
View Transactions and the Relaxation of Consistency
Checks in Software Transactional Memory

Yehuda Afek Adam Morrison Moran Tzafrir

School of Computer Science
Tel Aviv University

Abstract

We present view transactions, a model for relaxed consistency checks in software transactional mem-
ory (STM). View transactions always operate on a consistent snapshot of memory but may commit in a
different snapshot. They are therefore simpler to reason about, provide opacity and maintain compos-
ability. In addition, view transactions avoid many of the overheads associated with previous approaches
for relaxing consistency checks.

1 Introduction

Transactional memory implementations are prone to false aborts, aborts of transactions that could be
correctly serialized at the program semantics level, but that still conflict at the low level of memory reads
and writes. For example, consider the set abstract data type1 implemented by a sorted linked list. A
transaction Ti executing insert(205) that is about to link a new node after a node with key 203 does not
need to abort if another transaction Td concurrently deletes a node with key 17, even though that deletion
invalidates Ti’s snapshot of the list. In addition, STMs need to constantly perform consistency checks
to guarantee the serializability of all low level memory operations, and these checks incur a considerable
performance hit.
To solve these issues, researchers have proposed relaxing STM consistency checks in different ways so that
transactions that conflict at the memory level can still commit if they do not conflict at the program
semantics level. Two prominent examples of such proposals are the early release model of [5] and the recent
elastic transactions model [3]. In both proposals, it is up to the programmer to decide when to use relaxed
checks, and making this decision requires reasoning about whether correct semantics of the program will be
preserved under the relaxed checks. Thus, in contrast to the standard TM model, a programmer mistake
may lead to a non-serializable incorrect program.
We are therefore interested in making transactions with relaxed consistency checks easier to use and reason
about, to decrease the chance of programmers making mistakes when applying them. In this work we
propose view transactions, a new model for relaxed consistency checks. Unlike the previous proposals, in
which a transaction with relaxed consistency checks did not work on a consistent snapshot of memory and
therefore may have observed updates by concurrent transactions, a view transaction always operates on a
consistent state (snapshot) of memory. The relaxation of consistency checks is that a view transaction may
commit in a different snapshot than the one it worked on. A sufficient condition for program correctness with
view transactions is that the commit-time snapshot must be such that had the transaction operated on it,
its externally visible actions would be the same. The programmer must therefore identify the transaction’s
critical view — a subset of the run-time snapshot that needs to be validated at commit-time. We introduce
view pointers, an idea for easing the specification of the critical view. View transactions improve on previous
relaxed consistency approaches on two fronts, performance and usability.

2 Benefit of view transactions

View transactions combine the following properties, that are not all present together in the previous relaxed
transactional consistency models. The discussion below is summarized in Table 2.
Simple reasoning due to opacity. Because view transactions work on a snapshot, reasoning about them
is closer to traditional sequential reasoning — the programmer need not worry about handling concurrent

1The set abstract data type maintains a set of items and supports the operations contains(), insert() and remove() on
the set.

1



General? Transaction sees
consistent state?

Composable? Performance

Early release [5] yes can be adapted at
the cost of perfor-
mance (Section 3)

yes high only if not
working on snap-
shot

Elastic transactions [3] consistency checks
dictated by the
model and not user
controlled

no only sometimes high

View transactions yes yes yes high

Table 1: Properties of relaxed transactional consistency models.

updates. To date, relaxed consistency checks were used mainly in data structures such as lists and trees,
where observing inconsistencies seems not to lead to serious errors. 2 But to facilitate wider use of relaxed
consistency checks, programmers should be relieved from worrying about these inconsistencies.
Generality. View transactions are flexible enough to implement both the early release and the elastic
transactional models (while still operating on a snapshot), i.e., view transactions can be made to generate a
subset of the executions possible with these models. Therefore, proving correctness (even in these models)
should be easier when reasoning about the corresponding “emulating” view transactions, since the executions
that arise with view transactions are a subset of all possible executions of the “emulated” models.
Composability. The ability to compose view transactions. For example, the critical view of a list
contains() that fails consists of the nodes where the traversal stopped. This ensures that a subsequent
insertion of the item will be detected. Identifying critical views so that composability can be achieved
requires care on the part of the programmer, but it is at least possible while still maintaining high perfor-
mance. In elastic transactions composability is not always possible, and in early release performance suffers
if it is adapted to work on a snapshot (see next section). Composability allowed us to adapt the STAMP
benchmark vacation to view transactions almost trivially.
Performance. We defer analysis of view transactions’ performance to the next section where we describe
our implementation. The end conclusion, however, is that view transactions are comparable or outperform
previous proposals on the benchmarks we evaluated. Thus, the original goal of achieving good performance
is not harmed by the additional features of view transactions.

