
Speeding Up SpMV for Power-Law Graph
Analytics by Enhancing Locality & Vectorization

Serif Yesil
Dept. of Computer Science

University of Illinois at
Urbana-Champaign
syesil2@illinois.edu

Azin Heidarshenas
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

heidars2@illinois.edu

Adam Morrison
Blavatnik School of
Computer Science
Tel Aviv University
mad@cs.tau.ac.il

Josep Torrellas
Dept. of Computer Science

University of Illinois at
Urbana-Champaign
torrella@illinois.edu

Abstract—Graph analytics applications often target large-scale
web and social networks, which are typically power-law graphs.
Graph algorithms can often be recast as generalized Sparse
Matrix-Vector multiplication (SpMV) operations, making SpMV
optimization important for graph analytics. However, executing
SpMV on large-scale power-law graphs results in highly irregular
memory access patterns with poor cache utilization. Worse, we
find that existing SpMV locality and vectorization optimiza-
tions are largely ineffective on modern out-of-order (OOO)
processors—they are not faster (or only marginally so) than the
standard Compressed Sparse Row (CSR) SpMV implementation.

To improve performance for power-law graphs on modern
OOO processors, we propose Locality-Aware Vectorization (LAV).
LAV is a new approach that leverages a graph’s power-law nature
to extract locality and enable effective vectorization for SpMV-
like memory access patterns. LAV splits the input matrix into
a dense and a sparse portion. The dense portion is stored in a
new representation, which is vectorization-friendly and exploits
data locality. The sparse portion is processed using the standard
CSR algorithm. We evaluate LAV with several graphs on an
Intel Skylake-SP processor, and find that it is faster than CSR
(and prior approaches) by an average of 1.5x. LAV reduces the
number of DRAM accesses by 35% on average, with only a 3.3%
memory overhead.

Index Terms—Sparse Matrix Vector Products, Graph Algo-
rithms, Vectorization, SIMD, Locality Optimizations

I. INTRODUCTION

Graph analytics algorithms are often used to analyze social,
web, and e-commerce networks [1]–[4]. These networks are
typically power-law graphs — i.e., their degree distribution
follows a power law. In these networks, a small fraction of
the vertices have a degree that greatly exceeds the average
degree.

Graph algorithms can often be recast as generalized Sparse
Matrix-Vector multiplication (SpMV) operations [5]–[7]. Ex-
amples range from iterative algorithms (e.g., PageRank [3]
and HITS [4]) to traversal algorithms (e.g., path/diameter
calculations [8]). SpMV-based graph algorithms are faster
and have a better multi-core scalability than general graph
processing frameworks [8], making SpMV an important kernel
to optimize for efficient graph analytics.

Executing SpMV efficiently on real-life power-law graphs is
challenging. The reason is that these graphs are large (millions
to billions of vertices) and highly irregular, causing the SpMV
memory access patterns to have low locality. Moreover, the

data-dependent behavior of some accesses makes them hard
to predict and optimize for. As a result, SpMV on large power-
law graphs becomes memory bound.

To address this challenge, previous work has focused on
increasing SpMV’s Memory-Level Parallelism (MLP) using
vectorization [9], [10] and/or on improving memory access
locality by rearranging the order of computation. The main
techniques for improving locality are binning [11], [12], which
translates indirect memory accesses into efficient sequential
accesses, and cache blocking [13], which processes the ma-
trix in blocks sized so that the corresponding vector entries
fit in the last-level cache (LLC). However, the efficacy of
these approaches on a modern aggressive out-of-order (OOO)
processor with wide SIMD operations has not been evaluated.

In this paper, we perform such an evaluation using an
Intel Skylake-SP processor. We find that, on large power-law
graphs, these state-of-the-art approaches are not faster (or only
marginally faster) than the standard Compressed Sparse Row
(CSR) SpMV implementation. Moreover, these approaches
may cause high memory overheads. For example, binning [11],
[12] essentially doubles the amount of memory used.

We then propose Locality-Aware Vectorization (LAV), a new
SpMV approach that successfully speeds-up SpMV of power-
law graphs on aggressive OOO processors. LAV leverages
the graph’s power-law structure to extract locality without
increasing memory storage.

LAV splits the input matrix into a dense and a sparse
portion. The dense portion contains the most heavily populated
columns of the input, which—due to the power-law structure—
contain most of the nonzero elements. This dense portion is
stored in a new vectorization-friendly representation, which
allows the memory accesses to enjoy high locality. The sparse
portion is processed using the standard CSR algorithm, lever-
aging the benefits of OOO execution. Overall, LAV achieves
an average speedup of 1.5x over CSR and prior optimized
schemes across several graphs, while reducing the number of
DRAM accesses by 35% with only a 3.3% storage overhead.
Contributions. We make the following contributions:
• We analyze existing SpMV approaches with power-law

graphs and show their shortcomings in modern OOO pro-
cessors.

• We show that by using a new combination of known graph

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

TABLE I
VECTOR OPERATIONS USED IN THIS PAPER. INSTRUCTIONS WITH THE mask EXTENSION ALLOW FOR SELECTIVE OPERATIONS ON LANES.

Operation Details
load[_mask](addr[, mask]) loads 16 (8) 32-bit (64-bit) packed values to a vector register from addr.

gather[_mask](ids, addr[, mask]) gathers 16 (8) 32-bit (64-bit) values from an array, starting at addr, from the indices provided in the ids vector.
scatter[_mask](ids, addr, vals[, mask]) scatters 16 (8) 32-bit (64-bit) values in vals to the array starting at addr in the indices provided in the ids vector.

fp_add / fp_mul performs the element-wise addition/multiplication of two vector registers.

pre-processing techniques, we can extract a high-locality
dense portion from a sparse power-law matrix.

• We propose LAV, a new SpMV approach that processes the
dense portion with vectorization and the sparse portion with
the standard CSR algorithm.

• We evaluate LAV with 6 real-world and 9 synthetic graphs
which are at least one order of magnitude larger than those
used in the majority of the previous works. We show that
LAV (1) consistently and significantly outperforms previous
approaches including CSR; (2) has minimal storage over-
head and small format conversion cost; and (3) significantly
decreases data movement for all levels of the memory
hierarchy.

II. BACKGROUND

Every graph G can be represented as an adjacency matrix
A, in which element Ai,j is non-zero if there is an edge
from vertex i to vertex j. In this paper, we therefore use
“matrix” and “graph” interchangeably. Real-world power-law
graphs typically have many vertices (millions to billions) but
most vertices only have relatively few neighbors. Therefore,
the adjacency matrices of these graphs are sparse.

Many graph algorithms iteratively update vertex state, which
is computed from the states of its neighbors. Each iteration can
be implemented with generalized SpMV [8], where the mul-
tiply and add operations are overloaded to produce different
graph algorithms.

Consequently, we consider the SpMV problem of computing
y = Ax, where A is the graph and y and x are dense output
and input vectors, respectively, representing the set of updated
vertices. The computation of every element of y (for row i of
A) is yi =

∑n−1
j=0 Ai,j · xj , for 0 ≤ i ≤ m-1, where m is the

dimension of y and n is the dimension of x, i.e., the number
of graph vertices.

The elements of A are read only once, but one can reuse
the elements of x and y, whose size typically far exceeds the
Last-Level Cache (LLC) capacity. The main challenge is how
to reuse elements of x, since the sparseness of A makes the
distribution of accesses to x elements irregular.

A. CSR Matrix Representation

Large, sparse matrices require a compact in-memory repre-
sentation. The compressed sparse row format (CSR) (or one
of its variants) is the popular choice for graph processing
frameworks [14], [15]. In CSR, three arrays are used to
represent matrix A: vals, col id, and row ptr. The vals array
stores all of the nonzero elements in matrix A. Within the vals
array, all the elements in the same row are stored contiguously.
The col id array stores the column index of the nonzero

elements. The row ptr array stores the starting position in
the vals and col id arrays of the first nonzero element in each
row of matrix A. An example CSR representation is shown in
Figure 1. In this paper, we use CSR as our baseline.

a

g
j

b
d

c
e f

h
a b c d e f g h j

0 3 6 8 9

0 1 2 1 2 3 0 3 0

v0 v1 v2 v3

...

row_ptr

vals

col_id

A

x

Fig. 1. CSR format.

Algorithm 1 shows a single iteration of CSR SpMV. The
algorithm iterates over the matrix A row by row, and calculates
the dot product of the row in matrix A and the input vector
x (Lines 3-5). Parallelization is straightforward. Each row can
be executed in parallel without the need for synchronization.
Algorithm 1 Implementation of CSR SpMV.

1: for i←0 to m-1 in parallel do
2: sum←0
3: for e ← row ptr[i] to row ptr[i+1]-1 do
4: sum←sum + vals[e] × x[col id[e]]
5: end for
6: y[i]←sum
7: end for

B. Vector Instructions

The Intel Skylake-SP implements the AVX-512 extension,
which offers 512 bit vector instructions. This extension allows
for 8 double-precision operations (or 16 single-precision op-
erations) to proceed in parallel. Skylake also supports SIMD
gather and scatter instructions, which can load/store random
elements from/to a given array. Gather/scatter operations are
useful for the random accesses performed in SpMV. Masked
versions of gather/scatter are also provided, enabling the
selective execution of operations on SIMD lanes. Table I
describes the vector instructions used in this paper.

