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Abstract

Sparse Matrix-Vector Multiplication (SpMV) is an essential
sparse kernel. Numerous methods have been developed to ac-
celerate SpMV. However, no single method consistently gives
the highest performance across a wide range of matrices.
For this reason, a performance prediction model is needed
to predict the best SpMV method for a given sparse matrix.
Unfortunately, predicting SpMV’s performance is challenging
due to the diversity of factors that impact it.

In this work, we develop a machine learning framework
called WISE that accurately predicts the magnitude of the
speedups of different SpMV methods over a baseline method
for a given sparse matrix. WISE relies on a novel feature set
that summarizes a matrix’s size, skew, and locality traits.
WISE can then select the best SpMV method for each specific
matrix. With a set of nearly 1,500 matrices, we show that
using WISE delivers an average speedup of 2.4X over using
Intel’s MKL in a 24-core server.

CCS Concepts: « Computing methodologies — Shared
memory algorithms.

Keywords: Sparse matrix, SpMV, Machine learning

1 Introduction

Sparse Matrix-Vector Multiplication (SpMV) is one of the most
frequently-used kernels. It is used in processing both sparse
linear systems as well as a variety of graphs (e.g., [7, 18,
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20, 36]). Examples include graph algorithms such as Pager-
ank [7] and HITS [20]. Moreover, many applications utilizing
the SpMV kernel are iterative, executing SpMV many times
with the same sparse input matrix. As a result, SpMV often
consumes substantial execution cycles, which makes it an
important target to optimize.

Executing SpMV efficiently for a wide range of sparse
input matrices from different domains is challenging. The
reason is that matrices can have different characteristics,
sometimes causing SpMV to issue low-locality memory ac-
cess patterns. Further, the data-dependent behavior of some
accesses makes them hard to predict and optimize for. Hence,
many SpMV methods have been invented to speed-up SpMV
(e.g., [21, 24, 28, 32, 38, 40]). Each method represents the
matrix differently, to overcome irregularity challenges and
to benefit from vector (i.e., SIMD) instructions.

Unfortunately, no single method consistently yields the
best performance for all sparse matrices due to their different
characteristics. Therefore, we need mechanisms to identify
the best SpMV method for a given matrix, and then select it.

Traditionally, auto-tuners have been used for this pur-
pose by creating simplified analytical models (e.g., [9, 17]).
However, such models, which rely on a small set of matrix
characteristics such as the number of rows, columns, and
nonzeros, often fail to predict performance in the face of the
rich space of existing matrices. The reason is that an SpMV
method can behave completely differently depending on the
skew and locality characteristics of the nonzeros of the ma-
trix. In addition, auto-tuners can add substantial overhead
to the execution.

In this paper, we address this problem. We propose WISE,
an SpMV performance predictor. WISE uses machine learn-
ing (ML) to estimate the magnitude of the speedup of dif-
ferent SpMV methods over a baseline method for a given
matrix. WISE then selects the fastest method. WISE uses a set
of carefully designed features to summarize a matrix’s local-
ity, skew, and size characteristics. In addition, WISE uses a
representative training set of matrices and is easy to extend.

To showcase WISE, we consider several optimizations, such
as zero padding minimization for vectorization, column re-
ordering to improve locality, and segmentation for Last-Level
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Cache (LLC) locality. These optimizations are used in pop-
ular methods such as SELLPACK [28], Sell-c-o [21], and
LAV [40]. We perform a detailed analysis of many sparse
matrices and several popular SpMV methods. Our analysis
reveals the requirements for a successful ML-based perfor-
mance predictor. Based on this analysis, we develop an ML
model to predict the speedup of SpMV methods. We then
use it to select the highest-performing SpMV method.

Our ML model relies on a set of novel matrix features
that characterize the sparse matrices’ size, skew, and locality
traits. To summarize skew properties, WISE uses general
statistics such as the mean, standard deviation, Gini index,
and p-ratio of nonzero distributions of rows and columns. To
identify matrix locality characteristics, WISE uses statistics
of the distribution of nonzeros in a 2D tiled version of the
matrix. Furthermore, WISE uses additional statistics designed
to summarize the structure of the tiles.

We analyze a set of nearly 1,500 matrices of diverse local-
ity and skew behavior. We show that, using WISE, we attain
an average speedup of 2.4x over using Intel’s Math Kernel
Library (MKL) in a 24-core server. To put this number in per-
spective, an oracle approach that picks the fastest method for
each matrix attains an average speedup of 2.5X. Furthermore,
WISE achieves a 1.14X average speedup over the more ad-
vanced Intel MKL inspector-executor, with less than 50% of its
preprocessing overhead. Thanks to WISE’s user-transparent
approach, WISE can be an effective extension to an existing
math library.

The contributions of this paper are:

e An analysis of the challenges of predicting SpMV perfor-
mance.

o A set of matrix features that characterize a sparse matrix’s
size, skew, and locality, and can be used by an ML model.

e An ML-based framework called WISE that selects a high-
performance SpMV method for a given sparse matrix.

e An evaluation of WISE for a large number of matrices.

2 Background & SpMV Optimization Space

SpMV computes y = Ax, where A is a sparse matrix and y
and x are dense output and input vectors, respectively. Every
element of y is computed as y; = Z;’:—(} Ajj-xj,for0<i < m-
1, where m is the dimension of y and n is the dimension of
x. In this section, we discuss the baseline implementation
of SpMV with the Compressed Sparse Row (CSR) format, and
some popular optimized SpMV methods.

2.1 CSR Format and SpMV Implementation with CSR

CSR uses three arrays to store a sparse matrix: values, column
ids, and row pointers [14]. The values array contiguously
stores the nonzero elements of all the matrix rows. Each
entry in column ids corresponds to an entry in values and
stores that element’s column index. The row pointers array
stores the index of the first nonzero element of each row.
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SpMV with CSR iterates over the matrix rows and calcu-
lates the dot product of the row and the input vector. It can
be parallelized over the rows. There are different ways to
schedule rows to threads in a parallel implementation. We
consider three ways: dynamic (Dyn), static (St), and static
contiguous (StCont). Dyn and St assign K rows at a time to
threads—either dynamically or round-robin statically. StCont
divides the rows by the number of threads and assigns the
resulting groups of contiguous rows statically to threads.

