory operation in Et .
It follows from the remove invariant that for all 1 ≤ lvl ≤ H ,

Bit(w, lvl) = 0 at time t . Let lp,q = LCL(p,q), lp,w = LCL(p,w),
and lw,q = LCL(w,q). Code inspection shows that a ascends until

level lp,q , observing only 1 bits to the right of O f f set(p, l) at all
levels l < lp,q . At level lp,q , a observes 0 at bit O f f set(q, lp,q) and
1 at every bit between O f f set(p, lp,q) and O f f set(q, lp,q). Then a
starts descending. In each level l , a observes 0 at bit O f f set(q, l)
and 1 at every bit to the left of that offset. Finally, a reaches Leaf (q)
and returns q.

If lp,w < lp,q , then O f f set(w, lp,w) > O f f set(p, lp,w). Yet a
ascends through level lp,w , implying that it observes Bit(w, lp,w) =
1 during Et , a contradiction. If lp,w = lp,q = lw,q , then

O f f set(p, lp,w) < O f f set(w, lp,q) < O f f set(q, lp,w). Thus, a
reads Bit(w, l) = 1 during Et , a contradiction. Otherwise, lp,q >
lw,q > 0, and therefore O f f set(w, lw,q) < O f f set(q, lw,q). Yet

a descends level lw,q , implying that it observes Bit(w, lw,q) = 1

during Et , a contradiction. �

The next property says that if FindNext(p) returns ⊥, then every

process q > p has invoked Remove(q) (and thus no next process

should be signaled).

Property 10. If FindNext(p)a returns ⊥, then for all p < q < N ,
Remove(q) FindNext(p)a .

Proof. Assume towards a contradiction, that for some p < w <
n, Remove(w) does not perform its first step in Et . It follows from
the remove invariant that for all 1 ≤ lvl ≤ H , Bit(w, lvl) = 0

at time t . Let lp,w = LCL(p,w) ≤ H . At level lp,w , a observes

1 at all offsets greater than O f f set(p, lp,w) at some time t1 ≤ t .
We knowO f f set(p, lp,w) < O f f set(w, lp,w), implying a observed

Bit(w, lp,w) = 1 at time t1 ≤ t , which is a contradiction. �

The next property says that the process ids returned by non-

overlapping FindNext(p) executions are monotonically increasing.

Property 11. If FindNext(p)a → FindNext(p)b and
FindNext(p)a , FindNext(p)b respectively return qa ,qb < {⊤,⊥},
then qa ≤ qb .

Proof. Assume towards a contradiction that qa > qb . From
code inspection, a ascends until level lp,qa = LCL(p,qa) and then

descends until level 0, and b ascends until level lp,qb = LCL(p,qb)
and then descends until level 0. From Property 6, we have p <
qb < qa , and therefore lp,qb ≤ lp,qa . If lp,qb < lp,qa , then (1)

a reads Bit(qb , lp,qb) = 1, as a ascends past level lp,qb ; and (2) b
reads Bit(qb , lp,qb) = 0, as it stops its ascent at level lp,qb . However,
FindNext(p)a → FindNext(p)b , and therefore any bit observed by
a as 1 cannot be observed by b as 0, so this is a contradiction.

If lp,qb = lp,qa , then both a and b stop their ascent at this

level, but descend into different subtrees. Let l = LCL(qa ,qb). If
l = lp,qb = lp,qa , then clearly O f f set(p, l) < O f f set(qb , l) <
O f f set(qa , l), and therefore a reads Bit(qb , l) = 1 but b reads

Bit(qb , l) = 0, which is a contradiction, since FindNext(p)a →
FindNext(p)b . Therefore, l < lp,qb = lp,qa and O f f set(qb , l) <
O f f set(qa , l). Thus, a reads Bit(qb , l) = 1, as it descends towards

a, but b reads Bit(qb , l) = 0. Since FindNext(p)a → FindNext(p)b ,
this is a contradiction. �

The last property refers to scenarios in which process a’s
FindNext(p) is about to return some value q > p, but a Remove(q)
crosses paths with a’s FindNext(p) execution and causes it to re-

turn ⊤. The property says that in such a case, there exists a process

b that assumes responsibility for p’s lock handoff. We reason about

the responsibility for the handoff with the following responsibility
relation.

Definition 2 (Responsibility relation). Given processes a,b, we say
that process a has less p-responsibility than b, denoted a <Rp b, if the
following 4 conditions hold in E:

(1) Remove(b) is invoked by b in E.
(2) FindNext(p)a is invoked by a in E.
(3) FindNext(p)a Remove(b).
(4) For every p < d < max{a,b}, Remove(d) Remove(b).

