
Scaling Concurrent Queues by Using HTM
to Profit from Failed Atomic Operations

Or Ostrovsky
Tel Aviv University, Israel

Adam Morrison
Tel Aviv University, Israel

Abstract
Queues are fundamental concurrent data structures, but de-
spite years of research, even the state-of-the-art queues scale
poorly. This poor scalability occurs because of contended
atomic read-modify-write (RMW) operations.

This paper makes a first step towards designing a scalable
linearizable queue.We leverage hardware transactional mem-
ory (HTM) to design TxCAS, a scalable compare-and-set
(CAS) primitive—despite HTM being targeted mainly at un-
contended scenarios.
Leveraging TxCAS’s scalability requires a queue design

that does not blindly retry failed CASs.We thus apply TxCAS
to the baskets queue, which steers enqueuers whose CAS
fails into dedicated basket data structures. Coupled with a
new, scalable basket algorithm, we obtain SBQ, the scalable
baskets queue. At high concurrency levels, SBQ outperforms
the fastest queue today by 1.6× on a producer-only workload.

CCSConcepts •Theory of computation→Concurrent
algorithms.

1 Introduction
Multi-producer/multi-consumer (MPMC) queues are funda-
mental, widely-studied concurrent data structures [7, 17, 22,
27, 28, 31, 41]. These queues are linearizable [16] shared-
memory data structures that provide enqueue and dequeue
operations with the usual first-in-first-out (FIFO) semantics.

Despite decades of research, even state-of-the-art concur-
rent queues scale poorly. In an ideal linearly scalable data
structure, the latency of individual operations remains con-
stant as the number of cores grows. In contrast, the latency of
queue operations grows at least linearly with the core count,
so that overall queue throughput remains constant or even
degrades as concurrency grows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374511

0 10 20 30 40
Concurrent threads

0

200

400

600

800

Op
er
at
io
n
la
te
nc
y
[n
s/
op
]

FAA
TxCAS

Figure 1. TxCAS vs. standard atomic operation latency.

Queues suffer from poor scalability because of contended
atomic read-modify-write (RMW) operations, such as those
updating the queue head or tail [7, 27, 41]. Even the fastest
queues perform one contended fetch-and-add (FAA) per
queue operation [31, 41]. Other queues [22, 24, 27, 28] use
the compare-and-set (CAS) primitive, which can fail under
contention. A failed CAS needs to be retried, and so these
queues perform multiple contended CASs per operation.
One interesting exception is the baskets queue [17]. Its

enqueue operations use the fact that a CAS failure indicates
the presence of concurrent enqueuers to avoid retrying the
failed CAS. Instead of retrying a CAS that fails to link a new
node to the queue, contending enqueuers place their item in
a basket data structure associated with the current tail node.

Even so, the baskets queue fails to scale better than FAA-
based queues. It still performs one contended CAS, and the
latency of any contended atomic operation—whether a failed
CAS or a successful FAA—is linear in the number of contend-
ing cores, since every atomic operation acquires exclusive
ownership of its location’s cache line, and these acquisitions
are serialized by the cache coherence protocol. This bottle-
neck seems inherent on current multi-core architectures.

This paper We make a first step towards designing a scal-
able linearizable queue, by leveraging hardware transactional
memory (HTM) [15]—despite HTM being targeted mainly
at uncontended scenarios. Our core insight is that a CAS
properly implemented with HTM, which we call TxCAS, is
fundamentally more scalable than a standard atomic opera-
tion. Figure 1 compares the latency of our TxCAS to a stan-
dard FAA on a 22-core (44-hyperthreaded) Intel Broadwell
processor, as contention grows. TxCAS’s latency remains
roughly constant beyond 10 hardware threads, whereas the
FAA latency grows linearly.

https://doi.org/10.1145/3332466.3374511

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

TxCAS obtains its scalability by not serializing failures. In
implementing CAS as a hardware transaction, we break its
cache coherence footprint into a read, which acquires shared
ownership of the cache line, followed by a write. The write
acquires exclusive ownership of the line and thereby aborts
any TxCASs who have only read. As we explain in § 3, these
aborts occur concurrently, resulting in scalable failures.

Leveraging TxCAS’s scalability requires an algorithm that
can profit from a failed CAS (and not merely retry it), which
we obtain by improving upon the baskets queue. We intro-
duce SBQ—the scalable baskets queue—which makes the bas-
kets queue scale by using TxCAS and by further improving
the queue with a new, scalable basket design. SBQ inherits
the baskets queue’s lock-free [14] progress guarantee.

Limitations We posit SBQ as showcasing a novel synchro-
nization technique that may pave the way towards scalable
queues, and not as strictly superior to prior queues on con-
temporary hardware, for the following reasons:
• TxCAS’s scalability incurs a latency cost at low concur-
rency (Figure 1). TxCAS will thus be more effective on
future processors with higher core counts.

• SBQ’s dequeue operations are less scalable than its enqueue
operations. On an enqueue-dominated workload, SBQ out-
performs the fastest queue we are aware of—the FAA-
based queue of Yang and Mellor-Crummey [41]—by 1.6×
on a dual-processor machine with 88 hardware threads.
However, its improvement in a mixed enqueue/dequeue
workload is a more modest 1.16×.

• The HTM implementation in current hardware limits Tx-
CAS effectiveness in cross-processor (NUMA) usage (§ 4.3).
This limitation does not rule out NUMA execution; it only
means that TxCASs of a location should be run on the
same processor (NUMA node). Consequently, the scope of
our evaluation is limited to such intra-processor TxCAS
use. We propose a microarchitectural solution for future
processors to address this problem (§ 3.4.1).

Contributions To summarize, our contributions are:
1. Showing that the cache coherence behavior of an HTM-

based CAS results in scalable CAS failures (§ 3).
2. Designing TxCAS, an HTM-based CAS that realizes the

above benefit on current Intel processors (§ 4).
3. Identifying and proposing a microarchitectural solution

to the HTM implementation issue that limits TxCAS’s
effectiveness across NUMA domains (§ 3.4).

4. Designing SBQ, a queue with better scaling properties
than prior work (§ 5).

5. Empirically evaluating SBQ on a dual-processor x86 ma-
chine with 44 cores (88 hyperthreads) in total (§ 6).

2 Preliminaries
Model Weuse a standard shared-memory systemmodel [16]
in which a program is executed by threads that communicate

via atomic operations on a shared memory. For simplicity
of presentation, we assume a sequentially consistent sys-
tem [25] in which the execution is an interleaving of the
thread operations. In practice, processors and programming
languages provide weaker gaurantees [2, 34]. Our evaluated
implementations use C11 atomic accesses and fences to pre-
vent undesired reorderings by the compiler or hardware.

Atomic primitives We model the memory as an array,m,
of 64-bit words. Let m[a] be the word found at address a
in the memory. The system’s atomic primitives, which are
supported by the 64-bit x86 processors we use, are as follows:
read/write Read/write the value ofm[a].
FAA(a, v) Returnsm[a] and storesm[a] +v intom[a].
SWAP(a, v) Returnsm[a] and stores v intom[a].
CAS(a, t, v) Ifm[a] = t , then v is stored intom[a] and the

operation returns true; otherwise, it returns false.

HTM Transactional memory (TM) allows grouping memory
accesses into a transaction, such that they appear to either
execute atomically or not to execute at all. Several mod-
ern architectures offer hardware-supported TM (HTM) [3,
42]. Here, we describe the HTM interface, based on Intel’s
HTM [42] (other architectures are similar). We discuss rele-
vant implementation details in § 3.

Calling _xbegin() starts a transaction and checkpoints
the processor’s state. Calling _xend() attempts to commit a
running transaction. The memory operations performed by
a transaction take effect only if it successfully commits; oth-
erwise, it aborts and the processor’s state is restored from the
checkpoint. The HTM provides no guarantee that a transac-
tion will successfully commit. Transactions may be aborted
by the system, either due to a conflict—when two concurrent
transactions access the same memory location and at least
one access is a write—or due to implementation-specific rea-
sons (e.g., receipt of a hardware interrupt). A transaction can
also abort itself by calling _xabort(). The system supports
flat nesting of transactions: if a nested transaction aborts,
the top-level transaction aborts as well.

