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Abstract
Nonblocking data structures face a safe memory reclamation
(SMR) problem. In these algorithms, a node removed from the
data structure cannot be reclaimed (freed) immediately, as
other threads may be about to access it. The goal of an SMR
scheme is to minimize the number of removed nodes that
cannot be reclaimed—calledwastedmemory—while imposing
low run-time overhead. It is also desirable for an SMR scheme
to be self-contained and not require specific OS features.
No existing self-contained SMR scheme can guarantee a

predetermined bound on wasted memory without imposing
significant run-time overhead. In this paper, we introduce
margin pointers (MP), the first nonblocking, self-contained
SMR scheme featuring both predetermined bounded wasted
memory and low run-time overhead. MP targets search data
structures, such as binary trees and skip lists, which are
important SMR clients and also victims of its high overhead.
MP’s novelty lies in its protecting logical subsets of the data
structure from being reclaimed, as opposed to previous work,
which protects physical locations (explicit nodes).

CCS Concepts: • Theory of computation → Shared
memory algorithms.

Keywords: safe memory reclamation, hazard pointers

1 Introduction
Nonblocking concurrent data structures face a safe memory
reclamation (SMR) [22] problem. It is not safe to immediately
reclaim (free) a node’s memory when the node is removed
from the data structure, as other threads may be holding local
references to the node and cannot be blocked from accessing
it (e.g., via locking). In manual memorymanagement settings,
such as C/C++ programs, the SMR problem is handled by an
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SMR scheme. Instead of freeing a removed node, it is retired,
indicating that no other node points to it. The SMR scheme
reclaims a retired node once no thread refers to it locally.
It is important for an SMR scheme to guarantee a prede-

termined bound on the number of retired but unreclaimed
nodes, or wasted memory. By “predetermined bound” we
mean a bound such as 𝑂 (number of threads), which holds
independently of thread scheduling. We refer to providing a
predetermined bound as bounding wasted memory.
Hazard pointers (HP) [22] bound wasted memory, but

do so by tracking every thread-local reference (i.e., each
pointer dereference), which imposes high run-time overhead
on the client application. Nevertheless, bounding wasted
memory is important enough that HP is being adopted in
the C++ standard library as well as by applications with
high-availability and soft real-time requirements [23].

Various HP-like SMR schemes reduce run-time overhead
by leveraging specific operating system (OS) primitives [1–
3, 6, 12, 25]. These schemes do bound wasted memory, but
relying on OS-specific mechanisms makes them non-self-
contained—e.g, unsuitable for adoption in a standard library.
Self-contained SMR schemes trade off bounding wasted

memory to reduce overhead. Epoch-based reclamation
(EBR) [15, 20] only tracks which threads are performing
a data structure operation when a node is retired and might
therefore locally refer to the retired node. Once all such
threads complete their operation, the node can be reclaimed.
If a thread stops taking steps mid-operation, however, no
retired node can be reclaimed. EBR thus does not even sat-
isfy robustness [3, 12, 29], which is defined as not allowing
unbounded wasted memory.
Interval-based reclamation (IBR) [29] and hazard eras

(HE) [27] are robust. They use node lifetimes to infer whether
a retired node might be referenced locally by a stalled thread.
Like EBR, they divide time into epochs. Each thread an-
nounces the epoch that it last observed, making that epoch
active. A node can be safely reclaimed if it was retired be-
fore every active epoch or created after every active epoch.
Therefore, a stalled thread cannot prevent the reclamation
of any node created (and retired) after its active epoch, so
the amount of wasted memory cannot grow unboundedly.

We observe, however, that robustness still allows for arbi-
trarily large amounts of wasted memory. For instance, the
data structure can grow arbitrarily large before a thread stalls
mid-operation; if other threads subsequently empty the data
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structure, none of the removed nodes can be reclaimed by
IBR or HE. We thus argue that robustness alone is not a help-
ful SMR property. If an SMR scheme is only robust, a real
system (with finite memory) can still end up with almost all
of its memory taken up by unreclaimable nodes as a result
of a thread stalling mid-operation. An SMR scheme should
thus guarantee a predetermined bound on wasted memory,
thereby making the amount of wasted memory independent
of thread behavior.

This work. In this paper, we design a self-contained, low-
overhead SMR scheme that guarantees bounded wasted mem-
ory. We introduce margin pointers (MP), an SMR scheme
targeted at search data structures [10], such as binary trees
and skip lists, which are important SMR clients and suffer
greatly from its overhead.
Margin pointers encode “announcements” that protect

logical subsets of the data structure from being reclaimed, as
opposed to previous work, which protects physical locations
(explicit nodes) [4, 18, 22]. In MP, similarly to HP, threads
maintain multiple “pointer” records. In HP, each record pro-
tects some node from reclamation. In MP, in contrast, each
record protects the interval of keys within some margin (dis-
tance) from a key. Threads can therefore ensure that the key
of any node accessed is contained in some MP-protected
interval. Because an interval can protect multiple nodes, a
thread can perform multiple accesses without updating any
MP record—significantly reducing run-time overhead. At the
same time, controlling the margin allows MP to bound the
protected interval size and bound wasted memory.
MP supports HP’s SMR interface and extends it with op-

tional method calls, without which it falls back to HP. Con-
sequently, MP can be seamlessly plugged into any client
program that uses the HP interface. Client search data struc-
tures can then use MP as an optimization, by modifying their
code to invoke MP’s optional methods.
We apply and evaluate MP on several nonblocking data

structures: a binary search tree [24], a linked list [21], and
a skip list [15]. MP shows a symbiotic relationship with
the client data structure: the faster the data structure, the
less overhead MP imposes. Overall, MP’s performance is
comparable to IBR and HE on fast data structures, while also
guaranteeing bounded wasted memory.
MP show that bounded wasted memory does not neces-

sary imply high SMR run-time overhead in practice. Our re-
sults motivate further exploration of the connection between
bounded wasted memory and performance, e.g., by theoret-
ical characterization or obtaining low-overhead, bounded
wasted memory SMR for more data structures.

2 Model & Problem Statement
We consider a multi-threaded data structure, in which 𝑇
threads communicate through a shared memory using stan-
dard read, write and atomic read-modify-write primitives

such as compare-and-swap (CAS). The data structure con-
sists of memory blocks referred to as nodes. We assume an
environment without automatic garbage collection, as is the
case for C/C++ programs. In this setting, the programmer
must explicitly allocate and reclaim nodes. The safe memory
reclamation (SMR) problem is to guarantee that a node is
reclaimed only after no thread can access it. To this end,
an SMR scheme supports the programming model detailed
below, by providing the interface shown in Listing 1.

Listing 1. SMR API.
Function alloc(uint size): Node*
Function retire(Node* ptr): void
Function start_op(): void
Function end_op(): void
Function read(Node** ptr_addr,

uint refno): Node*
Function unprotect(Node*,

uint refno): void

Every node is first allo-
cated using alloc. (The SMR
scheme may use more mem-
ory than requested for a
node, to piggyback its own
per-node bookkeeping data.)
The node is then linked into
the data structure by updating some pointer to point to it. A
node is removed from the data structure when no other node
points to it. Once a node is removed, only threads that hold
a local reference to it (having read a pointer to it) can access
the node. A removed node is retired and passed to the SMR
scheme by invoking retire. We assume that only removed
nodes are passed to retire, and that a node is not retired more
than once. The SMR scheme buffers every retired node in an
internal retired list, and reclaims the node’s memory once no
thread refers to it locally.
To track possible references, the SMR scheme provides

the following interface: Upon starting and completing a data
structure operation, a thread must call start_op and end_op,
respectively. Before accessing a node, a thread must pass
the node’s address to read. MP and similar designs require
explicitly identifying the local references with a refno pa-
rameter (which is ignored in other designs) and performing
an explicit unprotect call when a local reference is dropped
(see § 3). As is standard, we assume that threads do not hold
local references to nodes across data structure operations.
The SMR problem is a major concern for nonblocking

algorithms, and so we require an SMR scheme to be non-
blocking as well: After sufficiently many execution steps,
some invocation of an SMR interface call must complete [17].
In particular, no SMR call may block, waiting for a thread to
release local references. Instead, if nodes cannot be reclaimed,
the retired list will grow in size, possibly unboundedly.

