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ABSTRACT
Lock-based software transactional memory algorithms do
not perform well in workloads with a high rate of context
switches, which is caused for example by scheduling events
or page faults. This occurs since threads that are switched-
out by the operating system while holding locks block other
threads from progressing, causing their transactions to abort
repeatedly. We present here Lock Stealing, a novel con-
tention management algorithm for minimizing the effect of
context switches by enabling threads to acquire locks which
are held by other threads. While some methods addressing
this problem exist (e.g., schedctl in Solaris) they are best
effort and only cover scheduling related context switches. In
addition, they are platform specific and thus are not suit-
able or available in managed runtimes such as Java or .NET.
In contrast, our approach is solely based on user-level code
and is de-coupled from specific operating system events. We
evaluate the performance of our approach on a set of bench-
marks and observe improvements in both micro benchmarks
and more elaborate test applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management—
Concurrency; Synchronization; Threads

General Terms
Algorithms, Experimentation, Performance

Keywords
software transactional memory, thread oversubscription

1. INTRODUCTION
The transactional memory (TM) [12] programming model

promises to simplify concurrent programming by having the
programmer specify atomic blocks of code (transactions),
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with the TM subsystem ensuring that these blocks run safely
in parallel without deadlock. The performance of software
TM implementations (STMs [21]) has received considerable
attention by the research community, because STMs are
unlikely to be adopted in practice if they add prohibitive
overheads to applications. This has resulted in a shift from
obstruction-free [10] STMs (e.g., DSTM [11]) to lock-based
blocking STMs [4, 3, 7]. Due to the even weaker progress
guarantee, lock-based STMs impose less book-keeping, data
duplications and memory accesses on the application, and
therefore show superior performance and scalability com-
pared to obstruction-free STMs [6, 3].

Despite their superior performance in most cases, there
are some situations in which lock-based STM algorithms are
susceptible to blocking. In a lock-based STM, each section
of memory 1 is associated with a lock. Transactions coordi-
nate their accesses to shared memory by acquiring the locks
that are associated with the sections in memory they ac-
cess. Therefore, a transaction that needs to access a locked
section of memory must either stall or abort. In an applica-
tion with a high-degree of parallelism, such conflicts occur
rarely and therefore do not cause performance issues. How-
ever, factors external to the STM can cause lock hold times
to increase dramatically, leading to extremely poor perfor-
mance. Here we are concerned with blocking or aborts that
occur as a result of context switching a thread that is hold-
ing locks. The effect of this phenomenon depends on sys-
tem specific properties such as the length of the scheduler’s
time slice, processor clock speed, processor cache configu-
ration and others. For scheduling induced context switches
the problem is significantly severe as a single context switch
can potentially lead to the abort of hundreds of transac-
tions, since the scheduler’s time slice is usually in the scale
of dozens of milliseconds and the execution of an average
transaction in a realistic application is in the scale of dozens
of microseconds.

To validate our hypothesis that repeated aborts cause
throughput drop, we tested the correlation between the con-
tention level of the application and the degradation of per-
formance. We measured the throughput of a red black tree
integer set benchmark using the TL2 lock-based STM [3]
which is delivered as part of the Deuce STM platform for
Java [13] on an Intel Nehalem with 8 concurrent hard- ware
threads 2. As our base-line, we used a benchmark with no
contention at all (all operations are read-only and thus no

1This can be a consecutive block of memory in word-based
STMs or an object in object-based STMs.
2For details regarding our test environment see Section 4.
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Figure 1: Throughput of a 64K sized red-black tree
integer set with 0%, 20% and 50% update opera-
tions, on an Intel Nehalem with 8 concurrent hard-
ware threads.

locks are taken) and two benchmarks with 20% and 50%
update operations, representing a medium contention work-
load and a high contention workload respectively. In order
to control the rate of context switches, we measured each
benchmark with a varying amount of threads, from 1 to 64,
thus when running more than 8 threads context switches
become frequent. Figure 1 shows the effect of scheduling
induced context switches with relation to the contention
level of the benchmark. In the base-line benchmark, as no
locks are taken, there are no lock-holding threads that are
switched-out by the OS and no performance degradation is
observed. However, in the other benchmarks when running
more than 8 threads, we observe that throughput degrades
considerably.

While it would seem that it is possible to minimize the
frequency of context switches to a certain extent by fixing
the number of threads to equal the number of CPU cores
(indeed, this is how STMs are often evaluated in the lit-
erature), we argue that this is not a viable approach in
practice. First, the number of threads in the application is
often dictated by various factors (e.g., servers with thread-
per-request model) and bounding it places an undue burden
on programmers. Even for applications where the number
of threads can be limited, additional applications might be
running on the same system, in different processes or even
in the same process, putting pressure on the scheduler. The
latter is in fact the case in modern application servers such as
JavaEE servers. Finally, the managed code environments we
are concerned with have their own set of threads to handle
tasks such as garbage collection and just-in-time compila-
tion.