Lemma 12. The relation <Rp is a strict partial order.

Proof. A strict partial order is irreflexive and transitive.

Irreflexive: Assume Remove(a) and FindNext(p)a are both in-

voked in E by some process a. The execution is well-formed,

and so we have Remove(a) → FindNext(p)a . Therefore,

¬(FindNext(p)a Remove(a)). Therefore, Conditions 1–3 in Def-

inition 2 cannot all hold together for a, and thus a <Rp a cannot

hold.

Transitive: Assume a <Rp b and b <Rp c for some processes a,

b, and c . From Conditions 1 and 2 in Definition 2, Remove(c) and
FindNext(p)a are invoked in E. Therefore, Conditions 1 and 2 also

hold for a and c . From Condition 1, Remove(b) is invoked by b in

E. From Condition 2, FindNext(p)b is invoked by b in E. The exe-
cution is well-formed, so we have Remove(b) → FindNext(p)b .
From Condition 3, FindNext(p)a Remove(b). From Condi-

tion 3, FindNext(p)b Remove(c). Therefore, we conclude that
FindNext(p)a Remove(b) → FindNext(p)b Remove(c), and
thus FindNext(p)a Remove(c) holds. Therefore Condition 3

holds for a, c . Let d such that p < d < max{a, c}. If p < d <
max{b, c}, then from Condition 4 we get Remove(d) Remove(c)
as needed. Otherwise, p < d < max{a,b}, and from Condition

4, we know Remove(d) Remove(b). We can thus conclude that

Remove(d) Remove(b) → FindNext(p)b Remove(c), which
implies Remove(d) Remove(c) as needed. Therefore, Condition
4 holds for a, c , implying a <Rp c .

�

Corollary 13. If a <Rp b, then there exists a maximal u for a, i.e., u
such that a <Rp u and for all c , ¬(u <Rp c).

Property 14. Fix processes p and a ≥ p. If for every p < d < a,
Remove(d) Remove(a), and FindNext(p)a returns ⊤, then for
some process b , a, a <Rp b

Proof. Since FindNext(p)a returns ⊤, a reads EMPTY from

node .value for some node node at time t (Algorithm 4.1, line 31).

Let b be the process whose F&A in Remove(b) writes EMPTY to

node .value . Clearly, b ∈ node and b , a. We claim that a <Rp b.

Condition 1: Let l− be the level of node , i.e., the level in which p
stops its descent. Then at time t1, a reads Bit(l− + 1,b) = 0, and at

time t2 > t1, a reads Bit(b, l−) = 1. The latter fact implies, from the

remove invariant, that Remove(b) is invoked by b in E.
Condition 2: Immediate from the premise.

Condition 3: Consider Remove(b)’s execution. Since b sets

node .value to EMPTY , it ascends to level l− + 1, with the intent to

set Bit(l− + 1,b) to 1. However, at time t1, a reads Bit(l− + 1,b) = 0,

implying that Remove(b) did not perform a F&A at level l− + 1 by
then. Therefore,Remove(b) does not complete before FindNext(p)a
is invoked, i.e., FindNext(p)a Remove(b).
Condition 4: Let p < d < max{a,b}. Suppose p < d < a. We

have Remove(d) Remove(a), Remove(a) → FindNext(p)a and

FindNext(p)a Remove(b). Therefore, Remove(d) Remove(b),
as needed. Otherwise, p ≤ a ≤ d < b. Let l+ be the level at

which a stops its ascent and starts descending towards b. Let ld,b =
LCL(d,b), and lp,d = LCL(p,d).

Suppose that ld,b > l−. If ld,b < l+, a descends through

Node(b, ld,b) = Node(d, ld,b) and observes Bit(d, ld,b) = 1 since it

descends towards b. If ld,b = l
+
and lp,d < l+, a ascends through

Node(p, lp,d) = Node(d, lp,d) and observes Bit(d, lp,d) = 1, as it

keep ascending. If ld,b = l+ and lp,d = l+, a stops ascending at

Node(b, ld,b) = Node(d, lp,d) and observes Bit(d, lp,d) = 1, as a
then descends towards b. In any case, we have that at some time

t3 ≤ t1, a reads Bit(d, ld,b) = 1 or Bit(d, lp,d) = 1. The remove

invariant implies that d performs the first step of Remove(d) at
some time t4 ≤ t3. Above we have established that Remove(b) does
not complete before t1 ≥ t3 ≥ t4, implying that Remove(d)
Remove(b).