Linearizable queues A FIFO queue is an object whose state
Q is a (possibly empty) sequence of elements. It supports
an enqueue operation, which appends an element to Q , and
a dequeue operation, which removes and returns the first
element of Q , or returns NULL if Q is the empty sequence.
Our correctness condition is linearizability [16], which states
(informally) that every operation appears to “take effect”
instantaneously at some point during its execution interval,
and there is a total order on all such linearized operations.

3 Scalability of HTM-based CAS
We analyze the cache coherence dynamics of contended
atomic operations, and show that a CAS implemented with
an HTM transaction has inherently better scalability than a
standard atomic CAS operation.

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

C1(S)

C2(S)

C3(S)

Dir

CAS

GetM

C1 now
logically
in M state

CAS

C2 now
logically
in M state

CAS

C3 now
logically
in M state

CAS:✓

OK
Fw

d-
Ge
tM

Fw
d-G

etM

CAS:✗

Data

CAS:✗

Data

(a) Standard CAS: All CAS operations, even failures, are serialized.

C1(S)

C2(S)

C3(S)

Dir

xbegin read write

GetM

xbegin read write

xbegin read write

C2 and C3 now
logically in I state

OK
In
v

Inv

Inv
-Ac

k
xend

= abort

(b) HTM-based CAS: Failures are not serialized.

Figure 2. Cache coherence dynamics of contended CAS. (Solid, empty, and dashed circles represent memory operations,
receipt of coherence requests or invalidations, and transaction begin/end, respectively. CAS success/failure is denoted by ✓/✗.)

3.1 Multi-core cache coherence
We consider a multi-core processor with a private cache for
each core and a last-level cache (LLC) shared by all cores,
which models the architecture of modern processors [37].1
The processor uses a cache coherence protocol to guarantee
that at any point in time, each memory location has a single
well-defined value across all caches. For simplicity, we con-
sider a basic MSI protocol [37], but our analysis applies to
the MOESI [38] and MESIF [9] protocols used commercially.

The MSI protocol maintains a single-writer/multiple-reader
invariant for each cache line: at any point in time, either one
core is allowed to write to the line, or multiple cores are
allowed to read it. Each line in a core’s private cache can be
in one of the following states:
Modify The line may be read or written by the core. Any

other private cache must refer to the line as Invalid.
Shared The line may only be read by the core. Multiple

caches may hold the line in this state.
Invalid The line is either not present or has been invalidated

by the protocol. It may not be accessed.
To change the state of a cache line, a cache controller

initiates a coherence transaction that involves the exchange
of coherence messages. We will walk through the relevant
coherence transactions in the following sections.
Modern systems use a scalable directory-based protocol

implementation, in which a shared directory structure keeps
track of each line’s state and the caches that contain it. Coher-
ence transactions contact the directory, and it either responds
directly or forwards the request to another cache controller.
The directory and caches communicate via point-to-point
communication over a shared interconnect [37]. We assume
the interconnect supports multiple in-flight messages (i.e., is
not a broadcast bus), which is the case for modern commer-
cial multi-core processors [37].

1In practice, cores can have multiple levels of private caches, but this does
not alter our analysis.

3.2 Non-scalability of standard CAS
A core executes an atomic RMWoperation by acquiringwrite
ownership of the target location’s cache line2 and performing
the read-modify-write sequence. To guarantee the RMW’s
atomicity, the core stalls any incoming coherence messages
that will cause it to lose ownership of the line, and handles
them only after the RMW completes [37].

Standard atomic RMWs do not scale because the coherence
protocol serializes write ownership acquisitions. This serial-
ization makes the average cost of an RMW contended by C
cores to be aboutC/2 uncontended cache misses—regardless
of whether the RMW is a failed or successful CAS, or another
RMW type. Figure 2a illustrates the dynamics for CAS.

Initially, all cores hold the cache line in Shared state, hav-
ing read the same “old” value and poised to execute CASs
of different values. Executing the CAS initiates a coherence
transaction to upgrade the line to Modify state, which issues
a GetM request to the directory. On receipt of a GetM request,
the directory makes the requester the owner of the line. If
the line was in Shared state, the directory sends invalidation
messages instructing the cores sharing the line to move it
to Invalid state (for readability, invalidations are omitted
from the figure). If the line was in Modify state, the directory
sends a Fwd-GetM request to the previous owner, which
invalidates the line and sends it to the new owner. If a core
receives a Fwd-GetM before completing its own GetM (like
C2), it stalls the Fwd-GetM until it gets the line and attempts
its CAS.

Because of the latency of this owner-to-owner line handoff,
when C GetM requests arrive at the directory back-to-back
(and result in back-to-back Fwd-GetMs) the i-th requester
will receive ownership of the line and attempt its CAS only i
message delays later. This results in an average CAS latency
of (C + 1)/2 message delays, where a message delay is about
15–30 cycles on a modern multi-core processor [19].

2With respect to cache coherence, we refer to a core and its private cache
controller interchangeably.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

CAS vs other RMWs The above discussion applies to other
RMWs, such as FAA. Therefore, under equal contention, the
per-operation latency of CAS and FAA is identical. With
FAA, however, all operations succeed, whereas with CAS, all
operations but the first fail. Therefore, under high contention,
performing N successful CASs requires ≈ N 2 CAS attempts,
which can increase contention and thus CAS latency.

3.3 Scalability properties of HTM-based CAS
We consider the scalability implications of implementing
CAS(a,t,v)with anHTM transaction that reads the location
m[a] and writes v to it if its value is t. Our insight is that such
transactions are not serialized when they read, which allows
CAS failure latency to scale. To explain this, we first describe
how commercial HTMs implement concurrency control by
“piggybacking” on the cache coherence protocol [15, 20].

The memory operations of a transaction execute as usual,
but the accessed lines are marked as transactional in the
core’s private cache. The system implements a requester-
wins conflict resolution policy: if a core receives a coher-
ence message that will cause it to lose its permissions for
a transactional line, it aborts the transaction. Committing
a transaction clears the “transactional” marks, making the
transaction’s writes visible to the rest of the cores.
Figure 2b illustrates the dynamics of a contended HTM-

based CAS. Again, all cores initially hold the cache line in
Shared state. The HTM transactions first read the line—
marking it as transactional—and then execute the write,
which issues a GetM coherence request. The first GetM
that reaches the directory triggers an invalidation of the
Shared state in the other sharer cores. Crucially, these in-
validations are sent back-to-back—making their way to the
sharers concurrently—and their receipt aborts the transactions.
(Figure 2a did not depict these invalidations because they
did not affect the behavior of the cores, which had already
started their CAS and could not “abort” it.)

Each invalidated sharer sends an Inv-ACK message to the
new owner. Once all sharers have acknowledged their invali-
dation, the new owner’s GetM coherence request completes,
at which point its transaction commits. Overall, each HTM
transaction commits or aborts within a constant number of
message delays, implying scalable constant CAS latency.
Importantly, the HTM-based CAS does not avoid serial-

ization altogether. It only avoids serializing failed CASs; suc-
cessful CAS transactions remain serialized. In fact, if a failed
CAS transaction issues a GetM request before aborting—as
in Figure 2b—that request will be handled by the directory
and the core’s cache will eventually receive ownership of the
line (we omit these messages from the figure). This process
does not delay the core. Since its transaction has aborted, the
core does not block on the GetM, and the related coherence
messages are handled asynchronously by its cache controller.

On the other hand, the protocol’s handling of such pending
GetM requests can delay a future (ultimately successful)

C1(S)

...

Ck (I)

Dir

xbegin read write

GetM
C1 now logically
in M state

read

GetS

OK

Invalidations

Fw
d-
Ge

tS

xbegin

= abort

Figure 3. Tripped writer
transaction. This transaction’s coherence requests will be
serialized after the pending GetM requests and it will obtain
ownership of the line only after each previous requester
obtains and hands off the line (similar to the effect described
in § 3.2). Our TxCAS (§ 4) is designed to minimize this effect.