Our main contribution in this paper is therefore Lock
Stealing, a purely algorithmic technique, requiring no special
OS support, that allows transactions in lock-based STMs to
make progress even when encountering a held lock, thereby
mitigating the problem of threads that are switched-out by
the OS while holding some of the STM’s locks.

Lock stealing makes contention management [19] more ap-
plicable to lock-based STMs. Contention managers (CM)
were introduced as a means to ensure progress of the STM
system. A contention management algorithm decides which

transaction to abort in case two transactions attempt to ac-
cess the same block of memory. It does so by instructing the
STM system to do one of the following:

• RESTART – instructs the STM system to abort the
current transaction and try to execute it again.

• RETRY – instructs the STM system to try to access
the memory again.

• ABORT OTHER – instructs the STM system to abort
the other transaction and try to access the memory
again.

Current contention management approaches are most ef-
fective when used in obstruction-free STM algorithms. In
an obstruction-free STM algorithm a transaction does not
have to wait for another transaction to release a resource be-
fore it can acquire it. This important property enables the
use of the ABORT OTHER action. However, in lock-based
STM algorithms this is not the case – a transaction cannot
continue if it needs to acquire an already held lock. At best
a transaction can abort the other transaction but wait for
it to release its locks. Thus a different approach is required.
In Lock Stealing, if a transaction aborts another transaction
it will simply take ownership of the lock without coordinat-
ing this with the other transaction. The other transaction
will rollback gracefully and will not interfere with the first
transaction.

The contributions of this paper are as follows:

• We present Lock Stealing, a novel approach for im-
plementing the ABORT OTHER action in lock-based
STM algorithms.

• We present KillPrioLS, a new Lock Stealing contention
manager that bases its decisions on the number of
transactions aborted by the current transaction.

• We have created an implementation of our approach
for TL2. Our implementation is based on the Deuce
STM platform [13] and is written in Java.

The rest of this paper is organized as follows: Section 2
describes the Lock Stealing algorithm. Section 3 follows with
a description of our Lock Stealing implementation for TL2.
Section 4 presents the results of our empirical evaluation.
In Section 5 we discuss our results and Section 6 presents
related work. Our conclusions are presented in Section 7.

2. LOCK STEALING
The goal of Lock Stealing is to enable a running transac-

tion to abort other transactions that hold locks it requires
and acquire these locks without having to wait for the other
transactions to release them. In this section we will present
the Lock Stealing algorithm which is an enhancement that
can be applied to most lock-based STM algorithms we are
aware of. We will begin with a description of a general lock-
based STM algorithm.

2.1 Lock-based STMs
A lock-based STM algorithm associates a lock with a sec-

tion of memory. In word-based STMs, each lock is associated
with a subset of the addresses in the application’s address



space; in object-based STMs, each object has its own lock.
These locks are versioned : when unlocked, the lock’s value
represents a logical time when the associated memory was
last written3. When locked, the lock points to the owner
transaction (this is usually implemented by reserving the
lock’s least significant bit to specify the lock’s state.)

Transactions execute transactional code (a code is usually
defined to be transactional by the programmer) while inter-
cepting accesses to memory. Transactional reads check the
associated lock before proceeding: if it is locked, the trans-
action must stall or abort. Otherwise, the transaction reads
the value from memory and rereads the lock to ensure its
version has not changed, thus guaranteeing the value it ob-
served is consistent. In addition, many STMs (e.g., [3, 7, 5])
validate that the value read is consistent with some snap-
shot of memory. If it is not, the transaction aborts. (This,
however, is not a fundamental property for supporting Lock
Stealing and we describe it only for completeness.)

For transactional writes, two approaches exist. In a lazy
acquisition STM, writes to memory are buffered in a write-
set. In the transaction’s commit protocol (explained shortly),
the locks associated with each word written are acquired, the
transaction copies the data from its write-set to memory,
and then releases the locks. In an eager acquisition STM,
locks are taken and the data is written to memory while the
transaction is executing. This causes locks to be held for a
longer period of time, but lets the transaction read its own
writes without looking them up in a write-set (On abort,
the transaction must roll back its updates and release the
locks). Following [22], which has shown that write-sets can
be implemented efficiently and with negligible performance
loss compared to eager STMs, we assume a lazy acquisition
STM from here on. Note that hybrid variations of these
two approaches exist, such as eager acquisition of locks to
facilitate early conflict detection, while still buffering writes
in a write-set and deferring actual updating of memory to
commit time [5]. For the purpose of our exposition, how-
ever, the crucial question is whether writes update memory
only in commit time (lazy) or while the transaction is active
(eager), so we consider such a hybrid approach as lazy STM.

Once the transaction completes the execution of the trans-
actional code it begins a commit protocol in which it verifies
that all the values it read from memory still form a valid
atomic snapshot at the current logical time and if so, it
commits by copying its write-set to memory and releasing
the locks it held by updating their version number to the
current logical time. Otherwise, the transaction is aborted
and started again.