Suppose, then, that ld,b ≤ l−. Then Remove(b) ascends through
level ld,b before setting node .value to EMPTY at time t5 < t1.
Thus, at time t5, Bit(d, l

−) = 1, and so the remove invariant implies

that d performs the first step of Remove(d) at some time t6 < t5.
Abovewe have established thatRemove(b) does not complete before

t1 > t5 > t6, and so Remove(d) Remove(b).
Thus all four conditions of Definition 2 hold, and indeed a <Rp b.

�

5.2 Mutual Exclusion
Lemma 15. For every execution E and process i , if дo[i] = true at
time t0 then for all j < i , j performs the first step of either Abort() or
Exit() at time t < t0.

Proof. We prove by contradiction. Let E be an execution in

which the claim is false, and let t0 be the first time in which the

above condition is violated. Then at time t0, some process k writes

дo[i] = true, but there exists some process j < i that has not yet
performed the first step of either Abort() or Exit().

We claim that LastExited < j at all times t < t0. Otherwise, at
some time t < t0, some process k ′ ≥ j writes LastExited = k ′,
implying that k ′ exits the CS. By definition of j, k ′ , j. Process k ′

reads дo[k ′] = true at time t ′ < t < t0, even though j < k ′ and
j has not performed the first step of either Abort() or Exit() at t ′.
This contradicts t0 being the first time in which such a violation

occurs.

Now, since k writes дo[i] = true at time t0, it completes a

FindNext(h) invocation, for some h, at time t1 < t0 and receives i
as the response. Clearly, k , j, because by time t0, process k has

invoked FindNext() but j has not. Process k invokes SiдnalNext(h)
either fromAbort() or from Exit(). In either case, for SiдnalNext(h)
to be invoked, it must hold that at some time t2 < t1, process k reads

LastExited and observes its value to be h (either because of line 13

in Algorithm 3.3 or line 9 of Algorithm 3.2). Thus, h < j. Now,
FindNext(h)k returns i at time t1 < t0. Since h < j < i , it follows
from Property 9 that Remove(j) FindNext(h)k , i.e., that process
j performs the first step of Remove(j) at some time t ′ < t1 < t0,
which is a contradiction. �

Corollary 16. The one-shot algorithm satisfies mutual exclusion.

5.3 FCFS and Starvation Freedom
For a one-shot abortable lock, the first-come-first served (FCFS)

fairness condition [17] requires that (1) Enter starts with a doorway,
which is a wait-free section of code (i.e., that can be completed in a

finite number of the executing process’ steps); and (2) if process p
completes the doorway before q starts executing the doorway, and

if p does not abort, then p enters the CS before q does.

Lemma 17. The one-shot algorithm satisfies FCFS.

Proof. We define the doorway to be the F&A operation (Al-

gorithm 3.1, line 1). Process j receives index j from this F&A and

proceeds to the “waiting” section, in which it waits for дo[j] to
become true. Let i be a process that executes the doorway after

process j, receiving index i > j. Suppose that at time t , process i
observes дo[i] = true and enters the CS. Lemma 15 implies that

by time t , process j has invoked either Exit() or Abort(), which
establishes FCFS. �

Lemma 18. The one-shot algorithm satisfies starvation freedom.

Proof. By contradiction. Let E be an execution in which no

process crashes outside the remainder section and every process

that enters the CS eventually leaves it, but there exists a minimal

i such that process i invokes but does not complete the execution

of Enter (). This means that i does not invoke Abort(), Exit(), or
SiдnalNext(). It is easy to verify that LastExited andHead are both

strictly increasing. Letm be the largest value of Head in E. Then
m < i . Otherwise, some process m > i writes to Head , and the

assumption on E implies thatm eventually enters the CS, which

violates FCFS. It is easy to verify that at any time LastExited ≤
Head and so LastExited ≤ m in E. The assumption on E implies

that processm eventually, at some time t0, reaches line 9 and sets

LastExited = m. Therefore, from time t0 onwards, LastExited =
Head =m. Let k be the maximal value such that дo[k] = true in E.
Thenm ≤ k < i .

Claim 19. There exists q such that k <Rm q.

Proof. Suppose that k = m. Then process k executes Exit(),
invoking FindNext(k)k , which returns b. If b < {⊤,⊥}, then
from Property 6, b > k and k eventually writes дo[b] = true, con-
tradicting k’s maximality. If b = ⊥, then Property 10 implies that i
invokesRemove(i), which can only be invoked fromAbort(i), which
is a contradiction. Therefore, b = ⊤. The preconditions for Prop-
erty 14 hold vacuously, as there is no d such thatm = k < d < k . It
follows that for some process q, k <Rm q.