2.2 Implementing SpMV with Vectorization

We consider vectorized SpMV implementations, where threads
use vector instructions to compute over multiple rows simul-
taneously. Our goal is to evaluate a range of vectorization
optimizations. We consider three types of optimizations. The
first one is zero padding minimization [21], which reduces
the unnecessary compute and memory overhead introduced
by zeros. Such zeros often appear when multiple rows with
different numbers of nonzeros are processed together with
a vector instruction. The second optimization is column re-
ordering [40], which moves columns with a high number of
nonzero elements together. The goal is to place the input
vector elements frequently accessed together in the same
cache line, increasing locality and reducing the impact of
irregular memory accesses. The third optimization is seg-
menting [40], which processes sets of columns at a time. The
goal is to fit frequently-accessed portions of the input vector
into the LLC, thereby improving LLC locality.

To model different levels of these optimizations, we pick
three effective vectorization methods, namely SELLPACK [28],
Sell-c-o [21], and LAV [40]. In addition, we also use special-
ized versions of Sell-c-¢ and LAV. We describe all of them
next. In our discussion, we use the example sparse matrix
shown in Figure 1a.

Sliced ELLPACK (SELLPACK). SELLPACK groups ¢ consec-
utive rows of the sparse matrix into chunks, packing the
nonzeros of ¢ adjacent rows together. All rows in a chunk
are processed together with the same vector instructions.
As a result, if the rows in a chunk have different numbers
of nonzeros, they are padded to the same length. Figure 1b
shows the SELLPACK format of the example matrix with c=2.
SELLPACK can introduce many zeros due to padding, espe-
cially when the input matrix has an unbalanced distribution
of nonzeros across rows. The chunk size is typically given by
the width of the machine’s vector unit and determines the
degree of padding. For SELLPACK, we use StCont and Dyn
scheduling because they are generally the fastest.

Sell-c-o. Sell-c-o reduces the zero padding of SELLPACK.
It first considers groups of ¢ consecutive rows of the matrix.
Then, it reorders the rows within each group based on their
number of nonzeros in descending order. With this operation,
each of the resulting groups of ¢ consecutive rows is likely
to have rows with a similar number of nonzeros. Hence,
as vectorization is applied, the amount of padding will be
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Figure 1. Different formats of an example sparse matrix.

smaller. Figure 1c shows the Sell-c-o¢ format of the example
matrix with o=4 and c=2.

o needs to be tuned for each matrix. The best value of o
depends on the distribution of nonzeros across the rows of
the matrix. If most rows have similar numbers of zeros, ¢ can
be small, and the padding will be tolerable. However, if the
number of nonzeros is highly imbalanced, keeping padding
tolerable requires large ¢ values. In this case, many rows
get reordered, which typically causes the loss of spatial and
temporal locality for the input vector because close-by rows
tend to have similar nonzero patterns. For Sell-c-o, we use
StCont and Dyn scheduling, as they are generally the fastest.
Sell-c-R. Sell-c-R sets ¢ to the number of rows in the
matrix. This method is beneficial for matrices with a very
imbalanced distribution of the nonzeros to rows. For these
matrices, Sell-c-R reduces padding at the expense of poor
cache locality for the input vector. We refer to such reorder-
ing of all rows as Row Frequency Sorting (RFS) [40]. Sell-c-R
uses Dyn scheduling, as the large difference of nonzeros
across chunks creates load imbalance with static scheduling.
LAV-1Seg. In matrices for power-law graphs [22, 27], the
number of zeros in both rows and columns is highly im-
balanced. As a result, the input vector has poor temporal
and spatial locality and suffers frequent LLC misses. To ad-
dress this problem, LAV-1Seg (for LAV [40] with one seg-
ment) orders the columns based on decreasing numbers
of nonzeros—a technique called column frequency sorting
(CFS) [40]. Then, it applies the transformations of Sell-c-R.
With CFS, columns with similar nonzero distributions are
often processed in close temporal succession, reusing input
vector elements.

Figure 1d shows the initial matrix after performing CFS.
Then, LAV-1Seg applies RFS. The result is Figure 1le.
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LAV. If the matrix is large, input vector elements are evicted
from the LLC before being reused. Consequently, the com-
plete LAV algorithm [40] takes the matrix after CFS and par-
titions it into groups of consecutive columns called Segments.
Then, it applies the transformations of Sell-c-R to each
segment. A segment should be small enough so that the in-
put vector elements corresponding to the segment fit in the
LLC and get reused. In practice, LAV typically only needs to
partition the matrix into two segments. The first segment
includes a fraction T of the nonzeros, where the best T is
generally >0.7. It is called the dense segment, as it has the
most populated columns of the matrix. The second segment
is called the sparse one.

When a segment is processed, the corresponding input
vector elements are loaded into LLC and reused. Since both
LAV-1Seg and LAV use RFS, we only consider Dyn scheduling,
like Sell-c-R. Figure 1f shows the resulting matrix with LAV.
Since we pick T=0.7, the dense segment includes columns 0,
3, and 2. We perform RFS in each segment.

Table 1 shows a summary of the SpMV methods used.

Table 1. SpMV methods used. SCH stands for scheduling.
[ Method [[ Params
CSR || SCH

Description |

Performance of Dyn, St, and StCont depends on the
skew characteristics of the matrix.

¢ affects amount of padding, and depends on the
SIMD width and on the matrix structure.
Sell-c-o SCH, c, | o controls the row-ordering. It is tuned to minimize
o padding while not hurting locality.

SELLPACK SCH, ¢

Sell-c-R c Specialized Sell-c-o version with o=R.
LAV-1Seg c LAV with a single segment.
LAV c, T The higher the nonzero skew in the matrix is, the

higher the chosen T should be.

Although the matrix formats for these five vectorization
methods are different, we design a unified matrix format that
we then use to implement SpMV. We describe the format in
Appendix A.