2.2 Transaction Life Cycle
We define three states of a transaction that we later use to

determine whether the transaction is eligible for lock steal-
ing:

• RUNNING - the transaction is executing the transac-
tional code. Once finished executing the transactional
code the transaction attempts to commit. In this state
the transaction may be aborted by another transac-
tion.

• COMMITTED - the transaction finished executing the
transactional code and has either updated all the rele-

3Logical time can be maintained using a global counter [3,
7] or other mechanisms [17].

vant memory addresses with new values or is about to
do so. In this state the transaction may not be aborted
and none of its locks may be stolen.

• ABORTED - the transaction is no longer running and
is in the process of rolling itself back. It may have
released some or all of its locks. In this state, other
transactions may steal one or more of its locks.

We consider the time frame from the point a transac-
tion starts to the point when a transaction is COMMIT-
TED as the “Window of Abortability” and the time frame
from the point when a transaction is COMMITTED to the
point where it released all of its locks as the “Window of Un-
Abortability” A transaction that encounters a conflict with
another transaction that is in its “Window of Abortability”
may resolve this conflict using Lock Stealing. However, if
the other transaction is in its “Window of Un-Abortability”
there is no option to recover from the conflict other than
restarting itself and losing all the work it had done so far or
risk waiting for a long period of time.

2.3 The Lock Stealing Algorithm
To facilitate the lock stealing algorithm we enhance cer-

tain data structures that are managed by the STM. We en-
hance each thread with a thread-local variable named sta-

tusRecord that combines the state of the transaction (RUN-
NING, COMMITTED or ABORTED) and a clock value of
the thread. The clock value of the thread is initialized to
0 and incremented whenever a transaction is started. The
goal of this variable is to enable atomic updates of both the
state of the transaction and its local clock value, using a
compare-and-swap (CAS) operation. A discussion on the
importance of the local clock value is given in Section 2.4.
We enhance each lock variable to contain the identity of the
lock owner and the owner’s clock value. In some STM algo-
rithms the lock variable may contain additional information,
such as the version number of the lock [3, 7].

When a transaction accesses a memory address it attempts
to acquire the lock that is associated with that memory ad-
dress. We begin by describing the lock acquisition protocol
of the lock stealing algorithm, following the pseudo-code in
Algorithm 1. If the lock is held by another transaction, the
transaction consults its contention manager to decide how
to proceed. If the other transaction is in its “Window of
Un-Abortability” the contention manager may only decide
whether to RETRY or RESTART. Otherwise, it may decide
to instruct the transaction to take the ABORT OTHER ac-
tion. If so, the transaction tries to abort the other trans-
action by atomically replacing its statusRecord variable to
ABORTED using a CAS (represented by the Abort func-
tion in line 17). If the CAS is successful, the transaction
may attempt to steal the lock from the other transaction
(represented by the Steal function in line 19). Algorithm
2 describes a simple contention manager. More elaborate
contention managers will be discussed in Section 3.

To steal the lock the transaction tries to CAS the lock
variable to a new value, that contains its thread id and clock
value. If the CAS is successful the transaction may continue
executing the transactional code. If not, the transaction is
restarted (the transaction may decide to try to steal the lock
again at this point instead of restarting immediately).



We continue with the transaction’s commit protocol fol-
lowing the pseudo-code in Algorithm 3. If a transaction
decides it can commit according to the lock-based STM’s
commit protocol, it attempts to atomically set its status-

Record to COMMITTED. If this succeeds, it writes its new
values to memory and releases its locks unconditionally, as
it is guaranteed to hold all of its locks and is immuned from
lock stealing. However, if a transaction fails to commit —
either due to a violation detected in the commit protocol,
or due to the final CAS on the statusRecord failing — then
it must release its locks conditionally using a CAS opera-
tion, since one or more of its locks may have been stolen by
other transactions. Note that lock stealing is performed in
constant time, as it involves at most 2 CAS operations per
lock.

Algorithm 1 Lock Acquisition Protocol

Require: lock is object of type <owner id, owner clock,
version>

1: function acquireLock(lock)
2: T1 ← current thread
3: while True do
4: if lock.locked = False then
5: obtained ← Lock(T1, lock)
6: if obtained = True then
7: return True

8: end if
9: end if

10: T2← lock.owner
11: action ← ResolveConflict(T1, T2)
12: if action = RETRY then
13: continue
14: else if action = RESTART then
15: return False

16: else if action = ABORT OTHER then
17: aborted ← Abort(T2)
18: if aborted = True then
19: return Steal(T1, T2, lock)
20: else
21: return False

22: end if
23: end if
24: end while
25: end function

26: function Lock(T , lock)
27: exp ← <0, 0, lock.version>
28: new ← <T .id, T .statusRecord.clock, lock.version>
29: return CAS(lock, exp, new)
30: end function

31: function Abort(T )
32: exp ← <RUNNING, T .statusRecord.clock>
33: new ← <ABORTED, T .statusRecord.clock>
34: return CAS(lock, exp, new)
35: end function

36: function Steal(T1, T2, lock)
37: exp ← <T2.id, T2.statusRecord.clock, lock.version>
38: new← <T1.id, T1.statusRecord.clock, lock.version>
39: return CAS(lock, exp, new)
40: end function