Can standard failedCAS avoid serialization? It may seem
that standard CAS failures could be made scalable by lever-
aging the above insights, i.e., if a standard CAS would first
acquire Shared ownership of the target location and subse-
quently upgrade to Modify ownership only if the location
has the expected “old” value. However, such an implemen-
tation would not fundamentally differ from current CAS
implementations, as the check of the “old” value would have
to be redone after the upgrade (since the directory may have
handled some GetM in the mean time). The effect depicted in
Figure 2a can therefore still occur, namely, when contending
CASs all successfully check the “old” value and issue a GetM.

3.4 HTM-based CAS “tripped writer” problem
We identify the tripped writer problem, which occurs when
an HTM-based CAS that has reached the CAS write step gets
aborted due to a conflict. The conflict thus trips the transac-
tion just before it reaches the “finish line” and commits.

In practice, these conflicts are overwhelmingly caused by a
read by another core and not by a write. Figure 3 shows such
a scenario.C1 starts a CAS transaction and reaches the write
step, which issues a GetM coherence request. Concurrently,
another core Ck—which is about to start a CAS transaction
and does not have a copy of the line—reads from the line to
obtain the “old” argument. This read issues a GetS coherence
request, which reaches the directory after C1’s GetM.
From the directory’s perspective, C1 is the owner of the

line and only it holds the latest data. Therefore, the direc-
tory sends a Fwd-GetS to C1, instructing it to downgrade
its state to Shared and send a copy of the line to Ck [37].
The Fwd-GetS can arrive at C1 while C1 is still in the trans-
action, because it has not yet received all the invalidation
acknowledgements required to complete its GetM request.
Receiving the Fwd-GetS, which indicates a remote read of a
transactionally written line, aborts C1’s transaction.3
3We are not able to determine whether the transaction aborts immediately
upon receiving the Fwd-GetS or only after the GetM completes. In any case,
the effect is the same.

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Fortunately, tripped writers are not a fundamental prob-
lem. In § 3.4.1, we describe a minor microarchitectural modi-
fication that prevents them. As this fix only applies to future
systems, however, our TxCAS design must currently address
the problem in software, which leads to limited effectiveness
on certain workloads on current hardware (§ 4).

3.4.1 Microarchitectural solution
Tripped writers can be eliminated with a minor microarchi-
tectural modification. Importantly, our proposed change is
generic and does not require HTM-based CAS transactions
to be treated by the hardware as “special” in any way.
Our insight is as follows. Modern microarchitectures do

not wait for a write instruction’s GetM request to complete
before moving on to execute subsequent instructions; the
data is stored in a store buffer [19] and gets written to the
cache asynchronously, once the GetM request completes.
In an HTM-based CAS, the instruction following the write
is the _xend(), which does block until the GetM completes.
Specifically, _xend() blocks until all writes performed by the
transaction have been propagated to the cache. This means
that when a tripped writer condition occurs, the core “knows”
that the transaction is ready to commit.

We propose to leverage this knowledge as follows. Rather
than unconditionally aborting a transaction upon receiving a
conflicting coherencemessage, check if (1) the core is blocked
on an _xend(), and (2) the core has a single GetM request
pending, and (3) the conflicting coherence request is by a
read. If so, stall the incoming request until the transaction
commits; otherwise, abort the transaction as usual. These
stalls cannot deadlock the system, because GetM requests
never get stalled.

With our proposed change, the execution depicted in Fig-
ure 3 will not causeC1 to abort. Instead, the Fwd-GetS will be
stalled at C1 until all invalidation acknowledgments arrive
andC1’s transaction commits. Then,C1 will sendCk the data
just written by the committed transaction.

4 TxCAS design
Designing a transactional CAS is conceptually simple, re-
quiring only wrapping the read-compare-write sequence in
a transaction. However, the design must overcome several
practical challenges caused by limitations of the commercial
HTM interface, its semantics, and its hardware implementa-
tion. Here, we walk through the design and its rationale.
Algorithm 1 presents our TxCAS design. We use Intel’s

HTM (called RTM [20]) in which an _xbegin() starting a
transaction checkpoints the core’s state and returns a special
successful value, and an abort restores the checkpointed
state and returns a bit mask that encodes the abort reason.

The algorithm performs the CAS read (Line 5) in a nested
transaction and the CAS write (Line 10) in the main transac-
tion. (We explain the use of nested transactions in § 4.2.) If

Algorithm 1 Transactional compare-and-set (TxCAS)
1: function txn_cas(int* ptr, int old, int new)
2: loop
3: if successful(ret := _xbegin()) then
4: if successful(_xbegin()) then
5: value := *ptr
6: if value , old then _xabort(1)
7: delay()
8: _xend()
9: end if
10: *ptr := new
11: _xend()
12: return true ▷ Code following successful commit
13: end if
14: ▷ On abort, execution resumes here
15: if self-abort(ret) then return false
16: if not (conflict(ret) and nested(ret)) then
17: continue
18: end if
19: delay()
20: if *ptr , old then return false
21: end loop
22: end function

the value read does not match the CAS’ old argument, the
transaction self-aborts (Line 6) and TxCAS returns false
(Line 15). Otherwise, TxCAS waits for a while and then pro-
ceeds to the CAS write. (We explain this delay in § 4.1.)
If the transaction does not abort because of a conflict,

or if it aborts because of a conflict that occurs after the
nested transaction (i.e., in Lines 10–11), TxCAS retries the
transaction (Lines 16–18). Otherwise, TxCAS waits for a
while and then verifies that the target location has changed.
If so, it returns false; otherwise, it retries the transaction.
We explain the abort handling logic in § 4.2.

Progress The HTM offers no progress guarantee [20] and
so, in principle, TxCAS could fail to terminate because its
transactions always abort not due to a conflict. To address
this problem, TxCAS falls back to performing a standard
CAS after sufficiently many retries of the loop. This fallback
makes TxCAS wait-free [14]: every TxCAS returns after a
finite number of its own steps. In practice, however, we
find that TxCAS operations terminate without requiring this
fallback, and so we omit it from the pseudo code.

4.1 Intra-transaction delay
TxCAS places a delay between reading the target location
and writing it (Line 7). This delay serves two purposes.
First, the delay increases the chance that the transaction

gets aborted by a conflicting TxCAS write before it issues
its own write (and corresponding GetM coherence request).
Increasing the chance of such pre-write aborts decreases
the amount of pending GetM requests, which are issued by
TxCASs that ultimately abort (and whose CAS fails) but only
after issuing their write. As explained in § 3.3, such pend-
ing GetM requests delay future transactions and increase
contention on the target memory location.
Second, the delay increases the average number of trans-

actions that conflict with and are aborted by the write of a

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

successful (committing) TxCAS. The reason is that as the
ultimately successful TxCAS—which is the first to arrive—
delays, more TxCASs arrive and will be aborted by the write.
This delay is especially helpful for scalability in low concur-
rency settings, where without delaying most TxCASs would
succeed, and would thus be serialized like standard CASs.
The disadvantage of the intra-transaction delay is that it

slows TxCAS down. Hence, the scalable but relatively high
latency observed in Figure 1 for low thread counts.

In our evaluated implementation, we use a delay of approx-
imately 270 nanoseconds, which we empirically found to be
optimal for our benchmarks on our evaluation platform.

4.2 Handling aborts
To provide CAS semantics, TxCAS must guarantee that it
returns false only if another TxCAS has successfully com-
mitted (and thus returns true). Because transactions can
abort for arbitrary reasons, not necessarily due to a conflict,
TxCAS cannot simply rely on its transaction aborting as the
condition for returning false. Instead, TxCAS fails after
an abort only if the target location has actually changed;
otherwise, it retries the transaction (Line 20 of Algorithm 1).
Checking the target location after an abort needs to be

done carefully. The fact that the transaction was just aborted
means that there is a GetM request by a writer in flight.
Reading the target location at this point would likely trip
this writer. To avoid creating a tripped writer problem, Tx-
CAS delays before reading the location (Line 19). The delay
is timed to give the writer a chance to complete its GetM
request, and thereby avoid aborting it.
TxCAS performs the post-transaction delay only if nec-

essary. Specifically, if the abort is not caused by a conflict
(which is determined from the _xbegin() return value), the
transaction is immediately retried. Similarly, we would like
to immediately retry if the abort is caused by a conflict with
the write step. In such a case, our aborted transaction may
be the tripped writer, and delaying after the abort would be
a waste of time.

