
Efficient Resource Placement in Cloud

Computing and Network Applications

Yuval Rochman

Tel Aviv University

Tel-Aviv, Israel

yuvalroc@post.tau.ac.il

Hanoch Levy

Tel Aviv University

Tel-Aviv, Israel

hanoch@cs.tau.ac.il

Eli Brosh

Vidyo

New Jersey, USA

eli@vidyo.com

Abstract

We address the problem of resource placement in general networking applications, in particular cloud computing.

We consider a large-scale service faced by regionally distributed demands for various resources. The service aims

at placing the resources across regions to maximize profit, accounting for demand granting revenues minus resource

placement costs. Cloud computing and online services, utilizing regional datacenters and facing the problem of where

to place various servers, naturally fall under this paradigm.

The main challenge posed by this setting is the need to deal with arbitrary multi-dimensional (high-dimensionality)

stochastic demands. To allow the modeling of a large variety of applications we consider a fairly general framework: 1)

Operation cost is an arbitrary semi-separable convex function, 2) Demand is either static or dynamic, and 3) Regional

storage capacities can be either bounded or not. We show that, despite the challenging stochastic combinatorial

complexity, one can optimize the system operation using fairly efficient algorithms. Our framework deals with the

issues of static placement, dynamic placement and capacity allocation and provide efficient algorithms to each of

them. Our solutions are based on new theoretical techniques using graph theory methodologies that can be applied

to other optimization/combinatorial problems. Our analysis reveals that the length of the demand distribution tail

significantly affects the amount of resources needed in the system.

I. INTRODUCTION

Cloud computing has emerged as an attractive solution for delivering large-scale online services such as web

services, streaming and social network applications. Existing cloud computing platforms like Amazon EC2 [1] and

Microsoft Azure [2] typically organize a shared pool of servers in geographically distributed datacenters to provide

on-demand delivery of computing resources at scale. Large-scale services often feature demands that are highly

dynamic and geo-distributed and leverage cloud computing to serve users more efficiently and reliably.

A common approach used by large-scale services is to place (server) resources at various geographical areas to

be close to their users and guarantee adequate levels of service quality, e.g., low response times. It is typically

preferred to serve a demand by a resource located in the same area rather than by a remotely located resource. At

the same time, placing and maintaing a resource incurs a cost such as server rental cost. For example, Amazon EC2

offers several server instance types natively and few thousands more through a marketplace1. It bills instance usage

on a pay-per-use basis, e.g., according to an on-demand price plan that varies with instance type and datacenter

location. Thus, engineering such services in a cost-effective manner is far less than trivial.

Large-scale service providers face the challenging problem of how to place resources over the areas so as to

minimize the total operation cost while providing adequate level of performance, taking into account the demand

dynamics. For sake of generality, we capture demand as a multi dimensional distribution consisting of the demand

distribution for each resource and in each area. This problem typically involves solving a joint placement-assignment

problem: 1) deciding on the number of resources (of each type) in each area, and then 2) assigning demands

efficiently to the resources. Unlike many resource placement problems, our joint problem is driven by a stochastic

demand.

Our goal is to provide a framework and algorithms to address this challenge. To this end, we develop a general

model that captures the major parameters that affect the design of service placement algorithms in geo-distributed

environments, including: 1) A variety of resource types, 2) A stochastic demand, 3) The cost of placing and

maintaining a resource, 4) The benefit of satisfying the demand, e.g., the revenue associated with reducing user

response times, and 5) The area capacity and locations. The problem is of high dimensionality due to the amount

of areas, amount of resource types and, especially, the need to account for (multi-dimensional) full probability

distribution functions of the demand.

A. Model Generality, Structure of the Paper and Contributions

The generality of the framework allows solving, in addition to service placement problems, a large variety of

distributed resource allocation problems. One example is a cloud provider that offers infrastructure as a service (e.g.,

server instances), and maintains geo-distributed datacenters to be close to its users. It is typically better to provide

a request for a server resource from a local datacenter as apposed to a remote one. The provider’s objective is to

place servers (optimally) across datacenters and in the longer time-scale find the right sizing of the datacenters, so

as to optimize the total operating cost. Call center operators face similar challenges of how to allocate the available

personnel across the contact centers (e.g., on a daily basis), and how to estimate the total personnel pool (e.g., on a

yearly basis). Another related example is that of content distribution networks. Such systems feature large volumes

of content and highly-diverse demands, and seek to place the right content replicas at the edge servers so as to

satisfy the demand in a cost-effective manner.

Our paper makes the following contributions: First, we propose an algorithmic solution to the optimal placement

problem (Section III) and demonstrate that, despite the problem’s high dimensionality, it runs in relatively low

1An EC2 instance is a virtual machine that runs a specific application image.

complexity (O(smk), where s is system total capacity, m number of resource types, and k number of regions).

Our solution is based on presenting a closed-form revenue-based formulation and proposing a reduction to a min-

cost flow problem (Sections IV, V); Solution of the min-cost flow problem is then offered (Section VI). Compared

with [3] our solution is tailored for cloud computing applications, whereas the solution in [3] does not account

for the major parameters relevant to cloud computing, such as server rental costs, server capacity and resource

type dependency. Thus, the problems addressed in this paper are harder than the one presented in [3]. We propose

new solutions techniques such as Successive-Shortest-Path-Negative-Edges combined with node-potentials; these

techniques yield a low complexity algorithm which is significantly faster than the one proposed in [3].

In addition, this paper addresses two different problems which are not addressed in [3]: the capacity planning

problem and the dynamic placement problem, as described next. In Section VII we introduce an algorithm that

solves the unbounded placement problem where there is no restriction on the number resources allowed in an area.

The unbounded problem is useful for capacity planning – it allows one to determine the total quantity of resources

(and their locations) that optimizes the service operating cost, i.e., when the marginal profit approaches zero.

To derive the unbounded placement solution we introduce a new theoretical result, SSP convexity theorem, that

can be applied in other optimization problems where a min-cost flow algorithm called Successive Shortest Path

(SSP) is used (e.g [4], [3], [5]).

In Section VIII we introduce and analyze a novel dynamic online placement algorithm that accounts for time-

varying demand. We prove that small changes in the demand can lead to significant changes in the optimal

placement, though not necessarily in the optimal cost. Our algorithm, called LONA (Lazy ONline Algorithm),

finds an approximate placement (close to the optimal one) by deciding whether to maintain the current placement

or reconfigure the resources based on a pre-defined cost deviation threshold, avoiding unnecessary reconfigurations.

Finally (Section IX), we use our unbounded algorithm to evaluate the performance of the system by solving the

capacity planning problem. We demonstrate two major results: 1) As the demand for esoteric resources decreases,

the size of the solution as well as the number of iterations required by the algorithm increases. 2) Using stopping

rules differing from the one proposed in Section VII, such as stopping whenever the marginal cost decreases below

some threshold, is inefficient.

The reader should note that the framework addressed in this paper is fairly wide and entails, in some cases, many

details; for clarity of presentation, we placed some of these details in the appendix.

II. RELATED WORK

The problem of resource placement in distributed systems often falls under facility location theory [6]. This area

has received significant attention from the viewpoint of both analysis and algorithmic solutions. Our version of the

problem differs from traditional facility location problems in that it incorporates stochastic demands and capacity

constrains on the locations (servers).

Early works on distributed resource placement primary focused on placing content replicas across a content

distribution or a web cache network (see e.g. [7], [8]). However, most of these works have focused on static or

deterministic demand profiles, paying little attention to the capacity limits at individual servers and geographical

areas.

With the growth of cloud computing and large-scale online services, the problem of server placement in geo-

distributed environments has received increasing attention. Some works studied the problem from a standpoint of a

service provider. For example, [9] focused on dynamically optimizing service placement while ensuring performance

requirements; and [10] studied algorithms for dynamic scaling of social media applications. Other works looked

at the problem from a cloud provider’s viewpoint, i.e., assigning workloads to distributed datacenters in a cost-

effective manner [11]. These works typically develop an optimization problem with deterministic inputs and apply

it periodically. In contrast, we provide optimal algorithmic solutions that account for the full demand distribution.

Further, our dynamic algorithm can approximate the optimal solution by a given threshold, avoiding the need for

demand prediction mechanisms, as done in many other works.

A variant of the placement problem which accounts mainly for service costs (see basic model in Subsection III-A)

has been considered in the context of content replication in P2P systems. [12] was perhaps the first to study a network

setting similar to ours with an exponentially expanding topology for file sharing systems. It proved the optimality of

proportional replication i.e., one based on the mean demand, under the assumption of abundant storage and upload

capacity where all possible requests are always be served. In contrast, our model allows for restricting the number

of resources (files), resulting in min-cost flow based replication.

Other relevant works are [13], [14], [15] that focused on P2P VoD replication systems. [13] proposed an optimal

replication algorithm, called RLB, based on the assumption that the number of movies is much smaller than the

number of peers. The work focused on small-scale networks, and do not consider geo-distributed topologies. [14]

proposed placement framework for large-scale VoD service based on mixed integer program. While their model

accounts for arbitrary demand pattern and network structure it assumes deterministic demand, whereas we consider

stochastic one. Recently, [15] characterized the service efficiency of distributed content platforms as function of

servers’ storage size by using an asymptotic performance model for online matching algorithms. In this context, our

work maps to a single content server storage model, which enables us to solve the combined optimization problem

of matching and placement using exact analysis.

This work solves a wide and general setting; this is in contrast to [3], which formulated and treated the placement

problem under a basic and limited model (reviewed in Subsection III-A). More differences between [3] and our

paper are discussed in Subsection I-A.