Algorithm 2 Example Conflict Resolution Protocol

1: procedure ResolveConflict(T1, T2)
2: if T2.statusRecord = COMMITTED then
3: return RESTART 4

4: else
5: return ABORT OTHER

6: end if
7: end procedure

2.4 Ensuring Correctness of Atomic Opera-
tions

Readers that are familiar with the CAS operation are most
likely familiar with the ABA problem [16]. A specific case
of the ABA problem is avoided here due to the introduction
of the local clock value that is maintained by each thread.
Assume two transactions, T1 and T2 are executed by two
threads. Assume that T1 detects a conflict with T2 and
decides to abort T2 and steal a lock L held by T2. T1 aborts
T2 using a CAS operation on its statusRecord variable but
before it steals L, T1 is switched out by the OS. T2 detects
that it has been aborted so it rolls-back and starts again,
acquiring L once more. At this point, T1 is switched back in
by the OS and T1 continues to steal L, regardless of the fact
that T2 is now active again. Both transactions now consider
L to be held exclusively by them and both might attempt
to write a new value to a memory address in the block that
L is associated with, which might cause transaction to read
an inconsistent state.

By incorporating the clock value of the lock owner into
the lock variable, we ensure that a stealing transaction will
only be allowed to steal a lock if the other transaction has
not restarted yet. In the example above, when T1 continues
its execution after being switched back in by the OS, it will
fail to CAS L since L now contains a higher clock value than
was previously read by T1.

3. LOCK STEALING FOR TL2
In order to evaluate our Lock Stealing approach, we im-

plemented it as part of TL2. As a basis for our imple-
mentation we use the TL2 algorithm that is delivered with
Deuce [13], an open-source Java framework for transactional
memory. In Deuce, each thread is represented by an in-
stance of a class that implements the Context interface.
We provide a new implementation of the Context interface
(org.deuce.transaction.tl2cm.Context) that contains (be-
sides the usual objects that are required by TL2) an Atom-

icInteger object in order to hold the statusRecord vari-
able. We also implement a new LockTable class to support
locks of 64-bits instead of the 32-bit locks used by TL2. We
use larger lock objects since our locks hold 3 values: the
identity of the owner of the lock or 0 if the lock is free, the
local clock value of the lock owner and the version of the
lock. In TL2, lock variables hold one bit to indicate if the
lock is free and the rest of the lock variable is dedicated to
the version of the lock.

We define a new interface, ContentionManager, to repre-
sent the various contention managers we implement. This
interface is called whenever a conflict between two transac-

4The contention manger may also return RETRY, depending
on its specific policy.



Algorithm 3 Commit Protocol

1: procedure Commit
2: for all locks in write-set do
3: acquired ← AcquireLock(lock)
4: if acquired = False then
5: roll-back and restart
6: end if
7: end for
8: for all locks in read-set do
9: isReadValid ← ValidateReadLock(lock)

10: if isReadValid = False then
11: roll-back and restart
12: end if
13: end for
14: exp ← <RUNNING, statusRecord.clock>
15: new ← <COMMITTED, statusRecord.clock>
16: committed ← CAS(statusRecord, exp, new)
17: if committed = True then
18: write new values to memory
19: release locks
20: else
21: roll-back and restart
22: end if
23: end procedure

tions is detected. In TL2 there are two cases where a trans-
action might conflict with another transaction: the first case
may occur during the execution of the transactional code,
when the transaction attempts to read a memory address
that the lock which is associated with it is held by another
transaction. The second case may occur when the trans-
action attempts to acquire a lock that is held by another
transaction, during its commit phase. We refer to the for-
mer as a Read Conflict and to the latter as a Write Conflict.

When a transaction detects a read conflict, it consults the
contention manager via the resolveReadConflict method.
The contention manger instructs the transaction which ac-
tion to take by returning a field of the Action enumer-
ated type, which lists the actions described in Section 1.
If the RESTART action is returned, the transaction rolls-
back and restarts. If the RETRY action is returned the
transaction reads the lock variable again in hope to find
that it’s free, usually after a back-off period, which is per-
formed by the contention manager according to its specific
policy (Karma for example uses a constant back-off period
[19] while Polka employs an exponential back-off strategy
[20]). If the ABORT OTHER action is returned, the trans-
action attempts to abort the other transaction as described
in Section 2.3 but without trying to steal the lock. If the
transaction successfully aborts the other transaction it may
progress with its execution, as it is guaranteed that it read
a consistent value from memory, since the aborted transac-
tion will not be able to write values to memory (otherwise it
would be in its “Window of Un-Abortability” and aborting
it would be impossible).

When a transaction detects a write conflict, it consults the
contention manager via the resolveWriteConflict method
to determine how to react. The only difference from han-
dling a read conflict is when the ABORT OTHER action is
returned: in this case the transaction attempts to steal the
lock in addition to aborting the other transaction.