Alternatively, suppose that k > m. We will show that the

preconditions of Property 14 hold, and thus for some process q,
k <Rm q. Process k does not enter the CS, as that would contra-

dictm’s maximality. Therefore, process k invokes Abort(k) and, in
turn, Remove(k). Consider the process p that wrote дo[k] = true.
p executes FindNext(v)p and receives k . From the definition of

m, v ≤ m. If v < m < k , then Property 9 implies that m in-

voked Abort , which is a contradiction. Therefore, v = m and

p executes FindNext(m)p , receiving k in response. From Prop-

erty 7, FindNext(m)p → Remove(k). Processk executesRemove(k)
and then FindNext(m)k , receiving b. Therefore FindNext(m)p →
FindNext(m)k . If b < {⊤,⊥}, then from Property 11, k ≤ b.
From Corollary 8, b , k . Thus, b > k and k writes дo[b] = true,
contradicting k’s maximality. If b = ⊥, Property 10 implies that

i invokes Remove(i), which is a contradiction. Therefore b = ⊤.
Consider any d such thatm < d < k . By Property 9, Remove(d)
FindNext(m)p . We also have FindNext(m)p → Remove(k). There-
fore, Remove(d) Remove(k). The preconditions of Property 14

thus hold. �

Claim 19 shows thatk <Rm q for someq. By Corollary 13, there ex-

ists a maximal r such that k <Rm r . The definition of <Rm implies that

Remove(r) is invoked in E and that FindNext(m)k Remove(r).
Therefore, at time t0 (when m sets LastExited = m), Remove(r)
has not yet completed. Once Remove(r) returns, r thus reads

Head = LastExited = m at line 13 of Algorithm 3.3 and invokes

FindNext(m)r , receiving some value c .
If c = ⊥, this again implies i invokes Remove(i), which is a

contradiction. If c = ⊤, let d such that m < d < r . We have

u < d < max{k, r } and k <Rm r , and so by the definition of <Rm ,

Remove(d) Remove(r). The preconditions for Property 14 thus

hold form and r > m. This implies that for some process r̂ , r ,
r <Rm r̂ , contradicting r ’s maximality.

Finally, suppose that c < {⊤,⊥}. If c > k then process r
writes дo[c] = true, contradicting k’s maximality. Therefore

c ≤ k . From condition 3 in the definition of <Rm , we have

FindNext(m)k Remove(r). So Remove(k) → FindNext(m)k
Remove(r) → FindNext(m)r , and therefore Remove(k)
FindNext(m)r . From Corollary 8, we have that FindNext(m)r
does not return k , and therefore c < k . From Property 6, we

have c > m. So m < c < max{k, r }. Condition 4 in the def-

inition of <Rm implies that Remove(c) Remove(r). Therefore,
Remove(c) FindNext(m)r . From Corollary 8, FindNext(m)r
does not return c , which is a contradiction. �

5.4 Complexity Analysis
The one-shot algorithm performs O(1) RMRs in addition to the

RMRs performed by Tree operations. Each Tree operation is wait-

free and takesO(logW N) steps, and thus at mostO(logW N) RMRs.

Given an execution E, let R denote the number of processes that

invoke Remove() in E. In the following, some proofs are relegated

to the full version [3] due to space limitations.

Claim 20. The RMR cost of Remove() is O(logW R).

Denote by Rp (t) the number of processes r ≥ p that invoke

Remove(r) in Et .

Claim 21. The RMR cost of AdaptiveFindNext(p)q is
O(logW Rp (t)), where t is the time in which AdaptiveFindNext(p)q
completes.

Proof. Consider an execution of AdaptiveFindNext(p) by pro-

cess q that performs l > 2 iterations of the loop at line 44 of Algo-

rithm 4.3. Consider the execution of HasZeroToTheRiдht at line 49
in iteration l −1, and let node be the node q accesses at this iteration.
The check at line 45 guarantees that the value of the o f f set argu-
ment is less thanW −1, and that p < Child(node,W −1) (i.e., p is not

the rightmost child). Since process q does not break at this iteration,

we have that it receives false from this HasZeroToTheRiдht . This
implies that the least significant (rightmost) bit of node .value is 1. It
follows from the remove invariant that for all r ∈ Child(node,W −1),
process r invokes Remove(r) before AdaptiveFindNext(p)q com-

pletes at time t , i.e., in Et . Because p < Child(node,W −1), for every

r ∈ Child(node,W − 1), r > p. There areW l−2
leafs in the subtree

rooted at Child(node,W − 1). The number of processes r ≥ p that

invoke Remove(r) in Et is Rp (t). Therefore,W
l−2 ≤ Rp (t), and so

l ≤ 2 + logW Rp (t). Each iteration of the loop performs a constant

number of RMRs, and the claim follows. �

Corollary 22. Each successful passage of the one-shot algorithm
incurs O(logW Ai) RMRs, where Ai is the number of processes that
abort during the passage. An aborted attempt incurs O(logW At)
RMRs, where At is the number of processes that abort during the
entire execution.