Fig. 1. An example of the system topology. Note that the storage is s1 = 5 and s2 = 4 and the placement is L1
1 = 1, L2

1 = 0, L1
2 = 2 etc.

III. THE MODEL AND THE PROBLEM

For the sake of exposition, we start by describing a basic model for the placement problem with a simplified

cost model. We then describe the full model and the optimization problem. Although we focus our examples on

service placement in clouds, the generality of our model allows solving a variety of resource allocation problems

spanning from server placement in server farms to personnel placement in call centers.

A. A basic model

We consider a system consisting of k areas indexed by 1, 2, . . . , k. In each area one can place multiple resources

of different types indexed by 1, 2, . . . ,m. Let Lji denote the number of type i resources placed in area j. The set of

resources (servers) placed in these areas is called a placement and denoted by L = {Lji}. We assume that area j

is associated with a storage value sj representing a bound on the total number of resources that can be placed in it.

Placement L is called feasible if the number of resources in area j is not larger than sj , i.e Lj :=
∑m
i=1 L

j
i ≤ sj .

We consider a stochastic demand for resources. Let Dj
i be a random variable denoting the number of requests

for type-i resource in area j. We do not make any assumption on the distribution of Dj
i , namely it can be of an

arbitrary (non-negative) distribution. We assume that the demand CDF values Pr(Dj
i ≥ n), n = 0, 1, 2, . . ., are

calculated in O(1), and are available in an external data base. An example of the topology of a system is depicted

in Fig. 1, where every computer represents a resource.

Service cost model. Consider a request made in area j and a placement L. If the request is assigned to a resource

in L, then the request is called satisfied. If the request is satisfied, it is assigned to either of: 1) A resource of L

located in area j (and therefore the request is granted locally). 2) A resource of L located in a different area (granted

remotely). If a request is not assigned to any resource in L, then it is called an unsatisfied request. The costs of a

locally satisfied request, a remotely satisfied request, and an unsatisfied request are denoted by Cloc, Crem, Cunsat,

naturally obeying Cloc ≤ Crem ≤ Cunsat. For example, in cloud-based applications, these costs can represent the

revenue loss associated with increasing user response times when a request is granted remotely rather than locally

or when its not granted at all.

Given a placement L and a deterministic realization dji of the demand Dj
i , one can derive an optimal assignment

of the resources to the demand, yielding minimal assignment cost (see Section IV). Let C(L, dji) be the optimal

assignment cost and denote by gloc, grem and gunsat the corresponding number of requests granted under the

optimal assignment from a local area, granted from a remote area, and unsatisfied ones, respectively. Then, the

minimal assignment cost is simply C(L, dji) = Cloc · gloc + Crem · grem + Cunsat · gunsat. The expected service

cost E|D(C(L)) is defined as the expected value of the minimal assignment cost over all demand realizations:

E|D(C(L)) =
∑m
i=1

∑k
j=1 C(L, dji) · Pr(Dj

i = dji).

B. The full model

The full model generalizes the basic model by capturing common properties of current cloud and network

applications, such as resource placement costs and resource capacities.

Placement cost model. We associate a resources cost with placement L, denoted by Cr(L), which represents the

cost of placing and operating the resources of L. We assume that Cr(L) is a semi-separable function. Roughly

speaking, this means that Cr(L) consists of the sum of individual functions, each of them is a function either of:

1) The number of resources placed of type i (Li), 2) the number of resources placed in area j (Lj), 3) The number

of type i resources placed in area j (Lji). A formal definition of semi-separable functions is given in Section IV-C.

This cost model allows us to capture a variety of server rental plans. For example, the on-demand server pricing

of cloud providers such as EC2 can be captured as pji , a fixed price for running type-i server in area-j, yielding

a resource cost of Cr(L) =
∑m
i=1

∑k
j=1 L

j
i · p

j
i . A more complicated example can incorporate software licensing

costs and area-specific charges. Let ri be the licensing cost associated with type-i server and hj be an add-on

provisioning cost for area j. Then, the (semi-separable) resource cost becomes

Cr(L) =

m∑
i=1

k∑
j=1

Lji · p
j
i +

k∑
j=1

Lj · hj +

m∑
i=1

Li · ri. (1)

We assume that the resource cost is independent of the demand distribution Dj
i and of the service cost constants.

We define the total placement cost Cp(L) as the sum of the resource cost and the service cost

Cp(L) = Cr(L) + E|D(C(L)). (2)

We assume that Cp(L) is a convex function. That is, that the marginal profit from adding a resource (see

Remark 3.1) decreases as the quantity of resources increases, as is often the case in operating costs of real-world

systems.

Resource capacity. A type-i resource can serve at most Bi requests. This parameter can reflect the upload or

processing capacity of a server. Note that in the basic model Bi = 1.

Resource type dependency. In some applications, the service cost is dependent on the type of a request. For example,

some server instances of a cloud provider may be better at handling requests than others. Then, the service cost of

a request granted locally, remotely, and an unsatisfied request becomes Cloci , Cremi , Cunsati respectively, where i is

the request type. These costs obey Cloci ≤ Cremi ≤ Cunsati .

C. The placement problem

We define the (bounded) placement problem as a minimization of the (total) placement cost under storage

constrains. More formally, given the demand distributions {Dj
i }, i = 1, . . . ,m, j = 1, . . . , k, service cost parameters

Cloci , Cremi , Cunsati , placement cost parameters, area storage values s1, s2, . . . sk, resource capacities Bi and an

optimal matching algorithm, determine the optimal resource placement L = {Lji}, i = 1, . . . ,m, j = 1, . . . , k, that

minimizes the placement cost Cr(L) + E|D(C(L)) among all feasible placements obeying Lj =
∑m
i=1 L

j
i ≤ sj .

Remark 3.1: In some applications service cost parameters are alternatively replaced by service revenues pa-

rameters Rloc ≥ Rrem ≥ Runsat, representing the revenue of satisfying the demand. Under this setting we may

define an equivalent problem of maximizing placement profit where placement cost is replaced by placement profit

E|D(C(L))− Cr(L).

The unbounded placement problem In this formulation we solve the problem of finding the minimal cost

placement, where the number of resources in every area is unbounded (i.e., sj = ∞ for all areas j). Note that

the unbounded problem has an infinite number of feasible placements, making the modeling and solution harder.

Under this setting, we assume that an optimal placement does exist. That is, there exists a finite placement Lopt

such that for every placement L′ Cp(Lopt) ≤ Cp(L′).

The unbounded problem is useful for capacity planning, namely, to find how many resources are needed (and

their locations) to optimize the total service operation cost.

D. Repositioning costs and the dynamic placement problem

In the dynamic placement problem, we assume that the demand is time-dependent where the demand distribution

at time slot t is denoted as D(t) = {D(t)ji}. The total placement cost of placement L, which depends on the

demand, D(t), is denoted by CD(t)
p (L) and the optimal placement with respect to D(t) is denoted by Lopt(D(t)).

We call algorithm A an online algorithm if it computes the placement at time t, LA(t), only as a function of past

information; that is, it cannot use D(t+ 1), D(t+ 2), . . . Note that LA(t) is not necessarily the optimal placement

Lopt(D(t)).

Two important costs are relevant to an online algorithm: 1) The total placement cost deviation, and 2) The

resource repositioning cost. The former, denoted Cdev(A, t), evaluates the deviation of the total placement cost

between the output placement LA(t) and the optimal placement Lopt(D(t)) with respect to demand D(t). That

is Cdev(A,D(t))
.
= |CD(t)

p (LA(t)) − CD(t)
p (Lopt(D(t)))|. We denote the placement cost deviation of A as the

worst-case placement cost deviation over all inputs, i.e Cdev(A)
.
= maxD(t) Cdev(A,D(t)).

The repositioning cost evaluates the cost of repositioning the resources, namely of transforming placement LA(t)

to the placement LA(t + 1). The repositioning cost, denoted as r(A), counts the number of added and removed

resources, and therefore the repositioning cost is the L1 distance between LA(t) and LA(t + 1), i.e r(A, t) .
=∑m

i=1

∑k
j=1 |LA(t)

j
i − LA(t+ 1)

j
i | (LA(t)ji - number of type-i resources in region j). Finally, we denote the

repositioning cost of A as the worst-case repositioning cost over all inputs, i.e. r(A)
.
= maxt r(A, t).

The goal of the dynamic placement problem is to develop an online algorithm whose repositioning cost and total

cost deviation are low.

IV. THE LOSS FUNCTION

In this section we introduce the loss function, whose properties are a key for solving the placement problem. We

prove the following fundamental claims: 1) A placement L solves the placement problem if and only if it minimizes

the loss function over all feasible placements. 2) The loss can be computed using a simple closed-form formula.

3) The loss is a convex and a semi-separable function.

A. The loss function: preliminaries

The placement cost function as presented in Equation (2) is difficult to optimize. A key element in our analysis

is a transformation of the (expected) service cost from that equation, E|D(C(L)), into ”differential revenue”,

E|D(R(L)), which expresses the service cost in relative terms (e.g. cost of being served locally relatively to being

served remotely). The transformation facilitates the solution while preserving the problem; its details are given next.