3 Background & Related Work
Here, we survey and compare existing SMR techniques. The
main axes of comparison are the run-time overhead an SMR
scheme imposes on the client data structure, the amount of
wasted memory it allows to accumulate, and programmer
effort required to utilize the scheme in a data structure. A
secondary consideration is the node size overhead (if any)
imposed by the scheme. Table 1 summarizes the discussion
in this section and the properties of MP (§ 4).
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Scheme
Run-Time
Overhead

Wasted
Memory
Bound?

Data Struct.
Integration

Effort

Per-Node
Overhead
(# Words)

HP [22] High Bounded Per-reference -
DTA [4] Low Robust† Harder than HP‡ 2
OA [9] Low Recycle only ≈ HP -

AOA [8] Low Recycle only Rewrite DS to -normal. form
FA [7] Low Recycle only Automatic -
EBR [15] Low Unbounded Per-operation -
HE [27] Low Robust ≈ HP 2
IBR [29] Low Robust Per-operation 3

MP

Low–Med.

Bounded

HP + extra

3(Search DS) method calls for
= HP full benefit

(Other DS) (see § 4.1)
† Amount of memory consumed by frozen nodes can be arbitrarily large.
‡ A data structure-specific freezing process must be designed.
Table 1. Comparison of memory reclamation schemes.

3.1 Pointer-Based Reclamation (PBR)
A PBR scheme protects specific nodes from being reclaimed.
Each thread maintains a set of pointer protection variables
(PPVs), in which it must “announce” any node to which it
holds a local reference. (In our model, the SMR scheme’s
read procedure (Listing 1) performs this announcement.) A
threadmay only access a node if one of its PPVs has protected
that node continuously from a time at which the node was
linked into the data structure. To establish this property, a
thread wishing to dereference a pointer 𝑝 to node 𝑛 first
writes 𝑛’s address to one of its PPVs, and then verifies that
𝑝 still points to 𝑛. Success of this validation establishes that
𝑛 was linked to the data structure throughout these steps,
and so 𝑛 is successfully protected. If the validation fails, the
protocol is repeated for the node 𝑛′ to which 𝑝 now points.
For correctness, the write to the PPV must be visible to all
threads before 𝑝 is verified, which requires executing a costly
memory fence operation after writing the PPV. As a result,
PBR schemes have high run-time overhead.
PBR schemes also require explicit management of the

PPV’s lifetimes by the programmer. The programmer must
invoke the scheme’s unprotect call whenever a PPV no longer
needs to protect its node. There are often subtle rules about
overwriting one PPV with another PPV’s value [22]. PBR
can be complex to use with some algorithmic patterns (e.g.,
binary tree rotations) [29].
In the canonical PBR schemes, PPVs are called hazard

pointers (HP) [22] or guards [18]. We describe HP (guards
are similar). HP stores retired nodes in thread-local retired
lists. Whenever the number of retired nodes in a thread’s
list exceeds some bound, the thread attempts to reclaim
nodes. It scans every thread’s hazard pointers, and reclaims
any retired node not protected by some hazard pointer. The
threshold for attempting reclamation can be tuned to bal-
ance wasted memory overhead vs. the cost of these scans.

Critically, however, wasted memory has a predetermined
bound: at most 𝑂 (𝐻𝑇 ) retired nodes cannot be reclaimed,
where 𝐻 is the number of HPs per thread.

Drop theAnchor (DTA) DTA [4] attempts to reduce HP’s
overhead. DTA’s PPV is called an anchor. When the anchor
points to a node, it protects any node reachable from that
node in 𝑘 node traversals, where 𝑘 is a DTA parameter. The
anchor thus needs to be updated once every𝑘 node traversals,
significantly reducing overhead. Retired nodes are managed
similarly to HP, but the reclamation process is different. DTA
first tries a variant of EBR. If a thread is stalled mid-operation,
blocking reclamation, DTAmakes use of that thread’s anchor.
It freezes the 𝑘 nodes protected by the anchor, making them
immutable, and replaces them with new copies. The idea is
that the stalled thread can now only access a frozen node, so
any non-frozen node can be reclaimed.
DTA has two main downsides. First, freezing is data

structure-specific, and must be designed from scratch for
each new client data structure. Currently, only a list freezing
technique is known [4]. Second, freezing may lead to an
arbitrarily large number of nodes becoming unreclaimable
if a thread stalls. The reason is that, to guarantee that any
node the stalled thread might access gets frozen, DTA freezes
every node it encounters while traversing from the stalled
thread’s anchor, until it has frozen 𝑘 nodes that were linked
to the data structure before the stalled thread’s operation
started.1 There can be an arbitrarily large number of nodes
frozen this way, e.g., any number of nodes can be inserted
between the stalled thread’s anchor and its current position.

Optimistic Access (OA) OA [9] reduces HP overhead by
replacing HP updates of read nodes with post-read validation
checks. Write accesses are HP-protected as usual. OA thus
allows a thread to read from a retired node. To prevent ac-
cessing reclaimed memory, OA never reclaims nodes. Instead,
retired nodes are recycled and returned by future allocation
requests. As a result, OA cannot provide a bound on used
memory. OA requires the data structure to be implemented
in a specific normalized form. Subsequent work [7, 8] has
made OA-style SMR automatically applicable to arbitrary
nonblocking data structures.

3.2 Epoch-Based Reclamation (EBR)
EBR schemes [15, 20] divide time into epochs, implemented
by incrementing a global counter, with protection performed
at epoch granularity. Each thread announces the latest epoch
it has observed. A retired node can be reclaimed once all
threads have announced later epochs than the epoch the
node was retired at. EBR only requires to be informed when
a thread starts and stops an operation. EBR schemes dif-
fer in how epochs are maintained. For instance, Fraser’s
scheme [15] increments the global counter once every thread

1To this end, DTA adds an insertion time field to the nodes.
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has either observed the current epoch or is not performing
an operation.
EBR schemes are not robust: a thread stalled mid-

operation blocks memory reclamation, as the epoch counter
stops advancing.

3.3 Robust EBR Extensions
Two recent schemes extend EBR ideas and obtain robustness
by using node lifetimes to infer if a retired node might be ac-
cessible to a stalled thread. Hazard eras (HE) [27] extend HP
with a variant of EBR. HE maintains node fields describing
the node’s birth-death interval, which indicates the epochs in
which the node was allocated and retired. In HE, an HP de-
clares the value of the global epoch when the thread wants to
access the node. A retired node can be reclaimed if no thread
declares an epoch in the node’s birth-death interval. The
global epoch advances every constant number of deletion
operations. HE significantly reduces HP run-time overhead,
as multiple nodes can be accessed without needing to up-
date the HP as long as the global epoch does not change.
Being based on HP, HE requires the same amount of effort
to deploy.
Interval-based reclamation (IBR) [29] uses similar ideas,

but without maintaining PPVs. Each thread only maintains
an epoch interval, such that the birth epoch of any node
it accesses is within that interval. A retired node can be
safely reclaimed if for every interval, its retirement time is
before the start of the interval, or its creation time is after the
interval’s endpoint. In IBR, the global epoch advances every
constant number of node allocations. IBR has less run-time
overhead than HE, because in HE, a global epoch change can
cause a thread to update all its PPVs, whereas in IBR, it can
only cause a thread to update its epoch interval.
HE and IBR are robust: A stalled thread does not indefi-

nitely block memory reclamation, since nodes allocated (and
retired) after the thread stalls can be reclaimed. Nevertheless,
the number of retired nodes that cannot be reclaimed may
be arbitrarily large, since it can reach the size of the data
structure when the thread stalled.