6 FROM ONE-SHOT TO LONG-LIVED LOCK
We present a generic transformation that converts a one-shot

abortable lock algorithm L, with space complexity s(N) (where
s(N)/2W = O(1)) into a long-lived algorithm with the same asymp-

totic RMR cost as L, and space complexity O(N · s(N) + N 2
). Our

transformation preserves starvation-freedom, but not FCFS.

Figure 5 presents the pseudo-code of the transformation. For

simplicity, we assume a system with unbounded word and memory

size, in which allocating a new (and initialized) instance of the one-

shot lock L is free of charge. Section 6.2 removes these assumptions.

The long-lived lock uses an instance of L to solve mutual exclu-

sion, and dynamically switches to new instances to keep processes

from accessing the same one-shot lock instance twice. We represent

the long-lived lock as a tuple (Lock, Spn,Re f cnt), where Lock is a

pointer to the instance of L; Spn is a pointer to a spin node associ-
ated with this instance, which contains a single boolean field дo;
and Re f cnt is a ⌈logN ⌉-bit reference count, indicating the number

of processes currently accessing the one-shot lock instance. The

tuple is stored in a single memory word LockDesc , which enables

its fields to be manipulated atomically, as follows.

We store Re f cnt in the lower bits of LockDesc , allowing pro-

cesses to use F&A to increment/decrement it while simultaneously

obtaining a snapshot of the tuple. To acquire the lock, a process p
uses F&A on LockDesc to increment Re f cnt , obtaining the instance
l pointed to by Lock in response (line 62), which p then attempts

to acquire. Once p finishes its attempt (either due to aborting or

after releasing l), it uses a F&A on LockDesc to decrement Re f cnt
(line 70). If p decrements Re f cnt to 0, it uses a CAS to atomically

switch Lock and Spn to point to new one-shot lock and spin node

instances, conditioned on Re f cnt = 0 (line 76).

However, p will fail to switch the lock from l if another process
increments Re f cnt between lines 70 and 76. This scenario can lead

to p’s next acquisition attempt occurring while Lock still points

to l , but p cannot access the one-shot lock l again. We use the

spin node spn associated with l to efficiently prevent processes

from accessing l again: p saves spn in a local variable when its

attempt to acquire l finishes (line 70), and in the next acquisition

attempt,p busy waits on spn.дo if LockDesc .Spn = spn (lines 57–59).

Once the lock is switched from (l , spn) to new instances, spn.дo is
set (line 77), signalling the processes busy waiting on spn.дo that
LockDesc .Lock , l , and so they may attempt to acquire the one-

shot lock. Using the spin nodes thus establishes that LockDesc .Lock
changed in O(1) RMRs. Without them, it would require accessing

LockDesc , which could incur N − 1 RMRs, as Re f cnt can change

N times before LockDesc .Lock changes.

6.1 Correctness of the Transformation
Here, we prove:

Theorem 23. Let L be a one-shot starvation-free abortable lock.
Our transformation yields a long-lived starvation-free abortable lock.

Shared variables:
LockDesc : (Lock : ptr to L instance, Spn : ptr to SpinNode, Ref cnt : int)

initially, LockDesc = (fresh L instance, fresh SpinNode, 0)
Local variables: oldSpn : ptr to SpinNode , initially oldSpn = ⊥

Algorithm 6.1 Enter ()

57: (l, spn, v) ← LockDesc
58: if spn = oldSpn then
59: while ¬spn .дo do
60: if Abor tSiдnal then
61: return false
62: (l, spn, r ef cnt) ← F&A(LockDesc, 1) // read Lock, Spn & inc Refcnt

63: completed ← l .Enter ()
64: if completed = false then
65: Cleanup()
66: return completed

Algorithm 6.2 Exit ()

67: (l, spn, r) ← LockDesc
68: l .Exit ()
69: Cleanup()

Algorithm 6.3 Cleanup()

70: (oldLock, oldSpn, r ef cnt) ← F&A(LockDesc, −1)
71: if r ef cnt = 1 then
72: newLock ← AllocateOneShotLockInstance()
73: newSpn ← AllocateSpinNode()
74: old ← (oldLock, oldSpn, 0)
75: new ← (newLock, newSpn, 0)
76: if CAS (LockDesc, old, new) then
77: oldSpn .дo ← true

Figure 5: Transformation of a one-shot abortable lock algorithm L into a long-lived abortable lock

Claim 24. Suppose process p invokes l .Enter () (line 63). Let (l , s, r)
be the LockDesc value p obtains at line 62 prior to this l .Enter () call.
Then LockDesc remains (l , s, _) until p executes the F&A at line 70.