Unfortunately, the HTM interface—i.e., the abort reasons
encoded in the _xbegin() return value—does not specify
the type of conflict or where it occurred in the transaction.
We circumvent this limitation by exploiting a reason that
the interface does provide, namely, whether the conflict oc-
curred in a nested transaction. TxCAS performs the read
step in a nested transaction. Thus, an abort occurring inside
the nested transaction implies that the write step was not
executed, and so TxCAS checks if the target location has
changed; otherwise, the transaction is immediately retried.

4.3 Implications of the tripped writer problem
Whether the tripped writer problem materializes depends
on the likelihood of a remote read coherence request hitting
the window in which a TxCAS waits for its write request to
complete. When coherence requests are confined to a single

head tail

basket

element

Figure 4. Baskets queue idea. Source: [17]
multi-core processor, this window is small—around 30–60
cycles. Consequently, a short post-transaction delay—as dis-
cussed in § 4.2—suffices to make tripped writers insignificant.

However, when coherence requests involve different pro-
cessors in a multi-socket NUMA system, they cross intercon-
nects (such as the QuickPath Interconnect [36, 43]) whose
latency is larger than of an on-chip interconnect . Increas-
ing the post-transaction delay to match cross-socket latency
would make TxCAS so slow as to obviate its scalability ben-
efits on current hardware. But without the delay, tripped
writers cause multiple transaction retries per TxCAS, simi-
larly making TxCAS ineffective.

As a result, in this paper,we limit the scope of our evaluation
to intra-processor synchronization. This limitation does not
rule out NUMA executions; it only means that TxCASs of a
location should be run on the same processor (§ 6).

5 SBQ: A scalable baskets queue
This section describes SBQ, our scalable, lock-free queue al-
gorithm. SBQ builds on the idea of the baskets queue (§ 5.1).
However, the baskets queue fails to scale due to the use of
CAS and a non-scalable basket data structure. To address
these problems, we abstract the basket data structure, cre-
ating a modular baskets queue design (§ 5.2) into which we
plug TxCAS and a new scalable basket design (§ 5.3).

5.1 Background: the baskets queue concept
The baskets queue [17] is a variant of the Michael-Scott
queue [27] that aims to reduce the queue’s CAS contention.
The Michael-Scott queue is comprised of a singly linked

list of nodes and head and tail pointers. Its enqueue operation
uses CAS to replace the value of the tail node’s next pointer
with the address of a new node. If the CAS fails, it is retried.

The baskets queue’s underlying observation is that a failed
CAS indicates that a successful CAS updating the next pointer
occurred in the window of time between reading the pointer
and attempting the failed CAS. This holds for every enqueue
whose CAS fails at the same tail node, which allows to divide
all the enqueue operations to equivalence classes. Each class
contains a single successful enqueue operation and all the
enqueue operations whose CAS fails because of it.
Since all the operations in an equivalence class are guar-

anteed to be concurrent, their elements may be dequeued at
any order without compromising the queue’s linearizability.
Conceptually, there is an unordered basket associated with
each node, into which a failed enqueue places its element
instead of retrying the CAS (Figure 4).

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

5.2 Modular baskets queue
We propose to explicitly define an abstract data type (ADT)
for the baskets, which enables plugging in different basket
implementations. In comparison, the baskets in the original
basket queue are implicit: If an enqueue fails to link a node
after the tail, it retries the insertion at the same node instead
of finding the new tail and linking its node there.

A key benefit of our framework is that it helps crystalizing
different basket properties that ultimately imply linearizabil-
ity of the queue. In our framework, for example, the original
baskets queue can be viewed as using a variant of the LIFO
Treiber stack [39] as the basket. To maintain linearizability
of the queue, this stack variant has the property that once an
item is removed from the basket, further insertions are pre-
vented. As we shall see, our proposed scalable basket (§ 5.3)
offers more relaxed properties.

5.2.1 The basket interface
A basket is a linearizable implementation of the following
sequential specification: The state of a basket is a set B. The
basket supports the following operations:

basket_insert(x) This operation attempts to insert x to
B and returns SUCCESS if successful. It is allowed to
fail non-deterministically and return FAILUREwithout
modifying B.

basket_extract This operation removes some x ∈ B and
returns it. If B is empty, it returns NULL.

basket_empty If B is not empty, returns false. Otherwise,
the return value can be either true or false, i.e., false
negatives are allowed.

We note that, as we shall see, the basket’s interface does
not imply the linearizability of the baskets queue. A basket
implementationmust thus satisfy the condition that plugging
it into the baskets queue results in a linearizable queue. The
reason that we do not specify amore specific condition is that
different basket properties—with associated performance
trade-offs—can be used to make the queue linearizable.

5.2.2 Modular queue description
This section describe our formulation of the baskets queue
as an algorithm based on explicit (pluggable) baskets.
The queue is represented as a singly linked list of nodes.

Algorithm 2 shows the queue data structures. Unlike the
original baskets queue, in our framework each node contains
a basket that can hold multiple elements. The node’s next
pointer is initialized to NULL when the node is created, and
will eventually point to the node placed after it. Each node
is identified with a unique index. The queue maintains the
invariant that linked nodes have consecutive indices.

The queue contains head and tail pointers. Initially, both
point to the same empty sentinel node, whose next pointer
is NULL. The algorithm uses a form of epoch-based memory

Algorithm 2 Queue data structures
struct node_t {

basket_t basket;

node_t* next;

int index;

};

struct queue_t {

node_t* head;

node_t* tail;

node_t* retired;

node_t* protectors[N];

};

Algorithm 3 Enqueue operation
1: function enqueue(queue_t* Q, T* element, int id)
2: node_t* t := protect(&Q→tail, &Q→protectors[id])
3: node_t* new_node := allocate_node() ▷ May reuse from last time
4: basket_insert(&new_node→basket, element, id)
5: loop
6: new_node→index := t→index + 1
7: status := try_append(t, new_node)
8: if status = SUCCESS then
9: CAS(&Q→tail, t, new_node)

10: return
11: else if status = FAILURE then
12: t := t→next
13: if basket_insert(&t→basket, element, id) then
14: break
15: end if
16: end if
17: while t→next , NULL do
18: t := t→next
19: end while
20: advance_node(&Q→tail, t)
21: end loop
22: unprotect(&Q→protectors[id])
23: end function

Algorithm 4 Basic try_append
1: function try_append(node_t* tail, node_t* new_node)
2: if tail→next , NULL then return BAD_TAIL
3: return CAS(&tail→next, NULL, new_node)
4: end function

Algorithm 5 Dequeue operation
1: function dequeue(queue_t* Q, int id)
2: node_t* h := protect(&Q→head, &Q→protectors[id])
3: loop
4: while basket_empty(&h→basket) and h→next , NULL do
5: h := h→next
6: end while
7: element := basket_extract(&h→basket, id)
8: if element , NULL or h→next = NULL then
9: break

10: end if
11: end loop
12: advance_node(&Q→head, h)
13: free_nodes(Q)
14: unprotect(&Q→protectors[id])
15: return element
16: end function

Algorithm 6 Advancing the queue head/tail
1: function advance_node(node_t** ptr, node_t* new_node)
2: loop
3: node_t* old_node := *ptr
4: if old_node→index ≥ new_node→index then return
5: if CAS(ptr, old_node, new_node) then return
6: end loop
7: end function

reclamation [8] described later, which relies on the queue’s
retired and protectors fields and on node index fields.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

We assume that both queue and basket operations take
the id of the calling thread, in addition to their standard
arguments. For simplicity, we assume that enqueuers and
dequeuers are indexed separately.