To define the loss function, we use the following definitions:

Definition 1: Let M be a matching between a placement L = {Lji} and a demand realization dji . Let gloci (M),

gremi (M) respectively denote the number of type-i requests granted locally and remotely under the matching

algorithm M . The number of type-i requests granted globally (i.e, remotely or locally) is denoted by ggloi (M)
.
=

gremi (M) + gloci (M). We define the local differential revenue constant as the revenue gained from granting a

type-i request locally compared to granting it remotely, i.e Rloci
.
= Cremi − Cloci ≥ 0. The global differential

revenue constant is the revenue gain from granting a type-i request remotely compared to not satisfying the

request, i.e Rgloi
.
= Cunsati − Cremi ≥ 0. The matching revenue of M , denoted by R(L, dji ,M), is defined as

R(L, dji ,M) =
∑m
i=1(Rgloi · g

glo
i (M) + Rloci · gloci (M)). The maximal revenue value R(L, dji) is the maximum

value of the matching revenues R(L, dji ,M) over all possible matchings M . We define the service revenue as the

expected maximal revenue value, over all demand realizations, i.e E|D(R(L)) =
∑
R(L, dji) · Pr(Dj

i = dji).

To this end, we define the loss function or simply the loss of placement L as the resource cost minus the service

revenue,

lossp(L) = Cr(L)− E|D(R(L)). (3)

The following claim proved in the appendix establishes the loss as a key for solving the placement problem:

Claim 4.1: For every placement L, the difference between the loss function and the total placement cost,

lossp(L)−Cp(L) (Cp(L) defined in Eq (2)), equals to
∑m
i=1E(Di) ·Cunsati , which is constant. Thus, a placement

L solves the placement problem iff the placement minimizes lossp(L) among all feasible placements obeying

Lj =
∑m
i=1 L

j
i ≤ sj .

B. A closed-form formula for the loss function

To optimize the loss function (Eq. (3)) one must: 1) Account for all possible demands, 2) Derive for each of

them the optimal assignment of resources to demands, 3) Compute the cost of each such assignment, and finally 4)

Derive the expected cost as computed over all these assignments. All these steps are conducted in our Assignment

algorithm which is based on greedy matching principles and whose details (and proofs) are given in the appendix.

The Assignment Algorithm maximizes the number of locally granted requests in every area, and then it grants

remotely the other unsatisfied requests. We prove in the appendix that given a placement L = {Lji} and a demand

realization dji the algorithm grants globally ggloi = min(Bi · Li, di) (Bi is the type-i resource capacity) and grants

locally gloci =
∑k
j=1 min(Bi ·Lji , d

j
i) requests of type-i. We prove that the algorithm has a maximal revenue value

which equals to

R(L, dji) =

m∑
i=1

[Rgloi ·min(Bi · Li, di) +Rloci ·
k∑
j=1

min(Bi · Lji , d
j
i)]. (4)

This yields a closed-form formula for the service revenue E|D(R(L)), which is the expected value of the maximal

revenue value. Thus Eq (3) and Eq (4) imply the following corollary:

Corollary 4.2: The loss of placement L equals

lossp(L) = Cr(L)−
m∑
i=1

Rgloi · E|Di
(min(Bi · Li, Di))−

m∑
i=1

Rloci · [
k∑
j=1

E|Dj
i
(min(Bi · Lji , D

j
i))]. (5)

C. Properties of the loss formula

In order to find a placement that minimizes the loss, we study properties of the loss function, and use the

following definitions:

Definition 2: Let f : Nm·k → R be a discrete function.

1) f is called semi-separable iff there exists a set of discrete functions {gji }, {gi}, {gj} such that f is expressed

by the following formula

f(L1
1, L

1
2, . . .) =

m∑
i=1

k∑
j=1

gji (L
j
i) +

m∑
i=1

gi(Li) +

k∑
j=1

gj(Lj), (6)

where Li =
∑k
j=1 L

j
i , and Lj =

∑m
i=1 L

j
i . The set Mg(f) = {gji }

⋃
{gi}

⋃
{gj} is called the marginal

functions of f .

2) Given a one-dimensional discrete function g : N → R, define its differential function ∆g as the difference

between its successive values, i.e ∆g(n) = g(n)− g(n− 1) for n ≥ 1. The function g is called convex if its

differential function ∆g is monotonically non-decreasing, i.e, ∆g(n) ≥ ∆g(n+ 1) for all n ≥ 1.

3) The n-dimensional discrete function f : Nn → R is called convex if for every vector v−i ∈ Rn−1 the partial

function gv
−i

i (x) = f(v1, v2, . . . , vi−1, x, vi+1, . . .) is convex.

4) f : Nn → R is called concave if −f is convex.

In Section III we assumed that the resource cost, Cr(), is a semi-separable function. This means that there exists

a set of marginal functions Mζ(Cr) = {ζji }
⋃
{ζi}

⋃
{ζj} such that

Cr(L) =

m∑
i=1

k∑
j=1

ζji (Lji) +

m∑
i=1

ζi(Li) +

k∑
j=1

ζj(Lj). (7)

In the linear resource cost example presented in Eq (1) the marginal functions are simply ζji (Lji) = Lji ·

pji , ζ
j(Lj) = Lj · hj and ζi(Li) = Li · ri.

In the appendix we prove the following claim:

Claim 4.3: The loss function lossp is convex and semi-separable.

Thus, there exists a set of marginal convex functions Mγ(lossp) such that lossp(L) =
∑m
i=1

∑k
j=1 γ

j
i (L

j
i) +∑m

i=1 γi(Li) +
∑k
j=1 γ

j(Lj). To prove that the loss is convex, we use the assumption in Section III that the

placement cost Cp() is convex, and Claim 4.1.

V. REDUCTION TO A MIN-COST FLOW PROBLEM

As shown in the last section, the optimal solution for the placement problem must minimize the loss function

(Eq (3)), a semi-separable and convex function. In this section we show how to reduce the placement problem to

a min-cost flow problem using the marginal-differential functions.

A. Introduction to the min-cost flow problem

We start describing the min-cost flow problem [16], which is a generalization of the notable max flow problem. In

this problem one considers a directed graph G = (V,E) where every edge e ∈ E has integer capacity c(e) and a real-

value weight w(e) (alternatively, called cost). The graph must contain two different nodes: a source node x and a sink

node y. An x-y-flow f : E → R+ is defined on the graph edges (v, v′) ∈ E in the same way as defined in the max-

flow problem and must satisfy: 1) Capacity constraint: for each edge e ∈ E, 0 ≤ f(e) ≤ c(e). 2) Conservation of

flows: for every vertex v ∈ V \{x, y} we have
∑

(v′,v)∈E f(v′, v) =
∑

(v,v′)∈E f(v, v′). In addition to the standard

definitions, we define the flow at node v 6= x, y as the income flow (and by conservation of flows, the outcome

x

Layer 3
Areas

y

Layer 1
Source

Layer 4
(Areas, Types)

Layer 5
(Areas, Types, # Resources)

Layer 6
Types

Layer 7
(Types, # Resources)

Layer 8
Sink

Layer 2
(Areas, #Resources)

Fig. 2. The 8-layer graph . Note that the edge weights, which are the marginal-differential functions defined in Claim 5.1, can be negative.

flow) to (from) node v. We denote it by f in(v), which equals f in(v) =
∑

(v,v′)∈E f(v, v′)(=
∑

(v′,v)∈E f(v′, v) =

fout(v)). The flow value of f , as defined in the max-flow problem, is |f | =
∑

(x,v)∈E f(x, v) =
∑

(v,y)∈E f(v, y).

The weight (or cost) of flow f is w(f) =
∑
e∈E f(e)w(e).

The classic min-cost flow problem with required flow |f | = k is to find a flow fopt(k) of value k that has

minimal weight among all flows of value k. This means that for every flow f ′ such that |f ′| = |fopt(k)| = k we

have w(fopt(k)) ≤ w(f ′).

B. Reduction of the placement problem to a min-cost flow problem

Given the loss function lossp with its marginal functions Mγ(loss), we define the marginal-differential functions

{∆γji }
⋃
{∆γi}

⋃
{∆γj} simply as the differential of the correspond marginal functions {γji }

⋃
{γi}

⋃
{γj}. The

following claim regarding the marginal differential functions is straightforward:

Claim 5.1: The marginal-differential functions ∆γ can be calculated using the following equations:

∆γj(n) = ζj(n)− ζj(n− 1) (8a)

∆γji (n) = ζji (n)− ζji (n− 1)−Rloci Pr(Dj
i ≥ n ·Bi) (8b)

∆γi(n) = ζi(n)− ζi(n− 1)−Rgloi Pr(Di ≥ n ·Bi). (8c)

In a linear resource cost function (Eq (1)) the marginal-differential functions are equal to ∆γj(n) = hj , ∆γji (n) =

pji −Rloci Pr(Dj
i ≥ n ·Bi) and ∆γi(n) = ri −Rgloi Pr(Di ≥ n ·Bi).

Remark 5.2 (Properties of the marginal-differential functions): The marginal-differential ∆γ(n) are 1) monoton-

ically increasing, which stems from the fact that the loss is convex (see Claim 4.3), and 2) are negative if the addition

the nth resource benefits the system i.e, has a negative marginal cost.

We reduce the placement problem to a min-cost problem using the graph given in Fig. 2 as follows: We define

a directed 8-layer graph G8 = (V 8, E8). On every edge a pair c(e), w(e) so that c(e) is the capacity function

(presented in olivegreen color) and w(e) is the weight function. The graph is composed from the following 8 layers:

The source x, the (area, #resources) layer, the area layer, the (area, type) layer, the (area, type, #resources)

layer, the type layer, the (type, #resouces) layer, and finally the sink y. We also connect the source x to the sink

y.