3 Challenges Predicting SpMV Performance

Our goal is to develop a practical approach to pick the method
and parameters that deliver the fastest SpMV execution for
each input matrix. To this end, we characterize the SpMV
execution with the different methods and parameters of Sec-
tion 2 on a wide range of matrices. We use 136 large matrices
from the SuiteSparse matrix collection [15] and 408 large
matrices created with the RMAT graph generator [11]. SuiteS-
parse contains mostly scientific matrices, although it also
has some social and web network graphs. RMAT is widely
used (e.g., in the Graph500 benchmark [29] and GAP [5]
benchmark suite), and can generate a much wider range of
matrix types. We use it to create more matrices like those of
social and web network graphs. We discuss the details of the
matrices in Section 5.

To ensure that the matrices are large enough to get rep-
resentative results, we use matrices with 1-67 million rows
and columns. However, we limit the maximum number of
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nonzeros to 2 billion to ensure the matrices fit in the memory
of a single shared-memory server. We discuss our platform
and OpenMP-based parallelization strategy in Section 5.
Our analysis provides several insights:
(D The fastest method varies across matrices. Figure 4
shows the distribution of the best-performing method for
SpMV for the 136 SuiteSparse matrices. We see that different
methods are faster for different matrices. For example, only
34 of these matrices achieve the best performance with CSR,
which is the default format for many BLAS and graph frame-
works. On the other hand, Sell-c-o is the fastest method
for 66 matrices. We also run MKL and observe that MKL does
not yield the best performance for any of the matrices.
(2 Within a method,
the magnitude of the
speedup over CSR varies.
Even when a method
is the fastest for a set
of matrices, its actual
speedup over CSR varies
considerably. Figure 2
shows, for the SuiteS-
parse matrices, the speedup
of each method over the
CSR implementation with the best scheduling policy for that
matrix. In the figure, the horizontal line at 1.0 corresponds
to that CSR implementation. We also report the results for

Figure 4. Fastest method for
SpMV in SuiteSparse matrices.

Matrices

Figure 3. Speedup of CSR with different scheduling algorithms and MKL over the best CSR for the SparseSuite matrices.

MKL [13], which also uses the CSR representation. The matri-
ces are grouped in the X-axis by their best method. The plot
shows the names of a few of the matrices.

Consider SELLPACK, which is the fastest in 25 consecu-
tively placed matrices. In these matrices, its speedup ranges
from 1.05 to 1.31X. On the other hand, Sell-c-o is fastest
for 66 matrices, and for these, the speedup ranges from 1.00
to 1.76X. Predicting the magnitude of the speedup can help
us pick the best SpMV method when we later consider the
preprocessing costs of the methods.

3 Selecting the correct parameters for a method af-
fects the speedups substantially. For example, even sim-
ple scheduling choices affect the speedups substantially. Fig-
ure 3 shows the performance of CSR implementations that
use Dyn, St, and StCont scheduling. For each of the 136 SuiteS-
parse matrices, the figure shows their speedup (always equal
or less than 1) over CSR with the best scheduling. We see that
a simple parameter like the scheduling choice significantly
impacts performance, sometimes causing 10x slowdowns.
Dyn, St, and StCont attain the best performance for 28, 16,
and 92 matrices, respectively. Dyn is the fastest for web and
social networks, while St and StCont perform best with sci-
entific matrices. The figure also shows MKL’s performance.
@ An intricate relationship between matrix size, local-
ity, and skew determines the best method. To glimpse
how the interaction between these three parameters deter-
mines the fastest method, we consider two experiments with
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the RMAT-generated matrices. They show the impact of
nonzero skew and nonzero locality, respectively.

In the first experiment, we analyze the skew character-
istics of sparse matrices. We consider skew in terms of the
distribution of nonzeros to rows of the sparse matrix. We
use 100 high skew (HighSkew) and 100 low skew (LowSkew)
matrices. In the second experiment, we use 100 matrices with
high nonzero locality (i.e., most nonzeros are in areas close to
the matrix diagonal) (HighLoc) and 100 with low locality (i.e.,
nonzeros are spread all over the matrix) (LowLoc). Section 4.5
describes the RMAT parameters used. In each 100-matrix set,
we vary the number of rows and average nonzeros per row
to model different characteristics.

We consider the effect of skew first. We measure the execu-
tion time of each SpMV method of Section 2 for the LowSkew
and HighSkew sets. Figures 5a and 5b show, for LowSkew,
the fastest method and its speedup over the best CSR, re-
spectively. A matrix is characterized by the number of rows
(X-axis) and the average number of nonzeros per row (Y-
axis). Figures 5c¢ and 5d show the same data for HighSkew
matrices.
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From Figures 5a and 5c, we see that LAV, LAV-1Seg, and
Sell-c-R deliver the highest speedups most of the time. LAV
typically outperforms other methods when the input matrix
is larger than the LLC size (i.e., number of rows > 22%) and
the average number of nonzeros per row is high (> 16). LAV’s
speedup depends on the skew of the matrix; it is highest for
the HighSkew matrices (Figure 5d). For matrices with few
rows, a high average number of nonzeros per row, and high
skew, LAV-1Seg often delivers the highest performance. This
is because a single segment is enough. When matrices have
a low average number of nonzeros per row, few rows and,
especially, low skew, Sell-c-R is often the fastest method.
This is because the input vector fits in the LLC, and there is
no need for the more advanced LAV and LAV-1Seg formats.
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For large matrices with low average nonzeros per row, the
speedups are small.

Figure 6 shows the same data for the LowLoc set (Figures 6a
and 6b) and the HighLoc set (Figures 6¢ and 6d). Sell-c-o is
the fastest method for matrices with high locality (HighLoc).
For LowLoc, Sell-c-o is often the best, except for matrices
with a high number of average nonzeros per row. In this case,
LAV is best because it provides segmenting. Although the
locality is limited, LAV creates a segment that can fit in the
LLC. For HighLoc, this is unnecessary because caches work
efficiently without segmenting. Finally, the magnitude of the
Sell-c-o speedups is higher for HighLoc than for LowLoc.
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(B SuiteSparse matrices do not have many diverse be-
haviors. Figure 4 shows that the fastest method in Spars-
eSuite matrices is often Sell-c-o. However, our experi-
ments with RMAT-generated matrices in Figure 5 show that
LAV and LAV-1Seg are often the fastest. This discrepancy
occurs because SuiteSparse matrices mostly come from the
scientific domain or from graphs like road graphs; not many
come from power-law graphs.