Enqueue (Algorithm 3) An enqueue operation allocates
a new node, inserts the element to that node’s basket, and
tries to append the node to the tail of the queue. This is done
using the try_append function (Algorithm 4), which returns
one of the following values:
SUCCESS If the new node was appended to the queue.
FAILURE If another node was appended to the queue.
BAD_TAIL If the tail node already points to another node,

making it an invalid (or “stale”) tail.
If the try_append succeeds, the enqueuer tries to advance
the tail pointer and completes. If the try_append fails, the
enqueuer tries to insert its element into the basket of the
newly appended node. If this basket insertion succeeds, the
operation completes and (to reduce contention) does not
advance the tail pointer. If the basket insertion fails or if
try_append returns BAD_TAIL, the operation is retried. Be-
fore retrying the operation, the new tail of the queue is
found by traversing from the current tail, and the enqueuer
advances the queue tail at least to that node.

Retrying when try_append returns BAD_TAIL—i.e., when
the enqueuer has not observed the next pointer of the current
tail to be NULL—is required for linearizability, to prevent
the enqueuer from inserting into the same basket it used
in a previous enqueue operation that completed without
advancing the queue tail.
When an enqueue operation completes without append-

ing its node to the queue, the thread’s next enqueue opera-
tion reuses the node instead of allocating a new node. Such
reuse also resets the node’s basket’s state (undoing the single
element insertion), which we assume takes constant time.
This optimization makes basket initialization time amortized
O(B/T), where B is the basket size and T is the number of
enqueuers, assuming an enqueuer succeeds appending its
basket in one out of T attempts.

Dequeue (Algorithm 5) A dequeue operation finds the
first node with a non-empty basket, if such a node exists, and
tries to extract an element from that basket. If the extraction
succeeds, the extracted element is returned. If the extraction
fails and the node was the last node in the queue, the queue
is considered empty and NULL is returned. Otherwise, the
operation finds the next non-empty node and tries again.
Before returning, the dequeuer advances the queue’s head—
swinging it past empty nodes—and attempts to reclaim the
memory of nodes which the head has advanced over.

Head/tail advancement (Algorithm6) The advance_node
function is used to make sure that the queue head or tail ad-
vances at least to the node passed to it—i.e., that the head/tail
points to that node or to a node with a greater index.

Algorithm 7Memory reclamation functions
1: function protect(node_t** ptr, node_t** p)
2: loop
3: *p := *ptr
4: ▷ On non-SC systems, reordering of the write to *p (line 3)
5: ▷ and the read of *ptr (line 7) must be prevented (e.g.,
6: ▷ using a memory fence).
7: if *ptr = *p then return *p
8: end loop
9: end function

10: function unprotect(node_t** p)
11: *p := NULL
12: end function

13: function free_nodes(queue_t* Q)
14: node_t* retired := SWAP(&Q→retired, NULL)
15: if retired = NULL then return
16: index := min{p→index | ∃i . p = Q→protectors[i] and p , NULL}
17: while retired , Q→head and retired→index < index do
18: node_t* tmp := retired→next
19: free(retired)
20: retired := tmp
21: end while
22: Q→retired := retired
23: end function

Memory reclamation (Algorithm 7) The queue design
is compatible with standard memory reclamation schemes,
such as epoch-based memory reclamation [8] or hazard
pointers [26]. For concreteness, we describe the epoch-based
reclamation scheme used in our evaluation, which is adapted
from Yang and Mellor-Crummey’s wait-free queue [41].
We refer to a node as retired when the queue’s head ad-

vances past it. The queue maintains a retired pointer that
initially points to the same sentinel node as head but subse-
quently lags behind it, pointing to the retired prefix of the
queue. The queue contains a protectors array (with an en-
try per thread) in which a thread announces the earliest node
in the queue it might access. Announcements are made and
cleared by the protect and unprotect functions, respec-
tively, at the beginning and completion of queue operations.

When a thread completes a dequeue, it attempts to reclaim
retired nodes using the free_nodes function. This function
advances the retired pointer to the earliest protected node
(determined from the indices of the protected nodes) or to
the current head (if all retired nodes are unprotected). It also
frees the memory of all nodes the retired pointer advances
over. Memory reclamation is performed in mutual exclusion:
free_nodes updates retired to NULL using SWAP, and
immediately returns if retired was already NULL. Like all
epoch-based reclamation schemes, the scheme may fail to
free memory if a thread stalls indefinitely (either between
protect and unprotect calls, or during free_nodes).

Linearizability As stated in § 5.2.1, the basket implementa-
tion must somehow guarantee that instantiating the queue
with it yields a linearizable queue. For instance, when viewed
in our framework, the guarantee of the original basket’s
queue LIFO basket is that all basket_insert operation fail
once an element has been extracted. (Technically, this was

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

achieved by having the extract set a special “deleted” bit in
the next pointer, which insertions would then check and fail
if the bit was set. We do not discuss the original approach in
detail, since our basket uses a completely different approach.)

5.3 SBQ design
We obtain SBQ by improving the scalability of the modular
baskets queue from § 5.2 in two ways. First, we replace the
use of CAS in the try_append function (Algorithm 4) with
our TxCAS. Second, we devise a new scalable basket and
plug it into the modular queue design.

5.3.1 The SBQ basket
Our basket is designed to avoid contention as much as pos-
sible. It consists of an array in which each inserter has a
private entry, allowing for synchronization-free insertions.
Extractions obtain an index to extract from using FAA. To
reduce FAA contention, we use an empty bit that, when set,
causes extractors to fail without performing the FAA.

Algorithm 8 describes the basket data structure. It consists
of an array of pointers, one for each inserter, a counter, and
an empty bit. Each array cell may contain either a pointer to
a valid element, or one of two reserved values: INSERT and
EMPTY. Each cell is initialized to the value INSERT when the
basket is created. Additionally, the counter is initialized to 0,
and the empty bit is initialized to false.

Algorithm 9 shows the basket operations. The basket_in-
sert operation uses CAS to attempt to place its value instead
of the INSERT value in the inserter’s cell. If it succeeds, then
the operation succeeds too; otherwise, it fails.
The basket_extract fails if the empty bit is set. Other-

wise, it acquires access to some cell by performing a FAA
on counter. If the index retrieved is outside of the array
bounds, the basket is considered empty. Otherwise, the ex-
tractor performs an atomic exchange with the value EMPTY
on that cell. This exchange returns a value previously stored
by an inserter, in which case the extract completes, or it
prevents a future inserter from writing to this cell. In this
case, the extract retries. The extractor that gets an index to
the last cell sets the empty bit.

The basket_empty operation returns the empty bit’s value.

Basket linearizability & progress Our basket is wait-free
and linearizable with respect to the specification of § 5.2.1.
We sketch the linearizability proof, due to space constraints.
We first define linearization points for the basket operations.

Let the number of inserters (i.e., size of the cells array) be
N , and let TN be the time in which the value of the basket’s
counter is incremented to N . The linearization points of the
basket operations are defined as follows:
• A basket_insert operation is linearized at the CAS op-
eration.

• A basket_empty operation is linearized at the read from
the empty bit.

Algorithm 8 SBQ basket structure
struct basket_t {

void* cells[enqueuers];

int counter;

bool empty;

}

Algorithm 9 SBQ basket operations
1: function basket_insert(basket_t* basket,

T* element, int id)
2: return CAS(&basket→cells[id], INSERT, element)
3: end function

4: function basket_extract(basket_t* basket, int id)
5: if basket→empty then return NULL
6: while (index := FAA(&basket→counter, 1)) < enqueuers do
7: if index = enqueuers - 1 then
8: basket→empty := true
9: end if
10: element := SWAP(&basket→cells[index], EMPTY)
11: if element , INSERT then return element
12: end while
13: return NULL
14: end function

15: function basket_empty(basket_t* basket)
16: return basket→empty
17: end function

• A failed basket_extract operation is linearized at the
last FAA the operation performs.

• A successful basket_extract operation is linearized at
one of the following points, depending on when the CAS
inserting the extracted element occurs:
– If the CAS occurs after TN , the basket_extract oper-
ation is linearized at the CAS operation inserting the
value.