C. Previous SpMV Approaches

The main approaches to improve SpMV performance for
large-scale power-law graphs on general-purpose processors
are: (1) using vectorization to increase memory-level paral-
lelism (MLP), and (2) improving memory locality and thereby
cache effectiveness.

Vectorization can decrease the number of instructions exe-
cuted, and increase the number of in-flight memory accesses

and the floating point (FP) throughput. There are many pro-
posals for vectorization of SpMV [9], [10], [16]–[19].

To improve locality, several graph reordering techniques
have been proposed [20]–[22]. However, they require time
consuming pre-processing. We instead focus on recent tech-
niques for increasing locality with lightweight pre-processing.

In this work, we focus on the CSR5 [9], binning (BIN) [11],
cache blocking (BCOO) [13], and CVR [10] techniques, which
are used in the most competitive SpMV algorithms. CSR5 pro-
vides efficient vectorization, BIN and BCOO improve locality,
and CVR combines both approaches.
CSR5 [9]: CSR5 creates a compact, sparsity-insensitive repre-
sentation of the input matrix that can be processed efficiently
by vector units. CSR5 takes an input matrix in CSR format and
partitions the col id and vals arrays of CSR into equally-sized
small 2D tiles. The size of a tile (w×σ) is set as follows: w is
set to the number of SIMD lanes, and σ is optimized for the
specific architecture. The tiles can be processed in parallel.

Figure 2 shows an example of a tile created for a given
matrix. A row may end up in multiple tiles (e.g., the 7th row
in Figure 2 spans multiple tiles). For this reason, CSR5 uses
the segmented sum approach to compute the final value for a
row. Overall, this structure creates good load balancing across
threads and a high utilization of SIMD units.

a b c
d e

f g h
j
k l m
n o p

r s
t u

R
ow

s

Columns
a e j n
b f k o
c g l p
d h m r

vals

col_id
0 3 1 1
3 0 1 3
5 2 3 6
1 4 5 2

w

σ

a d f j
b e g k
c n h l
r o t m
s p u

0 1 0 1
3 3 2 1
5 1 4 3
2 3 1 5
7 6 5

vals

col_id

CSR5
CVR

Fig. 2. Tile layout in CSR5/CVR (w = # of SIMD lanes). In CSR5, we omit
an incomplete tile and metadata for brevity.

CVR [10]: Compressed Vectorization-oriented sparse
Row (CVR) is a compact vectorized representation for SpMV.
In CVR, each row of the matrix is processed by a single
SIMD lane. Once a SIMD lane finishes processing a row,
the next non-empty row from matrix A to be processed
is scheduled on the emptied SIMD lane. In addition, CVR
implements a sophisticated work stealing method to balance
the SIMD lanes. When there are no more rows left to fill the
empty SIMD lanes, an empty SIMD lane will steal elements
from non-empty SIMD lanes. Figure 2 shows the memory
layout for vals and col id arrays for CVR.
CVR implements a vectorization mechanism that increases

MLP by utilizing vector units efficiently. In addition, it im-
proves locality by scheduling multiple rows to be processed
in parallel, which may overlap accesses to a given cache line
of x by different SIMD lanes.

BIN [11], [12]: Binning (BIN) always performs sequential or
high-locality memory accesses. BIN splits the SpMV execu-
tion into two phases. In the first phase, it reads the graph edges
sequentially to generate every vertex update (i.e., some Ai,j ·xj
that should be added to yj). The updates are buffered with
sequential writes into bins, each of which is associated with
a cache-fitting fraction of the vertices. In the second phase,
BIN applies the updates in each bin. While applying updates
results in irregular memory accesses, they target only a cache-
fitting fraction of vertices, and so enjoy high locality. Overall,
BIN reduces the cycles-per-instruction (CPI), but executes
more instructions, including memory accesses, and needs extra
storage for the bins.
Cache Blocking [13]: The idea of cache blocking is to
keep r and c elements of the vectors y and x, respectively,
cached while an r × c block of the matrix gets multiplied by
this portion of the x vector. We consider BCOO, our hand-
optimized implementation of blocking that keeps the x vector
portions LLC-resident. BCOO stores the blocks in coordinate
format (COO), i.e., as a list of (row, column, value) tuples
sorted by row id. To efficiently exploit parallelism, BCOO
divides blocks among cores in a row disjoint fashion, which
enables writing y vector elements without atomic operations.

III. LAV: ANALYSIS OF PRIOR SPMV APPROACHES WITH
POWER LAW GRAPHS

We find that on aggressive OOO processors, the existing
techniques described are not faster (or only marginally so) than
a simple CSR implementation. We analyze this behavior on a
representative Intel Skylake-SP processor. In our experiments,
we use three real-world graphs, sd1, sk, and tw, and a large
random graph, R-25-64, with 225 nodes and ≈64 average
degree. Section V-C describes these graphs.
1© CSR5 and CVR benefit only from limited amounts of
locality, due to relying on the input’s layout. These two
techniques take the input matrix and build special matrix
representations with the goal of keeping SIMD lanes busy.
However, the amount of locality exhibited by the memory
reads in these representations depends on the structure of the
input matrix. Sadly, we find that the locality resulting from
the original input matrix is often insufficient.
CSR5 [9] partitions the sequence of all nonzero elements

in a CSR matrix (i.e., the vals and col id arrays) into 2D
tiles of the same size. The tiles are populated based on the
row major order of appearance of the nonzero elements within
the input matrix. As a result, CSR5 does not guarantee high
locality for accesses to the x vector. For example, a row with
many nonzeros may be spread over several tiles. Also, a row
may occupy multiple SIMD lanes in a tile. In both cases, the
accesses are determined by the graph structure, which may not
exhibit any spatial or temporal locality in terms of accesses
to columns (x vector). Even if there are multiple rows in a
single tile, they may access disjoint sets of elements from the
x vector and, therefore, fail to exploit spatial locality.

In CVR [10], each row of the matrix is processed to
completion by a single SIMD lane. Once a lane finishes a

row, it begins processing the next non-empty row. As a result,
CVR can have two lanes processing columns that are far apart
(e.g., columns at the start of one row and at the end of another
row). The result will be poor locality. However, if the overlap
between the rows is high, we can observe good locality.

Figure 3 shows the miss rates of L2 and L3 caches in all of
the techniques. We see that the miss rates of CVR, and CSR5
are higher than in CSR. Hence, CVR and CSR5 do not improve
locality over CSR.

CS
R

BI
N

BC
OO CV

R
CS

R5

0

25

50

75

100

L2
 M

iss
 R

at
e(

%
) R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5
tw

(a) L2 Miss Rate

CS
R

BI
N

BC
OO CV

R
CS

R5
0

25

50

75

100
L3

 M
iss

 R
at

e(
%

) R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5

tw

(b) L3 Miss Rate

Fig. 3. L2 and L3 miss rates for different techniques.

2© The locality-aware techniques improve cache locality
but have limited impact on performance due to increased
number of instructions. Binning [11], [12] and cache block-
ing (BCOO) target large graphs and try to improve locality by
either regularizing memory accesses or restricting them to fit
in the LLC. We observe, however, that on a modern OOO
processor, these techniques do not reduce execution time over
CSR significantly, even though they reduce the miss rate of
the L2 and, in the case of BCOO, of the L3 (Figure 3), and the
average cycles per instruction (CPI). The reason is that they
execute more instructions. Furthermore, for BIN, the amount
of data moved from memory is similar to the other techniques.

Figure 4 shows the CPI (a) and the instruction count (b)
of the different techniques. We see that BIN decreases the
CPI substantially compared to most of the other techniques.
However, it is the technique with the most instructions ex-
ecuted. BIN was effective in previous generations of OOO
processors that did not do a good job at hiding memory latency
because their Reorder Buffer (ROB) and Load Queue (LQ)
were smaller. Thus, the CPI gains were more significant and
BIN was able to tolerate the increase in number of instructions.
On the other hand, BCOO improves the CPI like BIN while
increasing the number of instructions less. As a result, it is
able to improve performance marginally.

CS
R

BI
N

BC
OO CV
R

CS
R5

0

4

8

12

16

CP
I

R-25-64

CS
R

BI
N

BC
OO CV
R

CS
R5

sd1

CS
R

BI
N

BC
OO CV
R

CS
R5

sk-r

CS
R

BI
N

BC
OO CV
R

CS
R5

tw

(a) CPI

CS
R

BI
N

BC
OO CV

R
CS

R5

0

1

2

3

4

In
st

rs
. (

No
rm

.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5

tw

(b) Instructions

Fig. 4. CPI and number of instructions executed for different techniques.