We can see SuiteSparse’s |
bias by plotting a his- P 0 I
togram of the p-ratio of Ry ‘
nonzeros per row in SuiteS- 10 .
parse matrices. A p-ratio
of p indicates that a p frac-
tion of the rows has a (1 —
p) fraction of the nonzeros
in the matrix.

Figure 7 shows the distribution of the nonzero p-ratio.
We see that most of the SuiteSparse matrices have a p-ratio
higher than 0.4. This means that many matrices have a bal-
anced distribution of nonzeros to rows. This fact makes
SELLPACK and Sell-c-o methods effective. Moreover, SuiteS-
parse matrices generally have a low number of columns.

0+
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Pr
Figure 7. P-ratio of nonze-
ros per row in SuiteSparse.
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Most of them have less than 5M columns, allowing the input
vector to fit in the LLC and reducing the need for LAV.

Overall, SuiteSparse favors methods such as Sell-c-o
and SELLPACK. If we want to train our prediction model
with a representative set of matrices, we need to augment
SuiteSparse with a broader range of matrices.

4 WISE: Picking the Best SpMV Method

Given how challenging it is to pick the best SpMV method for
a given input matrix, we propose to leverage machine learn-
ing (ML). We develop WISE, an ML-based framework that
selects a high-performance SpMV method for a given sparse
matrix. We envision that WISE can be integrated in Graph-
BLAS/BLAS frameworks such as Intel’s MKL [13]. WISE is
designed to be transparent to the programmer, and integrate
easily into existing systems.

4.1 Overall WISE Design

WISE consists of a novel sparse matrix feature set, a set of
ML-based performance prediction models, and a heuristic to
choose the best SpMV method considering the outputs of the
performance prediction models.

Figure 8 shows the operation of WISE. First, WISE extracts
the value of certain features from the input matrix (D). The
feature set includes features to identify the sparse matrix size,
and the skew and locality characteristics of the distribution
of nonzeros. In the second step, these features are passed to
a set of ML performance models that predict the speedup
of the methods over the best CSR. (2)). WISE has a perfor-
mance prediction model for each combination of method and
parameter values. Next, WISE picks the method and param-
eter values predicted to deliver the highest speedup while
including the preprocessing cost (®). Then, it transforms the
matrix layout from CSR to the layout for the selected method
and parameter pair (). If WISE chooses CSR, no transforma-
tion is needed. Finally, we run SpMV with the chosen method,
parameters, and matrix layout (3).

4.2 Sparse Matrix Features

In Section 3, we observed that a sparse matrix’s size, nonzero
skew, and nonzero locality characteristics substantially im-
pact the performance of an SpMV method. Based on these
insights and previous analyses [22], we choose features to
build our ML-based performance models. We start by logi-
cally breaking the matrix into K? tiles with ng/K rows and
nc/K columns per tile, where ng and nc are the number
of rows and columns of the matrix, respectively. We pick
K = 2048, based on the size of sparse matrices and the L2
cache size. We call rows and columns of tiles as row and
column blocks, respectively (Figure 9). We then consider
the distribution of nonzeros across rows (R), columns (C),
tiles (T), row blocks (RB), and column blocks (CB).
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Figure 8. WISE operation.

To characterize each distri- row-
bution, we use the mean (), [ ] block
standard deviation (o), vari- 8
ance (0'2), min, max, Gini coef- <
ficient (G), and p-ratio (P). G 1“R/K
and P are statistical measures T
that calculate the imbalance plock "¢/

(or inequality) in a distribu- D

tion [22]. In a maximally-
imbalanced distribution (i.e.,
all nonzeros are in one bucket), G gets close to 1, and P gets
close to 0. A perfectly-balanced distribution has a G=0 and
P=0.5. Further, we also record the number of buckets that
are not zero (ne)—i.e., the number of buckets that have some
nonzeros. We use staty;s; as a naming convention for these
statistics, where stat is the name of the summary statistic
and dist is the distribution name (R, C, T, RB, and CB).
Next, we describe how we use these summary statistics
and additional statistics to create the sparse matrix features
for our ML-based performance predictors. Table 2 shows the
features WISE extracts from the input matrix, grouped into
matrix size, nonzero skew, and nonzero locality properties.
(1) Matrix Size Properties: WISE measures the number of
rows (ng), columns (n¢), and nonzeros (n,,.). nc gives infor-
mation about the size of the input vector, while n,,, gives
information about the amount of work to be done.
(2) Nonzero Skew properties: WISE uses features that mea-
sure the skewness of the nonzero distribution across rows (R)
and columns (C). The statistics collected are listed in Table 2.
The features of the R distribution determine the row sched-
uling and the padding for vectorization. The features of the
C distribution determine the irregularity of the memory ac-
cesses to the input vector. Therefore, they can indicate the
effectiveness of CFS in LAV-1Seg and LAV.
(3) Nonzero Locality Properties: WISE uses T, RB, and CB
distributions to capture the nonzero locality characteristics

Figure 9. Tiling a matrix.
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Table 2. Matrix features used in our WISE performance models.

Property Distribution Metrics ‘What They Determine
Matrix Size NnR, NC; Nnnz
7 - - - —
Nonzero Skew Rows (R) UR, OR, UIS, GR, PgR, mn'zR, maxpg, neR Row scheduling and padding fo'r vectorization
Cols (C) Hc, 0C, O Ge, Pe, mine, maxc, nec Memory access patterns to the input vector
Tiles (T) HT, OT, o‘%., Gr, Pr, mint, maxr, ner Memory access locality behavior across tiles

5 .
RowBlocks (RB) | LRB, ORB; O GRB, PRB, Mingp, maxgrp, nerp

Nonzero Locality [ ColBlocks (CB)

3 -
HCB; 0CB, 04, GeB, Pcp, mincp, maxcp, necs

Memory access locality in L1 and L2 caches

uniqR, uniqC, GrX_uniqR, GrX_uniqC

potReuseR, potReuseC, GrX_potReuseR, GrX_potReuseC

Memory access locality in the last Ievel cache (LLC)

of a sparse matrix. The features are shown in Table 2. For ex-
ample, a low p-ratio in the T distribution tells that the nonze-
ros are concentrated in a few tiles. Therefore, the memory
accesses of SpMV have a relatively high locality.