We implement several contention managers. The first

group consists of some of the known contention managers
presented in [19] and includes Suicide, Polite, Aggressive,
Karma and Polka. The second group consists of the lock
stealing contention managers and includes AggressiveLS, Kar-
maLS and KillPrioLS. These contention managers differ from
their conventional counterparts in the fact that they try to
steal a lock after aborting the other transaction.

KillPrioLS is a karma-based contention manager that in-
stead of calculating karma according to the number of re-
sources accessed by the transaction, calculates karma ac-
cording to the number of transactions that were aborted
by the current transaction. Thus, a transaction that has
aborted more transactions will have a higher karma value.
Assume T1 and T2 are transactions with karma values k1
and k2 respectively. When T1 aborts T2, T1’s new karma
value would be k1 + k2 + 1. The karma value is only reset
to 0 when the transaction commits.

4. EMPIRICAL EVALUATION
We present here a set of benchmarks to evaluate the per-

formance effects of lock stealing on lock-based STM algo-
rithms. We refer to three main algorithms:

1. The TL2 implementation delivered with Deuce. The
contention management strategy of this algorithm is
simple: whenever a transaction detects a conflict it is
restarted. Denoted as TL2.

2. Our TL2 implementation that supports the conven-
tional contention managers, Aggressive and Karma,
denoted as TL2-Aggressive and TL2-Karma respec-
tively. We selected these contention managers as the
representatives of this class of algorithms as results of
Polite and Polka showed little differences in compari-
son to Aggressive and Karma.

3. TL2 with contention management support and Lock
Stealing enabled. Denoted as TL2-AggressiveLS, TL2-
KarmaLS and TL2-KillPrioLS.

Experiments were conducted on an Intel i7 920 Extreme
Edition (Nehalem) 2.67 GHz processor operating four cores
with two hardware threads per core, allowing for a maximum
of 8 concurrent hardware threads. Results presented here
are an average of 5 runs.

4.1 Overhead Analysis
Here we analyze the fast-path overhead of merely adding

contention management hooks to the TL2 implementation.
We define this as the overhead incurred when no benefit can
be made from contention management. We evaluate this
overhead using a red-black tree integer set benchmark. To
accurately test the overhead without any performance gains
due to our mechanism, we used the Suicide contention man-
ager which performs exactly the same contention manage-
ment algorithm as TL2 and configured the benchmark such
that all operations are read-only, thus no contention exists
between threads. Figure 2 shows a maximum overhead in
throughput of 10%.

4.2 Integer Set Benchmark
We used the integer set benchmark that is delivered with

Deuce. Each thread performs an Add, Remove or Get op-
eration in a loop for a period of 5 seconds. We tested 3
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Figure 3: Red-Black Tree Integer Set
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Figure 4: Linked List Integer Set

data-structures for the set: red-black tree, linked list and
skip list.

To analyze the performance effect of lock stealing, we con-
ducted the following experiments. For each data-structure
we tested a medium sized set (65,536 in red-black tree and
skip list, 1,024 in linked list) and a large sized set (1,048,576
in red-black tree and skip list, 8,192 in linked list). The
set was initialized to half of its maximum size. We tested
two workloads: a medium contention workload (10% adds,
10% removes and 80% gets) and a high contention workload

(25% adds, 25% removes and 50% gets). We also tested low
contention workloads which are not presented here since the
low rate of conflicts and very little use of contention manage-
ment prevented our algorithms from showing any effect on
performance other than the degradation due to their over-
head.

Figure 3 shows the results of the red-black tree integer
set. In all workloads except for one, TL2 delivers the best
peak performance. However, when the number of threads
exceeds 16, the lock stealing contention managers deliver the
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best performance while conventional contention managers
deliver the worst performance. This is due to the fact that
the conventional contention managers incur more overhead
than TL2 but provide no relief for coping with the high rate
of context switches, which cause threads that hold locks to
be switched out by the OS.

Figure 4 shows the results of the 1K and 8K linked list
integer set benchmark. TL2 performs best when using 4
threads in both workloads, however beyond 16 threads the
Aggressive and AggressiveLS contention managers deliver
the best performance. Results for the high contention work-
loads were similar and are not shown here.

We do not show the results of the skip list benchmarks
as none of the contention managers improves or degrades
performance significantly.

4.3 STAMP Applications
We used the STAMP suite of benchmark applications [2]

to evaluate the performance of our approach on more elab-
orate test applications which were designed to simulate real
world use-cases. We tested the SSCA2, KMeans, Intruder
and the Vacation applications. Unfortunately, the Java port
of STAMP (the original STAMP was written in C) does not
yet include Bayes and Yada and the Genome and Labyrinth
ports contained bugs which prevented us from using them.

4.3.1 SSCA2
The SSCA2 application constructs an efficient graph data

structure using adjacency arrays and auxiliary arrays. SSCA2
shows very little contention as the graph structure is rela-
tively large and threads rarely attempt to update the same
node at the same time. In addition, SSCA2 transactions are
very short, with an average read-set size of 4 and an aver-
age write-set size of 2. When running 8 threads, 99.88% of
transactions committed on the first attempt.