In the graph we denote area j by aj , type i by ti, and #resouces by a number. The (area, #resouces), (area,

type, #resources) and (type, #resources) layers, for example, are respectively composed of nodes (aj , n) (where

1 ≤ j ≤ k and 1 ≤ n ≤ sj), (aj , ti, n) (where 1 ≤ j ≤ k, 1 ≤ i ≤ m ,1 ≤ n ≤ sj) and (ti, n) (where

1 ≤ i ≤ m and 1 ≤ n ≤
∑k
j=1 s

j). The entering edges to nodes (aj , x), (aj , ti, x) and (ti, x) have respectively

the marginal-differential weight ∆γj(x), ∆γji (x) and ∆γi(x) with capacity of 1. All other edges have weight 0

with capacity ∞.

Finding the min-cost flow on G yields the optimal placement as presented in the following lemma:

Lemma 5.3: Let fopt be the min-cost flow in G8 with a required flow of |f | =
∑k
j=1 s

j .
= s. Let L be a

placement with components equal to the flow in nodes (aj , ti), i.e Lji = f inopt(a
i, tj). Then L solves the placement

problem.

The correctness of the lemma is presented in the appendix, and stems from the fact that the marginal-differential

weights are monotonically increasing.

VI. SOLVING THE MIN-COST FLOW PROBLEM

In order to solve the min-cost flow problem, one can use the classic Successive Shortest Path (SSP) algorithm

with node potentials. The algorithm we introduce, called SSP-NE (Successive Shortest Path with Negative Edges),

differs from the classic SSP, which cannot be used on the 8-layer graph G8, where the edges weight w() can be

negative (Remark 5.2).

The SSP algorithm (as well as SSP-NE) operates in a greedy fashion: it find the best possibility of adding in

every iteration a resource to a region, and then substitutes resources between different regions. It maintains in its

ith iteration an optimal placement for i resources.

A. Classic SSP -preliminaries

We begin by describing the classic SSP algorithm, and then present our SSP version. SSP is a well-known

algorithm that solves the min-cost flow problem for general graphs with non-negative weights. Given a flow f on

a graph G = (V,E), the Successive Shortest Path (SSP) uses the residual graph Gf = (V,Ef). On the residual

graph edges one defines weight wf and capacity cf . Then, the residual graph Gf is constructed from graph G and

from flow f by the following steps: 1) Add to Gf edges from G, such that edge (v, v′) ∈ E will have weight

wf (v, v′) = w(v, v′) and capacity of cf (v, v′) = c(v, v′)− f(v, v′). 2) Add the reverse edges of G. That means, if

(v, v′) ∈ E, then add edge (v′, v) to Gf with weight wf (v′, v) = −w(v, v′) and capacity of cf (v′, v) = f(v, v′).

Note that for every edge e in Gf we have c(e) ≥ 0. 3) For every edge e ∈ Ef with capacity c(e) = 0 set its weight

to be wf (e) =∞.

1) The shortest path algorithm building block and the use of node potentials: Shortest path algorithms are

key building blocks for SSP. Two notable algorithms to calculate the shortest paths from one source v to all other

vertices, are the Bellman-Ford and Dijkstra’s algorithms. Dijkstra can run only on graphs with non-negative edges.

Bellman-Ford can run also on graphs with negative edges (assuming it does not contain a negative cycle), but has a

higher complexity than Dijkstra. The running time of Bellman-Ford on graph G = (V,E) is O(|E| · |V |) compared

to O(|E|+ |V | · log |V |) in Dijksra. More information on those algorithms can be found in [17].

One can use the reduced weight optimality conditions taken from [18] in order to prove that a given flow f

is a min-cost flow. To show these conditions, we use the definition of node potentials π : V → R which is a

function defined on the vertices of the residual graph Gf = (V,Ef). Given the potential function π the reduced

weight of an edge (v1, v2) = e ∈ Ef is defined as wπf (v1, v2) = wf (v1, v2) − π(v1) + π(v2). A node potential

function π satisfies the non-negative reduced weight conditions if the reduced weights of every edge e ∈ Ef are

non-negative (i.e wπf (e) ≥ 0).

The reduced weight optimality conditions are presented in the following theorem. We will use it for proving the

correctness of SSP-NE and for proving Theorem 8.2 in Section VIII.

Theorem 6.1 (Reduced Weight Optimality conditions): Let f be a flow with a required flow of |f | = k. Then

f is a min-cost flow iff there exists a node potential function π : V → R that satisfies the non-negative reduced

weight conditions.

2) A description of SSP: Finally, we present the classic SSP. In the initial step, SSP assigns the zero flow f := 0

(i.e f(e) = 0 for all e ∈ E) with flow value |f | = 0 and constructs the flow residual graph Gf . The algorithm sets

the node potentials π to 0.

SSP works iteratively, and in the ith iteration it calculates a min-cost flow of flow value larger than or equal to

i (in the G8 graph, it is exactly equal to i). SSP executes the following steps in every iteration: 1) Check if the

flow value |f | equals to the required flow k. If so, then f is the optimal flow and SSP terminates. 2) Use Dijksra’s

algorithm to obtain the shortest paths distances from the source x on Gf with respect to the non-negative reduced

weights wπ . We retrieve the shortest path p between x and y, which is called the augmenting path. If the shortest

path’s weight is infinity (i.e wπf (p) = ∞) then the maximal flow value of the graph G is strictly less than the

required flow k, and SSP returns an error. 3) We augment δ = min(k − |f |,min{c(e)|e ∈ E}) > 0 units of flow

through p. That means if (v, v′) = e ∈ p is in the original graph (i.e e ∈ E) then we update f(e) ← f(e) + δ,

and if the reverse edge in G (i.e (v′, v) ∈ E) then we update f(v′, v)← f(v′, v)− δ. 4) The node potentials π are

updated to be the previous node potentials minus the shortest path distance vector, i.e π .
= π − d, where d(v) is

the shortest path between x and v. 5) A new residual graph Gf is created according to the updated flow f .

3) SSP in the context of resource allocation problem: One can notice that the the weight of the shortest path

found by SSP over the 8-layer G8 graph equals the cost of the best possibility for adding a resource to a region,

and then substituting resources between different regions.

B. SSP-NE (Successive Shortest Path with Negative Edges)

The classic SSP cannot be used on weighted graph G with negative edges, and particularity cannot be used on the

8-layer graph G8 (Remark 5.2). Thus we introduce the SSP-NE algorithm for solving the problem over a general

subsets of instances, which includes the 8-layer graph G8 .

As opposed to the classic SSP, in our version the node potentials of the vertices are not automatically set to 0 in

the initial step. Rather, we use Bellman-Ford on Gf to calculate the shortest paths from source x with respect to

the original weight function wf . If d(v) is the shortest path weight between x and a node v, then we set the initial

node potential π to be π(v) = −d(v). By using this settings, π satisfies non-negative reduced weight conditions,

as shown by the following theorem (proved in the appendix).

Theorem 6.2: Let G be a graph with arbitrary edge weights w and with no negative cycles. In every iteration of

SSP-NE, the node potential π satisfies the non-negative reduced weight conditions.

The 8-layer graph G8 is acyclic, and in particular, it does not contain any negative cycle. Thus we can use

SSP-NE on G8 to retrieve an optimal placement Lopt using Lemma 5.3. The complexity of applying SSP-NE to

the placement problem is O(s2m2), where s =
∑k
j=1 s

j be the total storage value m is the number of resource

types. In the next section we present the Bipartite Graph Algorithm (BGA) , which solves the bounded capacity

problem faster than SSP-NE (O(skm), where k is the number of areas). Further, as opposed to SSP-NE, BGA can

be used for solving the unbounded capacity problem.

VII. CAPACITY PLANNING – THE UNBOUNDED PLACEMENT PROBLEM

In this section we are interested in dealing with capacity planning, which involves concurrently optimizing the

number of resources used in the system and their placement. To this end we solve the unbounded placement problem,

where the area storage is unbounded (i.e sj =∞ for all j).

The solution presented earlier for the bounded problem (using SSP on the 8-layer graph G8) cannot solve the

unbounded problem for two reasons: 1) The number of nodes in G8 is O(sm), where s is the total storage capacity

of the system. Thus the unbounded problem, where s =
∑k
j=1 s

j = ∞, would require an infinite graph and it

cannot find the shortest path in finite time. 2) The required flow for SSP equals to the total storage capacity, i.e

|f | = s =∞. Thus SSP, which runs |f | iterations, will never stop.

To address the first problem, we propose the Bipartite Graph Algorithm (BGA)2, which removes unnecessary

2The BGA version we provide in this article is different than the one suggested in [3]. For more information see Subsection I-A

nodes in the graph, transforming the graph to a finite one. To address the second problem we present a stopping

rule called the non-negative weight criterion.

BGA imitates the behavior of SSP. That means, in every iteration the algorithm finds a shortest path, which is

equivalent to adding a resource in a region and then substituting resources between different regions.

To show the non-negative weight criterion we present and prove SSP convexity theorem. The theorem, as far

as we know, is a new contribution to graph theory and it can be used in optimization problems where the SSP

algorithm is used. The SSP convexity theorem implies that once it is positive it will always be positive and no

further improvement can be achieved by adding more resources.

A. The Bipartite Graph Algorithm (BGA)

To present BGA, we study the structure of the monotone shortest paths between two nodes in the 8-level residual

graph G8
f (presented in Subsection VI-A).

Let f be a flow, and let vi and vj represent respectively a node in layer-i and a node in layer-j of G8
f , for

1 ≤ i 6= j ≤ 8. An edge e = (vi, vj) ∈ G8
f is called a forward edge iff i < j. If e = (vi, vj) is not a forward

edge, then it is called a backward edge. A path p in G8
f is called a forward path iff all the edges composing the

path are forward edges. Similarly, a path p in G8
f is called a backward path iff all the edges composing the path

are backward edges. A path p is monotone if it is a forward or a backward path.