WISE also collects additional information on the layout
of nonzeros inside each tile. Specifically, for tile i, unigR;
and uniqC; are the number of unique rows and of unique
columns that contain nonzeros, respectively. If many nonze-
ros are in the same row or column, the accesses are likely to
exploit locality. Furthermore, since data is laid out in cache
lines, if the nonzeros are nearby, they may share caches lines
and further enhance locality. Hence, WISE also measures
GrX_uniqR; and GrX_uniqC; for tile i, which are unique
rows and unique columns with nonzeros grouped in groups
of X adjacent rows (or columns). For example, if X=16, 16
adjacent columns (or rows) will count as a single ID. WISE
uses {4, 8, 16,32, 64} values for X. To understand their use,
consider 64-byte cache lines. In this case, a line may fit four
128-bit elements (and we are interested in X=4) or eight 64-bit
elements (and we are interested in X=8). We can get a cache
hit if more than one element of the cache line is accessed in
close temporal succession.

WISE gets uniqR;, uniqC;, GrX_uniqR;, and GrX_uniqC;
for each tile. Then, it sums the values across all the tiles
and divides the result by the number of nonzeros in the
matrix. The resulting values, which we call unigR, uniqC,
GrX_uniqR, and GrX_uniqC, are used as matrix features.

Finally, WISE measures, for each row i, the number of tiles
where the row has at least one nonzero (potReuseR;). It also
measures a similar metric for each column i (potReuseC;). If
these metrics are high, there is potential for data reuse in
the LLC, as data is reused across tiles. Also, WISE measures,
for each group i of X consecutive rows, the number of tiles
where the group has at least one nonzero (GrX_potReuseR;).
For each group i of X consecutive columns, it also mea-
sures a similar metric, called GrX_potReuseC;. Finally, WISE
takes the average of these measurements across all rows
(potReuseR), all columns (potReuseC), all groups of X con-
secutive rows (GrX_potReuseR), and all groups of X consec-
utive columns (GrX_potReuseC). These averages are used
as matrix features (Table 2).

Note that the R, C, T, RB, and CB distributions are not the
features used to train our ML-based performance prediction
models. Instead, we use the summary statistics calculated
from the distributions.

4.3 Performance Prediction Models

WISE has a performance prediction model for each combi-
nation of method and its parameter values. We use decision
trees for these performance models, which can be seen as
creating simple decision rules inferred from the data features.
The reason for using decision trees is that each feature uses
a different range of values, and thus it is hard to normalize
all features to the same range. For example, the number of
rows and columns can be in millions while the Gini index is
a number between 0 and 1.

Based on the methods and parameters of Table 1, we have
the following WISE models. CSR has three models, corre-
sponding to the Dyn, St, and StCont scheduling methods.
SELLPACK has as many models as possible combinations of
¢ values and scheduling mechanisms considered (StCont
and Dyn). Sell-c-o has as many models as possible com-
binations of ¢ values, o values, and scheduling mechanisms
considered (StCont and Dyn). Sel1-c-R and LAV-1Seg have
as many models as ¢ values, since they only use Dyn schedul-
ing. Finally, LAV has as many models as the combinations of
c values and T values, since it uses Dyn scheduling. We pick
¢ = {4, 8} because these are the widths of the vector instruc-
tions in the machine evaluated. We pick o={2%, 212,214} to
cover a range of behaviors: 2° and 2!* roughly correspond to
the maximum values for which the input vector fits amply in
the L1 cache and the L2 cache, respectively. Finally, we pick
T={0.7,0.8,0.9} to cover different levels of nonzero skew. In
the end, we have a total of 29 decision tree models for all
SpMV methods and parameters considered.

It is possible to run into overfitting issues with decision
trees. For this reason, we apply pruning techniques. First, we
limit the maximum depth of the trees to 15 to avoid creating
branches that have only a few samples in them. Second, we
enable minimal cost-complexity pruning, with a threshold
of 0.005. This maximum depth of the tree and this threshold
for pruning are selected experimentally using grid search
(Section 6.5). Also, our decision trees use the Gini measure
for split criteria.

Speedup Classes: Each of the models predicts the execution
time of the method and parameter value combination relative
to the fastest CSR method. Specifically, a model can output
one of seven classes (C0-C6), corresponding to ranges of
relative execution time. These ranges are, from higher (i.e.,
slower execution) to lower (i.e., faster execution): C0 = (oo -
1.05], C1 = (1.05 - 0.95], C2 = (0.95 - 0.85], C3 = (0.85 - 0.75],



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

C4 = (0.75 - 0.65], C5 = (0.65 - 0.55], and C6 = (0.55 - 0]. To
create classes C1-C5, we created categories with a step size
of 0.1 between speedup values ~1x and ~2x. C0 includes all
the matrices that have a slowdown with the given method,
and C6 all the matrices with more than 2x speedup. The
classes with values lower than 1 represent speedups.

4.4 Choosing the SpMV Method

WISE chooses the {method, parameter} pair that delivers the
highest speedup. If there is a speedup tie among different
methods, WISE chooses the method with the smallest prepro-
cessing cost. For this cost, we use the following order (from
lower cost to higher): CSR, SELLPACK, Sell-c-o, Sell-c-R,
LAV-1Seg, and LAV. Further, to break the ties among differ-
ent parameters of a method, we order the parameters of a
method from smallest to largest. We empirically observe
that smaller parameters give lower preprocessing time. For
example, for T in LAV, the order is T = 70%, 80%, and 90%.

4.5 Creating a Representative Training Set

An ML model requires a representative training set to per-
form predictions. However, our analysis in Section 3 showed
that the matrices in SuiteSparse do not have many diverse
behaviors. Hence, to obtain a representative training set, we
augment SuiteSparse with a set of matrices generated with
the RMAT [11] random graph generator. We use carefully se-
lected parameters to model the aspects not well represented
in SuiteSparse. The RMAT generator has 3 parameters: (1)
number of nodes, (2) average node degree, and (3) probabili-
ties a, b, c, d for an edge to fall into each of the four quadrants
(a+b+c+d=1). To place an edge, a quadrant of the matrix is
picked according to the probabilities. The selected quadrant
is again divided into four quadrants, and the process repeats
until ending up at a single matrix cell.