– Otherwise, the basket_extract operation is linearized
at the earliest point of either the operation’s SWAP or
TN .

We next prove that the linearization point of a successful
basket_extract operation is within its execution interval.

Lemma 5.1. A successful basket_extract operation does
not start after TN .

Lemma 5.2. If a basket_insert operation successfully per-
forms its CAS after TN , there is a pending basket_extract
operation that starts no later thanTN and successfully extracts
the inserted element.

Finally, we show that the linearization points induce a
linearization of the basket’s execution.

Theorem 5.3. Algorithm 9 is a linearizable implementation
of the basket specification.

5.3.2 SBQ linearizability
We sketch SBQ’s linearizability proof, which uses the Aspect-
Oriented Linearizability proof framework [13]. According
to the framework, the queue implementation is linearizable
if every execution of queue operations can be completed

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

so it does not have any pending (i.e., ongoing) operations,
and every such complete history is free of the following
violations (assuming uniqueness of enqueued values):
VFresh A value returned by a dequeue operation has not

been previously enqueued by an enqueue operation.
VRepeat Two dequeue operations return a value enqueued

by the same enqueue operation.
VOrd enqueue(b) is invoked after enqueue(a) completes;

some dequeue operation returnsb; but either no dequeue
operation returns a or the dequeue returning a is in-
voked after b’s dequeue completes.

VWit A dequeue operation returns NULL although there are
elements enqueued before the operation which are not
yet dequeued.

See [13] for a formal definition of the violations.
That VFresh and VRepeat violations cannot occur follows

straightforwardly from the linearizability of our basket. The
proof that VOrd and VWit violations are impossible follows
from the following property of the basket: Let t be a point in
time in which the basket is indicated to be empty, i.e., when
some basket_extract returns NULL or some basket_empty
returns true. Then any successful basket_extract must
have started before time t . (In other words, once the basket is
indicated as empty, any future basket_extract invocations
are guaranteed to fail and return NULL.)
Lemma 5.4. VOrd violations are impossible.

Proof. Let P ≺ Q denote that operation P returns before
operationQ is invoked, i.e., they are not concurrent. Proving
that VOrd violations are impossible boils down into proving
that if two dequeues, D1 ≺ D2, both successfully dequeue
from baskets B1 and B2 respectively, then B2 ⊀ B1, where we
abuse notation and identify a basket with the enqueue that
linked it to the queue. Our basket implementation implies
this property, because if B2 ≺ B1 then D1 traverses through
B2 before reaching B1 and therefore observes the basket B2 to
be empty. This contradicts the fact that D2 later successfully
dequeues from the basket B2. □

Lemma 5.5. VWit violations are impossible.

Proof. Let D be a dequeue returning NULL. Then at some
time t , D observes that the last empty basket is also the
last basket in the queue. Our basket’s property implies that
the dequeue operation of any element inserted into a basket
observed empty byD starts before the basket becomes empty,
and in particular, before time t . This contradicts the formal
definition of the VWit violation [13]. □

5.3.3 SBQ lock-freedom
Lock-freedom of enqueue operations follows from the se-
mantics of CAS (and TxCAS): out of all the enqueuers at-
tempting to append a new node, one must succeed. The
dequeue operation is lock-free because if it performs an in-
finite number of steps then it traverses through infinitely

many nodes and fails to extract each time. Since nodes are
added to the queue with non-empty baskets, this implies that
other dequeues are successful.

5.3.4 Scalability of SBQ operations
Since asymptotically TxCAS has constant latency (§ 3.3),
the latency of an SBQ’s enqueue operation is asymptotically
dominated by the basket’s initialization time at the beginning
of the operation, which is amortized O(B/T), where B is the
basket size and T is the number of enqueuers (§ 5.2.2). For
programs that fix B to be the maximum number of threads,
the latency therefore monotonically decreases withT and for
T ≈ B it is O(1). Programs that dynamically set the basket
size toT enjoyO(1) enqueue latency at all concurrency levels.
(Our evaluation conservatively uses a fixed B.) This analysis
ignores contention with dequeues that may lead to multiple
basket insertion attempts, which are rare in our experiments.

In contrast, the dominating factor of SBQ’s dequeue oper-
ations is the basket’s contended FAA, whose latency is linear
in the number of concurrent dequeuers. This means that
SBQ’s dequeue performance is comparable to state-of-the-
art FAA-based queues [31, 41] but is similarly non-scalable.

6 Evaluation
6.1 Experimental setup
We use a server with two Intel Xeon E5-2699 v4 processors.
Each processor has 22 cores, each multiplexing 2 hardware
threads, allowing up to 44 threads per processor. Each core
has private L1 and L2 caches; the inclusive L3 cache is shared.

In our experiments, each thread acts as either a producer
calling enqueue or a consumer calling dequeue. We evaluate
three workloads: producer-only, consumer-only, and a mixed
producer/consumer workload. Each thread is pinned to some
hardware thread, and as explained in § 4.3, all threads of the
same type are pinned to the same processor.

Wemeasure the time it takes until each thread completes 4·
106 operations. We report averages of 5 executions and error
bars indicating standard deviation. Contention is consistent
throughout each experiment: the relative difference between
the longest and shortest thread execution times is ≤ 5%.
We use the Memkind [4, 18] scalable memory allocator. All
implementations are in C11 and use memory reclamation.

We compare SBQ (SBQ-HTM) to the following prior queue
implementations: (1) WF-Queue, Yang and Mellor-Crum-
mey’s FAA-based wait-free queue [41]; (2) CC-Queue, Fa-
tourou and Kallimanis’s combining queue [7]; and (3) BQ-
Original, the original baskets queue [17]. We use the orig-
inal authors implementation of CC-Queue and WF-Queue
(including their memory reclamation schemes).

To isolate the impact of TxCAS from our scalable basket,
we additionally compare to SBQ-CAS, a version of SBQ
whose try_append uses CAS, and has the same delay as
TxCAS placed between lines 2 and 3 of the function. In both

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

0 10 20 30 40
Concurrent threads

0

500

1000

1500

2000
En
qu
eu
e
La
te
nc
y
[n
s/
op
]

Latency (lower is better)

0 10 20 30 40
Concurrent threads

0

10

20

30

40

50

En
qu
eu
e
th
ro
ug
hp
ut

[M
op
/s
]

Total throughput (higher is better)

BQ-Original CC-Queue SBQ-CAS SBQ-HTM WF-Queue

Figure 5. Enqueue operations: latency & throughput.

0 10 20 30 40
Concurrent threads

0

500

1000

1500

2000

2500

3000

De
qu
eu
e
La
te
nc
y
[n
s/
op
]

BQ-Original
CC-Queue

SBQ-CAS
SBQ-HTM

WF-Queue

Figure 6. Dequeue operations: latency.

SBQ versions, the basket size is 44 in all experiments but
basket emptiness (Algorithm 9, line 7) is determined using
the number of enqueuers in the experiment.
To our knowledge, WF-Queue is the fastest queue in the

literature, despite offering a strong wait-free guarantee. The
reason is that it uses a fast-path/slow-path approach [23]
that triggers costly wait-free helping only when operations
fail to make progress. In practice, operations make progress,
and so WF-Queue is not penalized by its wait-freedom.

6.2 Experimental results
Producer-onlyworkload Figure 5 shows average enqueue
latency when filling an initially empty queue. (We cap the
latency graph at a certain latency point, so as to not ob-
scure useful information.) For comparison, we also show
the throughput (aggregated operations per second) obtained.
SBQ-HTM exhibits linear scalability—beyond 10 threads its
latency curve is close to constant. SBQ-CAS behaves simi-
larly at low concurrency, but stops scaling beyond 20 threads.

0 10 20 30 40
Concurrent threads

0

500

1000

1500

2000

2500

To
ta
lD

ur
at
io
n
[n
s/
op
]

BQ-Original
CC-Queue

SBQ-CAS
SBQ-HTM

WF-Queue

Figure 7. Mixed benchmark: normalized duration.