3© Vectorization provides limited MLP improvements,
since modern OOO cores keep a high number of memory
requests in flight due to their deep ROB, LQ, and other
buffers. In an SpMV iteration, we observe that most reads of
x incur cache misses. The reason is that the access pattern
is irregular and the vector size exceeds the capacity of the

LLC. Because of this bottleneck, in an in-order or narrow issue
processor such as Intel’s Xeon Phi, vectorization is effective
at increasing MLP: a vector read issues several memory reads
concurrently, whereas a scalar narrow-issue core can only issue
very few reads at a time. However, modern OOO processors
extract significant instruction-level parallelism (ILP) from the
SpMV code, and so can sustain over ten in-flight memory
accesses at a time. Hence, vectorization of the code does not
significantly increase the number of memory accesses in flight.

As an indicator of MLP, we measure the average occupancy
of the Line Fill Buffer (LFB) in L1 for CSR and the vectoriza-
tion techniques. Recall that the LFB is an internal buffer that
the CPU uses to track outstanding cache misses; each LFB
entry is sometimes called a Miss Status Handling Register or
MSHR. We compare CSR (which is a scalar approach) to CVR
and CSR5 (which are vector approaches). The result is shown
in Figure 5. The maximum LFB occupancy for the machine
measured is 12 [23]. The figure shows that the LFB occupancy
of CSR is already very similar to the one of the vectorized CVR
and CSR5. Consequently, one does not need vectorization to
attain high MLP on an aggressive OOO processor.

CS
R

BI
N

BC
OO CV

R
CS

R5

0

4

8

12

LF
B

Oc
c.

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5

tw

Fig. 5. LFB occupancy for different techniques.

IV. LAV: LOCALITY-AWARE VECTORIZATION

The previous observations showed that, on modern OOO
processors, the bottleneck of current SpMV techniques is not
low MLP. Instead, we observe that current techniques either
do not exploit locality or are only able to extract locality by
increasing the number of instructions executed, resulting in
little or no overall gains.

Based on these observations, we propose Locality-Aware
Vectorization (LAV), a new approach that speeds-up SpMV by
harvesting locality from power-law graphs without increasing
the number of instructions. LAV relies on a combination of
lightweight pre-processing steps that create a compact matrix
representation.

In this section, we describe the main idea, the pre-processing
steps, the matrix representation, the rationale behind the design
choices, and LAV’s SpMV algorithm.

A. Main Idea

To improve locality while keeping a compact data repre-
sentation, LAV takes the input matrix A and divides it into
two portions. The first one, called the Dense portion, has the
majority of the nonzero elements. The second one, called the
Sparse portion, includes the remaining nonzero elements. Op-
erations on the dense and sparse portions of the matrix access
disjoint subsets of elements from the input vector x. LAV uses

different formats and processing mechanisms for the dense and
sparse portions. The dense portion is formatted for locality and
processed with a vectorized SpMV implementation. The sparse
portion is formatted for compactness and processed with a
CSR-based SpMV implementation.
Creating the dense portion for locality. The dense portion
contains most of the nonzero elements in matrix A. It is
obtained by picking the most heavily populated columns of A
until, all together, they account for a fraction T of the nonzero
elements of A (e.g., 80% of the nonzero elements). For our
target real-world power-law graphs, where the degrees of the
vertices follow a power law distribution [24], [25], this dense
submatrix will only contain a small fraction of the original
columns (e.g., 20% of the columns) [26]. In addition, the
columns are then divided into segments, each of which fits
into the LLC. As we will see, the data in the dense portion is
stored in a compact, vectorization-friendly format that allows
for fast processing.
Creating the sparse portion for compactness. The sparse
portion is the rest of the columns. The data is stored in the
CSR representation, which is compact. The data is processed
with the standard CSR implementation, since we do not expect
to obtain locality benefits during its processing.

B. Splitting the Matrix into Dense and Sparse Portions

To split the matrix into dense and sparse portions, LAV uses
the following three simple matrix transformations.
1© Column Frequency Sorting (CFS): CFS sorts the columns

in descending order of nonzero element count, changing the
physical layout of the matrix A and input vector x. Since the
degree distribution of the vertices in our target graphs follows
a power law, the first few columns of A will include the
vast majority of nonzero elements. Thus, CFS’s reorganization
of A’s columns results in frequently accessed elements of x
being stored in the same, or close by, cache lines. The result
is improved cache line and overall cache utilization, which
speeds-up computations [27].

To sort the columns, CFS logically moves them by relabel-
ing the column IDs according to the number of nonzeros in
descending order. CFS permutes the x vector accordingly.
2© Segmenting: Segmenting takes the output of CFS and

partitions matrix A into dense and sparse portions. The
dense portion is further divided into segments of consecutive
columns. Each segment contains S columns, where S is
chosen so that the corresponding part of the input vector x fits
in the LLC. (For example, we use S = 5M in our evaluation;
see Section VI-C.) The number of segments s in the dense
portion is chosen so that the dense portion includes a fraction
T (e.g., 80%) of all the nonzero elements in A.

Segmenting can be efficiently implemented if combined
with CFS. CFS already generates a sorted list of columns
according to their count of nonzero elements. After this list is
composed, segmenting creates the segments.
3© Row Frequency Sorting (RFS): RFS sorts the rows in

a segment in decreasing count of nonzero elements in the
row. The resulting order will determine the order of execution

of rows in the segment. With this change, we will be able
to execute rows with similar numbers of nonzero elements
at the same time in different SIMD lanes. As a result, LAV
minimizes load imbalance between different SIMD lanes.

RFS does not actually relabel the rows in a segment. Instead,
it only generates a list of row IDs for the execution order.
Hence, it is a very lightweight operation.
Parallelizing LAV’s transformations All of the steps above
can be efficiently parallelized. Specifically, CFS and RFS
require counting the number of nonzero elements in each col-
umn and row, respectively. These counts can be computed in
parallel. Our current implementation uses atomic operations to
safely update counts in parallel, but techniques exist [28] that
would eliminate the use of atomics. In practice, the number
of nonzeros in each column/row is often available without
computing, since many graph analytics frameworks [14] store
the matrix in both CSR and CSC formats.1 In this case, the
number of nonzeros can be obtained from the offset arrays.

Once the nonzero element counts are known, relabeling the
columns for CFS simply requires parallel sorting. Segmenting
requires a parallel prefix sum on the relabeled columns,
to determine the cut-off point for the number of columns
per segment. RFS simply requires sorting the row IDs in
decreasing count of non zeros.

C. LAV Walk-Through

Figure 6 shows an example of LAV’s transformations. An
initial matrix A is shown in Figure 6(a). To highlight the
effect of CFS, the x vector is shown on top of matrix A.
As Figure 6(a) shows, initially, the nonzero elements of A are
scattered over the rows and columns.

The first step performs CFS on A, relabeling all the column
IDs with the new order. This is shown in Figure 6(b). Note
that the input vector x is permuted according to the new order
of the columns. As shown in Figure 6(b), the majority of the
nonzero elements now reside in first few columns.

The second step divides A into segments of a fixed number
of columns. The number of columns per segment, S, is
maximized under the constraint that the corresponding entries
of the input vector fit into the LLC. The matrix is then
partitioned into dense and sparse portions. The dense portion
consists of the first s segments that contains a T fraction of the
nonzero elements. The sparse portion contains the remaining
columns. Figure 6(c) shows the dense and sparse portions of
A with S = 4 and T = 0.7, where a single segment suffices
to obtain the dense portion.

The next step applies RFS to each of the segments of the
dense portion. This is shown in Figure 6(d). Note the output
vector y is permuted according to the new order of the rows.
We will later see that neither the matrix nor the y vector
is physically reordered; instead, LAV creates an indirection
vector to record the reordering.

1The Compressed Sparse Column (CSC) format is similar to CSR, except
that the matrix is stored by column rather than by row.

a b c
d e

f g h
j
k l m
n o p

r s
t u

v1 v2 v3 v4 v5 v6 v7 v8

o1
o2
o3
o4
o5
o6
o7
o8

x

=

2 5 2 4 1 3 1 1

R
ow

s
Columns

column frequencies

o1
o2
o3
o4
o5
o6
o7
o8

d

j
k
n

t

v2

5

b
e

l
o

v4

4

c

m

u

v6

3

a

f

v1

2

g

r

v3

2

h

v5

1

p
s

v7 v8

1 1

x

=

70% of nz elements

o1
o2
o3
o4
o5
o6
o7
o8

d

j
k
n

t

v2

5

b
e

l
o

v4

4

c

m

u

v6

3

a

f

v1

2

g

r

v3

2

h

v5

1

p
s

v7 v8

1 1

x

=

Dense Sparse

d

j
k
n

t

v2

b
e

l
o

v4

c

m

u

v6

a

f

v1
x

o1
o2
o3
o4
o5
o6
o7
o8

+=

3
2
1
1
3
2
0
2

k
d
n
t

j

v2

b
l
e
o

v4

c
m

u

v6

a

f

v1
x

o1
o5
o2
o6
o8
o3
o4
o7

+=

3
3
2
2
2
1
1
0

R
ow

 fr
eq

ue
nc

ie
s

(a) (b) (c)

(d)

A

x y

Fig. 6. LAV’s transformations on an 8x8 matrix. In the example, the threshold for creating the dense portion is T=0.7 and the segment size is S=4.