3.4 Other SMR Approaches
Reference Counting In a reference counting scheme [11],
each node contains a reference count which is atomically
incremented or decremented when a thread obtains or drops
a reference to the object, respectively. Thus, an object with
a reference count of zero can be safely and immediately re-
claimed. Reference counting overhead is usually not accept-
able because of the contention caused by the atomic updates
on read-only, frequently-accessed nodes such as list and tree
heads [16]. We do not consider such schemes further.

Non-self-contained SMR Schemes Multiple SMR
schemes leverage OS features to reduce HP overhead
or handle stalled threads in EBR. ThreadScan [1] and

ForkScan [2] use signals to force all threads to report
their local references. DEBRA+ [6] uses signals to restart
a stalled thread, releasing all its local references. Several
schemes [3, 12, 25] use OS system calls to force threads to
perform a memory fence on demand, and thereby relieve
the threads from having to perform a fence on each HP
write. Our focus is on self-contained schemes.

4 Margin Pointers
This section presents the margin pointers (MP) SMR scheme.
We describe the main ideas and terms (§ 4.1) and define
the search data structures that MP targets (§ 4.2). We then
walk through the code (§ 4.3), prove that MP bounds wasted
memory (§ 4.4), and prove MP’s correctness (§ 4.5). In § 5,
we apply MP to nonblocking linked list, skip list, and binary
search tree algorithms.

4.1 Main Idea
MP is a pointer-based design. MP’s core idea is for the PBR
protection variables (PPVs) to protect logical subsets of the
nodes rather than specific physical nodes. Protecting a subset
of the nodes removes the requirement to update a PPV on
each pointer dereference (unlike HP), which reduces the
memory fence overhead. Protecting a logical subset allows
MP to unambiguously identify protected retired nodes, and
thereby bound wasted memory.

MP Concepts To identify logical subsets of nodes, MP as-
sumes the client data structure is a search data structure
(such as a binary tree or skip list) that satisfies certain prop-
erties (detailed in § 4.2). One such property is that nodes
have immutable keys, which allows MP to identify nodes by
their keys. MP also requires the keys to be totally ordered,
which allows MP to efficiently encode protected subsets as
intervals of keys. EachMP protects an interval of keys within
some margin (distance) from a key. The margin is a prede-
termined MP parameter. This scheme allows encoding an
interval with a key: if the margin is 𝑀 , then an MP whose
value is 𝑘 protects the key interval [𝑘 −𝑀/2, 𝑘 +𝑀/2].

Performing protection logically creates a “chicken and
egg” problem. To determine if node 𝑛 is protected by an MP
and can thus be accessed, a thread must know 𝑛’s key—but
it must access 𝑛 to read the key. To address this problem, we
use the assumption that keys are immutable and represent
a pointer 𝑝 as a tuple 𝑝 = (𝑛, 𝑘) where 𝑝 points to 𝑛 and
𝑛.𝑘𝑒𝑦 = 𝑘 . This representation allows a thread to determine
a node’s key given only a pointer that points to the node.

Making MP Practical Realizing the above concepts for
general keys raises several challenges. First, in some key
domains (e.g., reals) an interval [𝑘 −𝑀/2, 𝑘 +𝑀/2] contains
infinitely many keys. This means that a single MP could
block an unbounded number of nodes from reclamation.
Second, it may not be simple and/or efficient to compute a
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distance between keys. Finally, it is not practical to encode
a pointer together with a large key, as, e.g., that prevents
atomically updating a pointer (and its associated key) with a
single memory write.
MP solves the above problems by intelligently mapping

keys to fixed-width integers (e.g., 32-bit). Specifically, MP
associates an index with each node, such that 𝑛1 .𝑘𝑒𝑦 ≤
𝑛2.𝑘𝑒𝑦 ⇐⇒ 𝑛1.𝑖𝑛𝑑𝑒𝑥 ≤ 𝑛2 .𝑖𝑛𝑑𝑒𝑥 for any nodes 𝑛1, 𝑛2.
(Below, we address the issue of index collisions between dif-
ferent nodes.) MP protection is then performed on indices,
i.e., an MP with an index 𝑖 protects the nodes whose indices
are in the interval [𝑖 −𝑀/2, 𝑖 +𝑀/2]. Index-based protection
makes protection intervals bounded in size and distances
trivial to compute. It also allows MP to efficiently encode
pointers as pairs of node and index, as discussed in § 4.3.1.

MP Index Creation Crucially, MP does not use a static
key-to-index mapping. MP creates the mapping at run-time,
based on the data structure dynamics, in a way that strives
to make the indices of nodes that are physically close (i.e.,
reachable by a few pointer dereferences) also logically close
(i.e., with indices that are close), as described next.

In search data structures, a traversal searching for a key
implicitly maintains an open interval of keys, each of which
must either be reachable to the traversal (by following point-
ers) or is not present in the data structure. This interval
also always contains the traversal’s target key. The interval
shrinks each time the traversal performs a key comparison
and navigates through a node, until finally the target key is
found or its absence is established. For instance, when nav-
igating left/right in a binary search tree, the right/left end
of the interval is updated. Data structure insertions perform
a traversal and then, if the target key was not found, link a
new node to the node where the traversal ended.
MP leverages this behavior to determine the new node’s

index, so that it is close to the index of its parent. MP exports
update_lower_bound and update_upper_bound methods to
allow a traversal to update MP when the lower and upper
endpoints of the search interval are adjusted. If an inser-
tion ends with its search range being (𝑘1, 𝑘2) with indices
(𝑖1, 𝑖2), respectively, then MP assigns the newly linked node
an index of

𝑖1 + 𝑖2
2

. (Other policies are possible; we leave
exploring them to future work.) The end result is that indices
approximate physical proximity in the data structure. Thus,
protecting a node’s index with an MP is likely to protect
the next few nodes on the traversal, and thereby reduce the
number of MP updates (and corresponding memory fence
overhead).

Index Collisions The main challenge created by mapping
a (possibly unbounded) key domain to fixed-width integers
is the possibility of multiple (possibly an unbounded number
of) linked nodes obtaining the same index. In such cases, a
single MP may again block reclamation of an unbounded

number of nodes. MP handles such occurrences by falling
back to a variant of HP and HE (§ 4.3.2). Crucially, due to the
specific way MP uses EBR, a stalled thread can only block a
constant number of retired nodes from reclamation, so MP’s
bound on wasted memory is not compromised (§ 4.3).

Bound on Wasted Memory Overall, intuitively, MP
should bound the number of protected retired nodes by
𝑇 ×𝑀 ×#𝑀𝑃 , where𝑀 is the margin and #𝑀𝑃 is the number
of MPs per thread. Our solution to index collisions introduces
additional factors, and the full bound is detailed in § 4.4.

4.2 Search Data Structures
While MP can be used with any client code that is compatible
with HP (because MP uses the same SMR interface), MP’s
low overhead protection of logical data structure subsets
targets search data structures, such as trees, lists, and skip
lists [5, 13, 15, 19, 21, 24, 26].
Here, we characterize the properties that define a search

data structures which can use MP’s extended interface and
thereby benefit from reduced runtime overhead.
Definition 4.1. A data structure 𝐷 is a search data structure
if it has the following properties:

1. 𝐷 deterministically implements a set or key/value data
type over a totally ordered domain of keys.