The bipartite-like graph, denoted as GBf = (V B , EBf), is a sub-graph of the 8-layer residual graph G8
f

constructed from the 8-layer graph G8 (i.e V B ⊆ V 8). The graph represents the shortest monotone paths in

G8
f , and is composed of the following layers: The first layer consists of the source node x, the second layer consists

of area nodes aj , the third layer consists of resource type nodes ti, and the last layer consists of the sink node y.

These are layers 1, 3, 6, 8 in G8
f . The graph, depicted in Fig. 3, resembles a bipartite graph, excluding the source

and sink nodes.

The edge weight between u and v in the bipartite-like graph, which is denoted by wf (u
min→ v), equals to the

shortest monotone path between u and v in G8
f . For example, if we denote p(n) as the forward path composed

from nodes aj , (aj , ti), (aj , ti, n) and ti in the 8-layer residual graph G8
f , then the edge weight between aj and ti

in GBf equals to the weight of the shortest monotone path, i.e. minn wf (p(n)).

In the appendix we prove the following theorem:

Theorem 7.1: The shortest path in the bipartite-like graph GBf has the same weight as the shortest path in the

8-layer residual graph G8
f .

As in SSP, BGA uses the node potentials technique (see Subsection VI-A1) and defines the reduced weight of

an edge u min→ v as wπf (u
min→ v) = wf (u

min→ v) − π(u) + π(v). The node potentials in BGA are identical to the

potentials of the corresponding nodes in SSP. That means, if one denotes respectively πBGAi and πSSPi as the node

y

Areas nodes Types nodes

x

Fig. 3. The bipartite-like graph GB
f ; Node potentials π marked on the nodes.

potentials in the i-iteration of SSP and BGA then πBGAi (v) = πSSPi (v) for all v ∈ V B .

In the appendix we prove that given a min-cost flow f the weights of the bipartite-like graph edges wf (u
min→ v)

are computed in O(1) given the flow in area-j nodes (layer-3 nodes in G8
f) f j , the flow in type-i (layer-6) nodes

f i, and the flow in area-j type-i (layer-4) nodes f ij . Thus BGA will hold these values and will update the edge

weights of GBf according to them.

BGA imitates the behavior of SSP where each iteration in BGA corresponds to the equivalent iteration in SSP.

We now present a sketch of BGA: We first initiate the zero flow value fi = f j = f ji = 0 and define the node

potentials π on GBf using Bellman-Ford similarly to the initial step of SSP. Then, in every iteration, BGA will

do the following steps: 1) Find the shortest x − y path in GBf using Dijkstra (which has the same weight as the

shortest path SSP founds). 2) Update the node potentials π and flow values f ji , fi and f j values as described

in the appendix. Note that the components of the optimal placement correspond to the optimal flow Lji = f ji are

updated as well . 3) Update the weight of the graph edges of GBf according the new flow values and node potentials

function.

The optimality of BGA is proved by the following theorem:

Theorem 7.2: At the end of the nth iteration of BGA, whose placement components Lji equal to the flow in

area-j type-i nodes f ji (i.e Lji = f ji), has a minimal placement cost Cp(L) among all placements with number of

resources less than or equal to n i.e |L| .=
∑m
i=1

∑k
j=1 ≤ n.

The complexity of BGA is shown by the following theorem:

Theorem 7.3: In every iteration BGA computes Dijksra’s algorithm over a graph with O(m + k) vertices and

O(mk) edges takes O(mk). Updating bipartite edge weights is linear by the size of the path, and is bounded by

the number of vertices O(m+ k). Thus, the complexity in every BGA iteration is at most O(mk).

Remark 7.4: In a similar manner, we can construct a similar bipartite-graph (with different costs) that solves the

bounded problem with a complexity of O(smk), where s =
∑k
j=1 s

j is the total storage. This algorithm is superior

to the bipartite-graph algorithm introduced in [3] (whose complexity was O(skm(k+m)) and was limited for the

basic bounded model). More details can be found in the appendix.

B. The Non-Negative Weight Stopping Rule and the SSP convexity Theorem

Next, we introduce the non-negative weight criterion, a stopping rule which must be used to bound the number of

iterations. The non-negative weight criterion checks in every iteration of BGA if the shortest path weight wπf (popt)

(which by Theorem 7.1 equals to the shortest path weight of SSP) is non-negative (wπf (popt) ≥ 0). If it is non-

negative then BGA terminates, and the placement associated with the flow, i.e Lji = f ji , solves the unbounded

placement problem.

This is a non-obvious stopping rule: One must show that when BGA stops when it reaches an optimal solution.

That is, when the shortest path weight is wπ(popt) ≥ 0 then the placement Lji = f ji is an optimal placement among

all placements.

To prove the optimally of non-negative rule we prove the SSP convexity theorem. That means that the weights of

the shortest paths, which are the marginal costs of the min cost flow weight w(f), are monotonically non-decreasing.

Theorem 7.5 (The SSP Covexity theorem): Let G be a general graph with no negative cycles with respect to a

weight function w. Let pi be the shortest path in the ith iteration of SSP. Then, weights of the shortest paths are

monotonically non-decreasing i.e w(pi) ≤ w(pi+1).

Theorem 7.5 holds even on the 8-layer graph G8, which has infinitely many nodes. The theorem follows by

proving that the shortest path weight between the source x and a vertex v is monotonically increasing.

Proof of Theorem 7.5: Denote by df (u, v) the shortest path between u and v in the residual graph Gf respect

to wf . By the definition of the weight function we have dfi(x, y) = wfi(pi) in every i iteration of the SSP algorithm.

Also, by Theorem 6.2 there exists a node potentials function πi+1 such that wπi+1(e) ≥ 0 for every edge e in

Gfi+1
.

Suppose by contradiction that in the i-iteration (of SSP) the weights of shortest paths are decreasing, i.e

dfi(x, y) = wfi(pi) > wfi+1(pi+1) = dfi+1(x, y). Also, for every path p between a and b the weight of p respect to

the reduce weights wπi+1 is wπ(p) = w(p)−πi+1(a)+πi+1(b) (a proof can be seen in [18]). Thus, we can assume

the weights of shortest paths respect to the reduce weights wπi+1 are decreasing, i.e dπi+1

fi
(x, y) > d

πi+1

fi+1
(x, y).

We will choose a vertex v such that dπi+1

fi+1
(x, v) is minimal among all vertices with decreasing shortest path, i.e.,

d
πi+1

fi
(x, v) > d

πi+1

fi+1
(x, v).

The vertex v cannot be the source vertex x, otherwise dπi+1

fi
(x, v) = d

πi+1

fi+1
(x, v) = πi+1(x) − πi+1(v). Thus,

there is a vertex u such that the shortest path between x and v in Gfi+1 ends with (u, v). WLOG, the optimal path

between x and u does not decrease. Thus, we can imply that

d
πi+1

fi+1
(x, v) = d

πi+1

fi+1
(x, u) + wπfi+1

(u, v) ≥ dπi+1

fi
(x, u) + w

πi+1

fi+1
(u, v). (9)

If wπi+1

fi+1
(u, v) ≥ wπi+1

fi
(u, v), then by the definition of a shortest path we have

d
πi+1

fi
(x, u) + w

πi+1

fi+1
(u, v) ≥ dπi+1

fi
(x, u) + w

πi+1

fi
(x, u) ≥ dπi+1

fi
(x, v). (10)

Combining Eq (9) and Eq (10) will imply that the shortest path to v is not a decreasing - a contradiction.

Thus, the reduced weights obey wπi+1

fi+1
(u, v) < w

πi+1

fi
(u, v) and therefore the original weights in Gf obey the same

condition, i.e, wfi+1(u, v) < wfi(u, v). By the definition of the residual graph, wfi+1(u, v) < wfi(u, v) can be only

if wfi(u, v) =∞, where its residual capacity of the edge is cfi(u, v) = 0. Thus, the flow in edge (u, v) equals to its

positive capacity i.e, f(u, v) = cu, v > 0, and the residual capacity of its reverse edge is cfi(v, u) = −f(u, v) < 0.

Also, the weight of the reverse edge equals to the additive inverse of its original edge wfi(v, u) = −wfi+1
(u, v)

and therefore wπi+1

fi
(v, u) = −wπi+1

fi+1
(u, v) < 0.

The shortest path pi in the i-iteration cannot pass through (u, v) (which has infinite weight), otherwise SSP will

terminate. If pi does not pass through (v, u), then the edge weight of (u, v) in the iteration, i.e. wfi+1
(u, v), is

infinite, and therefore∞ = wfi+1
(u, v) = wfi(u, v)- a contradiction to wπi+1

fi+1
(u, v) < w

πi+1

fi
(u, v) . Thus, pi, which

is a shortest path, must pass through (v, u), and therefore

dπfi(x, u) = dπfi(x, v) + wπfi(v, u). (11)

But from Eq (9) the definition of v we obtain

dπfi(x, v) > dπfi+1
(x, v) ≥ dπfi(x, u) + wπfi+1

(u, v) = dπfi(x, u)− wπfi(v, u) = dπfi(x, v).

A contradiction.

Theorem 7.1 and Theorem 7.5 lead directly to the optimality of the stopping rule:

Corollary 7.6: Let fi be the flow that BGA finds at the ith iteration. Let pi be the shortest path in the ith iteration

of BGA. Assume that the shortest path pi0 is the first non-negative path found by BGA, i.e w(pi0−1) < 0 ≤ w(pi0).

