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ABSTRACT

Many task-based graph algorithms benefit from executing tasks

according to some programmer-specified priority order. To sup-

port such algorithms, graph frameworks use Concurrent Priority

Schedulers (CPSs), which attemptÐbut do not guaranteeÐto ex-

ecute the tasks according to their priority order. While CPSs are

critical to performance, there is insufficient insight on the relative

strengths and weaknesses of the different CPS designs in the liter-

ature. Such insights would be valuable to design better CPSs for

graph processing.

This paper addresses this problem. It performs a detailed em-

pirical performance analysis of several advanced CPS designs in

a state-of-the-art graph analytics framework running on a large

shared-memory server. Our analysis finds that all CPS designs but

one impose major overheads that dominate running time. Only

one CPSÐthe Galois system’s obimÐtypically imposes negligible

overheads. However, obim’s performance is input-dependent and

can degrade substantially for some inputs. Based on our insights,

we develop PMOD, a new CPS that is robust and delivers the highest

performance overall.
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1 INTRODUCTION

The fundamental role that graph algorithms play inmany important

applications motivates the use of parallelism to speed them up. As

a result, there is a large body of work on programming models and

runtimes for parallel graph processing (e.g., [9, 21, 26, 31, 32, 37]).

Many of these frameworks use a task-based model on a shared-

memory environment. In this model, the graph algorithm’s com-

putation is broken down into dynamically-created tasks that are

scheduled to run in parallel. This is an attractive model, as it is

very general, reasonably easy to program, and can be executed

efficiently on large commercial shared-memory machines [26].

Task-based graph algorithms are usually unordered. This means

that tasks can be processed in any order. However, many unordered

algorithms benefit from executing tasks according to some program-

mer specified priority order. For instance, consider the single-source

shortest paths (SSSP) problem, which computes the shortest dis-

tance from a source vertex s to every vertex in the graph. It is more

efficient to process vertices roughly ordered in increasing distance

from s. If distant vertices are processed first, the execution will

likely discover shorter paths to those vertices later, making the

earlier computation on the distant vertices redundant.

Graph algorithms that benefit from task processing in priority

order are ubiquitous. They include search algorithms, such as SSSP

and Breadth-First Search (BFS), and path-finding algorithms, such

as A*, which are used for gaming, transportation, and robotics [23].

They also include PageRank [34], which is widely used for graph

analytics, Delaunay triangulation [3] for computational geometry,

maximal flow computation [8] for optimization and scheduling, and

minimal spanning tree (MST) finding [6] for network design.

To run such algorithms efficiently, graph frameworks use a Con-

current Priority Scheduler (CPS) data structure to pick tasks for exe-

cution roughly in their priority order [2, 18, 26, 29, 35, 36]. While

CPSs are critical to the performance of these graph applications,

there is insufficient insight on the relative strengths and weak-

nesses that the CPS designs in the literature exhibit in practice. In

particular, many of the designs have never been evaluated against

each other in a state-of-the-art graph analytics system on a large

shared-memory machine. Further, there is no detailed low-level

empirical analysis of the sources of CPS overhead. Only with this

type of empirical analysis can one identify the bottlenecks and get

insights into how to design better CPSs for graph processing.

This paper addresses this open question. It performs a detailed

empirical performance analysis of several advanced CPS designs

using Galois [26], a state-of-the-art graph analytics framework,
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running on a 40-core, 4-socket, shared-memory machine. We study

four state-of-the-art CPS designs that use different, representative

structures: a SprayList [2] using a shared lock-free skip list, two

variations of a distributed array of priority queues [29], and obim,

the default CPS in Galois.

All the CPSs we study avoid synchronization bottlenecks by

having processors pick some high-priority task rather than the

highest-priority one. Despite this property, we find that all CPSs

but obim impose significant overhead on the fine-grained tasks of

graph algorithms, typically causing CPS overhead to dominate exe-

cution time. We further observe that obim’s performance depends

on having many tasks per each priority value. When there are

few tasks per priority level, obim’s execution becomes slower than

sequential executionÐeven if the input creates abundant task par-

allelism. One currently has to manually tune the graph application

to work around obim’s performance stability problem.

Guided by our study, we develop PMOD, a new CPS that ex-

tends obim to dynamically and automatically adapt to the ranges

of priorities exhibited by the input graph. This property makes

PMOD’s performance stable, automatically achieving comparable

performance to obim with input-specific manual tuning. PMOD

obtains the highest performance of all CPSs.

Contributions.We make the following contributions.

• We conduct the first extensive empirical analysis of differ-

ent CPS algorithms proposed in the literature. Our analysis

on a large shared-memory machine yields qualitative and

quantitative insights about the trade-offs in CPS design, to

drive future research on CPSs and graph applications.

• Our analysis points out a missing point in the CPS design

space: a CPS that provides high performance in a consistent

manner that does not depend on the input, and that does

not require manual tuning. We propose the new PMOD CPS,

which has these properties.

All of our software infrastructure is available at https://github.

com/serifyesil/PMOD.

2 BACKGROUND AND MOTIVATION

This paper focuses on graph analytics applications running on a

shared-memory machine. The graph, as well as data associated with

vertices and edges, is stored in a standard graph representation,

such as compressed sparse row (CSR) or column (CSC). The graph

representation does not affect our discussion or findings. The graph

applications can read and write the data associated with vertices

and edges, and update the graph structure by adding/removing

vertices and edges.

2.1 Priority Scheduling

Graph analytics systems employ different programming models for

parallel graph algorithms [9, 21, 26, 31, 32, 37]. We focus on the

popular task-based model, in which the algorithm is implemented

using dynamically-created tasks that may run in parallel. The task-

based programming model can express algorithms designed for

other models, and can run very efficiently on current machines. For

example, Galois [26]Ðone of the best performing shared-memory

graph analytics systemsÐuses this model.

In a task-based graph algorithm, each task performs vertex

and/or edge updates, and can also create new tasks. Algorithms can

1 Shared data: GraphG . Initially , in each vertex v , v .dist = ∞

2 sssp(s ):

3 schedule( visit (s, 0))

4

5 visit(v, dist ):

6 if v .dist , ∞: return

7 v .dist = dist

8 foreach neighbor u of v :

9 if (u .dist ==∞):

10 d = dist + weight(v, u )

11 schedule( visit (u, d ))

12

(a) ordered

13 sssp(s ):

14 s .dist = 0

15 schedule( visit (s, 0))

16 visit(v, dist ):

17 if v .dist , dist : return

18 foreach neighbor u of v :

19 atomically :

20 d = dist + weight(v, u )

21 if (d < u .dist)

22 u .dist = d

23 schedule( visit (u, d ))

(b) unordered

Figure 1: Task-based SSSP algorithm. The priority of a task is dist.

be ordered or unordered. An ordered algorithm requires tasks to exe-

cute according to a user-specified priority order. Figure 1a shows an

example ordered algorithm implementing Dijkstra’s single-source

shortest paths (SSSP) algorithm [10]. The algorithm finds the dis-

tance from some source vertex s to all other vertices in a weighted

directed graphG. Each task processes a vertex, and its priority is

the length of the path it discovers from the source to that vertex.

A task attempts to extend the shortest path by creating a task for

each neighbor. Tasks must run in strict priority order.

Ordered algorithms have parallelism [13, 15], but mining it is

hard, since it requires speculating across ordering constraints. Ef-

ficiently performing such speculation requires special hardware

(e.g., [15]), because the overheads of software-based speculation

negate the parallelism benefits [13]. Consequently, graph analytics

systems favor unordered algorithms.