Despite the low probability of conflicts and low potential
for improvement in performance due to contention manage-
ment, we see an improvement of 3% in throughput when
using TL2-AggressiveLS in 8 threads and an improvement
of 14% when using TL2-KillPrioLS in 32 threads. Figure
5 shows the results of the SSCA2 application. Notice the
reduction in abort rate when using any of the contention
managers.

4.3.2 KMeans
The KMeans application groups objects in an N -dimensional

space into K clusters. Each thread processes a partition of
the objects and updates the shared cluster center with its
results. As K decreases, contention increases as the proba-
bility of two threads updating the same cluster simultane-
ously increases. We executed two workload of KMeans: a
low contention workload with 40 clusters and a high con-
tention workload with 15 clusters. KMeans transactions are
of medium size with an average read-set size of 120 and an
average write-set size of 25.

Figure 6 shows the results of the KMeans application.
When using 32 threads, KillPrioLS improves speedup by
40%-50% compared to TL2. When using 8 threads only a
slight improvement by KarmaLS is shown. We did not in-
clude the Aggressive and AggressiveLS contention managers
in the results as in most runs they reached a state of live-
lock. In an attempt to isolate the source of the live-lock,
we tested a variant of the Aggressive and AggressiveLS con-
tention managers that uses a hybrid Suicide-Aggressive pol-
icy: it automatically aborts the current transaction on read
conflicts (Suicide) but still aborts the other transaction in
write conflicts (Aggressive). Using this hybrid we were able
to avoid the live-lock scenario. An additional attempt we
made was to run a low contention workload of the KMeans
application with a small sized input (denoted as kmeans-low
in [2]) which also resulted in successful executions.

Since all of our contention managers (including the con-
ventional ones) allow for a transaction to abort another
transaction in read conflicts and since we experienced the
live-lock in both variants of the aggressive policy (Aggressive
and AggressiveLS) we believe the live-lock is caused due to
the combination of a very high abort rate (more than 90%)
in conjunction with a rigid contention management policy,
and not due to our Lock Stealing mechanisms.

4.3.3 Intruder
The Intruder application simulates a network intrusion

detection system. Network packets are processed in paral-
lel using two major data-structures: a FIFO queue and a
dictionary (implemented using a balanced tree). Intruder
transactions are relatively small with an average read-set
size of 58 and an average write-set size of 6.

Figure 7 shows the results of the Intruder application.
When using 8 threads, KarmaLS improves speedup by 20%
compared to TL2 and when using 32 threads, KarmaLS im-
proves speedup by 53%. The Aggressive contention man-
agers constantly delivered inferior performance in this ap-
plication.

4.3.4 Vacation
The Vacation application simulates a travel management

system. Each thread reads and writes to a shared set of
trees that keep track of customers and their reservations
for various travel items. As in KMeans, we executed a low
and high contention workloads. Vacation transactions are
relatively large with an average read-set size of 420 and an
average write-set size of 18.

Figure 8 shows the results of the Vacation application. It
is clear that Vacation greatly benefits from all contention
managers, with a 17%-65% improvement in speedup com-
pared to TL2.
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Figure 5: Throughput and abort rate of SSCA2
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Figure 6: Throughput and abort rate of KMeans. Low contention workload on first row, high on second row.

5. DISCUSSION
From the previous section, we observe several trends in

performance of the benchmarks we tested. The most signif-
icant trend that we see is that throughput does not drop as
fast compared to TL2 when using more threads than there
are cores. The improvement in performance comes from the
decline in abort rate - since less transactions are aborted, the
throughput is higher. Abort rate is lower, since transactions
are able to proceed when faced with held locks instead of
aborting repeatedly. For example, in the 64K red-black tree

integer set with 20% update operations as shown in Figure
3, the abort rate when using 32 threads in AggressiveLS is
12.4% and 31.8% in TL2. Table 1 summarizes the abort
rates when using 32 threads in TL2 compared to the best
performing contention manager.

However, a question arises – why does performance still
drop? The answer is that even when using lock stealing,
conflicts with transactions that are in their “Window of Un-
Abortability” are still expensive, as the conflicting transac-
tions must either wait or abort. Hence, even though opti-
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Figure 7: Throughput and abort rate of Intruder
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Figure 8: Throughput and abort rate of Vacation. Low contention workload on first row, high on second row.

mally we would like throughput to remain at peak level this
is not achievable by our mechanism.

An interesting observation from Table 1 is the fact that
we do not see a significant improvement in abort rate for
the KMeans and Intruder applications, but still observe a
very significant improvement in throughput when using lock
stealing. A closer look at the data shows, that when using
32 threads, both KMeans and Intruder are under extreme
load, and achieve almost no speedup due to parallelism: In-
truder and KMeans Low achieved a speedup of 1.1 while

KMeans High achieved a speedup of 0.9. Despite the high
improvement in percentage, in practice the improvement in
speedup is not significant.