Proof. Every process increments and decrements

LockDesc .Re f cnt once per acquisition attempt (lines 62 and 70,

respectively). Therefore, LockDesc .Re f cnt ≥ 1 from p’s F&A

execution at line 62 prior to invoking l .Enter () and until it executes
the F&A at line 70 afterwards (after either aborting or releasing

l). Now, LockDesc .Spn and LockDesc .Lock change only if a CAS

at line 76 succeeds. However, a CAS at line 76 can succeed only if

LockDesc .Re f cnt = 0. The claim follows. �

Claim 25. Let E be an execution of the long-lived algorithm. Then
no process executes Enter () twice on the same one-shot lock object.

Lemma 26. The long-lived algorithm satisfies mutual exclusion.

Proof. Assume towards a contradiction that processes p,q are

both in the CS at time t . Prior to entering the CS of the one-shot

lock, both processes execute the F&A at line 62 and obtain LockDesc
values (lp , sp , _) and (lq , sq , _). WLOG, assume that p performs its

F&A first, at time t0. Since p is in the CS at time t , Claim 24 implies

that LockDesc .Lock = lp at time t . Therefore, lq = lp , as q performs

its F&A at time t1, t0 < t1 < t . Both processes are thus in l ’s CS at
time t , contradicting mutual exclusion of the one-shot lock l . �

Lemma 27. The long-lived algorithm satisfies starvation freedom.

Proof. Let E be an execution in which no process crashes out-

side the remainder section and every process that enters the CS

eventually leaves it. Suppose that some process p is spinning at

line 59 at time t . Let l be the one-shot lock instance pointed to by

p’s oldSpn variable at time t . Then at some time t ′ < t , p executed a

F&A at line 70 that returned (l , _, _). Claim 24 implies that if a pro-

cess executes a F&A at line 70 that returns (l , _, _), then the previous
execution of line 63 by the process invoked l .Enter (). Therefore,
Claim 25 implies that each process executes a F&A at line 70 that

returns (l , _, _) at most once. Let q be the last process to execute

such a F&A. Since q is last, this F&A returns (l , _, 1), and so even-

tually q executes the CAS at line 76. This CAS cannot fail because

some process increments LockDesc .Re f cnt (while LockDesc .L = l)
as such a process will later call Cleanup() and execute line 70, in

contradiction. Therefore, either q’s CAS succeeds or it fails because
another process executes a CAS at line 76 that succeeds. In either

case, eventually some process sets oldSpn.дo to true, and so even-

tually p breaks out of its spin loop and invokes Enter () on some

instance l ′ of the one-shot lock. Starvation-freedom of l ′ implies

that if p does not abort, it will enter the CS. �

6.2 Bounding Space and RMR Complexity
We augment the long-lived lock with memory management

schemes that safely recycle one-shot lock and spin node instances,

so that the overall number of objects used by the algorithm is

O(N) one-shot locks and O(N 2) spin nodes. These bounds enable

maintaining LockDesc in aW -bit memory word, assuming that

W = Ω(logN). We only provide an overview of the schemes, due

to space constraints. Details appear in the full version [3].

Recycling one-shot locks. A process that successfully installs a

new one-shot lock instance holds on to the instance l that it re-
placed, and uses l to satisfy its next allocation. (This is safe because

other processes attempt to acquire l only if LockDesc .Lock points

to it, which is not the case after switching to a new one-shot lock

instance.) The main problem is how to reset the variables of l so
that when l gets reused they contain their initial values, but with-

out having a single reset operation that incurs s(N) RMRs. To this

end, we use a lazy reset scheme, in which the processes reset the

variables of l as they are accessed inside the one-shot algorithm.

Our scheme borrows ideas from the scheme of Aghazadeh et

al. [1, § 4], but does not “steal” bits from the words being reset.