2. 𝐷’s nodes have immutable keys.
3. 𝐷’s insert operation allocates a new node 𝑛 only after

locating 𝑛’s position in the data structure.
4. 𝐷’s structure orders nodes according to their keys. For

every node 𝑛 in 𝐷 and every pointer 𝑝 of 𝑛, either
(1) 𝑛′.𝑘𝑒𝑦 > 𝑛.𝑘𝑒𝑦 for all nodes 𝑛′ reachable from 𝑛

by following 𝑝 , or (2) 𝑛′.𝑘𝑒𝑦 < 𝑛.𝑘𝑒𝑦 for all nodes 𝑛′
reachable from 𝑛 by following 𝑝 .

5. 𝐷’s insert operation can be modified to explicitly main-
tain a search interval 𝐼 (as described in § 4.3), such that
when a node for key 𝑘 is created, 𝐼 = [𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐],
where 𝑝𝑟𝑒𝑑 and 𝑠𝑢𝑐𝑐 are the predecessor and succes-
sor of 𝑘 in the data structure.

6. When𝐷’s insert operation links a new node𝑛 with key
𝑘 to some existing node 𝑛′, then 𝑛′.𝑘𝑒𝑦 is 𝑘’s successor
or 𝑘’s predecessor.

4.3 AlgorithmWalk-Through
Listing 2.MP structures.

const uint thread_cnt
const uint MPs_per_thread

unsigned_int mp_slots[thread_cnt]
[MPs_per_thread]

thread_local list retired

const uint max_index
const uint margin // protected range

We first describe the basic
MP algorithm, and then add
handling for index collisions
(§ 4.3.2). Listing 2 shows the
shared and private structures
used by the algorithm. The
main structure, mp_slots, is
an array of margin pointers,
which are used to announce indices for protection. Each
thread has a constant number of margin pointers. Similarly
to HP, each thread has a local retired list. MP has two tunable
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parameters: max_index, which is the maximal value of any
assigned index, and margin, which is the size of the safety
margin. In addition (not shown), MP requires nodes to be
augmented with an index field. If the client does not rely
on node sizes (e.g., to copy nodes), MP can add this field
opaquely by reserving extra space during node allocation.
Otherwise, the client must be aware of the index field.

Listing 3. Basic read.
Function read(Node** addr, refno):
while true do
<node, idx> := *addr
mp := mp_slots[tid][refno]
// idx protected by this mp?

if idx ∈ [mp − margin

2
, mp + margin

2
]:

return node
// no protection
mp_slots[tid][refno] := idx
memory_fence

// ensure node remains linked
if <node, idx> = *addr:
return node

NodeProtection The read
method (Listing 3) attempts
to dereference a pointer. It ex-
tracts both the target node’s
address and its index from
the pointer. (We discuss the
encoding in § 4.3.1.) It then
checks if the node’s index is
already protected by the ref-
erence’s MP, i.e., if the index
lies in that MP’s protection
interval. If so, the node is re-
turned and the caller may access it. If no protection exists, the
node’s index is written to the specified slot in the thread’s
margin array. This write is then made globally visible by
issuing a memory fence. If subsequently the node remains
pointed to by the pointer, it can be safely accessed. The rea-
son is that (as with HP) the protection was announced while
the node was linked to the data structure.

Node Unprotection An unprotect() call has no effect (it
is a no-op), so that the protection interval of the MPs can
remain valid and protect future-accessed nodes. We only
clear MPs when an operation ends, as described below.

Listing 4. Retirement &
Reclamation.
// frequency of reclamation:
const int empty_freq
// public (invoked by client)
thread_local int counter
Function retire(Node* ptr): void
retired.append(ptr)
counter++
if counter % empty_freq = 0:
empty()

const uint NO_MARGIN = 0xffffffff
// private: invoked internally by MP
Function empty(): void
for node in retired:
conflict := false
idx := node->index
for tid in threads:
for mp in mp_slots[tid]:
if mp ≠ NO_MARGIN and

idx ∈ [mp − margin

2
, mp + margin

2
]:

conflict := true
if not conflict:
free(node)

Retirement & Reclama-
tion Listing 4 shows the
code for node retirement
and reclamation. Retirement
simply places the node in
the thread-local retirement
list. Every empty_freq re-
tirements, the thread calls
empty to reclaim retired
nodes. This procedure walks
through the retirement list
and reclaims the memory of
any retired node that is not
protected by someMP in the
system. To check if a node is
protected, it first reads 𝑖𝑑𝑥 ,
the node’s index, from the
node. It then checks, for ev-
ery MP that protects an in-
dex interval 𝐼 , whether 𝑖𝑑𝑥 ∈ 𝐼 . If the node’s index is not
in any protected interval, it is reclaimed. (This process can

be optimized, e.g., by building and querying an interval tree
with the intervals of all MPs.)

Index Creation & Node Allocation MP requires the
client data structure to allocate a new node (for an im-
mutable key) only after locating the node’s parent in the
data structure. This requirement allows MP to maintain its
key-to-index mapping by observing how the inserting op-
eration’s search for the key navigates the data structure.
Specifically, when a node 𝑛 for key 𝑘 is allocated, MP needs
to know 𝑘’s predecessor and successor in the data struc-
ture, respectively, 𝑝𝑟𝑒𝑑 and 𝑠𝑢𝑐𝑐 . MP then assigns 𝑛 with
index (𝑝𝑟𝑒𝑑.𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑢𝑐𝑐.𝑖𝑛𝑑𝑒𝑥)/2, and thereby maintains
the property that ∀𝑘 ′, 𝑘 ≤ 𝑘 ′ ⇐⇒ 𝑛𝑘 .𝑖𝑛𝑑𝑒𝑥 ≤ 𝑛𝑘′ .𝑖𝑛𝑑𝑒𝑥 .
To know a new node’s predecessor and successor, MP

leverages the property in most comparison-based data struc-
tures (e.g., skip lists, binary trees) that the data structure is
navigated by maintaining a search interval which shrinks
throughout the navigation, until it finally reduces to an in-
terval whose endpoints are the target key’s predecessor and
successor. The navigation then stops and determineswhether
𝑘 is absent from the data structure and can thus be inserted.

Listing 5. Node creation.
thread_local uint lower_bound, upper_bound
Function update_lower_bound(Node* n):
lower_bound := n->index
Function update_upper_bound(Node* n):
upper_bound := n->index

Function alloc(Key key): Node*
node := malloc(sizeof(Node))
node->key := key

node->index := ⌊ lower_bound + upper_bound

2
⌋

return node

MP requires modify-
ing the client’s insert
operation to explicitly
maintain the search in-
terval’s endpoints using
update_lower_bound and
update_upper_bound
calls (Listing 5). (In § 5,
we demonstrate such
modifications for various
nonblocking data structures.) Ultimately, when the inserted
key’s desired position is located, and the operation allocates
a node for the key, MP knows the indices of the key’s
predecessor and successor, and can assign it an index.
Initialization allocations of sentinel nodes (for keys such as
±∞) require the client to specify the index.

End of Operation When a client data structure operation
completes, the thread’s MP array is cleared, to signal that
the thread is no longer protecting any nodes. All the writes
are made visible with one memory fence.