Then fi0 has minimum weight over all possible min-cost flows (i.e fi0 = arg minf is min-cost flow w(f)). Thus, the

placement L associated with the flow fi0 solves the unbounded problem.

Finally, let |L| =
∑m
i=1

∑k
j=1 L

j
i denote the number of resources in placement L. In the appendix (Section A)

we prove that in every iteration of BGA the number of resources increases exactly by one resource. Thus, the

number of iterations that BGA uses is |Lopt|, where Lopt is the optimal placement for the unbounded problem (we

assume in Section III that an optimal placement exists). The complexity of the BGA is O(|Lopt|km) where k is

number of areas and m is number of resource types.

VIII. DYNAMIC PROBLEM: SENSITIVITY ANALYSIS AND A SOLUTION

In a dynamic environment one has to deal with the time varying demands D(t) and with the need to recompute

the optimal placement and reposition the resources as the demand changes. We start our analysis by showing that

any algorithm A that insists on recomputing the optimal placement and reposition the resources accordingly at every

time t may be subject to a very high repositioning cost r(A) (see definition in Subsection III-D). This holds even if

the prior placement computed by A, LA(t−1), is optimal with respect to D(t−1) (i.e LA(t−1) = Lopt(D(t−1)))

and the demands sets D(t− 1), D(t) are extremely close to each other (which we denote strongly ε-near). A high

reposition cost may be quite undesired since it may imply that the system operations must be held due to lengthy

repositioning.

To address this issue, we provide an online algorithm called Lazy ONline Algorithm (LONA) and denoted as

ALONA, which provides a tradeoff between the repositioning cost and the placement deviation. We prove that LONA

satisfies the following conditions: 1) Its placement deviation cost (defined in Subsection III-D) Cdev(ALONA) is

bounded by a given threshold ε, and 2) Its repositioning cost stays 0, if the demand set D(t) is close to the previous

used set (which we called weakly ε-near).

A. Sensitivity analysis

We start with the definition of strongly ε-near.

Definition 3: Given two vectors v̂ = (v1, . . . vn) and û = (u1, . . . un), the L1-distance between them is d(v̂, û) =∑n
i=1 |vi − ui|. Given two discrete distributions N1, N2 defined over the same support set {0, 1, 2 . . .}, we define

the L1-CDF distance as the L1-distance between the CDF vectors of N1 and N2 i.e d(N1, N2) =
∑∞
n=0 |Pr(N1 ≤

n)−Pr(N2 ≤ n)|. The demand sets D = {Dj
i }, D′ = {D′ji} are called strongly ε-near iff the following conditions

hold: 1) Dj
i = D′

j
i for all (i, j) 6= (i0, j0) and 2) d(Dj0

i0
, D′

j0
i0

) < ε.

In the following theorem we show that given strongly ε-near demand sets D(t), D(t−1), and an optimal placement

Lopt(D(t − 1)), computing the optimal placement for the next time slot Lopt(D(t)) yields a high repositioning

cost. Therefore, every online algorithm A which computes the optimal placement in successive time slots t− 1, t

has a high repositioning cost:

Claim 8.1: For every ε > 0 there exist two demand sets D(t − 1), D(t) which are strongly ε-near while the

L1-distance between the optimal placements Lopt(D(t− 1)) and Lopt(D(t)), is larger than the maximum storage

value i.e d(Lopt(D(t− 1)), Lopt(D(t))) ≥ maxj s
j .

A proof is given in the appendix.

B. The Lazy ONline Algorithm - LONA

To introduce LONA we present the following definitions:

Definition 4: Let D = {Dj
i }, D′ = {D′ji} be two demand sets. The demand distance between D and D′,

denoted as d(D,D′) is

d(D,D′) =

m∑
i=1

k∑
j=1

d(Dj
i , D

′j
i)R

loc
i +

m∑
i=1

d(Di, D
′
i)R

glo
i , (12)

where Rloc and Rglo are respectively the local and global differential revenue constants. This equation resembles Eq

(5). Demands sets D and D′ are called weakly ε-near if the distance between them is less than ε, i.e d(D,D′) < ε.

LONA is a simple lazy algorithm with a threshold parameter ε. At time t LONA holds a reference demand set

Dref (t) equaling D(τ) for some τ < t, where τ is the last time where the algorithm modified its placement. It also

holds as reference the optimal placement Lopt(D(τ)). The operation of LONA at t is simple: It compares Dref (t)

with D(t) and checks whether they are weakly ε-near; if they are, then the output of LONA, LA(t), is identical to

LA(t− 1) and equals to Lopt(D(τ)); otherwise LONA computes the optimal placement Lopt(D(t)) and sets this

is as its output LA(t). In this latter case LONA also updates the reference demand set Dref (t) to be D(t) and the

reference optimal placement to Lopt(D(t)). The optimal placement Lopt(D(t)) can be calculated by an optimal

placement algorithm (which can be either of SSP or BGA offline algorithms, or the online out-of-kilter algorithm

presented in the appendix.

We prove that LONA has a low total cost deviation, even in the cases where it does not recompute the optimal

placement:

Theorem 8.2: Let ε be the threshold parameter of LONA. If the demand reference Dref (t) and the demand

D(t) are weakly ε-near, then the deviation cost respect to D(t) is bounded by ε, i.e, Cdev(ALONA, D(t)) =

|CD(t)
p (LA(t))− CD(t)

p (Lopt(D(t)))| < ε.

The theorem is proved by examining the optimal flow problem, tracking the out-of-kilter algorithm [18] which

finds the min-cost flow fopt from a non-optimal flow f , and showing that it changes the flow weight by at most ε

using Theorem 6.2.

By Theorem 8.2 we have the following corollary:

Corollary 8.3: LONA satisfies the following properties: 1) Its placement deviation cost is less than the threshold

parameter ε, i.e Cdev(ALONA) < ε, and 2) its repositioning cost is 0 if the demand sets are weakly ε-near.

IX. CAPACITY ALLOCATION - PERFORMANCE EVALUATION

In this section, we evaluate the unbounded placement solution to study the rate of approximation as a function

of the number of resources. 3 We consider a demand that follows a Zipf distribution (which is consistent with

prior analytical works [12], [19] and VoD empirical results [20], [21]). This means that there exists a real number

e > 0 such that the probability for a single request to demand a type-i resource is pi = 1
ie·H for all resource types

3Comparison to non-optimal solutions, e.g proportional mean ([12]), was carried in [3].

Fig. 4. Total cost of placement as a function of the number of resources (# iterations in BGA)

1 ≤ i ≤ m, where H =
∑m
j=1

1
je . The demand in area j is assumed to be a Poisson distribution of parameter λj

and the demand for type-i resources originating from area j, Dj
i , is a Poisson distribution with parameter of pi ·λj .

In Fig. 4 we depict the total cost of the optimal placement as a function of its size. As it is unclear how future

demands will behave (prior references mentioned above used a Zipf parameter of values 0.56 - 1.5, depending on

the study) we consider a wide range of Zipf distributions and vary the Zipf parameter from 0.6 to 1.4. We set

receptively the number of resources types to be m = 100, the number of areas k = 3, the service cost parameters

Cunsat = 3 > Crem = 2 > Cloc = 0, and the demand distribution parameters λ1 = 400 < λ2 = 800 < λ3 = 1200.

In addition to service cost, we incorporate a linear resource cost (See Eq. (1)) where we set pji = hj = ri = 0.5.

We assume that every resource type can grant up to Bi = 5 servers.

Fig. 4 reveals several important properties regarding the behavior the optimal placement: 1) As the Zipf parameter

increases, i.e. the demand for esoteric resources decreases, the placement size increases. 2) The number of BGA

iterations equals to the placement size (See section VII-A). Thus, as the demand for esoteric resources decreases the

number of iterations for convergence of BGA increases. 3) Before reaching its final iterations, the cost derived by

BGA unbounded decreases almost linearly. This means that using another stopping rule for BGA unbounded, such

as stopping whenever the marginal cost decreases below some positive threshold, is inefficient and will degrade the

performance of the algorithm. In other words, only our presented non-negative weight criterion should be taken as

a stopping rule for the BGA unbounded algorithm.

X. CONCLUDING REMARKS

We addressed the problem of network resource placement. We introduced a modeling framework that captures a

wide variety of design parameters and problems, accounting for stochastic demands. We proposed an algorithmic

methodology that overcomes the dimensionality and efficiently solves a variety of problems, including static and

time varying placements as well as capacity planning. The methodology applies to a wide variety of practical

applications.

REFERENCES

[1] “Amazon EC2 home page. http://aws.amazon.com/ec2,” 2013.

[2] “Microsoft Azure home page. http://www.windowsazure.com,” 2013.

[3] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assignment in distributed network topologies,” in IEEE INFOCOM, Turin,

Italy, April 2013.

[4] Y. Li, S. Ranka, and S. Sahni, “In-advance path reservation for file transfers in e-science applications.” The Journal of Supercomputing,

vol. 59, no. 3, pp. 1167–1187, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/tjs/tjs59.html#LiRS12

[5] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal greedy algorithms for tracking a variable number of objects,” in CVPR.

IEEE, 2011, pp. 1201–1208.

[6] Z. Drezner and H. W. Hamacher, Facility Location: Applications and Theory. Springer, 2002.

[7] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of web server replicas,” in IEEE INFOCOM, Anchorage, AK, USA,

April 2001.

[8] F. L. Presti, C. Petrioli, and C. Vicari, “Distributed dynamic replica placement and request redirection in content delivery networks,” in

MASCOTS, 2007, pp. 366–373.