A second trend that we see in some of the benchmarks
is improvement in peak throughput. This usually occurred
when using as many threads as there are cores, but not al-
ways. When analyzing the relationship between peak through-
put and abort rate we see that lock stealing improves through-
put if there is a significant place for improvement, i.e. a



Table 1: Correlation Between Abort Rate in TL2 and Performance Improvement When Running 32 Threads

Abort Rate Contention Abort Throughput
Benchmark in TL2 Manager Rate Improvement

Red-Black Tree, 64K, 20% 31.8% AggressiveLS 12.4% +19%
Red-Black Tree, 64K, 50% 50% KarmaLS 27.7% +32%
Red-Black Tree, 1M, 20% 25% KillPrioLS 10% +9.3%
Red-Black Tree, 1M, 50% 41% AggressiveLS 22.4% +36%

Linked List, 1K, 20% 59% AggressiveLS 48% +26%
Linked List, 8K, 20% 61% Aggressive 40% +30%
Skip List, 64K, 20% 36% AggressiveLS 30.3% -3%
Skip List, 1M, 20% 27% KillPrioLS 19.3% +7%

Abort Rate Contention Abort Speedup
Benchmark in TL2 Manager Rate Improvement

SSCA2 30% KillPrioLS 23% +14%
KMeans Low 98.4% KillPrioLS 96.7% +54%
KMeans High 98.6% KillPrioLS 97.4% +44%

Intruder 90% KarmaLS 90% +53%
Vacation Low 42.3% KarmaLS 30% +66%
Vacation High 62.5% KillPrioLS 38.2% +53%

relatively high abort rate in TL2. For example, Lock Steal-
ing does not improve peak throughput in the red-black tree
benchmark since its abort rate in TL2 ranges from 1.5% to
8% (depending on the workload). In contrast, in the Vaca-
tion application, the abort rates in TL2 range from 12.2% to
25.2% and a noticeable improvement in peak throughput is
observed. Table 2 summarizes the correlation between the
abort rate in TL2 when peak performance is achieved and
the improvement by the best performing contention man-
ager. Note that for Vacation High we specify two peaks, as
TL2 peaked in 4 threads and the Lock Stealing contention
managers peaked in 8 threads.

Table 2 shows another interesting point – in almost ev-
ery case where performance improvement is not achieved,
the best performing contention manager was Aggressive or
AggressiveLS. The aggressive contention managers have the
least overhead, since they require no bookkeeping from the
STM system (to calculate karma for example). Thus, in
cases where our approach cannot improve, the contention
managers with the least overhead deliver best performance.

From the table we can see that a very low abort rate can
in-fact lead to degradation in performance, as our contention
management policies have no room to improve but still incur
overhead.

6. RELATED WORK
Researchers have proposed ideas similar to lock stealing

to simplify nonblocking programming [9] and to facilitate
using efficient lock-based STM techniques in nonblocking
STMs [15]. These works improve existing capabilities in
nonblocking STMs while we introduce new capabilities to
lock based STM (i.e., aborting other transactions and pro-
gressing) which have not yet been introduced in lock-based
STMs.

The revocable locks of Harris and Fraser [9] are used to
pass ownership of a transaction descriptor from thread T2

to T1 so that T1 can help T2 commit if they conflict. In
contrast, we show how to pass ownership of a blocking lock

from one thread to another for the purpose of aborting the
original owner and progressing. Additionally, since we are
focused on lock-based STMs our technique is more efficient
than techniques in the nonblocking setting. Both [9, 15] re-
quire indirection: values of memory locations may reside in
some private buffer and not in the actual location. In [9], the
data at the location is actually modified to indicate indirec-
tion is required, whereas in [15] a separate orec table is used.
Indirection increases the cost of memory accesses; compli-
cates privatization; and implies that non-transactional code
is either not allowed to access data modified by transactions,
or that the non-transactional code needs to be instrumented
to follow the STM protocol. Lock stealing has none of these
limitations. Additionally, unlike [9] which performs revo-
cations using OS primitives, lock stealing uses only CAS
operations. This makes it relatively fast and applicable in
any OS and in managed runtimes like Java.

RobuSTM [23] is a lock-based STM that includes the abil-
ity to steal the locks of a running transaction. The motiva-
tion for stealing in RobuSTM is robustness, i.e., ensuring
that some transaction always commits. Thus, RobuSTM
only allows one thread at a time to steal a lock. Our mo-
tivation — throughput in the face of preemption — differs
from [23]. Thus we allow for any number of threads to steal
locks concurrently. In addition, RobuSTM relies on an x86-
only atomic OR to guarantee stealing success, which isn’t
suitable for managed runtimes that cannot rely on hardware
features which are not available in all common platforms.