The idea of their scheme is to add a version number for l , which is

incremented each time l is reused, and to encode a version number

in each of l ’s memory words, enabling processes to detect “stale“

values. A process reading value x from a word uses x only if the

version encoded in it equals l ’s current version; otherwise, the
process proceeds as if it read the word’s initial value. A process that

writes to a word augments the write with l ’s current version. In our

scheme, for each wordw of l we maintain a word Vw that contains

a pair (vw ,bw), where vw isw’s version and bw is an incarnation
bit. We also maintain two words,w0 andw1, and guarantee thatw ’s

next incarnation,w
1−bw , always containsw ’s initial value. When a

process p first needs to accessw , it reads (vw ,b) fromVw . Ifvw = v ,
where v is l ’s current version, p will accesswb whenever it needs

to access w from then on. Otherwise, if vw , v , p updates Vw to

(v, 1 − b) and resets wb to w’s initial value. It will subsequently

accessw
1−b whenever it needs to accessw .

To prevent wraparound of l ’s version from making a stale word

appear valid, we (like Aghazadeh et al. [1, § 4]) additionally reset

s(N)/2W of l ’s words each time l gets reused, which guarantees

that after l ’s version wraps around, each word has been reset. In

summary, our scheme (1) increases the one-shot lock’s space com-

plexity from s(N) toO(s(N)); (2) addsO(1) RMRs to the first access a

process makes in the one-shot algorithm; and (3) addsO(s(N)/2W)
RMRs to the cost of allocating a one-shot lock instance.

Recycling spin nodes. Since a spin node might be accessed by a

busy waiting process even after LockDesc no longer points to it,

recycling spin nodes requires a safe memory reclamation scheme

that recycles a spin node only if no process busy waits on it. We

use the memory reclamation scheme of Aghazadeh et al. [2], which

is similar to hazard pointers [22] but has constant worst-case RMR

cost. Each process allocates spin nodes from a local pool. The recla-

mation scheme replenishes the pool as follows: A process p that

switches LockDesc .Spn to point from spin node spn to another node

retires the node spn. Once the scheme ascertains that no process

is busy waiting on spn, it places spn into p’s pool. The reclama-

tion scheme guarantees that a process can have at most N spin

nodes that it retired but have not yet been placed into its pool.

We therefore guarantee that pools never become empty by using

pools of size N + 1. Overall, we manage O(N 2) spin nodes, and the

reclamation scheme requires O(N) words for its shared variables.

The following result follows from the above discussion.

Claim 28. If L has RMR cost t(Ai ,At) and space complexity s(N),
and if s(N)/2W = O(1), then the long-lived lock has RMR cost
O(t(Ai ,At)) and space complexity O(N · s(N) + N 2).

7 RELATEDWORK
Randomized abortable locks can obtain O(

logN
log logN) expected RMR

cost [23] or O(1) expected amortized RMR cost [12]. Both algo-

rithms are for the CC model; use reads, writes, and CAS; and work

against an adversary that is slightly weaker than the strong adaptive
adversary, which can make scheduling decisions based on all past

events, including the latest coin-flips.

Lee [20] obtains anO(logN)-RMR (non-adaptive) abortable lock

by modifying Yang and Anderson’s lock [26], making each two-

process lock in their binary tree abortable. It is thus not clear that his

construction can be generalized to make the treeW -ary. Jayanti’s

adaptiveO(logN)-RMR abortable lock [17] hinges on a binary tree-

based f -array [16]. While the f -array can be made W -ary, the

RMR complexity of such aW -ary tree of height H = logW N is

O(W · H), which is not sublogarithmic. In contrast, with F&A we

can aggregate certain information about a node’s children with one

RMR, while the LL/SC-based f -array requires O(# children) RMRs.

Further, unlike prior work, we simplify the problem to a one-shot

variant, which we then (generically) transform to a long-lived lock.

8 CONCLUSION
Applying the transformation of Section 6 to the one-shot abortable

lock of Section 3 yields a starvation-free (but not FCFS) abortable

lock with space complexity O(N 2), in which the RMR cost of a

successful passage is O(logW Ai) and the RMR cost of an aborted

attempt is O(logW At). AssumingW = Θ(logN), the worst-case

RMR cost of the composed lock is O(
logN

log logN). This paper thus

shows that, as with mutual exclusion, abortable locks can lever-

age additional primitives (beyond read, write and CAS) to obtain

sublogarithmic worst-case RMR cost.

Several interesting questions remain. Our algorithm is for the

CC model; the problem in the DSM model remains open. Our algo-

rithm achieves O(1) RMR cost only ifW = ω(logN), whereas lock
algorithms such as the MCS lock [21] obtain O(1) RMR cost with

W = Θ(logN). Is this an inherent difference between abortable

locks and regular locks? Finally, Jayanti’s O(logN)-RMR abortable

lock [17] satisfies FCFS and is adaptive to point contention; our

algorithm does not have these properties. Can this gap be bridged?