An unordered algorithm produces a correct result regardless

of task execution order, making it easier to mine its parallelism.

Figure 1b shows an unordered SSSP algorithm. Tasks now do not

necessarily terminate if the vertex has already been visited. In

addition, they update the distance only if they decrease it, which

requires synchronization (Lines 19ś23).

Many unordered algorithms still use priorities, running more

efficiently when task execution mostly follows priority order, but

remaining correct when tasks execute out of priority order (i.e., pri-

ority inversion). For instance, executing an SSSP task out of order can

lead to the task’s distance update being overwritten later, thereby

wasting the task’s cycles. Therefore, graph analytics systems use

priority scheduling, which attemptsÐbut does not guaranteeÐto

execute tasks in priority order.

2.2 Concurrent Priority Schedulers

A Concurrent Priority Scheduler (CPS) is a data structure that stores

the set of pending tasks, and provides a way to add and remove tasks.

A CPS supports two main operations: Enq and Deq. An Enq(t ,p)

operation enqueues a task t with priority p in the data structure. A

Deq() operation dequeues a task to execute. The execution consists

of cores repeatedly invoking Deq and executing the obtained task

(which invokes Enq if it creates new tasks) until no tasks are left.

A CPS can be implemented by a concurrent Priority Queue

(PQ) [20, 30, 33], in which a Deq returns the highest priority task

(i.e., the one with minimal p value). In this case, all concurrent

Deq calls contend on the same task, inducing synchronization over-

head. Therefore, practical CPS designs relax the priority queue’s

semantics and return some high-priority task, not necessarily the

highest-priority one.



Understanding Priority-Based Scheduling of Graph Algorithms SC ’19, November 17–22, 2019, Denver, CO, USA

We consider several representative state-of-the-art CPS designs:

SprayList. The SprayList [2] is a popular design that stores tasks

in priority order inside a lock-free skip list [12].1 A SprayList Enq

inserts the task into the skip list, which is sorted by priority order.

Lock-free skip list insertions are not serialized and run concurrently.

A SprayList Deq operation removes a random high priority task,

which it finds by performing a short random walk on the skip list.

Different processors thus typically pick different tasks and do not

contend. A Deq returns one of the ≈ p log3 p highest-priority tasks

with high probability, where p is the number of processors.

Distributed Queues. These designs reduce contention by main-

taining an array of concurrent PQs, and allowing a processor to

access a random PQ in each operation. Processors thus typically

access different PQs and do not contend.

We consider two designs that differ in how operations access

the PQs: MultiQueue and RELD. The MultiQueue [29] maintains an

array of q = cp concurrent PQs, where c > 1 is a parameter, and p

is the number of processors. An Enq inserts the task into a random

PQ. A Deq picks two random PQs and removes the task of higher

priority among the two. Recent work suggests that, in expectation,

the MultiQueue Deq picks one of the ≈ p globally highest-priority

tasks (i.e., over all PQs) [1].

RELD (random enqueue, local dequeue) maintains an array of p

concurrent PQs, each of which is associated with a processor. As

in the MultiQueue, an Enq inserts the task into a random PQ. A

Deq dequeues from the requesting processor’s PQ, blocking if it is

empty. A hardware implementation of RELD is used by the Swarm

architecture [15].

Galois obim. Galois’ default CPS is obim (Ordered By Integer Met-

ric) [26, 27], which strives to avoid communication and synchroniza-

tion between processors. This is a lightweight, distributed design,

with one bag (i.e., unordered queue) data structure per priority. Each

bag is a distributed structure consisting of as many FIFO queues as

sockets (i.e., NUMA domains) in the machine.

An Enq inserts a task into the bag associated with the task’s

priority, creating such a bag if it does not exist. A Deq finds a bag to

dequeue from by traversing the bags in priority order until it finds

a non-empty bag. The processor keeps dequeueing from this bag

in subsequent Deqs until it becomes empty.

The bag is designed to minimize communication and synchro-

nization by satisfying most Enq and Deq operations from private

per-processor buffers, so that processors access the shared FIFO

queues only infrequently. A bag’s FIFO queues hold chunks of c

tasks (typically, c = 64). When a processor inserts tasks into the

bag, it first buffers them in a private local chunk; once the chunk

fills up, the processor enqueues it into the FIFO queue of the proces-

sor’s socket. The tasks in the chunk then become visible to other

processors. A processor dequeues a chunk from its socket’s queue.

If the queue is empty, the processor steals from one of the remote

queues. It then consumes tasks from the dequeued chunk one at a

time.

obim maintains the list of bags in a global map data structure,

which is read and written by all threads. To reduce synchronization

1A skip list [28] is a randomized list-based data structure in which nodes are randomly
linked into a hierarchy of linked lists. With high probability, each list contains about
half of the nodes in the list below it, allowing searches to łskipž over multiple elements.

and cache coherence traffic, each thread caches the contents of the

global map in a local map. When enqueueing a task, a thread looks

up the bag associated with the task’s priority in its local map. If

not found, the thread creates a new bag and updates the global

map accordingly. When dequeueing, if a thread fails to find work

in the bags listed in its local map, it refreshes the local map with

the information in the global map, and tries again.

3 PRIORITY SCHEDULING INSIGHTS

3.1 Fundamental Tradeoff

The fundamental tradeoff in CPS design is that of communication

and synchronization overhead versus unnecessary work performed.

Specifically, if the CPS is such that tasks are obtained and processed

in perfect priority order, the algorithm typically performs the least

amount of work. However, the communication and synchronization

operations necessary to obtain the tasks in such order are costly.

Instead, if the CPS obtains tasks without following strict priority

order, there is a chance that some of the work performed will be

superfluous; it will have to be repeated under more up-to-date

conditions. However, by relaxing priority order, the CPS can reduce

communication and synchronization.

We classify the execution cycles of an unordered graph algorithm

that uses a CPS as shown in Table 1. The algorithm’s cycles spent

processing tasks can be performing Good Work (GWork) or Useless

Work (UWork). The algorithm’s cycles spent in the CPS can be

Enqueue (Enq), Dequeue (Deq), and Failed Dequeue (FDeq) cycles.

The latter occur when a dequeue fails to find a task to execute. The

remainder Other cycles in the algorithm are spent running other

framework code. Typically, if strict priority execution is maintained,

Enq and Deq will be high, but UWork will be low. If priority execu-

tion is relaxed, the opposite will occur. Our goal is to find a balance

for the best performance.

Table 1: Execution cycle breakdownof unordered graph algorithms.

Category Description

Good Work (GWork) Processing a task. The work ends up being

useful.

Useless Work (UWork) Processing a task. The work later proves

useless.

Enqueue (Enq) Pushing a task to the CPS data structure.

Dequeue (Deq) Retrieving a task from the CPS data struc-

ture.

Failed Dequeue (FDeq) Attempting and failing to retrieve a task

from the CPS data structure.

Other Executing other graph analytics frame-

work code.

3.2 Addressing the Tradeoff

We posit that there are two main approaches to address the out-

lined tradeoff: one that emphasizes reduction in useless work and

another that emphasizes reduction in communication/synchroniza-

tion overhead.

3.2.1 Emphasis on Minimizing Useless Work: CPSs that emphasize

retrieving tasks close to the priority order invest synchronization/-

communication operations to obtain high-quality tasks. Although
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modern CPSs avoid the contention bottleneck of dequeueing tasks

from a single shared priority queue [28, 30], they still access globally

shared data on each CPS operation, which typically incurs multiple

cache misses.