[9] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic service placement in geographically distributed clouds,” IEEE

Journal on Selected Areas in Communications, vol. 99, p. pp, 2013.

[10] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. Lau, “Scaling Social Media Applications into Geo-Distributed Clouds,” in IEEE INFOCOM,

Orlando, Florida, USA, March 2012.

[11] H. Xu and B. Li, “Joint Request Mapping and Response Routing for Geo-distributed Cloud Services,,” in IEEE INFOCOM, Turin, Italy,

April 2013.

[12] S. Tewari and L. Kleinrock, “Proportional replication in peer-to-peer networks,” in IEEE INFOCOM, Barcelona, Spain, April 2006.

[13] Y. P. Zhou, T. Z. J. Fu, and D. M. Chiu, “Statistical modeling and analysis of p2p replication to support vod service,” in IEEE INFOCOM,

Orlando, FL , USA, July 2011.

[14] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan, “Optimal content placement for a large-scale vod system,”

in ACM CoNEXT, Philadelphia, USA, Dec 2010.

[15] M. Leconte, M. Lelarge, and L. Massoulié, “Bipartite graph structures for efficient balancing of heterogeneous loads,” in Proceedings of

the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and Modeling of Computer Systems, ser.

SIGMETRICS, 2012, pp. 41–52.

[16] R. G. Busacker and P. J. Gowen, “A procedure for determining a family of minimal cost network flow patterns,” Operational Research

Office, Johns Hopkins University, Baltimore, MD, ORO Technical Report 15, September 1961.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill

Book Company, 2001.

[18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

[19] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer video-on-demand systems,” in IEEE INFOCOM, Orlando, FL ,

USA, July 2011.

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view from the edge,” in ACM Internet Measurement

Conference, ser. IMC ’07. New York, NY, USA: ACM, 2007, pp. 15–28. [Online]. Available: http://doi.acm.org/10.1145/1298306.1298310

[21] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez, “Greening the Internet with Nano Data Centers,” in ACM CoNext,

Rome, Italy, Dec 2009.

[22] Y. Rochman, H. Levy, and E. Brosh, “Max percentile replication for optimal performance in multi-regional p2p vod systems,” in Proceeding

of the 9th International Conference on Quantitative Evaluation of SysTems (QEST) 2012, London, UK, September 2012.

APPENDIX

PROOF OF CLAIMS

Proof of Claim 4.1: Consider {dji} a demand realization, and M be an assignment between the demand and

a placement L. We define the matching cost of M simply as

C(L, dji ,M) =

m∑
i=1

Cloci · gloci (M) + Cremi · gremi (M) + Cunsati · gunsati (M) (13)

where gloci (M), gremi (M) and gunsati (M) are respectively the corresponding number of type-i requests granted by

M from a local area, granted from a remote area, and unsatisfied ones. Similarly to the revenue case, we define the

minimal service cost between placement L and realization {dji} as the optimal assignment minimizing the matching

cost i.e C(L, dji) = arg minM C(L, dji ,M).

We will prove that the total sum, which simply as the sum of the cost matching and the revenue matching

R(L, dji ,M) + C(L, dji ,M) is constant. Consider the marginal value of a type-i request reqi in the total sum

according to the following cases:

1) If reqi is granted locally, then it is also granted globally. Thus its marginal value of the matching revenue is

Rloci +Rgloi = Cunsati − Cloci , and the marginal value in the total sum equals to Cunsati .

2) If reqi is granted remotely, then it is granted globally but not locally. Thus its marginal value of the matching

revenue Rgloi = Cunsati − Cremi and in the total sum Cunsati .

3) If reqi is an unsatisfied request, then it nor granted globally or locally. Thus, its marginal value of the matching

revenue is 0 and the marginal revenue in the total sum is Cunsati .

Thus every type-i request has a marginal value of Cunsati to the total sum. This implies that total sum equals to

C(L, dji ,M)+R(L, dji ,M) =
∑m
i=1 C

unsat
i Di., where Di is the number of type-i requests. Note that

∑m
i=1 C

unsat
i Di

is independent of the matching M . Thus, a matching M0 that maximizes matching revenue (i.e R(L, dji ,M0) =

R(L, dji)) must minimize the matching cost (i.e C(L, dji ,M0) = C(L, dji). Therefore,

C(L, dji) +R(L, dji) = C(L, dji ,M0) +R(L, dji ,M0) =

m∑
i=1

Cunsati Di. (14)

Taking expectation over the demand set D yields the theorem statement.

Proof of Claim 4.3: We assume in Section III that the resource cost Cr(L) is semi-separable and by Eq (4) the

service revenue E(R(L))|D is a semi-separable function. Thus, subtracting the resource cost with service revenue,

which equals to the loss function (Eq (3)), is also a semi-separable function.

We assume in Section III that total placement cost Cp(L) is convex. Also, by claim 4.1 loss function equals to

the sum of the placement cost and a constant c =
∑
iE(Di)C

unsat
i , i.e lossp(L) = Cp(L) + c. Thus, the loss

function is also convex.

Proof of Claim 5.1: It is sufficient to prove that for every constant C non-negative integer valued random

variable X we have E(min(X,C))−E(min(X,C − 1)) = Pr(X ≥ C). A proof of it can be found in [22] Claim

6.4.

Proof of Lemma 5.3: We will prove that for every placement P = {P ji } its loss lossp(P) is not larger than

the optimal flow weight fopt, which equals to the loss of its correspond placement L.

Let P be a placement. We define a flow f(P) as follows:

• The disjoint paths x-(aj , n)-aj , (aj , ti)-(aj , ti, n)-ti, ti-(ti, n)-y are assigned respectively with one unit of

flow if P j ≥ n, P ji ≥ n and Pi ≥ n; Otherwise, the correspond path is assigned with zero unit of flow.

• The flow between (aj , ti), and (aj , ti) is P ji

• The flow between x and y is s−
∑m
i=1

∑k
j=1 P

j
i

One can verified that 1) f preserves the capacity constraint and conservation of flows 2) the flow of f(P) equals to

|f(P)| = s and 3) the weight of f(P) equals to loss cost of P , i.e w(f(P)) = lossp(P). Since fopt is a min-cost

flow of flow value s, then lossp(P) = w(f(P)) ≤ w(fopt) as required.

As the marginal-differential functions ∆γ are monotonically increasing, WLOG min-cost flow fopt assigns one

unit of flow respectively to x-(aj , n)-aj , (aj , ti)-(aj , ti, n)-(ti),(ti)-(ti, n)-y if Lj ≥ n, Lji ≥ n and Li ≥ n.

Therefore the weight of fopt equals to the loss of L.

Proof of Theorem 6.2: We will prove the claim by induction on the iteration number k. In the initial step (k = 0)

of the SSP algorithm, all edges (v1, v2) in G have reduced weight equals to wπf (v1, v2) = w(v1, v2)+d(v1)−d(v2).

The shortest path between s and v2 is not strictly longer than the shortest path between s and v1 concatenated with

the edge (v1, v2), i.e w(v1, v2) + d(v1) ≥ d(v2). Therefore, wπf (v1, v2) ≥ 0. Every other edge e in the residual

graph Gf which is not in the original graph G must have infinity reduced flow (i.e. wπf (v1, v2) =∞). Thus in the

initial step of our version to the SSP algorithm, π satisfies the non-negative reduced weight condition.

Denote the node potentials function in the k iteration as πk−1. Then at [18] they prove that if πk−1 satisfies the

non-negative reduced weight condition, then so as πk. Thus, the claim is proved, as required.

Proof of Theorem 7.1: Let popt = (x, v1, v2, . . . , vs, y) be a shortest path in G8
f . We denote by u → v

a monotone path that begins in a vertex u and ends in vertex v. We will proved that there exist area nodes

a(1), a(2), . . . , a(n) and a type nodes t(1), t(2), . . . , t(n) such that popt = x → a(1) → t(1) → a(2) → . . . →

t(n)→ y. WLOG, the optimal path popt is not the edge (x, y).

By Theorem 6.2 all edges in G8
f have non-negative reduced weights. Thus, the graph does not contain negative

cycles (a proof can be seen in [18]). WLOG the optimal path popt does not contain cycles, otherwise the non-negative

cycles can be omitted from the path.

The first node in the optimal path v1 must be a layer-2 node (a(1), num) in G8
f . The second node, v2 must

be an area node a(1); Otherwise, v2 will be the source node x and the path popt will contains a cycle. Thus, the

path popt begins with a forward path between the source node x and an area node a(1) (i.e v1 = (a(1), num) and

v2 = a(1)). In the same way one can show that popt ends with a forward path between a type node t(n) and the

sink node y (i.e. end with the path t(n)-(t(n), num)-y. Similarly, one can show that by induction that the path

between a(1) and t(n) alternately passing between forward paths between area nodes a(i) and type nodes t(i) and

backward path between type node t(i) and area node a(i+ 1). Thus the optimal path is composed from monotone

paths.

WLOG, every monotone path in popt is a shortest monotone path i.e

popt = x
min→ aj1

min→ ti1
min→ aj2 . . .

min→ aje
min→ tie

min→ y,

Therefore, the weight of optimal path in G8
f , popt, equals to the weight of a path pB in GBf (wf (popt) = wf (pBopt)).

Also, every path pB in GB has an equivalent path p in G8
f with the same weight (i.e wf (p) = wf (pB)). Thus, the

weight of popt equals to the weight of the shortest path in GBf as required.

Proof of Theorem 7.2: This simply follows from Lemmas A.3, A.2 and Theorem 7.1.