4.3.1 Index Extraction & Pointer Encoding
MP requires a pointer 𝑝 to node 𝑛 to be represented
as (𝑛, 𝑛.𝑖𝑛𝑑𝑒𝑥), so that a thread can know a node’s
index without accessing the node. MP thus defines a
pointer object for clients to use. MP’s pointers sup-
port the usual read, write, and CAS operations, so con-
verting client code to use MP’s pointers is straightfor-
ward. Listing 6 shows MP’s pointer representation. MP
packs both pointer and index into a single memory word.
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Listing 6. Pointer represen-
tations.
struct MP_CAS_Ptr {
uint ptr = {
next_index : 16 bits
next : 48 bits
}
Function read_tuple():
// called only by MP code
return <this.next, this.next_index>
// called by client:
Function deref(): Node*
return (Node*) this.ptr.next
Function write(MP_WAS_PTR new):
this := new
Function CAS(MP_CAS_PTR old,

MP_CAS_PTR new):
return CAS(&this, old, new)

}

It relies on the fact that
in many architectures, not
all the bits of a virtual ad-
dress are used. For exam-
ple, x86 and ARM reserve
the top 16 bits. MP therefore
packs the index into those
reserved bits. (A similar ap-
proach is used in DTA [4].)
The subtlety here is that in-
dices might not fit in 16 bits.
In such a case, MP stores the
16 most significant bits of an
index in the pointer, losing
some precision: Observing a pointer (𝑛, 𝑖) now means that
𝑛.𝑖𝑛𝑑𝑒𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑖) = [𝑖 × 216, 𝑖 × 217 − 1]. Therefore, MP
considers 𝑖 to be protected by an MP only if the MP’s interval
contains 𝑟𝑎𝑛𝑔𝑒 (𝑖). Moreover, the margin must be larger than
216, otherwise this condition can never be satisfied.

4.3.2 Handling Index Collisions
Because MP maps a large key domain to fixed-width indices,
there may be arbitrarily many keys mapping to the same
index, which can cause a single MP to protect an unbounded
number of retired nodes. We leverage the way indices are
created to address this problem by carefully falling back to
a variant of HP and HE. Appendix A provides the full code
of the algorithm, which adds index collision handling to the
code shown in the previous sections.

We first observe that the only way an index collision can
initially occur is when there is no room for a new unique
index between the indices of a new node’s predecessor and
successor. MP identifies this case and, instead of assigning
a colliding index to the new node, uses a special USE_HP
index value. The idea is that nodes stamped USE_HP must
be protected with hazard pointers and not margin pointers,
making the indices of all MP-protected nodes unique.
We add an array of hazard pointers to each thread, and

when trying to dereference a pointer (𝑛,𝑈𝑆𝐸_𝐻𝑃), the MP
read function sets an HP to the target’s address instead of
an MP. The reclamation code similarly checks for HP or MP
protection, depending on whether the retired node’s index
is USE_HP or not.
Falling back to HP solves the problem of index collisions

for nodes in the data structure, but it is also possible for
the indices of retired nodes to collide. Imagine the same key
being repeatedly inserted and then deleted from the same
position in the data structure. Each such deleted node will
have the same index. To address this problem, we combine
MP with ideas from HE. We add a global epoch counter
that each thread increments every constant number 𝐹 of
node unlinks, and stamp each node with birth (creation) and
retirement epochs. As in HE, each thread announces the
global epoch it observed when starting an operation. The

memory reclamation code checks if an MP protects a retired
node only if the epoch of the MP’s thread lies inside the
retired node’s birth-death interval. If a thread observes the
epoch changing during its operation, it switches to using
HPs during that operation, i.e., any subsequent read of a
node that is not already protected by one of the thread’s MPs
will protect the access with an HP. The code in Appendix A
omits this latter change for simplicity.

4.4 Predetermined Bound on Wasted Memory
We prove the following theorem:

Theorem 4.2. MP has a predetermined wasted memory
bound.

Proof. Consider the number of retired nodes protected by
some thread 𝑡 . Each of 𝑡 ’s HPs protects at most one node. If
the thread is using only HP, we are done. Otherwise, each
of 𝑡 ’s MPs protects at most𝑀 (i.e., margin) indices. We need
to show why MP’s HE-like technique does not allow an
arbitrary number of retired nodes to be protected by one of
these indices. To see why, let 𝑒 be 𝑡 ’s announced epoch. We
use the fact that each thread increments the global epoch
once every 𝐹 nodes it unlinks (see § 4.3.2). Thus, after 𝐹𝑇
node unlinks, the global epoch advances at least once.

Now, consider each index 𝑖 protected by one of 𝑡 ’s MPs. Re-
tired nodes whose retirement epoch is < 𝑒 are not protected
by that MP, as it could not have observed them. There may
well be an unbounded number of retired nodes 𝑛1, 𝑛2, . . .
whose retirement epoch is ≥ 𝑒 and all have index 𝑖 , but no
two such nodes could exist together in the data structure, be-
cause MP-protected nodes in the data structure have unique
indices. It follows that for every 𝑛𝑖 , 𝑛 𝑗 , either 𝑛𝑖 is unlinked
before 𝑛 𝑗 is inserted or vice versa. Therefore, nodes 𝑛𝐹𝑇+1, ...
all have a birth epoch > 𝑒 . But such nodes are not considered
protected by 𝑡 ’s MP, since 𝑡 ’s epoch is 𝑒 .

Overall, the number of retired nodes protected by a thread
𝑡 is at most #𝐻𝑃 + #𝑀𝑃 ×𝑀 + #𝑀𝑃 ×𝑀 × 𝐹𝑇 . □

Theorem 4.2 shows the existence of a wasted memory
bound. This guaranteed bound may be very large in practice,
depending on the concrete values of 𝑇 , 𝐹 , and 𝑀 used. We
believe that future work can improve the bound. For example,
if we advance the global epochs on every node unlink (as in
HE), the per-thread bound improves to #𝐻𝑃 +𝑂 (#𝑀𝑃 ×𝑀).
We leave exploring the related trade-offs to future work.

4.5 Safety & Progress Proofs
An SMR scheme is considered reclamation safe if it is guar-
anteed that a node cannot be accessed after it has been re-
claimed.

Theorem 4.3. The MP scheme is reclamation safe.

Proof. We prove by contradiction. Assume that MP is not
reclamation safe. Hence, there exists a node 𝑛 with index 𝑖 ,
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which was reclaimed (freed) at time 𝑡𝑟 by thread 𝑗 and thread
𝑘 accessed node𝑛 at time 𝑡𝑎 > 𝑡𝑟 .𝑛’s lifetime is [𝑡𝑏, 𝑡𝑟 ′] where
𝑡𝑏 and 𝑡𝑟 ′ are the birth and retirement times of 𝑛, respectively,
which satisfy: 𝑡𝑏 < 𝑡𝑟 ′ < 𝑡𝑟 < 𝑡𝑎 .

Since thread 𝑘 accessed 𝑛 at time 𝑡𝑎 , there must exist a
time 𝑡𝑝 ∈ (𝑡𝑏, 𝑡𝑟 ′) in which thread 𝑘 holds a pointer to 𝑛,
otherwise it cannot access it (as before 𝑡𝑏 the node 𝑛 does
not exist and at 𝑡𝑟 ′ the node was disconnected from the data
structure). Thread 𝑘 can hold a reference to node 𝑛 only by
using the SMR read method, which will place a protection on
node𝑛 for thread 𝑘 whether implicitly by protecting its index
(if not already covered) using a margin pointer or explicitly
by protecting its address (if not already protected) using
a hazard pointer. This means that for any time 𝑡 between
[𝑡𝑝 , 𝑡𝑎], node𝑛 was protected by thread 𝑘 . At time 𝑡𝑟 , thread 𝑗
reclaims node 𝑛 and it can only do so by running the internal
empty method that reclaims nodes retired by 𝑗 if no other
thread protects them. Notice that 𝑡𝑟 ∈ [𝑡𝑝 , 𝑡𝑎], and so at
time 𝑡𝑟 , either 𝑛 is protected by one of thread 𝑘’s HPs or
the protection interval of one of thread 𝑘’s MPs contains
𝑖 . Thus, the internal empty method does not reclaim 𝑛—a
contradiction. □

Theorem 4.4. The MP scheme is nonblocking.