Specifically, the SprayList maintains a global skip list, fromwhich

it dequeues a random task close to the head. In the distributed

queue designs such as the MultiQueue and RELD, threads access a

random queue in most operations. The MultiQueue picks a random

queue to enqueue and dequeue, while RELD enqueues in a random

remote queue and dequeues locally. The use of randomness in

these CPSs causes every CPS operation that a thread performs

to access (with high probability) different memory locations than

those accessed by its previous CPS operation. These locations are

also frequently written to (e.g., queue heads in the MultiQueue and

RELD). Consequently, despite returning high-quality tasks, CPS

operations in these designs incur multiple cache misses, and are

thus relatively time consuming compared to the fine-grained tasks

used in graph applications.

3.2.2 Emphasis on Minimizing Communication: The obim CPS [26]

exemplifies a CPS design that prioritizes avoiding shared-memory

communication, maximizing locality of CPS operations, and mini-

mizing their overhead. It maintains tasks in per-priority distributed

unordered queues (bags). CPS operations on these bags are efficient

and highly local. First, tasks can be inserted/removed at the per-

priority queue tail/head without any list traversal, as their order

is not important. Second, to amortize overheads, enqueues and

dequeues are performed at a coarse grain, by enqueueing and de-

queueing a chunk of tasks at a time [26]. Such amortization is not

trivial to add to the first approach to CPS designs.

For the obim design to be efficient, a worker thread must have a

fast way to find the bag associated with a priority value. Further,

the per-priority queues should contain many tasks.

In principle, this design is prone to useless work, because threads

working on a bag do not frequently search for a new bag that could

have a higher priority, to reduce communication. We shall see,

however, that such useless work is typically rare in practice.

We call this CPS approach Per-Priority Queue, and the first ap-

proach, which includes the SprayList, MultiQueue, and RELD CPSs,

Combined-Priority Queue.

3.3 Observations

We analyzed the execution of several graph algorithms on a large

multi-socket shared-memory server with the CPS implementations

described in Section 2.2. We ran the algorithms on many different

graph inputs and various thread counts. Our main observations

are shown in Table 2. Detailed measurements supporting these

observations are presented in Section 6.

In O1, we observe that some task processing with out-of-order

priorities (i.e., priority inversion) can be a good choice if done on

communication-minimizing CPS implementations such as those

of Section 3.2.2. These CPSs have very low-overhead operations,

while producing acceptable amounts of useless work. Even with the

useless work, the overall result is higher performance than other

CPSs, especially for large core counts.

The main reason why O1 holds is shown in O2: when a task

with priority p is processed, it often tends to generate other tasks

Table 2: Observations on successful CPS designs.

Observation Description

O1 Some task processing with priority inversion is a good

choice, if it is the result of a lightweight CPS.

O2 The number of tasks per priority is input-dependent.

Typically, processing a task T generates new tasks

with priorities not too different fromT ’s priority. How-

ever, with some graph inputs, these new tasks have

a very wide range of priorities, with negative perfor-

mance effects for the Per-Priority Queue approach.

O3 Enqueueing and dequeueing a chunk of tasks at a time

is very beneficial, but does not seem compatible with

the Combined-Priority Queue approach.

with only slightly lower priorities (p+ϵ , where ϵ is small2). This

property means that if threads are working on the highest priority

bags, newly created tasks do not change the highest priority, and

so continuing to work on the bag does not create useless work.

Moreover, even if we place these new tasks into the current bag

(as discussed in Section 4), the bag will contain tasks with similar

priorities, and so processing the new tasks will cause only minor

priority inversion.

The properties of input graphs cause this behavior. Processing

a vertex v may cause the insertion of its adjacent vertex v’ in the

work queue. But the priority of v’ is often not much different than

that of v. For example, in SSSP, the difference is the weight of the

edge joining v to v’; in BFS, the difference is 1. As another example,

in algorithms like MST, the priority is simply the degree (i.e., the

number of edges) of a vertex. Such numbers are often not very

different.

ObservationO2 also notes that, sometimes, applications or inputs

generate tasks with a wide range of priorities, yielding a small

number of tasks per priority value. This causes poor performance

in CPSs using the Per-Priority Queue approach. If there are only

a few tasks per priority, the private chunks where threads buffer

created tasks typically fail to fill up, and thus the tasks they contain

never become visible to other threads. Consequently, many bags

will appear empty, while all the tasks are stored in threads’ private

chunks. This situation causes the algorithm to spend a lot of time

searching for bags to work on. Moreover, threads will quickly empty

any bags found and thus not benefit from locality.

On the other hand, the Combined-Priority Queue approach is

more tolerant of this behavior. This is because it orders the tasks

according to their priority in a queue. The queue is processed in

the same way, irrespective of the ranges of priorities it contains.

This effect happens in SSSP with many road network graphs.

The difference in priorities between two adjacent vertices is the

weight of the connecting edge. This is the distance between the

two corresponding vertices. A vertex may be connected to several

vertices at widely different distances. As a result, the range of

priorities can be very large, causing major dequeueing overheads

with the Per-Priority Queue approach.

Finally, O3 notes that a lot of execution overhead is eliminated by

performing enqueueing and dequeueing of tasks in a coarse-grain

mannerÐi.e., using chunks of tasks at a time. Such approach is

easy to support with the Per-Priority Queue approach. However,

2Higher p values mean lower priorities.
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it is hard to support with the Combined-Priority Queue approach

without destroying its robustness to the priority distribution (see

O2). It is not possible to simply create chunks based on inserted

tasks, because the resulting chunks would contain tasks with differ-

ent priorities, and so these chunks would not be totally ordered in

the queue. Alternatively, it is possible for each thread to buffer the

tasks it creates in per-priority private chunks and insert filled-up

chunks into the global queue (similarly to the Per-Priority Queue

approach). However, this design suffers from the problem noted in

O2Ðwhen there are few tasks per priority, these chunks will not

fill up and will not be inserted into the queue.

We also find that large chunks are undesirable, as they lead to

load imbalance among cores. Indeed, in a chunk-based environment,

a core bundles up the work that it is generating in chunks, before

enqueuing the chunks in the work list. Only at that point is the

work visible to other cores. If chunks are large, it takes a long time

for a core to fill up a chunk and make it globally visible. During

that time, other cores may be idle looking for work.

4 PMOD: AN ADAPTIVE CPS

4.1 Main Idea

Based on our observations, we introduce a new CPS design that is

able to minimize both communication/synchronization overhead

and unnecessary work performed, hence delivering high perfor-

mance. Our scheme is called PMOD (Priority Merging On Demand),

and builds on the ideas in Section 3.2.2, which obim implements.

While obim’s idea of keeping a queue per priority is often highly

effective, it can sometimes result in subpar performance. Hence, in

PMOD, the queues are per priority groups, and such groups change

dynamically at runtime.

Specifically, PMOD dynamically identifies when the execution

is using too many priority queues and there are too few tasks

per priority queue. This is an inefficient operating point because

threads spend substantial time searching for work. In this case,

PMOD combines a set of consecutive priorities into a single queue.

We call this process Priority Merging. This process can be repeated

multiple times dynamically. Every time, the Merging Factor (or

number of consecutive priorities that are merged) increases. The

Merging Factor is always a power of two.

PMOD also dynamically estimates when the execution is using

too few priority queues. This is also an inefficient operation point

because, by merging disparate priorities, threads run the risk of

suffering priority inversion and executing useless work. In this case,

PMOD separates the priorities into more queues. This is Priority

Unmerging. It is done dynamically, in decreasing powers of two.

