
Brief Announcement: View Transactions: Transactional
Model with Relaxed Consistency Checks

Yehuda Afek, Adam Morrison and Moran Tzafrir
School of Computer Science

Tel Aviv University
afek@tau.ac.il, adamx@tau.ac.il, moran.tzafrir@cs.tau.ac.il

ABSTRACT
We present view transactions, a model for relaxed consis-
tency checks in software transactional memory (STM). View
transactions always operate on a consistent snapshot of mem-
ory but may commit in a different snapshot. They are there-
fore simpler to reason about, provide opacity and maintain
composability. In addition, view transactions avoid many
of the overheads associated with previous approaches for re-
laxing consistency checks. As a result, view transactions
outperform the prior approaches by 1.13× to 2× on various
benchmarks.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance

1. INTRODUCTION
The transactional memory (TM) [6] paradigm promises

to enable fine-grained parallelism together with ease of pro-
gramming. In the TM model programmers write sequential
transactions, and the TM system executes the transactions
safely in parallel, isolated from each other, with the final
result being as if the transactions had executed in some se-
quential one-at-a-time order (a condition known as serializ-
ability [8]). As a result, programmers are relieved from rea-
soning about all possible interleavings between fine-grained
thread operations, which is notoriously difficult and error-
prone [7].

Most TMs guarantee that a transaction always observes
a consistent state of memory while running, even if it is
doomed to abort (this is known as opacity [4]). Opacity
is a crucial part of TM usability, since without it correct
(transactified) sequential code could behave arbitrarily upon
seeing inconsistent state.

The fly in the ointment is that TM implementations con-
stantly perform consistency checks to guarantee serializabil-
ity and opacity. These checks result in a considerable perfor-
mance hit. In addition to the overhead incurred from main-
taining and validating a read set (as most modern STMs do),
the demand for serializability at the low level of reads and
writes can lead to false aborts — aborts of transactions that

Copyright is held by the author/owner(s).
PODC’10, July 25–28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

would not have violated program semantics, had they com-
mitted. For example, consider the set abstract data type1

implemented by a sorted linked list. A transaction Ti exe-
cuting insert(205) that is about to link a new node after a
node with key 203 does not need to abort if another transac-
tion Td concurrently deletes a node with key 17, even though
that deletion invalidates Ti’s snapshot of the list.

Motivated by these performance issues, researchers have
proposed relaxing STM consistency checks in different ways
to improve performance. Early release [5] augments the TM
interface with a release primitive that lets programmers
release previously opened objects from future checks. More
recently, a novel relaxed model has been proposed in the
form of elastic transactions [3]. An elastic transaction is
a sequence of mini-transactions, each of which operates on
a consistent state, but these states may not be mutually
consistent. When an elastic transaction reads a value that
is not consistent with its current snapshot, it may cut itself
by committing the current mini-transaction and continuing
to execute in a new mini-transaction, for which the read
value is consistent.

In both proposals, it is up to the programmer to decide
when to use relaxed checks, and making this decision requires
reasoning about whether correct semantics of the program
will be preserved under the relaxed checks. Yet in these
proposals a transaction with relaxed consistency checks no
longer works on a snapshot. As a result, reasoning about
correctness with relaxed checks becomes similar to reason-
ing about concurrency: programmers need to consider the
inconsistent states a transaction might observe and handle
them.

Contributions. We introduce view transactions, a new
model for relaxed consistency checks. A view transaction
always operates on a consistent state (snapshot) of mem-
ory, but may commit in a different snapshot than the one
it worked on (hence the consistency relaxation). A suffi-
cient condition for program correctness with view transac-
tions is that the commit-time snapshot must be such that
had the transaction operated on it, its externally visible ac-
tions would be the same. The programmer must therefore
identify the transaction’s critical view — a subset of the run-
time snapshot that needs to be validated at commit-time.
View transactions improve on previous relaxed consistency
approaches on two fronts, performance and usability.

91The set abstract data type maintains a set of items and supports
the operations contains(), insert() and remove() on the set.



2. VIEW TRANSACTIONS
It is seemingly easy to obtain a relaxed transactional model

with opacity by adapting early release to a modern STM
that uses per-location metadata and a global version clock
(e.g., [2]). In contrast to DSTM [5], which relied on contin-
uously validating the read set to maintain a snapshot (and
therefore could violate opacity after early release removed
locations from the read set), modern STMs rely only on the
global clock. However, many false aborts can still occur due
to the version check when a transaction finds that a location
contains a value that is not consistent with its snapshot,
forcing the STM to abort it.

View transactions overcome this problem using multiver-
sions [1], a technique originally used in database systems, in
which it is possible to access older versions of a location.
Thus, a view transaction may observe older values (that
are nevertheless consistent with its run-time snapshot) and
thereby avoid false aborts, as these values may not need to
be valid in the commit-time snapshot. Multiversions there-
fore avoid forcing the relaxed transactions from dealing with
inconsistent data, as happens in previous approaches.