D. LAV Matrix Representation

LAV’s dense portion is composed of segments of consecu-
tive columns. After RFS, each segment is divided into Chunks
of rows, where each chunk has as many rows as the number of
SIMD lanes in the machine. Figure 7 continues the example of
Figure 6 and shows, on its left side, the segment divided into
two chunks. We use four rows per chunk because we assume
four SIMD lanes. The two chunks have different colors.

k
d
n

t

j

v2

b
l
e
o

v4

c
m

u

v6

a

f

v1
x

o1
o5
o2
o6

o8
o3
o4
o7

+=

SI
M

D
 L

an
es

Chunk

b
k
d
n

c
l
e
o

a
m
\
\

4
2
2
2

6
4
4
4

1
6
\
\

o1
o5
o2
o6

11
11

11
11

00
11

vals

col_id

mask

ou
t_
or
de
r

t
f
j
\

u
\
\
\

2
1
2
\

6
\
\
\

o8
o3
04
o7

01
11

00
01

chunk
offsets

0 3 5

Fig. 7. Vectorization-friendly layout of the dense portion in LAV. The
example assumes 4 SIMD lanes.

Each row is next compressed such that zero elements are
not stored. Since the different rows of a given chunk may have
different numbers of nonzero elements, some SIMD lanes will
remain empty towards the end, as they run out of nonzero
elements. To handle this case, LAV creates a mask for each
SIMD lane, expressing the empty elements in the lane with
zeros. To represent a segment, LAV repeats the same operation
on all the chunks of the segment, and appends them together.

The right side of Figure 7 shows the memory layout of the
segment for the example. A segment in LAV is represented by
five arrays:vals, col id, chunk offsets, out order, and mask.

The vals and col id arrays hold the values and column IDs,
respectively, of all the chunks in the segment. These are 2D
arrays whose one dimension is equal to the number of SIMD
lanes, and the other is the sum of the lengths of the chunks
of the segment. Recall that the length of a chunk is equal to

the maximum number of nonzero elements in any row of the
chunk. This layout of vals and col id is efficient because it
will enable using aligned vector loads.

The chunk offsets array indicates the starting point of every
chunk within the vals and col id arrays. When a chunk
finishes execution, the partial sums generated by the rows are
accumulated into the correct position in the output vector y.

Recall that, with RFS, LAV generates a new execution
order for each segment. This execution order is stored in the
out order array. The out order array stores only the IDs of
the rows. Finally, some SIMD lanes in a chunk may be empty.
Hence, LAV has an extra array called mask to distinguish
empty elements in the vals and col id arrays.

E. Rationale Behind LAV’s Design Choices

We now explain the rationale behind LAV’s design choices.
1© Reuse Memory: LAV uses CFS to group columns with a
high number nonzeros together. Combined with segmenting,
this transformation limits the memory footprint required to
process the dense portion. The dense portion will be processed
one segment at a time. Thus, by sizing a segment appropriately,
we ensure that the portion of the x vector that is accessed while
processing one segment fits in the LLC.
2© Balance SIMD Lanes: LAV uses RFS in segments to
balance the SIMD lanes. Recall that each lane calculates
the results for a single row. In a given chunk, consecutive
rows have a similar number of nonzero elements. Thus, while
processing this chunk, all SIMD lanes have roughly the same
amount of work. This approach avoids computation load
imbalance.

Combining CFS and RFS increases the possibility of mem-
ory access overlap. Indeed, rows that are scheduled together
on different lanes often access the same (or close by) elements
of the x vector.

We also apply RFS to the sparse portion. This way we find
empty rows at the end and do not need to process them.
3© Handle Sparse Portion Efficiently: Using CSR for the
sparse portion minimizes the number of instructions needed
per irregular access and the total storage cost. The fewer
bookkeeping instructions enables the processor pipeline to
keep more memory accesses in flight simultaneously, thereby
maximizing MLP.

F. SpMV Algorithm with LAV

The LAV algorithm first processes the dense portion of
the matrix and then the sparse one. Algorithm 2 shows the
steps taken to process the dense portion. The sparse portion is
processed with the traditional CSR algorithm.

Algorithm 2 SpMV algorithm with LAV.
1: procedure SPMV(segments, x, y, m, n, nLanes)
2: // segments is the list of segments created for vectorization
3: // x is the input vector, y is the output vector
4: // m number of rows, n number of cols, nLanes number of SIMD lanes
5: for r=0 to m-1 do // initialize y vector to zeros
6: y[r] ← 0
7: end for
8: foreach segment s in segments do // all segs. in dense portion
9: // chunks of a segment processed in parallel

10: for c=0 to s.num chunks-1 in parallel do
11: row sums←(0, . . . , 0)
12: row mask←0xFF
13: // last chunk may have all the lines completely idle
14: if c is the last chunk in the segment then
15: row mask ← 0xFF >> (nLanes-(m - c*nLanes))
16: end if
17: // Get the rows to be updated by this chunk
18: row ids←load mask(s.out order[c*nLanes], row mask)
19: // Get the prev values from y for rows of this chunk
20: prev←gather mask(row ids, &y, row mask)
21: for i← s.chunk offsets[c] to s.chunk offsets[c+1]-1 do
22: ms←s.mask[i] // load the mask for the SIMD lane
23: cols←load mask(s.col ids[i*nLanes], ms) // get col. ids
24: vals←load mask(s.vals[i*nLanes]], ms) // get vals
25: x vec←gather mask(cols, &x, ms) // get vals from x
26: mul←fp mul(vals, x vec)
27: row sums←fp add(row sums, mul)
28: end for
29: // accumulate sum calculated by chunk
30: row sums←fp add(row sums, prev) // Aggregate over segs.
31: // update y vector
32: scatter mask(row ids, &y, row sums, row mask)
33: end for
34: end foreach
35: // CSR for the sparse portion
36: end procedure

Algorithm 2 works by operating on one segment at a time
(Line 8), processing all the nonempty chunks in the segment
in parallel, with multiple threads (Line 10). While processing
a chunk, LAV utilizes wide SIMD units. The rows in the
chunk are processed in parallel by SIMD lanes, and the partial
sums generated by the rows are accumulated into a vector
register (row sums in Lines 21-28). The mask values, which
are produced during the data layout generation (Section IV-D),
are used to disable computation for lanes with empty elements.
After the completion of the chunk, the output values that it
has generated are accumulated into the output vector y. This
operation involves reading the accumulated values up until this
segment in output vector y (Line 20), and adding to them the
contributions of this chunk (Lines 30-32).

Finally, there is the case when the number of rows in the last
chunk of a segment is less than the number of SIMD lanes.
In this case, we calculate a mask (row mask) that is used to
omit all the operations in the idle SIMD lanes. This operation
is shown in Lines 14-16 of Algorithm 2.

V. EXPERIMENTAL SETUP

A. Test Environment

We use a state-of-the-art Intel Skylake-SP shared-memory
machine with vector instruction support. Our machine has 2
processors, each with 20 2.4 GHz cores, for a total of 40 cores.
Each core is OOO and has a private 32 KB L1 data cache
and a private 1 MB L2 cache. Each processor has a shared
28 MB LLC. The machine has 192 GB of 2666 MHz DDR4
main memory, distributed across 12 DIMMs of 16 GB each.
Details of our system are summarized in Table II.

TABLE II
SYSTEM CHARACTERISTICS.

Component Characteristics

CPU Intel Xeon Gold 6148 CPU @ 2.40GHz
20 cores per processor, 2 processors

Cache Private 32 KB instruction and data L1 caches
Private 1 MB L2 cache, 28 MB LLC per processor

Memory 192 GB, 12 DIMMs (16 GB each), DDR4 2666 MHz
Vector ISA avx512f, avx512dq, avx512cd, avx512bw, avx512vl

We use Ubuntu Linux 14.04 with kernel version 4.9.5. All
codes are compiled with the Intel compiler version 19.0.3,
using the -O3 -xCORE-AVX512 compiler flags and paralleliza-
tion is done with OpenMP. When implementing LAV, we
use intrinsics provided by Intel compiler for vectorization.
CVR, CSR5, and LAV implementations use 512 bit vector
instructions. All SpMV implementations use double precision
floating-point arithmetic. We use numactl to interleave al-
located memory pages across the NUMA nodes. Dynamic
voltage and frequency scaling (TurboBoost) is disabled during
the experiments.

In all the experiments, 40 threads are used and each thread is
pinned to a core. In the scalability experiments (Section VI-E),
when we have fewer threads than cores, we assign threads to
the two sockets in a round robin manner. All experiments run
100 iterations of SpMV. Unless stated otherwise, execution
time only includes execution of SpMV. For microarchitec-
tural analysis, we use the LIKWID performance monitoring
tool [29].