To see how the algorithm works, consider Figure 2. Figure 2a

shows an environment with too many priority queues. Core i has a

long list of priority queues in its local map (Section 2.2), but they

are all currently empty, because no chunk has been filled-up and

deposited in any of these queues. Core i wastes time traversing

this list, and then has to go to the global map to obtain work. Our

PMOD CPS measures the frequency of such global accesses. If the

frequency is higher than threshold Freqдlobal , PMOD considers

priority merging.

In this case, PMOD first computes the range of priorities of the

tasks that have been recently enqueued in the work queue, and

priority
Highest

Local list
of queues

Core i

(a)

Local list
of queues

Highest
priority

Core i

Chunk

(b)

Figure 2: Run with too many (a) and too few (b) priority queues.

divides it by the Merging Factor. This gives the number of queues

needed to cover the range (Numqueues ). Then, PMOD computes the

ratio between the number of tasks recently enqueued in the work

queue andNumqueues . To reduce traversal overheads, we want this

ratio to be equal or higher than threshold MinDensity. If necessary,

PMOD increases the Merging Factor (and hence consolidates the

list of queues) so that this is the case. From now on, newly arriving

chunks will be enqueued in the consolidated list of queues.

Figure 2b shows an environment with too few priority queues

and too many tasks per queue. It is possible that core i performs

substantial useless work. Our PMOD CPS regularly measures the

number of recent successful dequeues from each priority queue. If

one such value is higher than thresholdMaxPops , PMOD suspects

that queues are too long and priority inversion may be taking place,

and considers priority unmerging. Again, it computes the number

of queues needed to cover the recent priority range (Numqueues ).

To minimize the amount of useless work, we want Numqueues

to be greater or equal to Minqueues . Therefore, if this is not the

case, PMOD decreases the Merging Factor and hence expands the

number of queues. From now on, newly arriving chunks will be

enqueued in the expanded list of queues.

When the list of queues is consolidated or expanded, care is

taken not to create major priority inversion. We give details of the

algorithm below.

The SSSP application in the Galois package [26] has a parameter

called delta that right-shifts the priority values passed to the CPS,

hence compressing the range of priorities. This compression can

have an effect similar to PMOD’s priority merging, but it is an

application-level change that requires manual, per-input tuning,

and is static. PMOD attains this effect and the opposite one (i.e.,

priority expansion) automatically, transparently to application and

user, and dynamically.

4.2 PMOD’s Priority Ordering

PMOD does not merge or unmerge task queues physically. Instead,

it dynamically adjusts the mapping from application-supplied pri-

ority values to queues, creating new queues if necessary. To this

end, PMOD maintains the base-2 logarithm of the current value of

the Merging Factor in variable lmf Ð which stands for Logarithm

of Merging Factor. A higher lmf means that more priorities are

merged. PMOD groups tasks into queues not simply based on the

priority value p of the task, but based on the pair (p>>lmf0, lmf0)

of the task, where >> denotes bitwise right-shift, and lmf0 is the

value of lmf at the time when the task was enqueued. Therefore,

to find a queue, PMOD indexes the structure with the pair of values

above. To enqueue a task, Enq (t ,p) inserts task t into the queue

(p>>lmf , lmf ), creating it if it does not exist.
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The algorithm used by PMOD to order queues minimizes priority

inversions. Given two queues, (p1, l1) and (p2, l2), which one has

a higher priority? First, PMOD computes l = max(l1, l2). Then, it

computes p1>>(l − l1) and p2>>(l − l2). The lowest value of these

two is the queue with the highest priority. Note that by shifting

by l = max(l1, l2), PMOD is helping the queue with the tasks with

lower li , namely those inserted when lmf was lower. However,

suppose that p1>>(l − l1) = p2>>(l − l2). In this case, the queue with

the lower li is given the higher priority. Again, tasks inserted when

lmf was low are favored.

This ordering algorithm generally prevents low-priority tasks

inserted after priority merging from taking precedence over high-

priority tasks that were inserted before merging. Consider an ex-

ample. Assume that lmf=0 and that we have queues for tasks with

priorities {(1,0),(5,0),(8,0),(10,0),(11,0),(32,0)}. Suppose that lmf in-

creases to 3, and now a task with p = 9 is received to be enqueued.

It should be enqueued in queue (9>>3, 3) = (1, 3). Since this queue

does not exist, PMOD creates queue (1, 3).

Now, we consider how PMOD orders the new queue with respect

to the existing queues. According to the algorithm described above,

it orders (1, 3) after (5, 0), since l = 3 and (1>>0)>(5>>3). It also

orders (1, 3) after queues {(8,0), (10,0), (11,0)} because, while 1>>0

is equal to [8, 10, 11]>>3, its lmf is higher. Finally, it orders (1, 3)

before the (32, 0) queue.

Note that with lmf = 3, tasks with priorities 8ś11 map to the

same queue. Thus, the placement of the new queue relative to the

existing queues indexed by (8, 0), (10, 0), and (11, 0) is not crucial.

What is crucial is to guarantee that the higher priorities (0, 0) to

(7, 0) get processed first, by ordering the new queue after their

queues. With this ordering, there may be some small priority in-

version, but it is tolerable in practiceÐespecially since the priority

of the tasks created decreases monotonically during the execution.

However, if PMOD only considered p>>lmf , (1, 3) would be placed

before (5, 0). The same would be true for any arriving task with

p < 40 while lmf=3. This would create a high priority inversion.

4.3 PMOD Flow

Figure 3 shows the Deq () and Enq () routines. When a Deq () invo-

cation obtains work from the global map rather than obtaining

the work locally, we call it a synchronizing dequeue. In this case,

the sync_deq routine is executed. PMOD calls mergeCheck() and

unmergeCheck() to make decisions on merging or unmerging. To

make the decisions, PMOD uses some thread-local counters that

count a set of events since the last merging/unmerging decision.

Such events are the number of Deqs (nDeqs), synchronizing Deqs

(nSyncDeqs), Enqs (nEnqs), and the range of priorities enqueued in

the system (minB andmaxB). A read of one such counter returns

the aggregation of all the thread-local counters. After a merge/un-

merge decision, the counters for all the threads are reset. These

details are omitted from Figures 3 and 4 for brevity.

4.4 Merging and Unmerging

Figure 4 shows themergeCheck() and unmergeCheck() routines. Con-

sider mergeCheck() first. Merging is needed when there are too

many priority queues and few tasks per queue. PMOD detects

this condition by checking if the fraction of Deq calls that go to

1 Deq (): // dequeue routine
2 nDeqs++ // number of dequeue operations since last merge/unmerge
3 if (can dequeue locally )
4 return fast_deq ()
5 else
6 return sync_deq() // synchronizing dequeue

8 sync_deq ():
9 nSyncDeqs++ // number synchronizing dequeue operations
10 mergeCheck() // check for, and potentially perform, merging
11 if (lmf not changed) // if merge didn’t occur
12 unmergeCheck() // check for, and potentially perform, unmerging
13 if (lmf changed) // if merge or unmerge happened, reset counters
14 nEnqs = nSyncDeqs = nDeqs = 0
15 MaxB = Priority .MIN // minimum priority value
16 MinB = Priority .MAX // maximum priority value
17 // rest of the dequeue

19 Enq( task , taskPrio ): // enqueue routine
20 nEnqs++ // number of enqueue operations since last merge/unmerge
21 // keep track of the priorities created since last merge/unmerge operation
22 MaxB = max(MaxB, taskPrio)
23 MinB = min(MinB, taskPrio)
24 prio = taskPrio >> lmf
25 // proceed to enqueue in queue indexed by prio

Figure 3: Deq and Enq routines.