To exploit multiversions, view transaction use a new light
read primitive, which returns a value consistent with the
transaction’s snapshot but does not carry any promise that
the value is valid when the transaction commits. A light read
tells the STM that a read value need not be valid at commit
time ahead of time, allowing it to return an older version. In
contrast, an interface like early release communicates to the
STM that a read may not need to be valid at commit time
only after the fact, forcing the STM to abort a transaction if
it tries to read an inconsistent value (since it does not know
if the location will be released in the future).

View pointers. How can a programmer specify the crit-
ical view of a transaction? It is possible to have a location
that was originally accessed using a light read be validated
at commit time by rereading it using a normal STM read.
We propose simplifying this task using view pointers, a layer
above the STM interface. View pointers are STM-aware ob-
jects the register themselves with the STM when created,
and unregister when destroyed. When a view pointer is
dereferenced, it uses the light read primitive to access the
memory it points to. Whenever a transaction makes an ex-
ternally visible action (like a write or commit) the locations
that are currently pointed to by registered view pointers are
added to the read set. While not guaranteed to work in gen-
eral, using view pointers instead of standard pointers seems
to work well on linked lists, search trees and similar data
structures. It is interesting to characterize the conditions
under which view pointers guarantee program correctness.

3. BENEFIT OF VIEW TRANSACTIONS
View transactions combine the following properties, that

are not all present together in the previous relaxed transac-
tional consistency models:

Performance. The use of multiversions avoids false aborts
and results in view transactions outperforming early release
by 2× and a TL2-like STM by 7× on a linked list benchmark
(which is prone to false aborts). Moreover, the light read
primitive imposes almost zero overhead on top of the ver-
sion checks done at read, whereas both previous approaches
need to perform some (even if minimal) bookkeeping. This is
significant because in transactions that benefit from relaxed

consistency checks, most read values are not critical and
can be read using light reads. Therefore, (1) view transac-
tions outperform elastic transaction by 1.13× on the linked
list benchmark (despite identical abort rates), and (2) on a
red-black tree workload (with no false aborts) view transac-
tions manage to outperform early release by 1.2× and elastic
transactions by 1.3×.

Simple reasoning. Due to committed transactions work-
ing on a snapshot, reasoning about them is closer to tradi-
tional sequential reasoning. Additionally, view transactions
are flexible enough to implement both the early release and
the elastic transactional model (while still operating on a
snapshot), i.e., view transactions can be made to generate a
subset of the executions possible with these models. There-
fore, proving correctness (even in these models) should be
easier when reasoning about the corresponding “emulating”
view transactions, since the executions that arise there are
a subset of all possible original executions.

Opacity. To date, relaxed consistency checks were used
mainly in data structures such as lists and trees, where ob-
serving inconsistencies seems not to lead to serious errors.
But to facilitate wider use of relaxed consistency checks,
programmers should be relieved from worrying about these
inconsistencies.

Composability. The ability to compose view transac-
tions when their critical views are correctly identified by the
programmer. For example, a list contains() that fails can
place the nodes where its traversal stopped into the read
set, ensuring that subsequent insertion of the item will be
detected. While this requires care on the part of the pro-
grammer, it is at least possible while still maintaining high
performance. In elastic transactions composability is not
always possible, and in early release performance suffers.
Composability allowed us to adapt the STAMP benchmark
vacation to view transactions, and we found that they out-
performed the STM version by 10%− 15% and early release
by 5%− 6%.

4. REFERENCES
[1] Philip A. Bernstein and Nathan Goodman. Concurrency control

in distributed database systems. ACM Computing Surveys
(CSUR), 13:185–221, June 1981.

[2] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii.
In Proceedings of the 20th International Symposium on
Distributed Computing (DISC’06), volume 4167 of LNCS,
pages 194–208. Springer-Verlag, Oct 2006.

[3] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic
transactions. In Proceedings of the 23rd International
Symposium on Distributed Computing (DISC’09), volume 5805
of LNCS, pages 93–107. Springer-Verlag, Sep 2009.

[4] Rachid Guerraoui and Michal Kapalka. On the correctness of
transactional memory. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 175–184, New York, NY, USA,
2008. ACM.

[5] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software transactional memory for dynamic-sized
data structures. In PODC ’03: Proceedings of the 22nd Annual
Symposium on Principles of Distributed Computing, pages
92–101, New York, NY, USA, 2003. ACM.

[6] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium on
Computer architecture, ISCA ’93, pages 289–300, New York,
NY, USA, 1993. ACM.

[7] Edward A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[8] Christos H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653, 1979.