Proof. All methods but read are wait-free. As can be seen
in Listing 10, read may loop forever only if the protected
node pointer keeps changing. This implies that some other
thread is making progress. □

5 Data Structure Integration
Here, we present the process of the using MP in a search
data structure. We first detail the high-level steps that need
to be taken (§ 5.1). We then demonstrate the methodology on
nonblocking lists and skip lists (§ 5.2) and on the Natarajan-
Mittal [24] nonblocking binary search tree (§ 5.3). In the full
version of this paper, we also describe how MP naturally
applies to tree rotations [28, § 4.4.5] and analyze the number
of index collisions in these data structures both theoretically
and empirically [28, § 4.6].

5.1 Methodology
In general, applying MP to a nonblocking search data struc-
ture (that satisfies Definition 4.1) involves the following:
1. Adapt the client algorithm to HP [22] by using the SMR

interface.
2. Replace pointers with MP’s pointer objects, and pointer

accesses with the corresponding MP interface calls.
At this point, the algorithm can be used safely (as MP will
fall back to HP), but to benefit from MP’s reduced overhead,
the following steps need to be taken as well.
3. Choose appropriate indices for sentinel nodes (if any),

according to their location in the totally ordered key space.

For instance, a maximum (minimum) sentinel should be
assigned the maximal (minimal) index.

4. Modify insert operations to invoke update_lower_bound
and update_upper_bound to update MP about the search
interval while searching for the inserted key’s location.

5. Node allocations should be performed using the SMR alloc
call, after the inserting operation has determined the key’s
location.

5.2 Lists & Skip Lists
We first apply MP to a variant of Michael’s nonblocking
linked list [21] and then generalize to skip lists [15].

Linked Lists The list maintains keys in sorted order, with
head and tail sentinel nodes, holding keys −∞ and ∞, re-
spectively. (The tail sentinel is not present in Michael’s orig-
inal version, but is trivial to add.) The list implements the
standard set interface. The algorithm has an internal seek
procedure, which is used by all operations to search for a key.
We assume 32-bit indices, and so assign the head sentinel
index 0 and the tail sentinel index max_index = 232 − 2. The
index 232 − 1 stands for USE_HP.

Listing 7. Linked list seek
(MPs/HPs not shown).
Function seek(Key k): Node*, Node*
try_again:
prev := list->head
curr := prev->next
while curr ≠ NULL do
next := curr->next
if next & 1:
if !CAS(prev, curr, next - 1):
goto try_again
retire(curr)
curr := next - 1
else:
if curr.key < k:
update_lower_bound(curr)
prev := curr
curr := next
else:
update_upper_bound(curr)
return (prev, curr)

return (prev, NULL)

Applying HPs to the list
is standard [21]. The ad-
ditional changes required
to benefit from MP are
mostly trivial (e.g., changing
pointer fields and accesses
to use the MP pointer ob-
jects). The only non-trivial
change is the maintenance
of the search interval during
insertion, which we add to
the seek procedure (Listing 7,
which omits HP handling).
Seek traverses the list from
its head, searching for some
key 𝑘 . It maintains prev and
curr pointers. The search terminates upon finding a node
with key 𝑘 ′ ≥ 𝑘 , in which case seek returns the tuple
(𝑝𝑟𝑒𝑣, 𝑐𝑢𝑟𝑟 ) to the calling operation. If 𝑘 is not in the list, this
pair forms 𝑘’s predecessor and successor, allowing an insert
operation to link a new node for 𝑘 between prev and curr.
Accordingly, seek’s search interval starts at (−∞,∞), shrinks
to (𝑥,∞) after traversing through a node with key 𝑥 , and
finally becomes (𝑝𝑟𝑒𝑣 .𝑘𝑒𝑦, 𝑐𝑢𝑟𝑟 .𝑘𝑒𝑦) when seek returns. Up-
dating MP about the search interval is thus straightforward,
requiring only two lines of code (bolded in Listing 7).

MP requires no algorithmic changes to the list, e.g., to the
list’s two-step node deletion process. To delete key 𝑘 in node
𝑛, the list algorithm first sets (with CAS) a reserved deleted
bit in 𝑛.𝑛𝑒𝑥𝑡 (the least significant bit). Subsequently, 𝑛 is
physically removed from the list by splicing it from the list.
A seek that observes a pointer with the deleted bit set splices
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the marked node out of the list. This logic is not affected
by MP, which is oblivious to how the client interprets node
addresses (i.e., the meaning of the deleted bit).

Skip Lists In a skip list, each node is linked into multi-
ple sorted lists (via an array of next pointers). The lists are
ordered by containment. Every node is linked to the bottom-
most list, and each higher level list contains a constant frac-
tion of fewer nodes. A search for key 𝑘 navigates the highest
level (thereby “skipping” over multiple nodes) until finding
the largest key 𝑘 ′ < 𝑘 in that level. It then continues from
that node in the next lower level, and so on, until either
finding 𝑘 or terminating in the bottom-most list.
We apply MP to Fraser’s nonblocking skip list [15]. This

algorithm, as other nonblocking skip lists, essentially main-
tainsmultipleMichael-style linked lists. Similarly to the list, a
search operation requires twoMPs—for prev and curr nodes—
as it navigates the data structure. Insertions/removals need
two MPs per level, since they can potentially modify every
level. Maintaining the search interval of an operation works
exactly as for the single list, i.e., we update MP about the
search interval shrinking as each list level is searched.

5.3 Binary Search Tree (BST)
We consider the nonblocking BST of Natarajan and Mit-
tal [24], which implements the standard set data type. The
data structure is an unbalanced external (leaf-oriented) tree,
in which the leaf nodes store the actual keys and the keys
stored in internal nodes are used only to guide searches.
This design choice simplifies deletions, which need handle
only leaves. Deletions are implemented by marking edges.
An edge has tail (points from) and head (points to) nodes.
An edge can be marked as tagged, meaning the tail node is
deleted, or flagged, meaning both head and tail nodes are
deleted. These marks are implemented by stealing the two
least significant bits from pointers. Once an edge is marked,
it cannot be modified.

Listing 8. NM Tree API.
struct seek_record {
Node* leaf,
Node* parent,
Node* successor,
Node* ancestor,
}
Function seek(Key k): seek_record

USE_HP

USE_HPUSE_HP

USE_HPmax_idx

Figure 1. NM Tree initial
state.

All tree operations are
based on an internal seek
procedure, which traverses
the tree while maintaining a
seek record (Listing 8). When
seek returns, the seek record
contains the leaf where the
search stopped, its parent, an
untagged successor of the
leaf, and an untagged ances-
tor of the leaf. If the leaf
is not undergoing deletion,
the latter two are its par-
ent and grandparent (i.e., the
seek record effectively con-
tains only 3 nodes). The idea
is that the seek record can be used to link a new node to the

tree. Refer to [24] for the full details. For our purpose, only
the following details are important.

First, the initial state (Figure 1) contains 3 sentinel nodes,
to ensure that a seek record’s contents is always well de-
fined. These sentinels have keys ∞0 < ∞1 < ∞2, and any
other key is considered as < ∞0. Additionally, the initial
state contains two routing nodes, R and S, which can never
be removed. For MP, we assign ∞0 with index max_index.