1 mergeCheck ():
2 if (( nSyncDeqs / nDeqs) ≤ Freqдlobal ) return

3 // calculate the number of priority groups
4 Numqueues = (MaxB>>lmf) − (MinB>>lmf)
5 // calculate the average number of tasks per priority group
6 fillRatio = nEnqs / Numqueues
7 if ( fillRatio < MinDensity)
8 // may merge priority groups to get closer to MinDensity
9 lmf += log2(MinDensity/fillRatio )

11 unmergeCheck ():
12 if (nDeqs from single prio_group ≤ MaxPops) return
13 // calculate the number of priority groups
14 Numqueues = (MaxB>>lmf) − (MinB>>lmf)
15 if (Numqueues < Minqueues )
16 // too few prio_groups, may unmerge
17 lmf −= log2(Minqueues / Numqueues )

Figure 4: Merge and unmerge operations.

the global map (i.e., fail to find work locally), nSyncDeqs/nDeqs, is

greater than Freqдlobal . If merging is needed, PMOD computes

Numqueues , the number of queues needed to cover the priority

range observed since the last lmf update (Line 4), and fillRatio, the

average number of tasks that each of these Numqueues queues

would have received since the last lmf update (Line 6). If fillRatio is

lower than MinDensity, PMOD may cautiously increase the Merg-

ing Factor, so that Numqueues decreases.

Next, consider unmergeCheck() (Figure 4). It is triggered when

the number of Deqs from a single priority group since the last lmf

update exceeds a thresholdMaxPops. When triggered, the algorithm

checks whether Numqueues is smaller than thresholdMinqueues .

If so, PMOD may cautiously decrease the Merging Factor.

5 EXPERIMENTAL SYSTEM

5.1 Graph Framework and CPSs

We run our experiments on a 40-core shared-memory machine. The

machine has 40 Xeon E7-4860 cores running at 2.27 GHz, organized

in 4 sockets of 10 cores each. Each core has 32KB L1 instruction

and data caches, and a 256KB L2 cache. Each socket has a shared

24MB L3 cache. The machine has 128GB of memory.

We evaluate the CPSs using the Galois graph analytics frame-

work [26]. Galois provides a programming model that supports the

unordered execution of loop iterations. It executes the iterations in
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parallel, treating each iteration as a task. For instance, each iteration

can operate on one vertex.

We implement (or use an existing implementation of) the four

CPS algorithms described in Section 2.2, plus our proposed PMOD

CPS described in Section 4. The CPSs are: SprayList (SL), Multi-

Queue (MQ); Random-Enqueue Local-Dequeue (RELD), obim (some

applications require variations called obim-O and obim-D that we

describe in Section 5.3), and PMOD. Table 3 lists them.

Table 3: CPS algorithms evaluated.

Name Description

SprayList (SL) Concurrent priority-ordered skip list.

MultiQueue (MQ)

Remote Enqueue, Local

Dequeue (RELD)

Array of concurrent priority queues.

obim Distributed structure (bag) per priority. For

applications that are manually tuned for

obim, we evaluate both the default and the

optimized settings of obim, which we call

obim-D and obim-O, respectively.

PMOD Bag per adaptive priority group.

For the SprayList, we use the publicly available implementa-

tion by its authors (https://github.com/jkopinsky/SprayList). We base our

MultiQueue implementation on the original authors’ implementa-

tion (obtained by request). In executions with t threads, we use a

MultiQueue with 4t priority queues. Our implementation replaces

the coarse-grained locked sequential priority queues in the origi-

nal implementation with lock-free skip lists, as we found that the

skip lists perform better. We use the skip list implementation from

the SprayList code. We implement RELD based on our MultiQueue

code, to obtain the most accurate comparison. For obim, we use the

code provided by Galois. We set the chunk size to 64, after tuning

experiments.

PMOD Parameters. For PMOD, we set Freqдlobal to 1/chunk_size,

MaxPops to 4 × chunk_size , MinDensity to 64, and Minqueues to

16. For all applications, we start with lmf=0.

We select Freqдlobal to be 1/chunk_size since, if we go to the

global map at this frequency, we will have at least one chunk per

priority.MinDensity is selected to support at least one chunk worth

of tasks per priority bin. MaxPops and Minqueues are selected

empirically. MaxPops tries to eliminate the case where there are

too many tasks per priority, and Minqueues sets the minimum

number of different priority groups in the system.

5.2 Input Datasets

We evaluate the applications on the input graphs detailed in Ta-

ble 4. Due to space constraints, however, we only show plots for

representative inputs. The input graphs have different characteris-

tics. The USA roads (rUSA) and West USA roads (rW ) graphs are

road networks. Twitter40 (tw) is a real-world social network graph

from Twitter; we use the largest connected component and assign

edge weights using a random uniform distribution from the range

[0, 100]. Web-google (wg) is the web graph released as part of the

Google Programming Contest. Soc-LiveJournal1 (lj) is the friend-

ship social network of the LiveJournal online community. The wg

and lj datasets come from [19].

Table 4: Input graphs.

Graph # Vertices # Edges Size

USA roads (rUSA) [11] 24M 58M 628MB

West USA roads (rW ) [11] 6M 15M 165MB

Twitter40 (tw) [17] 42M 1469M 6GB

Web-Google (wg) [22] 875 K 5M 46MB

Soc-LiveJournal1 (lj) [4] 5M 69M 564MB

5.3 Applications

We evaluate the following applications: Single-Source Shortest

Paths (SSSP), Breadth-First Search (BFS), PageRank (PR and PR-D),

Minimum Spanning Tree (MST), and A*. All applications but A* are

standard benchmarks in the Galois distribution; we implement A*

from scratch.

Single-Source Shortest Paths: The SSSP algorithm in Galois is

based on the delta-stepping algorithm [24]. Each task is associated

with some vertex v and attempts to extend the shortest path from

s to v . The priority of a task is the distance it assigns to its vertex.

Breadth-First Search: BFS uses breadth-first search to traverse

a graph, where the weight of each edge is 1. Tasks are defined as

in SSSP, with the priority now being the number of edges on the

discovered path.

PageRank: We use a pull-push version of PR, in which the page

rank of a vertex is calculated by iterating over its incoming edges

(pull) and then propagating the change observed to the vertex’s

outgoing neighbors (push) [34]. The priority of a task is the PR

value of its vertex, which is a floating-point number. To be able to

use obim, we need to convert the priorities to integers. We evaluate

PR with two conversion methods: Taking the whole part of the

floating-point number (PR), and taking the whole part plus the

three digits after the decimal point (PR-D for łdetailedž).

Minimum Spanning Tree:MST uses Boruvka’s algorithm to find

a spanning tree over all vertices with minimum total edge weight.

Each task is associated with a vertex. The task picks the vertex’s

minimum weight edge and merges the vertex and its neighbor

connected by the edge, scheduling a task to visit the new vertex.

The priority of a task is its vertex’s degree.

A*: A* is a path finding algorithm. It calculates the distance from a

source vertex s to a destination vertex d . Unlike SSSP, the search

is guided by a heuristic value. The heuristic value is the expected

distance to vertex d from the currently visited vertex. To guide the

search, the priority of a vertex is the sum of its distance to s plus

its expected distance to d .

Manually tuned applications: Galois’ SSSP application supports

manual tuning to obtain the best performance for each input graph.