SBQ-HTM latency is dominated by TxCAS delays. As con-
currency grows, the probability that when a TxCAS starts a
delay there is another pending TxCAS that will soon abort it
grows, and thus the time TxCASs spend performing delays
decreases as concurrency grows.
In contrast to the SBQ variants, all other queues do not

scale, as evidenced by their growing latencies and flat through-
put curves. As a result, SBQ-HTM outperforms WF-Queue
from 32 threads onwards, obtaining 1.6× its throughput
(equivalently, 0.625× its latency) at 44 threads.

Consumer-onlyworkload Here, consumers dequeue from
a non-empty queue. (We pre-fill the queue using concur-
rent producers with enough elements so that it does not
get empty.) Figure 6 shows dequeue latency (we omit the
throughput graph, due to space constraints). SBQ-HTM out-
performs CC-Queue, BQ-Original, and SBQ-CAS, but not
WF-Queue. Unlike the enqueue operation, SBQ-HTM’s de-
queue operation does not scale. The reason is that our bas-
ket’s dequeue is bottlenecked by a contended FAA, similarly

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Or Ostrovsky and Adam Morrison

to WF-Queue. Compared to WF-Queue, SBQ-HTM latency
is worse by a constant factor of 1.4× at high thread counts.
This happens because an SBQ-HTM dequeue may perform
multiple contended FAAs, as it can arrive at an empty basket
before its empty bit is set. InWF-Queue, in contrast, dequeues
perform one FAA per operation, since it uses counters that
regulate the entire queue.

Mixedworkload Figure 7 reports the average time required
to complete a benchmark in which producers enqueue 4 · 106
elements and consumers dequeue 4 · 106 elements (in total)
on a queue initially containing 2 · 106 elements. We dedicate
one processor for producers and one for consumers.
As before, the SBQ variants and WF-Queue are the best

performers. Due to the FAA bottleneck in the SBQ baskets,
the scalability trends are similar to the consumer-only work-
load. However, due to SBQ-HTM’s scalable enqueues, it out-
performs WF-Queue from 48 threads, and at 88 threads it
achieves 1.16× better throughput (or 0.86× better latency).

7 Related work
CAS-based queues The baskets queue [17] is one of sev-
eral attempts to improve the scalability of the Michael-Scott
queue [27], by either reducing the number of CASs per-
formed by enqueues [24], applying the elimination tech-
nique [29], or using batching to amortize CAS cost [28].
Kogan and Petrank obtained efficient wait-free CAS-based
queues [22, 23]. Still, all these queues rely on contended
CASs, and so are not scalable (§ 3).

FAA-based queues Some early queues had both contended
FAA and CAS [5, 35, 40]. Morrison and Afek proposed LCRQ,
a lock-free queuewhose sole contended operation is FAA [31].
We call this property FAA-only. Yang and Mellor-Crummey
proposed await-free FAA-only queue that outperforms LCRQ
due to a custom memory reclamation algorithm [41]. While
FAA-only queues avoid wasted work due to CAS failures,
the use of a contended FAA makes them non-scalable (§ 3).

Combining-based queues Combining is a technique in
which a combiner thread performs all the operations cur-
rently pending by other threads. Flat combining [12] does
not use CAS, but the latency of the serial work performed by
the combiner exceeds that of a contended RMW. Accordingly,
the fastest combining-based queues, SimQueue [6] and CC-
Queue [7], are based on contended FAA and SWAP, respec-
tively. These queues are not scalable, and are outperformed
by the nonblocking FAA-only queues discussed above.

Relaxed queues Scalable queues can be obtained by relax-
ing the linearizability correctness condition [1, 10], but such
relaxed queues are inapplicable to some applications [30].
Moreover, our focus is the intellectual challenge of obtaining
a scalable queue without compromising on linearizability.

Scalable synchronization hardware Several works pro-
pose hardware support for efficient synchronization, by de-
laying cache coherence transactions to prevent failures of
CAS or lock acquisitions [11, 32] or by forwarding the data
accessed in a critical section while lock ownership is being
transferred [33]. These proposals eliminate CAS failures but
still serialize all CAS operations, and therefore do not enable
a scalable baskets queue implementation.

LL/SC Load-link/store-conditional (LL/SC) instructions [21]
are an alternative to atomic RMW instructions. An SC con-
ditionally writes to a memory location previously read from
with LL, provided the location was not written to by another
core since the LL. An LL/SC implementation has scalable
failures if it acquires Shared ownership of the target loca-
tion on LL and upgrades to Modify ownership on SC. Unlike
TxCAS, however, the failure occurs only at the SC instead
of when the location gets updated, leading to wasted cycles.
This wasted cycles problem has actually motivated proposals
for LL to acquire Modify ownership [32], serializing failures.

8 Conclusion & future work
This paper makes a first step towards designing a scalable
linearizable queue. Our core insight is that a CAS that is
carefully implemented in an HTM transaction inherently
scales better than a standard CAS. Based on this insight, we
design TxCAS, an HTM-based CAS that realizes these scal-
ability benefits on current Intel processors. We use TxCAS
and a new scalable basket in the design of SBQ, a scalable
version of the baskets queue. Our empirical evaluation on a
dual-processor Intel server with 44 cores (88 hyperthreads)
shows that at high concurrency levels, SBQ outperforms the
fastest queue today by 1.6× on a producer-only workload
and by 1.16× on a producer/consumer workload.
Interesting future work remains to address SBQ’s limi-

tations, for example, by designing a basket with scalable
dequeue operations and by improving commercial HTM im-
plementations to address the tripped writer problem.

Artifact evaluation results
We wish to clarify that this paper did not receive a results
replicated artifact evaluation badge not because the artifact
experiments produced different results than those we report,
but due to technical issues that prevented artifact reviewers
from running the experiments. (Namely, reviewers did not
have access to Intel machines with HTM, or encountered
crashes in setup code—before the experiment runs—that we
were not able to debug remotely.)

Acknowledgments
This research was funded in part by the Israel Science Foun-
dation (grant 2005/17) and by the Blavatnik Family Founda-
tion. We thank the anonymous reviewers for their insights.

Scaling Concurrent Queues by Using HTM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

References
[1] Yehuda Afek, Guy Korland, and Eitan Yanovsky. 2010. Quasi-

linearizability: Relaxed Consistency for Improved Concurrency. In
OPODIS 2010. http://dl.acm.org/citation.cfm?id=1940234.1940273

[2] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++
Concurrency Memory Model. In PLDI 2008. http://doi.acm.org/10.
1145/1375581.1375591

[3] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek
Williams, and Hung Le. 2013. Robust Architectural Support for Trans-
actional Memory in the Power Architecture. In ISCA 2013. http:
//doi.acm.org/10.1145/2485922.2485942

[4] Christopher Cantalupo, Vishwanath Venkatesan, Jeff R Hammond,
and Simon Hammond. 2015. User Extensible Heap Manager for Het-
erogeneous Memory Platforms and Mixed Memory Policies. (2015).

[5] Robert Colvin and Lindsay Groves. 2005. Formal Verification of an
Array-Based Nonblocking Queue. In ICECCS 2005.

[6] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A highly-
efficient wait-free universal construction. In SPAA 2011. http://doi.
acm.org/10.1145/1989493.1989549

[7] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the
combining synchronization technique. In PPoPP 2012. http://doi.acm.
org/10.1145/2145816.2145849

[8] Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. Univer-
sity of Cambridge, Computer Laboratory, University of Cambridge,
Computer Laboratory.

[9] J. R. Goodman and H. H. J. Hum. 2004. MESIF: A Two-Hop Cache
Coherency Protocol for Point-to-Point Interconnects. Technical Report.
University of Auckland.

[10] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer,
Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. 2013. Distributed
Queues in Shared Memory: Multicore Performance and Scalability
Through Quantitative Relaxation. In CF 2013. https://doi.org/10.1145/
2482767.2482789

[11] Syed Kamran Haider, William Hasenplaugh, and Dan Alistarh. 2016.
Lease/Release: Architectural Support for Scaling Contended Data
Structures. In PPoPP 2016.