ACKNOWLEDGMENTS
This research was funded in part by the Israel Science Foundation

(grant 2005/17). Adam Morrison is supported by Len Blavatnik and

the Blavatnik Family Foundation.

REFERENCES
[1] Zahra Aghazadeh,Wojciech Golab, and PhilippWoelfel. Making ObjectsWritable.

In PODC, 2014.
[2] Zahra Aghazadeh, Wojciech M. Golab, and Philipp Woelfel. Brief announcement:

resettable objects and efficient memory reclamation for concurrent algorithms.

In PODC, 2013.
[3] Adam Alon. Deterministic Abortable Mutual Exclusion with Sublogarithmic

Adaptive RMR Complexity. Master’s thesis, Tel Aviv University, June 2018.

[4] James H. Anderson and Yong-Jik Kim. An Improved Lower Bound for the Time

Complexity of Mutual Exclusion. Distributed Computing, 15(4), December 2002.

[5] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory

Multiprocessors. IEEE TPDS, 1(1), January 1990.

[6] Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR Lower Bounds for

Mutual Exclusion and Other Problems. In STOC, 2008.
[7] Michael A. Bender and Seth Gilbert. Mutual Exclusion with O (Loд2LoдN)

Amortized Work. In FOCS, 2011.
[8] Milind Chabbi, Abdelhalim Amer, Shasha Wen, and Xu Liu. An Efficient

Abortable-locking Protocol for Multi-level NUMA Systems. In PPoPP, 2017.
[9] E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control.

CACM, 8(9), September 1965.

[10] George Giakkoupis and Philipp Woelfel. A Tight RMR Lower Bound for Ran-

domized Mutual Exclusion. In STOC, 2012.
[11] George Giakkoupis and Philipp Woelfel. Randomized Mutual Exclusion with

Constant Amortized RMR Complexity on the DSM. In FOCS, 2014.
[12] George Giakkoupis and PhilippWoelfel. Randomized AbortableMutual Exclusion

with Constant Amortized RMR Complexity on the CC Model. In PODC, 2017.
[13] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory

multiprocessors. IEEE Computer, 23(6), June 1990.
[14] Danny Hendler and Philipp Woelfel. Adaptive Randomized Mutual Exclusion in

Sub-logarithmic Expected Time. In PODC, 2010.
[15] Danny Hendler and Philipp Woelfel. Randomized mutual exclusion with sub-

logarithmic RMR-complexity. Distributed Computing, 24(1), Sep 2011.

[16] Prasad Jayanti. F-arrays: Implementation and Applications. In PODC, 2002.
[17] Prasad Jayanti. Adaptive and Efficient Abortable Mutual Exclusion. In PODC,

2003.

[18] Leslie Lamport. The Mutual Exclusion Problem: PartII&Mdash;Statement and

Solutions. JACM, 33(2), April 1986.

[19] Hyonho Lee. Fast Local-spin Abortable Mutual Exclusion with Bounded Space.

In OPODIS, 2010.
[20] Hyonho Lee. Local-spin Abortable Mutual Exclusion. PhD thesis, University of

Toronto, January 2012.

[21] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM TOCS, 9(1), February
1991.

[22] Maged M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free

Objects. IEEE TPDS, 15(6), June 2004.
[23] Abhijeet Pareek and Philipp Woelfel. RMR-Efficient Randomized Abortable

Mutual Exclusion. In DISC, 2012.
[24] Michael L. Scott. Non-blocking Timeout in Scalable Queue-based Spin Locks. In

PODC, 2002.
[25] Michael L. Scott and William N. Scherer. Scalable Queue-based Spin Locks with

Timeout. In PPoPP, 2001.
[26] Jae-Heon Yang and James H. Anderson. A fast, scalable mutual exclusion algo-

rithm. Distributed Computing, 9(1), Mar 1995.

	Abstract
	1 Introduction
	2 Model and Problem Statement
	3 One-Shot Algorithm
	4 Tree Data Structure
	4.1 Adaptive FindNext()- .4

	5 Correctness and Complexity of the One-Shot Algorithm
	5.1 Tree Properties
	5.2 Mutual Exclusion
	5.3 FCFS and Starvation Freedom
	5.4 Complexity Analysis

	6 From One-Shot to Long-Lived Lock
	6.1 Correctness of the Transformation
	6.2 Bounding Space and RMR Complexity

	7 Related work
	8 Conclusion
	Acknowledgments
	References