It takes a delta (∆) parameter and right-shifts priority values by

∆ bits. This shift decreases the number of distinct priority values

and significantly impacts the performance with obim. The other

CPSs ignore ∆. The value of ∆ specified on the Galois web site is

8. However, we search for the values of ∆ that attain maximum

performance with obim. Such optimal values are ∆ = 14 for road

network graphs, and ∆ = 0 for the other graphs. Hence, we evaluate

two versions of SSSP: one with the default ∆ = 8 (obim-D) and one

with the optimal ∆ value that we identify through empirical search

(obim-O).
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Figure 5: Speedups of the CPS schemes relative to the single threaded execution of obim (or obim-O).

Our A* code similarly supports a ∆ parameter for scaling priority

values with obim, and we evaluate two versions of A*: one with the

default ∆ = 8 (obim-D) and one with an optimal ∆ value (obim-O),

which is 14 for all the graphs considered.

6 FINDINGS

6.1 CPS Performance Characteristics

Figure 5 shows the speedups obtained by the CPS schemes as we

change the number of threads, relative to the single threaded exe-

cution of obim. Recall that for SSSP and A*, we use versions of the

applications that are manually tuned for obim, one with the default

settings of obim (obim-D), and one with the optimized settings of

obim (obim-O). For these two applications, the speedups are relative

to obim-O.

The figure shows that, generally, obim or obim-O yield the best

performance. However, obim-D often has very poor performance: in

SSSPwith rUSA, A* with rW , and A*with rUSA, obim-D is the lowest

curve, barely above 1. We also see that the speedups vary greatly

with the application and input. obim or obim-O attain speedups

of 20-40 for many applications and inputs; SL provides the worst

average performance; and the distributed CPSs MQ and RELD are in

between. We now consider the results in detail.

Search applications (SSSP, BFS, and A*): SSSP’s performance

under obim heavily depends on the input and on the ∆ parameter.

For instance, SSSP obtains nearly linear speedup under obim-O on

the tw input (Figure 5a). Under obim-D, the speedup is lower, about

24 at 40 threads, but still higher than under the other CPSs. On

the other hand, on the rUSA input, the speedup under obim-O does

not exceed 20, and under obim-D, the speedup collapses and the

application runs slower in parallel than sequentially (Figure 5b).

As we show later, this collapse is due to the lack of sufficient work

per priority value, as described in observation O2 (Section 3.3). In

contrast, while BFS shows some input-sensitivity under obim, it

is less drastic. Under rUSA, BFS still sees a significant speedup of

22. While this is less than the speedup obtained for tw, the perfor-

mance of BFS on rUSA does not collapse (Figures 5cś5d). Finally, A*,

which runs only on the road networks, behaves similarly to SSSP.

Specifically, obim-O yields the best speedup, but the performance

collapses with obim-D (Figures 5kś5l).

PR and PR-D: Recall that the difference between PR and PR-D is

that the latter has a 1,000× wider range of priorities. Such change

has a major effect on obim. Specifically, PR with wg under obim

yields a speedup of 32 for 40 cores, making obim the best CPS (Fig-

ure 5e). However, PR-D under obim becomes substantially slower.

On PR-D, all the other CPSs do better than obim, which delivers a

speedup lower than 10 (Figure 5f). This effect is also due to obser-

vation O2 in Section 3.3. Although not shown because the figure

shows speedups relative to obim, the other CPSs are much less

affected by the range of priorities. In summary, obim needs many

tasks per priority value to perform well, whereas the remaining

CPSs are much less sensitive to this metric.

MST: Unlike the other applications, MST does not scale past a single

socket (10 threads) under any CPS. Under obim, MST enjoys almost

linear scalability within the socket, but subsequently degrades and

obtains a speedup of 5 at 40 threads (Figures 5iś5j). Under the other

CPSs, the speedup never exceeds 5 even within a socket. The reason

for MST’s lack of scalability is that, unlike the other applications,

MST merges vertices as it executes, thereby decreasing the number

of vertices and the available parallelism [13].

6.2 CPS Performance Analysis & Observations

We now analyze the reasons for the CPS performance trends and

empirically support the high-level observations made in Section 3.

Figure 6 breaks down the 40-threaded execution time of the ap-

plications under the different CPS schemes. We use the categories

detailed in Table 1: performing useless work (UWork), performing

good work (GWork), executing CPS Enq (Enq), executing CPS Deq

that returns a task (Deq), executing CPS Deq that fails to return a

task (FDeq), and executing non-CPS Galois framework code (Other).

6.2.1 CPS Overhead Determines the Execution Time. From Figure 6,

we see that the CPS overhead (Enq, Deq, and FDeq), rather than

useless work, typically determines the execution time. Generally,

the relaxed priority scheduling performed by the CPSs creates neg-

ligible useless work. Only obim sometimes creates non-negligible
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tions normalized to obim (or obim-O).

useless work, which we explore shortly. For the most part, applica-

tions under obim spend less than 10% of their time inside the CPS

(Enq, Deq, or FDeq). The exceptions are PR-D and the search appli-

cations with the road networks, which we discuss shortly. With the

other CPSs, applications typically spend 50%ś90% of their time in

CPS code.

The differences in CPS time are explained by Figure 7, which

shows the cycles per Enq and Deq operations. Observe that obim’s

Enq and Deq operations are orders ofmagnitude cheaper, on average,

than in the other CPSs. Themain factor behind this difference is that

obim buffers both enqueued and dequeued tasks in chunks, thereby

amortizing communication costs by improving cache locality.

Another factor behind CPS time is data structure complexity.

First, chunk insertion and removal from obim’s FIFO queues are

O(1) operations, whereas searching a skip list is an O(logn) op-

eration, where n is the size of the skip list. Second, MQ and RELD

distribute tasks among multiple skip lists, resulting in shorter skip

lists than the single skip list maintained in SL. Thus, Enqs in SL

are slower (Figure 7). Finally, removing a task in MQ and RELD is an

O(1) operation (removing the head of some skip list), whereas SL

performs a random walk and is thus slower (Figure 7).

As obim is the most competitive CPS, we now study its perfor-

mance in detail.

6.2.2 Performance Sensitivity to Priority Values (O2). Performance

with obim decreases when there are few tasks per priority. In this

case, threads that enqueue tasks do not manage to fill their chunks.

Since chunks are thread-local, such tasks remain invisible to other

threads. Threads spend substantial time going over many priority

bags trying to find work. This case manifests itself as higher Deq

time in the application, and more cycles per Deq operation. More-

over, in some cases, threads do not find work at all, even though

there are private tasks pending execution, leading to load imbalance.

FDeq cycles capture such unsuccessful dequeue attempts.

The search applications on the road networks and PR-D expe-

rience this effect. For example, the road networks’ edge weights

are drawn from large ranges. There are many priority bags, with

on average 1.5 tasks per priority. Figure 6 shows the result of this

effect. Under obim-D, SSSP on rUSA, and A* on rW and rUSA spend

all of their time searching for tasks to execute. The combination

of Deq and FDeq cycles accounts for all the execution cycles. Note

that FDeqÐwhich is small in all other CPSs and inputsÐcan be over

50% of the execution time. A similar effect is shown in Figure 6 for

obim in PR-D with wg and lj.

6.2.3 Useless Work vs. CPS Efficiency Tradeoffs (O1). The ∆ pa-

rameter in SSSP and A* right-shifts priority values by some bits,

effectively compressing the priorities into fewer bags. Increasing ∆

is thus a tradeoff. It increases the average number of tasks per prior-

ity bag, which makes chunking more effective and helps obim find

tasks faster. However, lumping together tasks with highly differ-

ent priorities increases the chance of running tasks out of priority

order and performing useless work. Figure 6 shows this tradeoff.