B. Formats and Techniques for Comparison

We compare LAV to CSR, CSR5 [9], CVR [10], BCOO [13],
and BIN [11] (Section II-C). We also compare to the inspector-
executor SpMV implementation in Intel’s Math Kernel Library
(MKL [30]), which optimizes the SpMV execution according
to the input’s sparsity level.

We implement CSR, BCOO, and BIN ourselves; for BIN,
we closely follow [11]. We use the CSR5 [31] and CVR [32]
implementations provided by their authors.
Optimizations: Our compiler automatically vectorizes the
baseline scalar CSR code. We manually tune CSR’s OpenMP
scheduling parameters. For CSR5, we use the tile size sug-
gested in [9]. CVR does not have any tuning parameters. For
BIN, we apply the optimizations in [11]. For instance, the
target bin and position in the bin of each update are not
calculated at run-time, but stored with the matrix. To represent
bins, we use the optimization from [12]. Each thread works on

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V
0.0

0.5

1.0

1.5

2.0

2.5
Sp

ee
du

p
(n

or
m

.)

*0.08

R-24-16

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.16

R-24-32

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.29

R-24-64

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.19

R-25-16

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.36

R-25-32

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.82

R-25-64

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.44

R-26-16

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.88

R-26-32

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*1.88

kron

(a) Synthetic graphs

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

(n
or

m
.)

*1.89

fr

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V
*0.28

pld

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.71

sd1

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.74

sd

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.31

sk

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.64

sk-r

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

*0.62

tw

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

ave.

CS
R

M
KL

CV
R

CS
R5 BI
N

BC
OO LA

V

hmean.

(b) Real-world graphs plus arithmetic and harmonic means

Fig. 8. Comparison of the speedups of the different implementations over CSR for all the input graphs. The numbers marked with * show the execution time
in seconds of a single SpMV iteration with CSR.

a sequential portion of each bin. We find that the best bin size
is 65 K rows, by sweeping bin sizes from 1 K to 262 K. With
this bin size, each portion of the y vector approximately fits
into the L2 cache. For BCOO, we try to divide the work equally
among threads in a row disjoint manner (see Section II-C). We
also manually tune the size of the cache block and find that
blocks that include 2.5 M vertices give the best performance.
Finally, for LAV, we use 5 M as the segment size (S) and 80%
as the fraction of nonzeros in the dense segment (T).

C. Input Graphs

We use 6 real-world graphs and 9 synthetic power-law
graphs. Table III summarizes the properties of the graphs.
Real-world graphs. We use the following large graphs with
power-law degree distributions [24], [25]: com-Friendster (fr),
Pay-Level Domain graph (pld), 1st Subdomain graph (sd1),
Subdomain/Host graph (sd), sk-2005 (sk), and twitter7 (tw).
We obtain fr, sk, and tw from [33], and pld, sd1, and sd
from [34]. The number of vertices (or rows or columns) per
graph ranges from 41 M to 101 M. In prior work, only BIN
was evaluated with graphs of these sizes; CSR5 and CVR used
orders of magnitude smaller graphs. The graphs are also very
sparse. The number of nonzero elements (#nnz) ranges from
623 M to 3.6 B. The average number of nonzero elements per
row (i.e., degree) ranges from 14 to 55, and the maximum
number ranges from 5.2 K to 3.9 M.

We observe that, unlike for all the other inputs, SpMV for
sk has high L1 hit rates. For this reason, we also evaluate sk-r,
a version of sk that randomized the vertex IDs.
Synthetic graphs. We generate 8 synthetic Kronecker graphs
that show power-law behavior, as in the inputs of the Graph500
benchmark [35]. They are named R-X-Y, where X is the scale
of the graph (i.e., the number of vertices is 2X) and Y is the
approximate average degree. The number of vertices for these
graphs varies between 16M and 67M, and the average number
of edges per vertex is 16–64. These graphs provide insight into
the performance of the evaluated techniques for different graph

sizes and sparsity levels. We also use kron, a synthetically
generated graph in the GAP benchmark suite [36].

TABLE III
INPUT GRAPHS.

Input #rows #nnz Avg. Max.
(M) (M) #nnz #nnz

per per row
row (K)

fr [33], [37] 65.61 3,612.13 55.06 5.21
pld [34] 42.89 623.06 14.53 3,898.56
sd1 [34] 94.95 1,937.49 20.41 1,309.80
sd [34] 101.72 2,043.20 20.09 1,317.32
sk (sk-r) [21], [33] 50.64 1,949.41 38.50 12.87
tw [33], [38] 41.65 1,468.37 35.25 2,997.47

R-X-Y 2X ≈ 2X × Y ≈ Y 200-1K
kron [33], [36] 134.22 4,223.26 31.47 1,572.84

VI. EXPERIMENTAL RESULTS

A. Performance Results

Figure 8 compares the speedup of MKL, CVR, CSR5, BIN,
BCOO, and LAV over CSR, running a single SpMV iteration.
The figure shows bars for each synthetic input graph (a) and
for each real-world graph plus the arithmetic and harmonic
means across all the graphs (b). The number marked with
* above the bars is the execution time of a single SpMV
iteration with CSR in seconds. For the kron and fr inputs,
we are unable to evaluate CVR and CSR5, because their
implementations use 32-bit indices and these two large graphs
cannot be represented. MKL with kron runs out of memory.

LAV delivers an average speedup of 1.5x over our optimized
CSR. On the other hand, CVR, CSR5, and BIN provide com-
parable average speedups as CSR. As discussed in Section III,
these vectorization and locality-optimized approaches are not
effective on our aggressive OOO processor, which has an
increased ability to hide memory latency. MKL is also not faster
on average than CSR. BCOO is the only technique that is faster
than CSR on average, achieving a 1.28x speedup.

Generally, LAV’s speedup over CSR increases as the input’s
average degree increases, which makes LAV’s dense portion
contain larger fractions of the nonzero elements. Overall, LAV
is the fastest in 14 out of 16 inputs. One of the inputs
where CSR outperforms LAV is sk. sk shows good locality
behavior even for the baseline CSR, making the locality
optimization techniques not effective. Even so, LAV does not
hurt performance compared to CSR on this input. For pld,
LAV outperforms CSR and other methods except BCOO.

LAV is designed to improve locality, i.e., to minimize data
movement from memory and throughout the cache hierarchy.
The two causes for data movement are: (1) the accesses to the
nonzero elements of matrix A, and (2) the irregular accesses to
the x vector. Nonzero element accesses cause data movement
proportional to the storage size of the SpMV technique, since
each nonzero element is accessed once in a single SpMV
iteration. Data movement due to x vector accesses is dictated
by the locality of the accesses and, hence, the amount of
cache reuse. LAV improves in both reduced storage size and
increased locality of x vector accesses. LAV reduces storage
size by creating a compact representation using RFS; LAV
increases locality of x vector accesses by using CFS and
segmenting.

B. Data Movement

To understand the data movement characteristics of the
evaluated techniques, we measure the total volume of data read
from DRAM for each input. It can be shown that none of the
techniques reaches the system’s maximal memory bandwidth
(reported by the STREAM benchmark [39]) for any of the
inputs.

Figure 9a shows the amount of data read from DRAM in
four representative inputs, normalized to CSR. We can see that
both LAV and BCOO substantially decrease the DRAM transfer
volume. The reduction achieved by LAV is 35% on average,
and can be as high as 50%.

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

0

0.5

1

1.5

DR
AM

 R
ea

d
Vo

l (
No

rm
.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

tw

(a) Data read from DRAM

De
ns

e
Sp

ar
se

CS
R

0
10
20
30
40
50
60
70

By
te

s p
er

 n
nz

R-25-64

De
ns

e
Sp

ar
se

CS
R

sd1

De
ns

e
Sp

ar
se

CS
R

sk-r

De
ns

e
Sp

ar
se

CS
R

tw

(b) Bytes read per nonzero

Fig. 9. Data transfer comparison.

To analyze the benefits of LAV’s dense portion, Figure 9b
shows the number of bytes read per nonzero element for
LAV’s dense and sparse portions, and for CSR. LAV’s dense
portion keeps the bytes transferred per nonzero element very
low. It can be shown that, across all inputs, LAV’s dense
portion transfers an average of 27.3 bytes per nonzero element,
compared to CSR’s 37.4. In contrast, LAV’s sparse portion
transfers more bytes per nonzero element than CSR. This is
because the sparse portion is sparser than the overall graph.
However, this overhead does not impact execution time much

because the sparse portion is—by design—only a small portion
of the matrix.

Figure 10 analyzes the data movement in the cache hierar-
chy for selected inputs. The figure shows the number of L2 and
L3 requests and misses of the techniques, normalized to CSR.
From the figures, we see that LAV minimizes the requests and
misses in both levels of the cache hierarchy. In fact, it is the
only technique that minimizes data movement across all levels
of the memory hierarchy. This is because it does not increase
the memory storage for the matrix and it improves the locality
of accesses to x. (In Section VI-D, we further discuss LAV’s
storage overhead and show that it is negligible.)