[12] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
combining and the synchronization-parallelism tradeoff. In SPAA 2010.
http://doi.acm.org/10.1145/1810479.1810540

[13] Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013. Aspect-
Oriented Linearizability Proofs. In CONCUR 2013. http://doi.org/10.
1007/978-3-642-40184-8_18

[14] Maurice Herlihy. 1991. Wait-free synchronization. TOPLAS 13 (Jan.
1991), 124–149. Issue 1. http://doi.acm.org/10.1145/114005.102808

[15] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-free Data Structures. In ISCA 1993.
http://doi.acm.org/10.1145/165123.165164

[16] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM TOPLAS 12, 3
(July 1990), 463–492. http://doi.acm.org/10.1145/78969.78972

[17] Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. The Baskets Queue.
In OPODIS 2007. http://doi.org/10.1007/978-3-540-77096-1_29

[18] Intel. 2018. Memkind (version 1.8.0). https://github.com/memkind/
memkind

[19] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Optimization
Reference Manual. Number 248966-041. Intel Corporation.

[20] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Number 325462-069US. Intel Corporation.

[21] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broughton. 1987. A
New Approach to Exclusive Data Access in Shared Memory Multipro-
cessors. Technical Report UCRL-97663. Lawrence Livermore National
Laboratory.

[22] Alex Kogan and Erez Petrank. 2011. Wait-free Queues with Multiple
Enqueuers and Dequeuers. In PPoPP 2011. http://doi.acm.org/10.1145/

1941553.1941585
[23] Alex Kogan and Erez Petrank. 2012. A Methodology for Creating Fast

Wait-free Data Structures. In PPoPP 2012. http://doi.acm.org/10.1145/
2145816.2145835

[24] Edya Ladan-Mozes and Nir Shavit. 2004. An optimistic approach to
lock-free FIFO queues. In Distributed Computing, Rachid Guerraoui
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 117–131. http:
//doi.org/10.1007/978-3-540-30186-8_9

[25] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9
(Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[26] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation
for Lock-Free Objects. IEEE TPDS 15, 6 (June 2004), 491–504. http:
//dx.doi.org/10.1109/TPDS.2004.8

[27] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Prac-
tical Non-blocking and Blocking Concurrent Queue Algorithms. In
PODC 1996. http://doi.acm.org/10.1145/248052.248106

[28] Gal Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez Pe-
trank. 2018. BQ: A Lock-Free Queue with Batching. In SPAA 2018.
http://doi.acm.org/10.1145/3210377.3210388

[29] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. 2005. Using
elimination to implement scalable and lock-free FIFO queues. In SPAA
2005. http://doi.acm.org/10.1145/1073970.1074013

[30] AdamMorrison. 2016. Scaling Synchronization in Multicore Programs.
CACM 59, 11 (Oct. 2016), 44–51. http://doi.acm.org/10.1145/2980987

[31] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for
x86 Processors. In PPoPP 2013. http://doi.acm.org/10.1145/2442516.
2442527

[32] Ravi Rajwar, Alain Kägi, and James R. Goodman. 2000. Improving the
throughput of synchronization by insertion of delays. In HPCA 2000.

[33] Ravi Rajwar, Alain Kägi, and James R. Goodman. 2003. Inferential
Queueing and Speculative Push for Reducing Critical Communication
Latencies. In ICS 2003.

[34] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. 2010. x86-TSO: a rigorous and usable pro-
grammer’s model for x86 multiprocessors. CACM 53, 7 (July 2010),
89–97. http://doi.org/10.1145/1785414.1785443

[35] Niloufar Shafiei. 2009. Non-blocking Array-Based Algorithms for
Stacks and Queues. In ICDCN 2009.

[36] Ronak Singhal. 2008. Inside Intel Next Generation Nehalem mi-
croarchitecture. In HotChips 2008. http://www.hotchips.org/wp-
content/uploads/hc_archives/hc20/3_Tues/HC20.26.630.pdf

[37] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on
Memory Consistency and Cache Coherence (1st ed.). Morgan & Claypool
Publishers.

[38] Paul Sweazey and Alan Jay Smith. 1986. A Class of Compatible Cache
Consistency Protocols and Their Support by the IEEE Futurebus. In
ISCA 1986. http://dl.acm.org/citation.cfm?id=17407.17404

[39] R. K. Treiber. 1986. Systems Programming: Coping With Parallelism.
Technical Report RJ 5118. IBM Almaden.

[40] Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multiprocessor
systems. In SPAA 2001. http://doi.acm.org/10.1145/378580.378611

[41] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue
As Fast As Fetch-and-add. In PPoPP 2016. http://doi.acm.org/10.1145/
3016078.2851168

[42] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.
2013. Performance Evaluation of Intel® Transactional Synchronization
Extensions for High-performance Computing. In SC 2013. http://doi.
acm.org/10.1145/2503210.2503232

[43] Dimitrios Ziakas, Allen Baum, Robert A. Maddox, and Robert J.
Safranek. 2010. Intel QuickPath Interconnect Architectural Fea-
tures Supporting Scalable System Architectures. In HOTI 2010. http:
//dx.doi.org/10.1109/HOTI.2010.24

http://dl.acm.org/citation.cfm?id=1940234.1940273
http://doi.acm.org/10.1145/1375581.1375591
http://doi.acm.org/10.1145/1375581.1375591
http://doi.acm.org/10.1145/2485922.2485942
http://doi.acm.org/10.1145/2485922.2485942
http://doi.acm.org/10.1145/1989493.1989549
http://doi.acm.org/10.1145/1989493.1989549
http://doi.acm.org/10.1145/2145816.2145849
http://doi.acm.org/10.1145/2145816.2145849
https://doi.org/10.1145/2482767.2482789
https://doi.org/10.1145/2482767.2482789
http://doi.acm.org/10.1145/1810479.1810540
http://doi.org/10.1007/978-3-642-40184-8_18
http://doi.org/10.1007/978-3-642-40184-8_18
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/78969.78972
http://doi.org/10.1007/978-3-540-77096-1_29
https://github.com/memkind/memkind
https://github.com/memkind/memkind
http://doi.acm.org/10.1145/1941553.1941585
http://doi.acm.org/10.1145/1941553.1941585
http://doi.acm.org/10.1145/2145816.2145835
http://doi.acm.org/10.1145/2145816.2145835
http://doi.org/10.1007/978-3-540-30186-8_9
http://doi.org/10.1007/978-3-540-30186-8_9
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/TPDS.2004.8
http://doi.acm.org/10.1145/248052.248106
http://doi.acm.org/10.1145/3210377.3210388
http://doi.acm.org/10.1145/1073970.1074013
http://doi.acm.org/10.1145/2980987
http://doi.acm.org/10.1145/2442516.2442527
http://doi.acm.org/10.1145/2442516.2442527
http://doi.org/10.1145/1785414.1785443
http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/3_Tues/HC20.26.630.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/3_Tues/HC20.26.630.pdf
http://dl.acm.org/citation.cfm?id=17407.17404
http://doi.acm.org/10.1145/378580.378611
http://doi.acm.org/10.1145/3016078.2851168
http://doi.acm.org/10.1145/3016078.2851168
http://doi.acm.org/10.1145/2503210.2503232
http://doi.acm.org/10.1145/2503210.2503232
http://dx.doi.org/10.1109/HOTI.2010.24
http://dx.doi.org/10.1109/HOTI.2010.24

	Abstract
	1 Introduction
	2 Preliminaries
	3 Scalability of HTM-based CAS
	3.1 Multi-core cache coherence
	3.2 Non-scalability of standard CAS
	3.3 Scalability properties of HTM-based CAS
	3.4 HTM-based CAS ``tripped writer'' problem

	4 TxCAS design
	4.1 Intra-transaction delay
	4.2 Handling aborts
	4.3 Implications of the tripped writer problem

	5 SBQ: A scalable baskets queue
	5.1 Background: the baskets queue concept
	5.2 Modular baskets queue
	5.3 SBQ design

	6 Evaluation
	6.1 Experimental setup
	6.2 Experimental results

	7 Related work
	8 Conclusion & future work
	Acknowledgments
	References