For SSSP on rUSA, and A* on rW and rUSA, obim-O (which uses

∆ =14) reduces the fraction of the execution in the CPS (Enq, Deq,

and FDeq) to 25% or less. This is compared to ≈100% in obim-D.

However, 20ś35% of the time in obim-O is now spent on useless

work. Still, obim-O is so lightweight that, despite executing useless

work, it is faster than SL, MQ, and RELD (Figures 5b,5k and 5l). These

CPSs have little useless work (Figure 6), but their overhead is so

high that the work quality becomes a second-order effect.

Useless work is not free, however. When the number of tasks per

priority is large, avoiding useless work pays off. For instance, for

SSSP on the tw input, running with obim-D (∆ = 8) leads to 35% of

the time being spent on useless work, and a maximum speedup of

about 24, whereas with obim-O (∆ = 0), useless work is negligible

and speedup is nearly linear.

To study this tradeoff, we consider SSSP and A* (which use the

∆ parameter), and vary ∆. Figure 8 shows the speedups of SSSP

and A* for rUSA (rW shows similar behavior and is omitted due to

space constraints), as we vary ∆ from 10 to 18. The speedups are

normalized to single-threaded runs with ∆ = 10. Figure 9, on the

other hand, shows detailed cycle breakdowns similar to Figure 6.

From Figure 8, we see that the highest speedups are attained

with ∆ = 14 (the optimal value used in Section 6.1). As ∆ moves

higher or lower than 14, the speedups decrease. While ∆ = 12 and

∆ = 16 deliver acceptable speedups, values further out do not. For

example, with ∆ = 10, the speedups at 40 threads are 5 and 8.

To understand this behavior, consider the cycle breakdown in

Figure 9. The figure corresponds to 40-threaded executions of SSSP
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Figure 8: Speedups of obim for different ∆ values for SSSP and A*,

relative to the single-threaded execution with ∆ = 10.

and A*. When ∆ is below optimum, there are many priority bags

and few tasks per bag. Many tasks remain invisible, buffered in

non-filled thread-local chunks. Consequently, idle threads cannot

find work efficiently. As shown in the ∆ = 10 bars, Deq and FDeq

consume the large majority of cycles. As ∆ increases, the contribu-

tion of Deq and FDeq decrease, but useless work appears. When ∆

is above the optimum, many different priorities are placed in the

same bag, increasing the useless work.
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Figure 9: Breakdownof execution cycles for 40 threaded-executions

of SSSP and A*, while varying ∆.

6.2.4 Optimal Priority Merging Depends on Input Data (O2). How

aggressively priorities need to be compressed for obim to attain

good performance depends on the priority value distribution rather

than the graph structure. To show this, we repeat the above experi-

ments scaling down all the edge weights in the graph by 64. This

change does not alter shortest paths or the graphs’ topology, but

changes the range of priority values. Figure 10 shows speedups for

SSSP running rUSA and rW for different ∆ values. We can see that

now, the optimal ∆ decreases to 8.
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Figure 10: Speedups of obim for different∆ values for SSSPwith edge

weights scaled down by 64.

6.2.5 Amortizing Communication Using Chunking (O3). Processing

tasks in chunks reduces obim’s Enq and Deq operation cost to O(1)

on average. For Enq and Deq, obim accesses shared data structures

only once in c operations, where c is the chunk size. Here, we show

that chunking is an important factor in obim’s performance, and

analyze the interaction of chunking and priority compression.

Figure 11 shows the speedups of SSSP and BFS for rUSA as we

vary the chunk size from 0 (c0, chunking disabled) to 256 (c256).

rW shows similar behavior and is omitted due to space constraints.

For SSSP, we have curves for ∆ equal to 10 and 14. The speedups

are normalized to single-threaded runs with no chunking and, for

SSSP, ∆ = 10. We see that the highest speedups are attained with

the default chunk size of 64 for both SSSP (with the optimal ∆ of 14)

and BFS. Both larger and smaller chunk sizes decrease the speedups.

For example, with chunking disabled, the speedups at 40 threads

are 2-3 times lower.
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Figure 11: Speedups of obim for different chunk sizes for SSSP and

BFS, relative to the single-threaded execution with no chunking

(and ∆ = 10 for SSSP).

To understand this behavior, consider the cycle breakdown of

the 40-threaded executions in Figure 12. Without chunking, obim

accesses shared structures on each Enq and Deq operation. Hence,

the Enq andDeq categories account for ≈80-90% of the cycles. As we

increase the chunk size, this fraction goes down. However, larger

chunks are harder to fill. Tasks thus remain buffered and inaccessi-

ble to other threads. This causes other threads to either work on

low-quality tasks (UWork) or fail to find tasks altogether (FDeq).
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Figure 12: Breakdown of execution cycles for 40 threaded-

executions of SSSP and BFS while varying the chunk size. For SSSP,

we show bars with the suboptimal ∆ = 10 and the optimal ∆ = 14.

6.2.6 Chunk Size: Load Balancing vs Overhead Tradeoff. A main

reason for the inefficiency with the small suboptimal ∆ equal to

10 is that, with few tasks per priority bag, chunks do not get filled

and thus tasks remain invisible to other threads. Now we evaluate

whether decreasing the chunk size solves this problem. Figure 11a

shows the speedups of SSSP using ∆ = 10 with varying chunk size.

A smaller chunk size of 16 yields the best performance, instead

of 64. Small 16-entry chunks fill faster and become visible faster,



Understanding Priority-Based Scheduling of Graph Algorithms SC ’19, November 17–22, 2019, Denver, CO, USA

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim-O
PMOD
obim-D

(a) SSSP with tw

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim-O
PMOD
obim-D

(b) SSSP with rUSA

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(c) BFS with tw

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(d) BFS with rUSA

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(e) PR with wg

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(f) PR-D with wg

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(g) PR with lj

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(h) PR-D with lj

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(i) MST with rW

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim
PMOD

(j) MST with rUSA

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim-O
PMOD
obim-D

(k) A* with rW

1 5 10 20 30 40
# Threads

1
5

10

20

30

40

Sp
ee

du
p

obim-O
PMOD
obim-D

(l) A* with rUSA

Figure 13: Speedups of PMOD and obim variants relative to the single-threaded execution of obim (or obim-O).

which almost eliminates UWork cycles, but they impose high Enq

overhead (Figure 12). Consequently, the speedup with 16-entry

chunks is only 30% better than with the default of 64, and the best

execution time with suboptimal ∆ = 10 remains ≈ 3× slower than

with the optimal ∆ = 14 and chunk size of 64.

6.2.7 Summary of Findings. With the right amount of priority com-

pression, chunks of size 64 serve well to amortize communication

without hurting load balancing, whereas adjusting chunk size does

not compensate for suboptimal priority compression. The optimal

level of priority compression depends on the priority distribution,

and cannot be determined statically or based on graph topology.

This motivates our proposed PMOD CPS.

6.3 Effectiveness of PMOD

6.3.1 PMOD Speedups. Table 5 presents an overall comparison

of CPSs at 40 cores. In the first row, we pick a given CPS and,

for each application, compute the speedup of that CPS over the

best CPS for that application. We then take the geometric mean

over all the applications. The resulting number indicates how close

that CPS is to being the optimal choice as the default CPS for all

applications. PMOD’s value of 0.93Ðthe highest among all CPSsÐ

means that PMOD is always comparable to the application-specific

best performer. Only obim-O has a similar number, but it is not a

viable choice for a default CPS since it requires extensive, workload-

specific, manual tuning to achieve this result.