3 View transactions implementation

In contrast to DSTM [5], which relies on continuously validating the read set to maintain a snapshot and
can therefore violate opacity when locations are removed from the read set using early release, modern
STMs maintain a snapshot using location versions and a global clock [2]. It is therefore seemingly easy
to adapt early release to a modern STM and obtain most of the conceptual benefits of view transactions.
However, many false aborts can still occur due to the version check when a transaction finds that a location
contains a value that is not consistent with its snapshot, forcing the STM to abort it. As we discuss below,
this effect can completely destroy the performance benefit from relaxed consistency checks.
View transactions overcome this problem using multiversions [1] (a technique originally used in database
systems) in which it is possible to access older versions of a location. Thus, a view transaction may observe
older values (that are nevertheless consistent with its run-time snapshot) and thereby avoid false aborts, as
these values may not need to be valid in the commit-time snapshot. Multiversions therefore avoid forcing
the relaxed transactions to deal with inconsistent data, as happens in previous approaches.
To exploit multiversions, view transaction use a new light read primitive, which returns a value consistent

2Even so, reasoning about correctness in the face of concurrent updates is not a trivial task. For example, the correctness
proof for a linked list implemented using elastic transactions takes up 2.5 pages in [3].

2



with the transaction’s snapshot but does not carry any promise that the value is valid when the transaction
commits. A light read tells the STM that a read value need not be valid at commit time, allowing it to
return an older version.
Performance. The use of multiversions avoids false aborts and results in view transactions outperforming
early release by 2× and a TL2-like STM by 7× on a linked list benchmark (which is prone to false aborts)
on an Oracle T2+ processor. Moreover, the light read primitive imposes almost zero overhead on top of
the version checks done at read, whereas both previous approaches need to perform some (even if minimal)
bookkeeping. This is significant because in transactions that benefit from relaxed consistency checks, most
read values are not critical and can be read using light reads. Therefore, (1) view transactions outperform
elastic transaction by 1.13× on the linked list benchmark (despite identical abort rates), and (2) on a red-
black tree workload (with no false aborts) view transactions manage to outperform early release by 1.2×
and elastic transactions by 1.3×.
View pointers. How can a programmer specify the critical view of a transaction? It is possible to have a
location that was originally accessed using a light read be validated at commit time by rereading it using a
normal STM read. We propose simplifying this task using view pointers, a layer above the STM interface.
View pointers are STM-aware objects the register themselves with the STM when created, and unregister
when destroyed. When a view pointer is dereferenced, it uses the light read primitive to access the
memory it points to. Whenever a transaction makes an externally visible action (like a write or commit)
the locations that are currently pointed to by registered view pointers are added to the read set. While
not guaranteed to work in general, using view pointers instead of standard pointers seems to work well on
linked lists, search trees and similar data structures. It is interesting to characterize the conditions under
which view pointers guarantee program correctness.

References
[1] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed database systems. ACM Computing Surveys (CSUR),

13:185–221, June 1981.

[2] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06), volume 4167 of LNCS, pages 194–208. Springer-Verlag, Oct 2006.

[3] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transactions. In Proceedings of the 23rd International Symposium on
Distributed Computing (DISC’09), volume 5805 of LNCS, pages 93–107. Springer-Verlag, Sep 2009.

[4] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 175–184, New York, NY, USA, 2008. ACM.

[5] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software transactional memory for dynamic-sized data
structures. In PODC ’03: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing, pages 92–101, New
York, NY, USA, 2003. ACM.

[6] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[7] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[8] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM, 26(4):631–653, 1979.

3