Another related line of work is that of using preemption
deferral mechanisms to prevent lock-holding threads from
being switched out by the operating system [3, 14]. The
idea is that when a thread acquires a lock it notifies the op-
erating system’s scheduler via a thread-local data-structure
that it wishes to avoid being switched out. When the thread
commits the transaction it returns to its normal state. TL2
uses the schedctl system API of Solaris to implement this
functionality [3] while [14] implemented an extension to the
operating system’s scheduler in Linux, as Linux does not
have a schedctl-like mechanism. Both approaches yield



Table 2: Correlation Between Abort Rate in TL2 and Peak Performance Improvement
Abort Rate Contention Peak Throughput

Benchmark Threads in TL2 Manager Improvement

Red-Black Tree, 64K, 20% 8 1.5% AggressiveLS -11%
Red-Black Tree, 64K, 50% 8 8% KillPrioLS +2%
Red-Black Tree, 1M, 20% 8 1.1% Aggressive -10%
Red-Black Tree, 1M, 50% 8 6.1% AggressiveLS -9%

Linked List, 1K, 20% 4 18.6% KillPrioLS +1%
Linked List, 8K, 20% 4 20.4% AggressiveLS -23%
Skip List, 64K, 20% 8 1.5% AggressiveLS -5%
Skip List, 1M, 20% 8 0.3% KillPrioLS +7%

Abort Rate Contention Speedup
Benchmark Threads in TL2 Manager Improvement

SSCA2 8 2.6% AggressiveLS +3%
KMeans Low 8 51% KarmaLS +2%
KMeans High 8 66% KarmaLS -18%

Intruder 4 18.5% KarmaLS +20%
Vacation Low 4 12.7% Karma +35%
Vacation High 4,8 12.2%, 25.6% Karma, KarmaLS +17%, +30%

good results yet suffer from a few problems that lock stealing
addresses.

To avoid misuse, preemption deferral mechanisms are best
effort and the scheduler is free to ignore a request to de-
fer preemption. If this happens, transactions are forced
to serialize behind the switched out lock holder and the
STM’s performance will suffer. In addition, redistributing
the time-slices between threads might lead to fairness issues
with other processes that are running on the same system,
in data-center applications for example. Furthermore, pre-
emption deferral only handles context switches due to the
fact that the thread used up its time-slice. If a thread is re-
solving a page fault while holding locks the context switch is
unavoidable as the thread cannot continue executing before
the page fault is resolved, and the system would again block.
Similarly, if an interrupt is raised from the hardware while a
thread is holding a lock, the user-level thread will stall while
the operating system handles the interrupt, so preemption
deferral provides no relief for this scenario as well.

Finally, preemption deferral is a platform specific mecha-
nism. Providing this mechanism to platform agnostic frame-
works such as Java is not trivial; it affects the application’s
portability to other platforms and even if provided, will in-
crease the complexity of the application. For applications
with little portability requirements such as embedded de-
vices this is not a problem, but for other applications, such
as games, business and desktop applications portability and
simplicity are major requirements.

Lock stealing is an opposite heuristic to preemption de-
ferral: a transaction that conflicts with another transaction
prefers to abort the other transaction instead of waiting for
the other transaction to commit. Lock stealing is a com-
pletely algorithmic user-level technique and requires no spe-
cial OS support, as evidenced by our Java implementation
of it. Finally, because lock stealing hands the responsibility
of making progress back to the transaction that encounters
a held lock, it can also handle context switches due to page
faults or interrupts. In our approach, as long as the other
transaction is in its “Window of Abortability” the conflict-

ing transaction may abort it and steal its locks, regardless
of the state of its thread.

An alternative approach to mitigate the problem of re-
peated aborts is yielding when faced with a switched-out
thread that holds a lock. A thread may attempt to ac-
quire a lock several times and if fails, can yield its time
slice back to the scheduler. However, while reducing the
number of aborts this approach also impacts throughput by
reducing the number of transactions that are started. In
addition, there is no guarantee that the next thread to be
scheduled by the scheduler would not encounter the same
conflict. Again, lock stealing is an opposite heuristic as it
instructs threads that are running to make progress when
faced with contention rather than give up their time slice.

Steal-on-abort is another notion of“stealing”(distinct from
our work) that was proposed by Ansari et al. [1]. They
suggest aborted transactions should be stolen by their oppo-
nents and serialized after them to prevent repeated conflicts.
But in our oversubscription settings, the opponents are likely
preempted and cannot do this stealing. Steal-on-abort has
additional limitations that we do not suffer from: (1) it re-
quires a model where threads submit their transactions to a
thread pool for execution, and (2) it requires visible accesses
to detect conflicts between two active transactions.

7. CONCLUSION
In this paper we have proposed Lock Stealing, an algo-

rithm that can enhance lazy lock-based STM algorithms.
Lock stealing enables transactions to take locks from other
transactions instead of waiting for the other transactions to
release them. It is therefore an algorithmic solution that
does not rely on external OS-specific mechanisms, and as
such can be readily used in portable applications and man-
aged runtimes like Java.

We implemented lock stealing in Java using Deuce STM
as a framework and TL2 as a base STM algorithm, and eval-
uated it on several benchmarks. Our results show that lock
stealing is effective in parallel applications that experience



a medium level of contention when the number of threads is
equal to or larger than the number of cores.

Availability
Our code is available as part of the Deuce STM project on
http://sites.google.com/site/deucestm/
(org.deuce.transaction.tl2cm package)
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