Table 5: Geometric mean of the CPS speedup compared to best CPS

for each application, and geometric mean of speedup for 40 cores.

PMOD obim-D obim-O RELD MQ SL

W.r.t best CPS

for the app.
0.93 0.55 0.89 0.35 0.34 0.18

Speedup for

40 cores
17 10.6 17 6.7 6.5 3.6

The second row shows the geometric mean speedup of each CPS

over a single-threaded obim execution. PMOD is much better than

the CPSs that do not require manual tuning. The same is true for

obim-O, but obim-O requires manual tuning.

We further evaluate PMOD by comparing its execution time to

the obim variants. Figure 13 shows the speedups of the applications

under PMOD, obim, and, when applicable, obim-O and obim-D. All

curves are relative to the single-threaded execution time of obim

(or obim-O, when applicable).

We see that PMOD performs as well as obim (and obim-O when

applicable) in all cases. Recall that obim-O is obtained through

manual tuning, searching for and identifying the optimal ∆. What

makes PMOD attractive is its ability tomatch obim-O’s performance

without any tuning.

In fact, PMOD outperforms obim in PR-D on thewg input. PMOD

is twice as fast as obim for 40 threads. The reason is that, as dis-

cussed in Section 6.2, obim does not work well with the large range

of priority values in PR-D. Instead of having the programmer man-

ually work around this problem, as was done in SSSP with the

∆ parameter, PMOD adapts to the observed priority ranges and

successfully speeds up the application, obtaining a 20× speedup.

To gain further insights, Figure 14 breaks down the 40-threaded

execution time of the applications in these experiments. For the

most part, the breakdowns in PMOD are very similar to those in

obim. Importantly, when we have obim-O and obim-D bars, PMOD

is similar to obim-O, while obim-D has either many Deq and FDeq

cycles, or many UWork cycles. In the case of PR-D on the wg input,

PMOD has a higher fraction of GWork cycles than obim.
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Figure 14: PMOD vs. obim execution cycle breakdown (40 threads).

6.3.2 PMOD Dynamics. We now illustrate how PMOD adjusts its

priority merging over time. When an application starts, lmf is
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zero. Table 6 shows the sequence of values that lmf takes as our

applications execute. We show data for each application and dataset

shown in Figure 13. The table shows the final value of lmf , the

number of changes, and the values that lmf takes.

Table 6: lmf dynamics. The table shows the final lmf values, the

number of lmf changes, and the sequence of actual lmf values.

App. Dataset Final lmf # Changes lmf Values

SSSP
tw 0 0 0

rUSA 13 2 0-12-13

BFS
tw 0 0 0

rUSA 2 1 0-2

PR
wg 3 2 0-1-3

lj 2 2 0-1-2

PR-D
wg 10 1 0-10

lj 9 2 0-1-9

MST
rW 3 2 0-2-3

rUSA 3 3 0-1-2-3

A*
rW 16 1 0-16

rUSA 13 2 0-12-13

The data shows that lmf increases monotonically. For SSSPwith

rUSA and A*, where under obim-O we manually set ∆ to 14, PMOD

converges to lmf values of 13 and 16, which are close to the optimal

∆. As a result, PMOD’s performance is close to obim-O’s. Moreover,

applications such as PR-D, which do not use∆, benefit from PMOD’s

merging mechanism. For instance, PMOD automatically sets the

lmf value for PR-D to 9 and 10.

lmf often goes through multiple changes. The timing of the

changes differs across applications, datasets, and number of threads.

Often, the merge operations occur in the beginning of the execution,

during the first 1% of Deq operations. For example, this happens in

SSSPwith the rUSA input. In this case, PMOD quickly increases lmf

first to 12, and then to 13, which becomes its final value. However,

this is not always the case. For instance, in MST, the first merge

occurs only when around 40% of Deq operations have executed.

The number of threads also affects merging. We compare the

time of the first merge operation in executions with 40 threads and

with 1 thread. Although not shown in Table 6, we find that for SSSP

on rUSAwith 1 thread, only about 60 Deq operations execute before

the first merge operation. For SSSP with 40 threads, the first merge

only occurs after 15-20 K Deq operations. For MST, the behavior is

different. In both single- and 40-threaded executions, the first merge

operation occurs when around 40% of the Deq have executed.

7 IMPLICATIONS ON COMPUTER
ARCHITECTURES

Our analysis provides insights into the bottlenecks of concurrent

priority scheduling for graph algorithms in large servers. It is sober-

ing to see that sophisticated skip list-based CPSs are overwhelmed

by enqueueing and dequeueing overheads. This is despite employ-

ing scalable data structures that perform searches in parallel with-

out synchronization, and avoid synchronization hotspots in up-

dates. We do not believe that hardware support in large NUMA

servers should focus on improving synchronization for such CPS

designs. Instead, it should focus on improving the obim and PMOD

approaches to CPS.

PMOD typically devotes a large fraction of cycles to GWork,

as shown in Figure 14. However, the figure also shows that there

are still some cases where GWork is a small fraction of the total

cycles. PMOD is still sometimes a victim of the fundamental CPS

tradeoff: either it suffers from Deq/FDeq cycles, or from UWork.

We need to replace PMOD software structures with hardware that

frees PMOD from this tradeoff. One example is hardware to make

partially-full chunks quickly available to idle threads. Another is

fast communication of the work list and the partially-full work list

across sockets.

8 RELATED WORK

Several graph analytics frameworks [9, 21, 26, 31, 32, 37] have

been developed for shared-memory machines. Ligra [31] abstracts

away graph traversals throughmapping computations over a subset

of vertices or edges in parallel. Julienne [9] builds upon Ligra by

grouping together similar graph entities, such as vertices, edges, or

other graph motifs, into buckets.

Many concurrent priority queues [2, 7, 29, 35, 36] have been

introduced for task-based priority scheduling. Techniques such as

Flat Combining [14] and Elimination [25] are adopted by Calciu

et al. [7] to reduce enqueue/dequeue overheads without compro-

mising on priority constraints. In contrast, relaxed priority sched-

ulers [2, 26, 29, 35, 36] trade off priority constraints for lower syn-

chronization. Lenharth et al. studied the performance of priority

queues as graph analytics CPSs [18]. However, they did not consider

relaxed priority queues like SprayList or MultiQueues.

There has been much work on algorithm-specific optimizations

of different graph problems, e.g., for SSSP [23], BFS [5], andMST [16].

However, our focus is on optimizing generic graph frameworks and

not on targeted optimizations.

9 CONCLUSION

Graph processing frameworks use CPSs to execute tasks largely

according to their priority order. CPSs are performance critical, but

there has been little insight on the relative strengths and weak-

nesses of the different CPS designs. We addressed this question

with a detailed empirical performance analysis of four state-of-

the-art representative CPS designs on a 40-core shared-memory

machine. We observed that in all CPSs but obim, the overall cost

of enqueueing and dequeueing is typically higher than the task

execution time. This is despite employing scalable data structures.

Further, the obim CPS, which is designed to reduce enqueueing

and dequeueing overheads at the expense of sometimes executing

useless work, also has limitations. While it typically performs best,

it leads to significant slowdowns under some priority distributions.

With these insights, we developed the new PMOD CPS. It is based

on the obim approach but dynamically adapts to the ranges of pri-

orities exhibited by the application. PMOD is robust and delivers

the best performance overall.
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