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

0

0.4

0.8

1.2

L2
 R

eq
. (

No
rm

.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

tw

(a) L2 requests

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

0

0.4

0.8

1.2

L2
 M

iss
. (

No
rm

.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

tw

(b) L2 misses

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

0

0.4

0.8

1.2

L3
 R

eq
. (

No
rm

.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

tw

(c) L3 requests

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

0

0.4

0.8

1.2

1.6

L3
 M

iss
. (

No
rm

.)

R-25-64

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sd1

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

sk-r

CS
R

BI
N

BC
OO CV

R
CS

R5 LA
V

tw

(d) L3 misses

Fig. 10. L2 and L3 request and miss counts.

The other techniques do not reduce data movement as much.
Specifically, CSR5 and BIN suffer from increased storage.
CSR5 increases data movement from memory to L3 and from
L2 to L3. This is because it has auxiliary data to facilitate
efficient vector execution. BIN improves L2 locality but has
a high L3 cache miss rate. It ends up with same number of
L3 misses or more than in CSR. CVR has reduced the data
movement from L3 to L2. However, it has the same amount
of data movement as CSR from memory to L3. BCOO has low
data movement between memory and L3, and between L3 and
L2. However, it has more L2 requests than LAV.

C. Analysis of LAV

Dense vs. sparse portions. Figure 11 shows the breakdown of
execution time and of the number nonzero elements for LAV’s
dense and sparse portions. By construction, the dense portion
contains at least 80% of the nonzero elements. However, its
size is also dictated by the size of the segments from which it
is composed. The segment size is such that the corresponding
portion of the x vector is roughly equal to the L3 size (5M
columns in our case). Therefore, the last segment may push
the number of nonzero elements in the dense portion above
80%. In particular, when the number of vertices is small (e.g.,
the R-24-XX and R-25-XX graphs), the dense portion contains
more than 95% of the vertices.

The execution times of the dense and sparse portions are not
proportional to their number of nonzero elements. Specifically,
the sparse portion’s execution time is often higher than its
share of the nonzero elements. Although the percentage of

nonzero elements in the sparse portion is less than 20% in
all cases, the sparse portion execution can take up to 38% of
the execution time. The reason is that the sparse portion does
not enjoy the dense portion’s high locality, and consequently
requires more data from DRAM per each nonzero element
(Figure 9b).

tim
e nz

0

25

50

75

100

Ra
tio

 (%
)

fr
tim

e nz
pl

d
tim

e nz
sd

1
tim

e nz
sd

tim
e nz

sk
tim

e nz
sk

-r
tim

e nz
tw

tim
e nz

R-
24

-1
6

tim
e nz

R-
24

-3
2

tim
e nz

R-
24

-6
4

tim
e nz

R-
25

-1
6

tim
e nz

R-
25

-3
2

tim
e nz

R-
25

-6
4

tim
e nz

R-
26

-1
6

tim
e nz

R-
26

-3
2

tim
e nz

kr
on

Dense Sparse

Fig. 11. Percentage of execution time and nonzero elements in LAV’s dense
and sparse portions.

Finding the best segment size. LAV can use LLC-sized
segments without tuning. To show this, we vary the segment
size for selected inputs and show that a segment size similar
to the LLC size produces good results. Figure 12 shows the
execution time of LAV for different segment sizes. We test
segment sizes from 2 to 10 million columns. As can be seen
from the figure, the best performance is achieved between 2 M
and 5 M columns, and the differences in this range are not
significant. The 2 M–5 M column range roughly corresponds
to 16 MB–40 MB storage, which is approximately our LLC
size. In our experiments, we use 5 M as the segment size.

2M 2.5M 3M 3.5M 4M 5M 8M 10M
Segment Size

0.9

1.0

1.1

1.2

1.3

Ex
ec

. T
im

e
(N

or
m

.)

fr
sk-r
pld
sd

sd1
tw7
R24-32
R-24-64

R-25-32
R-25-64
kron
ave.

Fig. 12. Effect of the segment size in number of columns on execution time.
Execution times are normalized to a 2M-column segment size.

D. LAV Overhead

Table IV reports the overhead of constructing the LAV
matrix representation, in terms of time and memory storage,
compared to constructing a graph’s CSR representation.
Memory Overhead. LAV’s storage is compact, thanks to
segmenting, which limits the number of columns processed
at a time, and prevents rows in the dense portion from having
a large number of zero elements. As shown in the table, the
memory overhead over CSR is small. On average, it is 3.35%.

TABLE IV
LAV MEMORY OVERHEAD AND NUMBER OF ITERATIONS TO AMORTIZE

LAV’S COST.

Input Number of Iterations Memory
Unordered CSR CSR+CSC Overhead

fr 14.10 22.13 11.78 3.12%
pld 81.12 122.64 82.98 8.52%
sd1 40.85 61.84 39.81 4.94%
sd 71.27 70.02 45.70 4.99%
sk ∞ ∞ ∞ 1.98%
sk-r 13.51 31.86 17.85 1.98%
tw 25.63 35.72 21.07 2.25%
R-24-16 37.34 49.08 31.66 4.09%
R-24-32 46.16 41.71 24.96 2.80%
R-24-64 37.88 33.43 18.66 2.09%
R-25-16 42.94 37.54 23.29 3.89%
R-25-32 42.42 32.75 17.55 2.62%
R-25-64 19.98 23.91 14.06 1.93%
R-26-16 34.00 29.88 18.40 3.70%
R-26-32 28.55 28.82 16.25 2.44%
kron 18.54 21.78 13.15 2.31%

Format construction time. It can be shown that, on average,
constructing the LAV’s format takes 1.6x the time of building
a CSR representation. Both CSR and LAV initially sort the
input’s edges by column ID and row ID to construct the
matrix rows. Sorting dominates the execution time. In addition,
LAV requires computing the number of nonzero elements per
columns, which has significant overhead.

LAV’s higher construction time pays for itself by yielding
a faster SpMV execution. Table IV evaluates this trade-off by
showing the number of LAV SpMV iterations required to make
LAV faster than CSR (i.e., we are comparing construction plus
SpMV execution times). We consider three possible starting
points for constructing LAV. First, from an unordered list of
nonzeros elements, which is the common textual representa-
tion of edge lists. Second, from a CSR representation. Third,
when given both CSR and CSC representations. The latter
setup exists in graph frameworks that use pull/push-based
graph processing, which require both the original matrix and
its transpose (for the pull and push directions, respectively).

For the large majority of the graphs used in this work, we
see that 10–70 SpMV iterations are enough for the end-to-end
execution time of LAV to be better than CSR, irrespective
of how the LAV’s format is constructed. We believe this
overhead is acceptable since these matrices are generally used
as inputs for multiple algorithms, or many iterations of SpMV
are executed in each application.

The only exceptions are sk and pld. In sk, a LAV SpMV
iteration is slower than a CSR SpMV iteration. Hence, LAV
cannot catch up with CSR. In pld, the difference in execution
time per SpMV iteration is small. Therefore, LAV takes 81–
123 iterations to be faster than CSR.

E. Scalability Analysis

Strong scaling is defined as scalability with respect to a
fixed problem size. Figure 13 compares the strong scaling of
LAV to the other techniques over a representative subset of
the input graphs (R-25-32, sd1, sk-r, and tw). All curves show

1 4 10 16 20 32 40
Threads

1
4
8

16

24

32

40

48

56
Sp

ee
du

p

(a) R-25-32

1 4 10 16 20 32 40
Threads

1
4
8

16

24

32

40

48

56

Sp
ee

du
p

(b) sd1

1 4 10 16 20 32 40
Threads

1
4
8

16

24

32

40

48

56

Sp
ee

du
p

(c) sk-r

1 4 10 16 20 32 40
Threads

1
4
8

16

24

32

40

48

56

Sp
ee

du
p

CSR
MKL
BIN
BCOO

CVR
LAV
CSR5

(d) tw

Fig. 13. Strong scaling of LAV and other techniques. All points are normalized to the single threaded CSR execution.

speedup values, for different numbers of threads, normalized
to the single-threaded CSR execution time.

Overall, LAV gives the same or better performance com-
pared to the other techniques at every thread count, except
on the pld and sk inputs (not shown in Figure 13). For
pld, LAV and BCOO perform similarly up to 16 threads, but
BCOO outperforms LAV subsequently, achieving a 20% higher
speedup for 40 threads. For sk, all techniques have comparable
speedups (10–12× for 40 threads), with MKL being the best
performer for all thread counts.