Listing 9. NM Tree seek.
Function seek(Key k): seek_record
seek_record sr = {
.ancestor := R,
.successor := S,
.parent := S,
.leaf := (S->left).ptr,
}
parent_node := (sr.parent)->left
current_node := (sr.leaf)->left
current := current_node.ptr
while current ≠ NULL do:
if !parent_node.tag:
sr.ancestor := sr.parent
sr.successor := sr.leaf
sr.parent := sr.leaf
sr.leaf := current
parent_node := current_node
if k < current->key:
update_upper_bound(current)
current_node := current->left
else
update_lower_bound(current)
current_node := current->right
current := current_node.ptr
return sr

The remaining initial nodes
are assigned index USE_HP
for completeness. These
nodes are never removed
and the client need not use
the SMR interface to access
them.
The only other change re-

quired is to update MP about
the search interval in the seek
procedure. As in the list al-
gorithm, this is straightfor-
ward: when the search in-
terval is (𝑥,𝑦) and seek de-
cides to navigate left (respec-
tively, right) at a node with
key 𝑘 , the interval shrinks
to (𝑥, 𝑘) (respectively, (𝑘,𝑦)).
Listing 9 shows the seek pro-
cedure with the modifications (two bolded lines).

6 Performance Evaluation
We now evaluate the amount of run-time overhead and
wasted memory of MP compared to prior SMR schemes.

Experimental Setup: We use a machine with two Intel
Xeon E5-2699 v4 processors. Each processor has 22 cores,
each with 2 hardware threads (HTs), for a total of 88 HTs
in the machine. We run experiments with software threads
pinned to HTs in a spread manner: threads are first pinned
to the first HT of every core in a round robin manner across
processors (e.g., a 4-thread configuration uses two cores per
processor). Once all cores are used, we continue pinning to
sibling HTs in the same round robin manner. All algorithms
are implemented in C++ and compiled with g++ 5.3.0. We
use the scalable jemalloc memory allocator [14].

SMRSchemes: We compare (1)MP: Listing 10, with indices
in the range (0, 232); (2) IBR: the default tagged pointer
interval-based reclamation [29]; (3)HE: hazard eras [27]; (4)
HP: hazard pointers [22]; and (5) DTA: drop the anchor [4].

Parameters: For MP, we use a margin of size 220 (we se-
lect this value based on a sensitivity study of margin sizes,
presented below). We use an anchor of size 100 for DTA, fol-
lowing [4]. For common SMR parameters, we use the same
values as [29]: each thread tries to reclaim nodes once every
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30 retire calls and, for schemes with global epoch counters,
each thread increments the counter once every 150𝑇 alloca-
tions, where 𝑇 is the number of threads in the benchmark.

ClientAlgorithms: We evaluate the SMR schemes on three
nonblocking data structures: Fraser’s skip list [15], the
Natarajan-Mittel BST [24], and Michael’s linked list [21]
(§ 5). We evaluate DTA only on the list, since it is not known
how to apply DTA to the other client data structures.

Workloads: We use integer keys and values. Each test com-
prises a 5-second benchmark in which threads repeatedly
invoke a random operation on a uniformly random key. We
run with thread counts in the range [1, 100]. We purposefully
exceed the number of available HTs to evaluate the effect of
thread stalls caused by the resulting context switches.

We evaluate threeworkloads: (1) read-dominated, where
contains is invoked with probability 90% and insert or remove
each with an equal 5% probability; (2) write-dominated,
where insert or remove are invoked with an equal 50% prob-
ability; and (3) read-only, where only contains is invoked.
Using equal probabilities for insert/remove keeps the data
structure size roughly constant throughout the experiment.

Unless stated otherwise, the data structure is initialized by
inserting 𝑆 uniformly random keys from a range of size 2𝑆 .
During the experiment, the operations choose keys from this
range. We evaluate the skip list and BST with 𝑆 = 500𝐾 and
𝑆 = 50𝐾 (due to space constraints, the latter results appear
in the full version [28]). For the list, we use 𝑆 = 5𝐾 , as its
linear complexity makes larger sizes unlikely in practice.
We report throughput (aggregated over all threads) and

wasted memory (average number of retired but unreleased
nodes). Each data point in the graphs is the average of 10
runs, whose variance is low.

Optimizations to IBR Framework: Our code is based on
the framework of IBR [29]. However, our results for HP and
HE are better than reported by IBR [29], as we performance-
optimized the implementation of HP-based schemes in the
framework. For instance, we tune HP, HE, and MP so that
when an operation ends and clears all its hazard pointers, it
executes a memory fence once (instead of after clearing each
pointer). Similarly, we optimize the empty reclaiming proce-
dure to first snapshot all hazard pointers in the system and
then work with that snapshot, instead of accessing the origi-
nal hazard pointers for each retired node. This optimization
dramatically improves performance of HP-based schemes.

6.1 Results
Throughput Figures 2 and 3 show the throughput of the
500K node BST and skip list experiments, respectively. In
non-read-only workloads, which are representative of prac-
tical usage, MP performs comparably to IBR and HE on the
BST, and comparably to HE on the skip list. HP, in contrast, is
≈ 1.3×–2× slower than all of them. Here, MP does not “pay”

for its guaranteed pre-determined wasted memory bound,
unlike HP. Moreover, the throughput of both IBR and HE
decreases when the workload exceeds the maximum number
of HTs, which correlates with their wasted memory increas-
ing (see below). At this point, MP often outperforms them
(e.g., by ≈ 1.3× in the write-dominated BST experiment).

In the read-only workloads, however, MP is slower than
the best EBR-based scheme by ≈ 20% and ≈ 30% on the BST
and skip list, respectively. The reason is that a read-only
workload emphasizes SMR-related overheads, which do not
dominate in a non-read-only workload in which operations
experience cache misses due to update operations, perform
atomic operations, etc. MP has a higher overhead than IBR be-
cause MP has per-dereference overhead whereas IBR’s over-
head is per-operation. While HE also has per-dereference
overhead, in a read-only workload it is lower than MP’s,
because it consists of only reading the global epoch, whereas
MP occasionally updates a margin pointer, which involves
issuing a memory fence.
MP exhibits a symbiotic relationship with the data struc-

ture. On the BST and skip list, where operations take log-
arithmic time, MP’s overhead is significantly lower than
on the list, whose operations are linear. Figure 4 shows the
throughput obtained on the 5K node linked list. Here, IBR
outperforms MP at high thread counts by 2× to 3× in non-
read-only and read-only workloads, respectively. This sym-
biotic property means that MP should be useful in practice,
where programmers prefer efficient search data structures.
On the list benchmark, DTA outperforms both MP and HP
but, unfortunately, it is a scheme that cannot currently be
applied to other data structures.

Memory Fences in MP vs. HP MP outperforms HP in all
experiments. The reason is that MP executes fewer memory
fences than HP, because setting a single MP protects the
multiple nodes whose index falls within the margin, whereas
HP must set a HP for every pointer dereference. Figure 5
quantifies this effect by comparing the average number of
fences issued by MP and HP per traversed node in the read-
onlyworkload, on all the evaluated data structures. MP issues
≈ 2× fewer memory fences than HP on all data structures.

Wasted Memory Figure 6 shows the average number of
objects in a thread’s retired list (i.e., retired but unreclaimed)
at the start of each operation in the read-dominated work-
load, on all evaluated data structures. (Results for other work-
loads are similar [28, § 5].) Only MP and HP, which bound
wasted memory, have close to no wasted memory on all
data structures. HE and IBR have non-negligible memory
overhead (up to orders of magnitudes worse than MP and
HP), which gets worse as the thread count grows and with
it, the number and duration of thread stalls due to context
switches. DTA (which is evaluated only on the list) also has
little wasted memory, because the behavior that can cause its
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(a) Read-dominated. (b) Read-only. (c)Write-dominated.
Figure 2. Natarajan-Mittel BST (500𝐾 nodes) throughput.

(a) Read-dominated. (b) Read-only. (c)Write-dominated.
Figure 3. Skip list (500𝐾 nodes) throughput.

(a) Read-dominated. (b) Read-only. (c)Write-dominated.