To obtain skewed matrices, we start with the Graph500 [29]
parameters, namely a=0.57, b=0.19, ¢=0.19, and d=0.05 (High-
Skew). They generate a power-law graph. Then, we decrease
the a parameter while increasing b, c, and d to have less skew
while still creating a community structure (a>d). We analyze
two graph types, with parameters a=0.46, b=0.22, ¢=0.22, and
d=0.10 (MedSkew), and a=0.35, b=0.25, ¢=0.25, and d=0.15
(LowSkew). The p-ratio of nonzero distribution of rows for
HighSkew, MedSkew, and LowSkew graphs is ~0.1, 0.2, 0.3,
respectively.

To obtain matrices with varying locality, we start with
a=b=c=d=0.25 (Erdos-Renyi) (LowLoc), where the nonzeros
are uniformly distributed across all columns and rows. We
obtain matrices with nonzeros gathered around the diagonal
by equally increasing the a and d parameters and decreas-
ing b and ¢ with the same amount. With MedLoc (a=d=0.35,
b=c=0.15) and HighLoc (a=d=0.45, b=c=0.05), locality goes
up. For LowLoc, MedLoc, and HighLoc graphs, the p-ratio of
the rows’ nonzero distribution is 0.4-0.5, showing little skew.
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In addition to RMAT graphs, we also include random
geometric graphs (RGG) [16]. RGGs are undirected spatial
graphs. An RGG is generated by placing n vertices uniformly
at random in a 2-dimensional unit grid. An edge connects the
vertices if their distance in the 2D grid is below a given ra-
dius r. The parameter r is set to be r = y/degree/ (# rows * ),
where degree is the desired average degree of the random
graph. We include RGG graphs to model the behavior of ma-
trices with spatial structure. RGG graphs have high locality.
Table 3 shows the parameters for the matrices generated.

Table 3. Parameters for the RMAT/RGG matrices.
[ Property | Matrix

[[ Parameters |

HighSkew (HS) a=0.57,b=0.19,¢=0.19,d = 0.05
Skew MedSkew (MS) a=0.46,b=0.22,c=0.22,d =0.10
LowSkew (LS) a=035>b=0.25c=0.25d=0.15
LowLoc (LL) a=b=c=d=0.25
Locality | _MedLoc (ML) [ a=d=035b=c=0.15
HighLoc (HL) a=d=045Db=c=0.05
RGG (rgg) r set based on avg. # of nonzeros per row

5 Experimental Setup

Machine. For our experiments, we use a 2.6 GHz Intel Gold
6126 Skylake shared-memory machine. It has two sockets,
each with 12 cores, for a total of 24 cores. Each core has
private 32KB I and D L1 caches and a private 1 MB L2
cache. Each socket has a shared 19 MB LLC. The machine
has 192 GB of main memory. It uses 4- and 8-wide vector
instructions such as avx512f, avx512dq, avx512cd, avx512bw,
and avx512vlL.

Matrices. To train and test WISE, we use 136 matrices from
SuiteSparse [15] and 1326 matrices from graphs generated
as described in Section 4.5. For SuiteSparse matrices, we
use large matrices with 220_226 yows, but less than 2 billion
nonzeros to fit in a single machine’s memory. For the RMAT
and RGG matrices, we use matrices with 220, 221 222 923 924
22458 925 92530 92558 92580 "and 226 rows, with an average
number of nonzeros per row equal to 4-128. We do not use
more than 2 billion total nonzeros per matrix.
Implementations. We use C++ and OpenMP for paral-
lelism. We rely on the OpenMP simd pragma for vector-
ization. Our implementation closely follows the one in [40].
We use the Intel compiler v2021 with the O3 and vec flags.
During execution, we run 24 threads, which are all pinned to
physical cores. We use numactl -i all to interleave memory
allocation across NUMA nodes.

Model Training & Testing. To test our model, we use k-
fold cross-validation with k = 10. In this case, ten separate
training and test sets are formed from our initial matrix set of
1462 matrices. Each of these training and test set pairs have
disjoint matrices. To assess the model’s accuracy, we report
the combined confusion matrices of 10-fold cross-validation.

6 Experimental Results
6.1 Characteristics of the Matrix Set



WISE: Predicting the Performance of SpMV with Machine Learning

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

ofFs0 3 0 0o 0 o o6 4+ 00 00 g BB s 3 o o o833 6 3 0 0 0 Psw o5 4 1 4 0 0o [hsw
~-3715427 3 0 0o o 50 ~-10 4.3 0 0 0 ~-27 282 49 0 0 0 ~-3812128 3 0 0 0 ~-3266 49 0 0 0 0
Lo-1 2611414 0 0 0o Mgy L w-2 1218228 0 0 0 N, -2 271 0 0o Mo _w-3 27980 11 1 0 0o N _~-3 s21810 0 o o OO
5 5 5 5 5
€o-1 4 2441 0 0 0 €o-1 0 201470 0 0 £o-0 1 36103 00 €o-0 3 298222 0 0 €o-0 4 4073 9 1 0
38 L 100 S S 8 -400 S 400
<-0 1 0 0 0 0 0 -0 024 100 | <0038 00 [, ©v-0 2 025 0 0 «-2 0 3 168 8 0
w-0 0 0 0 0 0 0 290 ©-00 0 2 0 0 0 w-0 0 0 0 00 ©-0 0 0 0 5 0 0 20 w-0 0 1 02 3 0 -200
©-0 0 0 0 0 0 0 ©-0 0 0 0 0 0 0 ©-0 0 0 0 00 ©-0 0 0 0 0 0 0 ©-0 0 0 0 0 0 0
b B e i -0 A S S -0 i t— -0 e S e e -0 e S S -0
0123 4 5 6 01 2 3 4 5 6 012 3 5 6 01 2 3 4 5 6 00123 4 5 6
Predicted Predicted Predicted Predicted Predicted
(a) SELLPACK (b) Sell-c-o (o = 212) (c) Sell-c-R (d) LAV-1Seg (e) LAV (T = 80%)

Figure 10. Accuracy of the WISE predictions for some representative models. In the figure, we use StCont scheduling for
SELLPACK and Sell-c-o, Dyn scheduling for the rest of the models, and ¢ = 8 for all the models.
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Figure 11. Distribution of Pg
for the random matrices.

we consider the nonzero
skew of the random ma-
trices, as measured by the distribution of the p-ratio of the
nonzeros per row (Pg) in the random matrices. This distribu-
tion, shown in Figure 11, should be contrasted to the one for
the SuiteSparse matrices in Figure 7.