LAV’s speedups vary greatly across the different input
graphs. For example, while LAV achieves a 53× speedup at 40
threads on R-25-32, it only achieves 35× on sd1. This variabil-
ity is expected, since the computation’s memory access pattern
depends on the input graph, and so the benefits from CFS and
segmenting differ greatly. The maximum speedups achieved by
LAV, BCOO, MKL, CSR, CSR5, CVR, and BIN with 40 threads
are 53×, 42×, 35×, 31×, 31×, 29×, and 26×, respectively. If
single-threaded executions are considered, LAV is still the best
performer. On average, LAV achieves 1.6× speedup over CSR,
while CVR, CSR5 BCOO, BIN, and MKL only attain 1.17×,
1.09× 1.07×, 1.05×, and 1.01×, respectively.

We now consider weak scaling, i.e., maintaining a fixed
problem size per thread as we increase the number of threads.
Figure 14 compares the weak scaling of LAV for different
amounts of per-thread work. To keep the per-thread work fixed,
we generate a random graph (as described in Section V) with a
scaled number of rows for each thread count. Figure 14a shows
weak scaling behavior when per-thread work is 221 vertices,
for graphs with average degrees of {16, 32, 64}. Figure 14b
shows weak scaling when per-thread work is 222 vertices, for
graphs with average degrees of {16, 32}. In both figures, the
data points of each thread count are relative to the single-
threaded execution time on the corresponding random graph.

LAV has almost linear scaling up to 16 threads in both Fig-
ure 14a and 14b. Above 16 threads, the scaling is sub-linear,
due to memory hierarchy bandwidth saturation. Additionally,
LAV has slightly better scaling behavior on the graphs with
larger average degrees (32 and 64). Changing the amount of
work per thread does not change LAV’s scaling behavior.

(2
21
) 1

(2
23
) 4

(2
24
) 8

(2
25
) 1

6

(2
26
) 3

2

(#rows) #Threads

1
4
8

12
16

24

32

Sp
ee

du
p

deg=16
deg=32
deg=64

(a) Per-thread work: 221 rows

(2
22
) 1

(2
24
) 4

(2
25
) 8

(2
26
) 1

6

(2
27
) 3

2

(#rows) #Threads

1
4
8

12
16

24

32

Sp
ee

du
p

deg=16
deg=32

(b) Per-thread work: 222 rows

Fig. 14. Weak scaling of LAV with random graphs.

VII. RELATED WORK

Locality optimizations: CSR segmenting in Cagra [40] pre-
processes the graph, dividing it into smaller LLC-fitting sub-
graphs. This approach is similar to our technique, but it
does not consider density of the segments and vectorization.
Binning techniques [11], [12] are discussed in detail in Sec-
tion II-C. Milk [41] proposes language extensions to improve
the locality of indirect memory accesses that are also observed
in SpMV calculations. There are also compile-time and run-
time techniques to accelerate programs with indirect memory
accesses [42], [43]. Moreover, partitioning techniques can also
be used for improving locality [44]. There are also locality
optimizations targeting different primitives, such as sparse
matrix dense matrix (multi vector) multiplications [45], [46].

The effectiveness of locality optimizations and auto-tuning
approaches were previously evaluated on older hardware gen-
erations [13], [47]. We provide a similar analysis on a state-of-
the-art multi-core system, which shows that modern hardware
renders prior techniques significantly less effective, and moti-
vates LAV, which is very effective on modern hardware.
Graph reordering: A large body of previous work targets
relabeling vertices of graphs to provide better locality [20]–
[22], [48]. These sophisticated techniques achieve high locality
but incur large overheads. Rabbit Ordering [22] reduces pre-
processing time using parallelization. However, it was recently
shown that for many graph algorithms, Rabbit Ordering only

yields limited end-to-end performance benefits [27]. Finally,
FEBA [48] tries to find dense subblocks and uses graph
reordering to improve locality and computational efficiency.
Graph Processing Platforms: Several platforms reformulate
graph algorithms as sparse matrix operations. GraphMat [8]
maps a vertex program into generalized SpMV operations,
and outperforms state-of-the-art graph processing frameworks.
Pegasus [5] builds a large-scale system on Hadoop using
generalized matrix-vector multiplication.
Vectorization: Many different SpMV vectorization methods
have been proposed [9], [10], [16]–[19]. Their main aim is to
maximize the vector unit utilization. Liu et al. [18] propose to
use finite window sorting, which is similar to RFS but only
considers a small block of rows. VHCC [17] devises a 2D
jagged format for efficient vectorization of SpMV. Kreutzer et
al. [16] use an RFS-like sorting for a limited number of rows.
These works do not exploit the opportunities provided by CFS
and segmenting. Furthermore, the matrices evaluated in these
works are at least an order of magnitude smaller than our
inputs. Finally, significant imbalance between the number of
nonzeros per row in power-law graphs limits these prior works’
applicability to these graphs. Of these related approaches, we
compare to CSR5 [9] and CVR [10].

Vectorization is also studied in the graph applications
domain. For instance, SlimSell [49] proposes a vector-
izable graph format for accelerating breadth-first search.
Grazelle [50] is a graph processing framework providing a
new graph representation extended for efficient vectorization.

VIII. CONCLUSIONS AND FUTURE WORK

In modern OOO processors, existing techniques to speed-
up SpMV of large power-law graphs through vectorization
and locality optimizations are not effective. To address this
problem, we propose LAV, a new SpMV approach that lever-
ages the input’s power-law structure to extract locality and
enable effective vectorization. LAV splits the input matrix into
a dense and a sparse portion. The dense portion is stored in a
new matrix representation, which is vectorization-friendly and
exploits data locality. The sparse portion is processed using
the standard CSR algorithm. We evaluate LAV on several
real-world and synthetic graphs on a modern aggressive OOO
processor, and find that it is faster than CSR (and prior
approaches) by an average of 1.5x. LAV reduces the number
of DRAM accesses by 35% on average.

We believe that LAV’s ideas are applicable beyond CPU
architectures. For example, in GPUs, LAV’s segmenting idea
can be generalized to consider GPU memory as the last
level of the memory hierarchy. Moreover, CFS and similar
optimizations may be useful in GPUs to improve memory
coalescing. Future work could explore these opportunities.

Another promising line of future work is to incorporate LAV
into graph frameworks such as Ligra [14] and GraphMat [8].
This work would require supporting the use of frontiers for
dense pull-based implementations [14] and enabling masking
for the output vector as in GraphBLAS [51].

Finally, users currently need to manually decide whether
to employ LAV, based on their domain knowledge about the
structure of the input graph (e.g., whether the graph is skewed
or not). In future work, we plan to explore how this process
can be automated.

ACKNOWLEDGEMENTS

This work was funded in part by NSF under grants
CNS 1956007, CNS 1763658, CCF 1725734, and ISF grant
2005/17.

REFERENCES

[1] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing
data analysis workloads in data centers,” in 2013 IEEE International
Symposium on Workload Characterization (IISWC), Sep. 2013, pp. 66–
76.

[2] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “BigDataBench:
A big data benchmark suite from internet services,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 488–499.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7,
pp. 107–117, Apr. 1998. [Online]. Available: http://dx.doi.org/10.1016/
S0169-7552(98)00110-X

[4] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, Sep. 1999. [Online]. Available:
http://doi.acm.org/10.1145/324133.324140

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale
graph mining system implementation and observations,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ser.
ICDM ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
229–238. [Online]. Available: https://doi.org/10.1109/ICDM.2009.14

[6] A. Buluc and J. R. Gilbert, “The Combinatorial BLAS: Design,
implementation, and applications,” Int. J. High Perform. Comput.
Appl., vol. 25, no. 4, pp. 496–509, Nov. 2011. [Online]. Available:
http://dx.doi.org/10.1177/1094342011403516

[7] D. Buono, J. A. Gunnels, X. Que, F. Checconi, F. Petrini, T. Tuan,
and C. Long, “Optimizing sparse linear algebra for large-scale graph
analytics,” Computer, vol. 48, no. 8, pp. 26–34, Aug 2015.

[8] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat:
High Performance Graph Analytics Made Productive,” Proc. VLDB
Endow., vol. 8, no. 11, pp. 1214–1225, Jul. 2015. [Online]. Available:
https://doi.org/10.14778/2809974.2809983

[9] W. Liu and B. Vinter, “CSR5: An efficient storage format for
cross-platform sparse matrix-vector multiplication,” in Proceedings of
the 29th ACM on International Conference on Supercomputing, ser.
ICS ’15. New York, NY, USA: ACM, 2015, pp. 339–350. [Online].
Available: http://doi.acm.org/10.1145/2751205.2751209

[10] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang,
“CVR: Efficient Vectorization of SpMV on x86 Processors,” in
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, ser. CGO 2018. New York, NY, USA: ACM, 2018,
pp. 149–162. [Online]. Available: http://doi.acm.org/10.1145/3168818

[11] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que, C. Long,
and T.-C. Tuan, “Optimizing sparse matrix-vector multiplication for
large-scale data analytics,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York, NY,
USA: ACM, 2016, pp. 37:1–37:12. [Online]. Available: http:
//doi.acm.org/10.1145/2925426.2926278

[12] S. Beamer, K. Asanovic, and D. Patterson, “Reducing Pagerank Commu-
nication via Propagation Blocking,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2017, pp. 820–
831.