Figure 4. Linked list (5𝐾 nodes) throughput.

memory overhead to grow arbitrarily (§ 3.1) does not occur
in our experiments.

Key Distribution & MP Index Collisions Because a
node’s immutable index is determined on insertion, the ef-
ficacy of MP’s margin-based protection mainly depends on
how keys are distributed inside the data structure, not on the
distribution of queried keys (e.g., whether it is uniform vs.
skewed). Node layout in memory determines the probability
for index collisions, which in turn, cause MP to fall back onto
HPs with increased overhead. To study MP’s sensitivity to
node layout, we evaluate MP on a worst-case scenario [28,
§ 4.6.1]: a linked list constructed by inserting keys in as-
cending order. In this scenario, each insertion halves the

remaining index range. Since we use 32-bit indices, the in-
dices of all nodes but the first 32 will collide. Figure 7a shows
the search throughput (read-only workload) of MP vs. HP on
such a 5K-node list. MP gracefully degrades to HP’s perfor-
mance, without imposing additional overhead due to index
collisions. We conclude that for clients prioritizing wasted
memory bounds, applying MP is a net win; there is no risk
of experiencing larger overhead than HP.

Margin Size Sensitivity Analysis MP has an overhead-
/wasted memory trade-off that is influenced by the mar-
gin size. Increasing/decreasing the margin size increases/de-
creases the number of nodes that can be protected by a
single MP, resulting in lower/higher run-time overhead but
a higher/lower wasted memory bound (Theorem 4.2). To
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(a) Skip list (500𝐾 nodes). (b) Natarajan-Mittel BST (500𝐾 nodes). (c) Linked list (5𝐾 nodes).

Figure 5. SMR-related fences per searched node (read-only workload).

(a) Skip list (500𝐾 nodes). (b) Natarajan-Mittel BST (500𝐾 nodes). (c) Linked list (5𝐾 nodes).

Figure 6. Retired objects per operation (read-dominated workload).

(a) Worst-case list (5K nodes). (b) Margin sizes vs. Throughput. (c) Margin sizes vs. wasted memory.

Figure 7. Left: Throughput of list read-only workload when list is initialized by inserting keys in ascending order.Middle–
Right:Margin size sensitivity analysis (write-dominated workload).

quantify this effect, Figures 7b and 7c show an analysis of
how margin size affects throughput and wasted memory (re-
tired but unreclaimed nodes) on the write-dominated work-
load with the 500𝐾-node BST. We examine the margin sizes
217, 218, . . . , 226. As expected, both throughput and wasted
memory size increase monotonically with the margin size.
Based on this study, we pick a margin size of 220 for all
other experiments. This is the largest margin that maintains
a roughly constant amount of wasted memory with only
a small increase as the thread count grows, i.e., it has the
lowest run-time overhead out of all margin sizes that yield a
constant experimental bound on wasted memory.

Evaluation Takeaways 1 MP is the best performer in
its category of SMR schemes with bounded wasted mem-
ory. 2 In the real-world cases of efficient data structures
with non-read-only workloads, MP performs comparably
to EBR-based schemes, despite its stronger wasted memory

bound guarantee, and can outperform them in the presence
of thread stalls. 3 MP wastes less memory than EBR-based
schemes, not only in theory but in practice.

7 Conclusion
We introduce margin pointers (MP), the first nonblocking,
self-contained SMR scheme featuring both bounded wasted
memory and low run-time overhead. MP protects logical
subsets of the data structure from being reclaimed, in con-
trast to prior approaches that protect explicit nodes. MP is
most effective on efficient search data structures, such as
binary trees and skip lists. MP significantly outperforms HP
and can be competitive with EBR-based schemes, all while
guaranteeing bounded wasted memory.
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A Full MP Algorithm
The full MP algorithm is presented in Listing 10. We explain
the differences from the previous code listings:
1. In addition to the margin pointer array, each thread has a

hazard pointer array. Protection is checked against both
arrays. When ending an operation, the thread clears both
its margin and hazard pointer arrays.

2. Each thread also has a local epoch. When starting a new
operation, the thread announces the current epoch in
which it operates.

3. After protecting a node with a margin pointer, the thread
checks that the global epoch did not advance. If it has, MP
will fall back into using only HP.

4. Every node is associated with two additional fields, birth,
which is filled when the node is allocated, and retired,
which is filled when the node is retired.

5. When emptying the retired list, a thread’s margin/hazard
pointers are checked only if the thread’s epoch intersects
the retired node’s lifetime. Moreover, nodes whose index
is the reserved value USE_HP are not checked for margin
protection.

6. When trying to protect a node, the extracted index may
not be precise enough, so lower and upper bounds are
calculated.

7. When checking if a retired node’s index is covered by a
margin pointer, due to lack of precision, the margin must
cover both lower and upper bounds of the index.

Listing 10. Full MP pseudo code.
uint global_epoch // global maintained epoch
uint local_epochs[thread_cnt] // local per-thread start epochs

const uint NO_MARGIN = 0xffffffff
const void* NO_HAZARD = NULL
const uint USE_HP = 0xffffffff

uint mp_slots[thread_cnt][MPs_per_thread]
void* hp_slots[thread_cnt][MPs_per_thread]

thread_local uint retired_counter
thread_local list retired

thread_local uint deletions_counter // total deletions by thread

const int empty_freq // frequency of trying to reclamation
const int epoch_freq // frequency of deletions to increment epoch

const uint max_index // MP indices will be between 0 and max_index
const uint margin // protected margin range

struct Node {
// .. client fields ...
uint next_index,
uint birth,
uint retired,
}

// public (invoked by client)
Function retire(Node* ptr): void
retired.append(ptr)
node->retired := global_epoch
counter++
if counter % empty_freq = 0:
empty()

// private - invoked by the MR algorithm
Function empty(): void
for node in retired:
conflict := false
idx := node->index
for tid in threads:
if local_epochs[tid] ∉ (node->birth, node->retired):
continue
if idx ≠ USE_HP:
for mp in mp_slots[tid]:

if mp ≠ NO_MARGIN and idx ∈ [mp − margin

2
, mp + margin

2
]:

conflict := true
else:
for hp in hp_slots[tid]:
if hp ≠ NO_HAZARD and hp = node:
conflict := true

if not conflict:
free(node)

Function start_op(): void
local_epochs[tid] := global_epoch
upper_bound := lower_bound := 0
memory_fence

Function end_op(): void
for i in range(MPs_per_thread):
mp_slots[tid][i] := NO_MARGIN
hp_slots[tid][i] := NO_HAZARD
memory_fence

Function alloc(Key key): Node*
node = malloc(sizeof(Node))
node->key := key
if | upper_bound - lower_bound | ≤ 1:
node->index = USE_HP
else:

node->index := ⌊ lower_bound + upper_bound

2
⌋

node->birth := global_epoch
return node

Function read(Node** addr, uint refno): Node*
while true do
<node, idx> := *addr

idx_lower_bound := idx << PRECISION
idx_upper_bound := idx_lower_bound + ((1 << PRECISION) - 1)

if idx_upper_bound = USE_HP:
// collision - HP fall back
hp_slots[tid][refno] := node
memory_fence
if <node, idx> := *addr:
return node
continue

mp := mp_slots[tid][refno]
// check if index is protected by a mp

if mp − margin

2
≤ idx_lower_bound and idx_upper_bound ≤ mp + margin

2
:

return node

hp := hp_slots[tid][refno]
// check if node is protected by a hp
if hp := node:
return node

// no protection
mp_slots[tid][refno] := idx
memory_fence

// ensure node remains linked to the data structure
if <node, idx> = *addr:
// ensure epoch did not advance
if global_epoch ≠ local_epochs[tid]:
use HPs from now (but old MPs remain)
continue
return node
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