Figure 11 shows the RMAT matrices with high, medium,
and low skew (HS, MS, and LS), the RMAT matrices that
model high, medium, and low locality (HL, ML, and LL),
and the RGG matrices. From the figure, we see that these
randomly-generated matrices cover a wide range of Pg values—
in contrast to Figure 7. HS, MS, and LS have Py values of
0.1, 0.2, and 0.3, respectively. The matrices chosen to model
different locality characteristics (rgg, LL, ML, and HL) have
a Pg value of ~0.4-0.5, which allows us to model the effect
of locality without interference from skew behavior.

The second aspect we consider is the distribution of the
average number of nonzeros per row (ug)—i.e., in graphs,
the distribution of the average degree of the nodes. Figure 12
shows such distribution for the random matrices (Chart a)
and for the SuiteSparse matrices (Chart b). We can see that
the random matrices cover a more extensive range of pg
values. In particular, the random matrix set includes matrices
with large pg values, which results in higher utilization of
vector units. Overall, the combination of both sets of matrices
is able to train more effective ML models.

6.2 Classification Accuracy of WISE

Figure 10 shows the accuracy of WISE to classify matrices
into speedup classes. The figure shows the confusion ma-
trices for five representative models: SELLPACK, Sell-c-o
with o = 22, Sell-c-R, LAV-1Seg, and LAV with T = 80%.
In the figure, we use StCont scheduling for SELLPACK and
Sell-c-o, Dyn scheduling for the rest of the models, and
¢ = 8 for all the models. We show correct classes on the
vertical axis and predicted ones on the horizontal axis. The

# Mtxs

0 50 100 0 50 100
Hr 2

(a) Random matrices. (b) SuiteSparse matrices.
Figure 12. Distribution of the average number of nonzeros
per row (Ug).
figure shows the number of matrices falling on each grid
point. Darker boxes correspond to higher matrix counts.

An exact match of the correct and predicted class lies on
the diagonal of these matrices. The accuracy of our model can
be given as the number of test cases that lie on the diagonal
compared to the total number of test cases. However, we
also need to consider the distance between the predicted
and correct classes. Recall that the classes correspond to 10%
intervals of normalized execution time. Therefore, a distance
of one between predicted and correct classes means that
the WISE estimation is within 10% of the correct execution
time. Finally, overestimating the speedup (upper triangular
part of the confusion matrix) may be less desirable than
underestimating it (lower triangular part of the matrix).

From the confusion matrices, we observe that WISE pre-
dicts correctly for the large majority of matrices. Specifi-
cally, the accuracy of WISE is 87%, 92%, 87%, 84%, and 83%
for SELLPACK, Sell-c-o, Sell-c-R, LAV-1Seg, and LAV, re-
spectively. Moreover, of the matrices that are classified in-
correctly, most are classified at a distance of only one from
the correct class. Such matrices are 94%, 89%, 90%, 91%, and
92% of the misclassified matrices for SELLPACK, Sell-c-o,
Sell-c-R, LAV-1Seg, and LAV, respectively. In general, the
number of matrices with overestimated and underestimated
speedup is comparable.

The results for the other models not shown are comparable
to those in Figure 10. Overall, we conclude that WISE predicts
the speedups for the different methods with high accuracy.

6.3 WISE: Speedup and Preprocessing Overhead

Figure 13a shows the distribution of speedups obtained by
employing WISE over the MKL baseline for all the matrices.
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Figure 13. Distribution of WISE and oracle speedup over MKL, and WISE preprocessing time overhead.

We observe that WISE delivers speedups over MKL for the
very large majority of matrices. The speedups are sometimes
substantial, as they reach 4-8%. The average speedup is 2.4x.
To put this number in perspective, Figure 13b repeats the
experiment for an oracle approach that picks the fastest
method for each matrix. We can see that Figures 13a and 13b
are very similar. The average speedup of this oracle scheme
is 2.5%. Hence, WISE is very close to the best approach that
can be designed.

These speedup numbers do not include the preprocessing
time overhead. The latter is composed of both format con-
version from CSR and feature calculation. Figure 13c shows
the distribution of the WISE preprocessing time overhead.
We report the overhead in terms of the number of SpMV iter-
ations with the MKL baseline that take the same time. From
the figure, it can be computed that the average overhead of
WISE is 8.33 MKL SpMV iterations.

6.4 Comparison to MKL Inspector-Executor

We now consider Intel’s MKL inspector-executor (IE). This
approach explores different methods before picking the best
one for the matrix being considered. No further details are
available about how MKL IE works. MKL IE can reduce the
time taken by SpMV. However, it has a high preprocessing
time overhead.

We measure that, for our matrix set, MKL IE attains an aver-
age speedup of 2.11x over the MKL baseline—again, without
including the preprocessing time overhead. Further, the av-
erage preprocessing time overhead of MKL IE is 17.43 MKL
SpMV iterations. Consequently, WISE is 1.14X faster than MKL
IE even without considering the preprocessing time over-
head. In addition, WISE has less than 50% of the MKL IE pre-
processing time overhead.

6.5 Choosing Decision Tree Parameters

Two important parameters in the decision trees are the trees’
maximum depth (D) and the degree of pruning (ccp_alpha,
which we abbreviate as ccp). For D, we test {5, 10, 15, 20}
values; for ccp, we test {0, 0.001, 0.005,0.01, 0.05, 0.1} values.
Table 4 shows the average speedups obtained by WISE over
the MKL baseline with different D and ccp values. We see
that ccp should be low (i.e., lower than 0.05) and D should
be high (i.e., 10 or higher). Overall, we choose D=15 and
ccp=0.005 for WISE.