[13] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” The International Journal of High
Performance Computing Applications, vol. 18, no. 1, pp. 135–158,
2004. [Online]. Available: https://doi.org/10.1177/1094342004041296

http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://doi.acm.org/10.1145/324133.324140
https://doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1177/1094342011403516
https://doi.org/10.14778/2809974.2809983
http://doi.acm.org/10.1145/2751205.2751209
http://doi.acm.org/10.1145/3168818
http://doi.acm.org/10.1145/2925426.2926278
http://doi.acm.org/10.1145/2925426.2926278
https://doi.org/10.1177/1094342004041296

[14] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135146. [Online]. Available:
https://doi.org/10.1145/2442516.2442530

[15] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP’13. New
York, NY, USA: Association for Computing Machinery, 2013, pp.
456–471. [Online]. Available: https://doi.org/10.1145/2517349.2522739

[16] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for modern processors with wide
SIMD units,” CoRR, vol. abs/1307.6209, 2013. [Online]. Available:
http://arxiv.org/abs/1307.6209

[17] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huyng, X. Li, and
R. S. M. Goh, “Optimizing and auto-tuning scale-free sparse matrix-
vector multiplication on Intel Xeon Phi,” in 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), Feb
2015, pp. 136–145.

[18] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,”
in Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ser. ICS ’13. New
York, NY, USA: ACM, 2013, pp. 273–282. [Online]. Available:
http://doi.acm.org/10.1145/2464996.2465013

[19] L. Chen, P. Jiang, and G. Agrawal, “Exploiting Recent SIMD
Architectural Advances for Irregular Applications,” in Proceedings of the
2016 International Symposium on Code Generation and Optimization,
ser. CGO ’16. New York, NY, USA: ACM, 2016, pp. 47–58. [Online].
Available: http://doi.acm.org/10.1145/2854038.2854046

[20] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing
by graph ordering,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 1813–1828. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915220

[21] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation:
A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 587–
596. [Online]. Available: http://doi.acm.org/10.1145/1963405.1963488

[22] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit Order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 22–31.

[23] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS 19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 753768.
[Online]. Available: https://doi.org/10.1145/3319535.3354252

[24] P. Boldi and S. Vigna, “The Webgraph Framework I: Compression
techniques,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004,
pp. 595–602. [Online]. Available: http://doi.acm.org/10.1145/988672.
988752

[25] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure
in the web — revisited: A trick of the heavy tail,” in Proceedings
of the 23rd International Conference on World Wide Web, ser. WWW
’14 Companion. New York, NY, USA: ACM, 2014, pp. 427–432.
[Online]. Available: http://doi.acm.org/10.1145/2567948.2576928

[26] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in 2018 IEEE
International Symposium on Workload Characterization (IISWC). Los
Alamitos, CA, USA: IEEE Computer Society, oct 2018, pp. 134–145.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/IISWC.
2018.8573480

[27] V. Balaji and B. Lucia, “When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs,” 2018 IEEE International Symposium on Workload
Characterization (IISWC), pp. 203–214, 2018.

[28] H. Wang, W. Liu, K. Hou, and W.-c. Feng, “Parallel transposition
of sparse data structures,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS’16. New York, NY, USA:

Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2925426.2926291

[29] “Performance monitoring and benchmarking suite,” https://github.com/
RRZE-HPC/likwid/, accessed: 2019-04-30.

[30] “Intel Math Kernel Library Inspector-executor Sparse
BLAS Routines,” https://software.intel.com/en-us/articles/
intel-math-kernel-library-inspector-executor-sparse-blas-routines,
Mar. 2015.

[31] W. Liu and B. Vinter, “CSR5-based SpMV on CPUs, GPUs and
Xeon Phi,” https://github.com/bhSPARSE/Benchmark SpMV using
CSR5, accessed: 2020-01-30.

[32] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang,
“Parallelized and vectorized SpMV on Intel Xeon Phi (Knights Landing,
AVX512, KNL),” https://github.com/puckbee/CVR, accessed: 2020-01-
30.

[33] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[34] R. Meusel, O. Lehmberg, C. Bizer, and S. Vigna, “Web data com-
mons - hyperlink graphs,” http://webdatacommons.org/hyperlinkgraph/,
accessed: 2020-01-30.

[35] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[36] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: http:
//arxiv.org/abs/1508.03619

[37] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[38] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW ’10: Proc. the 19th Intl. Conf. on
World Wide Web. New York, NY, USA: ACM, 2010, pp. 591–600.

[39] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated technical
report. http://www.cs.virginia.edu/stream/. [Online]. Available: http:
//www.cs.virginia.edu/stream/

[40] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data), Dec 2017, pp. 293–302.

[41] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing Indirect
Memory References with Milk,” in Proceedings of the 2016
International Conference on Parallel Architectures and Compilation,
ser. PACT ’16. New York, NY, USA: ACM, 2016, pp. 299–312.
[Online]. Available: http://doi.acm.org/10.1145/2967938.2967948

[42] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout, “Non-
affine extensions to polyhedral code generation,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO’14. New York, NY, USA: Association
for Computing Machinery, 2014, pp. 185–194. [Online]. Available:
https://doi.org/10.1145/2544137.2544141

[43] M. M. Strout, A. LaMielle, L. Carter, J. Ferrante, B. Kreaseck, and
C. Olschanowsky, “An approach for code generation in the sparse
polyhedral framework,” Parallel Comput., vol. 53, no. C, pp. 32–57, Apr.
2016. [Online]. Available: https://doi.org/10.1016/j.parco.2016.02.004

[44] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp.
673–693, July 1999.

[45] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 300–314. [Online]. Available:
https://doi.org/10.1145/3293883.3295712

[46] H. M. Aktulga, A. Buluc, S. Williams, and C. Yang, “Optimizing
sparse matrix-multiple vectors multiplication for nuclear configuration
interaction calculations,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, May 2014, pp. 1213–1222.

[47] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and
B. Lee, “Performance optimizations and bounds for sparse matrix-vector
multiply,” in SC ’02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, Nov 2002, pp. 26–26.

[48] R. C. Agarwal, F. G. Gustavson, and M. Zubair, “A high performance
algorithm using pre-processing for the sparse matrix-vector multipli-

https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2517349.2522739
http://arxiv.org/abs/1307.6209
http://doi.acm.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/2854038.2854046
http://doi.acm.org/10.1145/2882903.2915220
http://doi.acm.org/10.1145/1963405.1963488
https://doi.org/10.1145/3319535.3354252
http://doi.acm.org/10.1145/988672.988752
http://doi.acm.org/10.1145/988672.988752
http://doi.acm.org/10.1145/2567948.2576928
https://doi.ieeecomputersociety.org/10.1109/IISWC.2018.8573480
https://doi.ieeecomputersociety.org/10.1109/IISWC.2018.8573480
https://doi.org/10.1145/2925426.2926291
https://github.com/RRZE-HPC/likwid/
https://github.com/RRZE-HPC/likwid/
https://software.intel.com/en-us/articles/intel-math-kernel-library-inspector-executor-sparse-blas-routines
https://software.intel.com/en-us/articles/intel-math-kernel-library-inspector-executor-sparse-blas-routines
https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5
https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5
https://github.com/puckbee/CVR
https://doi.org/10.1145/2049662.2049663
http://webdatacommons.org/hyperlinkgraph/
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://snap.stanford.edu/data
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://doi.acm.org/10.1145/2967938.2967948
https://doi.org/10.1145/2544137.2544141
https://doi.org/10.1016/j.parco.2016.02.004
https://doi.org/10.1145/3293883.3295712

cation,” in Supercomputing ’92:Proceedings of the 1992 ACM/IEEE
Conference on Supercomputing, 1992, pp. 32–41.

[49] M. Besta, F. Marending, E. Solomonik, and T. Hoefler, “SlimSell: A
vectorizable graph representation for breadth-first search,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2017, pp. 32–41.

[50] S. Grossman, H. Litz, and C. Kozyrakis, “Making pull-based graph
processing performant,” in Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 246260. [Online]. Available: https://doi.org/10.
1145/3178487.3178506

[51] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2017, pp.
643–652.

https://doi.org/10.1145/3178487.3178506
https://doi.org/10.1145/3178487.3178506

	Introduction
	Background
	CSR Matrix Representation
	Vector Instructions
	Previous SpMV Approaches

	LAV: Analysis of Prior SpMV Approaches with Power Law Graphs
	LAV: Locality-Aware Vectorization
	Main Idea
	Splitting the Matrix into Dense and Sparse Portions
	LAV Walk-Through
	LAV Matrix Representation
	Rationale Behind LAV's Design Choices
	SpMV Algorithm with LAV

	Experimental Setup
	Test Environment
	Formats and Techniques for Comparison
	Input Graphs

	Experimental Results
	Performance Results
	Data Movement
	Analysis of LAV
	LAV Overhead
	Scalability Analysis

	Related Work
	Conclusions and Future Work
	References