Table 4. Average WISE speedup with different maximum
depth (D) and pruning (ccp) values for the decision trees.

ccp value
0 [0.001]0.005] 0.01 ] 0.05] 0.1
D=5 239 [ 238 [ 239 [ 237 [ 221 | 2.23
D=10 || 2.40 | 241 240 | 238 | 232 | 2.24
D=15 || 241 | 241 240 | 238 | 231 | 2.24
D=20 || 241 | 241 240 | 238 | 231 | 2.24

7 Related Work

Some previous works have used auto-tuning to speed-up
sparse matrix operations (e.g., [9, 17, 34]). Such systems add
potentially high auto-tuning overhead every time that they
process a matrix. With WISE, after the models are created,
the preprocessing overhead for each matrix is small.

Other previous works have utilized ML for method se-
lection, i.e., to select the method that provides the highest
performance for a given sparse matrix (e.g., [1, 23, 30, 41, 43—
45]). WISE differs from previous works in two aspects. First,
the output of the ML model in WISE is not an SpMV method;
it is the potential speedup of a given method. The result
is an extendable framework where we can add new meth-
ods without changing already existing models. Second, WISE
does not only consider a given method but it also takes into
account the parameters of the given method. For example,
WISE picks the LAV method with given values for the ¢ and
T parameters.

Zhao et al. [43] use a novel summarization technique that
represents a sparse matrix as a small 2D image. Then, they
use CNNs on this image to identify the best format for the
matrix. WISE also uses a 2D tiled representation of the matrix.
However, it uses it to model the matrix’s locality character-
istics. In addition, WISE uses decision trees as the ML model.
Furthermore, WISE uses an order of magnitude larger matri-
ces to train and test the ML models.

Some proposals (e.g., SMAT [23]) use ML features that
are driven by the actual SpMV methods used. For example,
some of the features are the memory overheads of the partic-
ular matrix formats used. In contrast, the features that WISE
chooses as inputs to the ML model are oblivious to the SpMV
methods used.
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There are other works that use ML to predict performance
for other BLAS primitives such as matrix-matrix multipli-
cation [39]. Moreover, auto-tuning has also been applied in
graph processing—mainly focusing on algorithmic optimiza-
tions such as selecting push-pull execution modes based on
the active vertex lists during execution [26, 35].

There are many examples of locality optimizations for
SpMV and graph processing. For example, Cagra [42] pre-
processes a graph, dividing it into smaller LLC-sized sub-
graphs. Other examples include binning techniques [4, 8].
For all these techniques, WISE can be extended with new per-
formance models. Milk [19] is a set of language extensions to
improve the locality of indirect memory accesses, which can
also be used for SpMV calculations. There are also compile-
time and run-time techniques to accelerate programs with
indirect memory accesses [31, 33]. Moreover, partitioning
techniques can also be used to improve locality [10].

Previous work targets relabeling vertices of graphs to pro-
vide better locality [2, 3, 6, 37]. These techniques achieve
high locality but incur large overheads. In this work, we only
consider the RFS and CFS reordering mechanisms. However,
WISE can be potentially used as a first step to decide whether
to apply more advanced reordering techniques, possibly elim-
inating overhead.

Many different SpMV vectorization methods have been
proposed [12, 21, 24, 25, 32, 38]. Their main aim is to maxi-
mize the vector unit utilization. Liu et al. [25] propose to use
finite window sorting, which is similar to RFS but only con-
siders a small block of rows. VHCC [32] devises a 2D jagged
format for efficient vectorization of SpMV. WISE’s features
can effectively assess the potential of these techniques.

8 Conclusions

To speed-up SpMV, this paper developed an ML framework
called WISE that predicts the magnitude of the speedup of
different SpMV methods over a baseline method for a given
sparse matrix. WISE relies on a novel feature set that sum-
marizes a matrix’s size, nonzero skew, and nonzero locality.
WISE is able to choose the best SpMV method and their pa-
rameters with high accuracy. For a set of nearly 1,500 ma-
trices and several popular methods and optimizations, WISE
achieved a 2.4x average speedup over Intel’s MKL in a 24-core
server. An oracle approach that picked the fastest method
for each matrix obtained an average speedup of 2.5X. Fur-
ther, WISE attained a 1.14X average speedup over Intel’s MKL
inspector-executor with less than 50% of its preprocessing
overhead. Thanks to WISE’s user-transparent approach, an
extended WISE with more methods and optimizations is an
effective addition to GraphBLAS/BLAS libraries like MKL.
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Appendix A: Unified Matrix Format

We devise a single matrix representation from which the
compiler can quickly extract the information needed for
vectorization in SELLPACK, Sell-c-o, Sell-c-R, LAV-1Seg,
and LAV. We call the representation Segmented Reordered
Vector Packing (SRVPack).

SRVPack supports partitioning the matrix data into two
structures like LAV: one for the dense segment and one for the
sparse one. Each structure contains the nonzeros of the rows
in the segment with RFS applied like Sell-c-R. Figure 14
shows the representation of the matrix in Figure 1a in the
new format. Each segment has a row_order array to keep
track of the new row order. All the chunks of ¢ rows in the
segment are placed in sequence, one after the other, following
the order given by the segment’s row_order array. In each
chunk, if a row has fewer columns than the rest of the rows
in the chunk, it is padded with zeros. Similarly to CSR, there
is a vals array that stores the values of the elements and a
col_ids array that stores the corresponding column indices.
These 2D arrays have a Y-dimension equal to ¢ and an X-
dimension equal to the sum of the lengths of the chunks of
the segment. Finally, an of fset array stores the index of the
first nonzero of each chunk. The overhead of creating this
unified format is part of the pre-processing overhead.

0l2)3]|4

row_order[rs[ o[ 3]s [i7 [ 1] 2] ra] [ro]r2]rs]re]rr] |

Figure 14. SRVPack representation of the matrix in Figure 1a.

Thanks to this unified format, we use a single SpMV im-
plementation for all the matrix representations discussed in
Section 2.2.
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