Proof of Theorem 7.2: This simply follows from Lemmas A.3, A.2 and Theorem 7.1.

Proof of Corollary 7.6: This can be prove by the fact that the flow weight in the ith iteration equals to

w(fi) = wfi−1(pi−1) + w(fi−1).

Proof of Claim 8.1: We set D(t) to the instance where the number of requests is zero, i.e. Pr(D(t)ji = 0) = 1

for all resource type i and area j. Placing in every region only type-2 resources is optimal (i.e. Lopt(D(t−1))j2 = sj

for every j).

The demand set in the next time slot D = D(t+ 1) is defined as follows: 1) The probability that the number of

requests for resource of type-1 in area 1 is more than n with probability of ε
2n+1 (i.e Pr(D1

1(t) ≥ n) = ε
2n+1). 2)

The number of requests for type-i resources in area j, such that (i, j) 6= (1, 1) is 0 (i.e Pr(D(t)ji = 0) = 1). An

optimal placement for D(t+ 1) is the placement allocating to every region a type-1 resource. Note that D(t) and

D(t+ 1) are strongly ε-near, and the distance between Lopt(D(t− 1)) Lopt(D(t)) is s, as required.

Proof of theorem 8.2: To prove the theorem, we will use the out-of-kilter algorithm (presented in Section A)

that solves the min-cost flow problem. Suppose the demand set D = D(τ) = Dref (t) was updated to a new demand

set D(t). Then the weight function w() which is correspond 8-layer graph G8
f of the optimal flow f = fopt and

node potentials π, was updated a new weight function w′ (see Fig. 2). The reduce weights condition correspond to

the original optimal flow f (See Section VI) does not takes place as the weight function changed. Thus, we use the

out-of-kilter algorithm that given the (old) node potentials π and (old) optimal flow f finds a new min-cost optimal

flow f ′ with new node potentials π′, respect to the new demand D′ = D(t). We will prove that flow weight is

changed by at most ε (i.e. |w′(f)− w′(f ′)| < ε), and therefore, by Lemma 5.3, the theorem is be proved.

Let e = (u, v) be an out-of-kilter edge in the 8-layer graph G8
f respect to the initial node potentials reduce weight

w′
π , i,e., 0 > w′

π
f (e). On the other hand the reduce weight respect to the previous weight, wπf , is non-negative and

therefore wπf (e) ≥ 0. By the definition of reduce weights formula of wπ and w′π we obtain the following formula

w(u, v)− w′(u, v) ≥ −w′πf (u, v) = −w′π(u, v) > 0, (15)

and particularly we have w(u, v) 6= w′(u, v).

For the sake of the proof we call respectively to the edges entering nodes (aj , n), (aj , ti, n), (ti, n) area edges,

area+type edges and type edges. The weight of other edges is zero weight (i.e. w(e) = w′(e) = 0), according to

Fig. 2. The weight of area edges equals to w(e) = w′(e) = ∆ζj(n) = ζj(n)− ζj(n− 1) (according to Claim 5.1)

which is not dependent on the demand distribution D. Thus, out-of-kilter edges must be area+type edges and the

type edges.

Denote cyci the cycle found in ith iteration in State 7 of the out-of-kilter Algorithm. Then augmenting the flow

along cyci increases (State 9) the flow weight w′(f) by −w′(cyc), where w′(cyc) =
∑
e∈cyc w

′(e). Thus, if the

out-of-kilter algorithm runs over t iterations, then

w′(f)− w′(f ′) = −
t∑
i=1

w′(cyci) (16)

Denote πi the node potentials in the ith iteration. Then, the weight of every cycle C equals to the cycle weight

respect to node potentials πi, i.e w′(C) = w′
πi(C) =

∑
e∈C w

′πi(e). Let Ai denote the set of out-of-kilter edges

after the ith iteration. Then according to Lemma A.5 every in-kilter edge e ∈ cyci
⋂

(Ai)
c has reduced weight of

w′
πi(e) = 0. Thus, if we denote by Bi = cyci

⋂
Ai the out-of-kilter edges in the ith cycle, then the weight of

every cycle cyci equals to the sum of out-of-kilter edges i.e. w′(cyci) =
∑
e∈Bi

w′
πi(e). Thus, if we denote by

B =
⋃
i = 1tBi the out-of-kilter edges then we yield that w′(f)− w′(f ′) =

∑
e∈B w

′πi(e).

The area+type and type edges have capacity of 1. Thus, all out-of-kilter edges have a kilter number, which is

the residual capacity cf (e), of 1. If e ∈ Bi is an out-of-kilter edge then after augmenting through cyci its residual

capacity decreases and it becomes an in-kilter edge. Thus, the sets Bi for are disjoint in pairs i.e, Bi ∩Bj = ∅ for

i 6= j, and therefore

w′(f)− w′(f ′) = −
t∑
i=1

∑
e∈Bi

w′
πi(e). (17)

Let (u, v) = e ∈ Bi be an out-of-kilter edge. Then e is an out-of-kilter edge in the i−1-iteration with a negative

reduce weight i.e. w′πi−1(e) < 0. The node potentials of i iteration equals to πi = πi−1 − d, and therefore reduce

weight of edge (u, v) is w′πi(e) = w′
πi−1(e) + d(u)− d(v).

But the weight in the i iteration of edge e (Step 3) equals to max(0, w′
πi−1(e)) = 0, and the shortest path to v

is not longer than the shortest path to u, i.e. d(u) ≤ d(v). Therefore, we imply that w′πi(e) ≥ w′πi−1(e) for every

out-of-kilter edge e, and moreover, one can imply by induction that w′πi(e) ≥ w′π0(e), where π0 = π is the node

potentials in the initial iteration. Since e ∈ Bi is an out-of-kilter in the initial iteration (e ∈ A0) by Eq (15) we

obtain w′πi(e) ≥ w′π0(e) ≥ −|w′(e)− w(e)|, and by Eq (17) we imply that.

w′(f)− w′(f ′) ≤
∑
e∈B
|w′(e)− w(e)|. (18)

According to Claim 5.1, if e ∈ B is an area+type edge enters to vertex (aj , ti, n), then

w(e)− w′(e) = Rloci [Pr(Dj
i ≥ n ·Bi)− Pr(D′

j
i ≥ n ·Bi)]. (19)

Similarly, if e ∈ B is a type edge enters to vertex (ti, n) then

w(e)− w′(e) = Rgloi [Pr(Di ≥ n ·Bi)− Pr(D′i ≥ n ·Bi)] (20)

Then combining Eq (19), (20), (18) with the definitions of the demand distance (Eq (12)) and weakly ε-near

yields that

|w′(f)− w′(f ′)| ≤ d(D,D′) < ε

As required.

THE ASSIGNMENT ALGORITHM

To present the assignment algorithm we call a type-i resource partial-loaded if the number of requests assigned to

resource is strictly less than its capability Bi. If the number of requests assigned to resource equals to its capability,

then the resource is called fully-loaded.

In Algorithm 1 we derive a specific matching algorithm tailored for maximizing the revenue matching.

Algorithm 1 The assignment algorithm

Require: An placement L = {Lji}, the demand realization dji , and resource capacities Bi.
1: for all movie i do
2: for all region j do
3: Assign min(Bi · Lji ,d

j
i) type-i requests from area j to min(Lji ,

⌈
dji
Bi

⌉
) type-i resources in area-j.

4: end for
5: while There is an unmatched type-i request and a type-i partial-loaded resource do
6: Match the request with the resource.
7: end while
8: end for

By the following claim we prove the assignment matching optimality:

Claim A.1: Given placement L = {Lji} and demand realization dji , then the following claims holds:

1) For every matching algorithm we have gloci (M) ≤
∑k
j=1 min(Bi · Lji , d

j
i) and ggloi (M) ≤ min(Li ·Bi, di).

2) The assignment algorithm yields a revenue as in Eq (4). Moreover, the assignment algorithm maximizes the

matching revenue R(L, dji ,M).

Proof:

Proof of part 1): Let M be some matching algorithm, and denote gloci,j (M) as the number of type-i granted

locally in region j. Then the number granted locally requests is less than the number of requests, i.e gloci,j (M) ≤ dji .

Also, the number of requests granted locally is less than the number of resources multiple its capability ggloi,j (M) ≤

Lji · Bi. Therefore, we have gloci,j (M) ≤ min(Lji · Bi, d
j
i), and gloci (M) ≤

∑k
j=1 min(Bi · Lji , d

j
i) as required.

ggloi (M) ≤ min(Li ·Bi, di) is prove similarly.

Proof of part 2): We denote by Mopt the optimal assignment algorithm. In the end of Step 2 the number of type-i

requests granted locally is gloci (Mopt) =
∑k
j=1 min(Bi · Lji , d

j
i). We will prove ggloi (Mopt) ≥ min(Li · Bi, di).

Assume by contradiction otherwise, i.e ggloi (Mopt) < min(Li · Bi, di). Since ggloi (Mopt) < di and ggloi (Mopt) <

Li ·Bi, there exist a unmatched type-i request and a type-i partial-loaded resource. But in Step 5 we match every

unmatched type-i request to matched to a type-i partial-loaded resource - a contradiction. By using part 1) of the

claim, we yield that the number of type-i requests granted globally is ggloi (Mopt) = min(Li ·Bi, di). As required.

The algorithm optimality is driven immediately by the first part of the claim.

COMPUTATION OF THE WEIGHT OF EDGES AND NODE POTENTIALS IN A BIPARTITE GRAPH

By the following lemmas, we can compute the edges weight and node potentials of the bipartite graph in O(1)

(given computing the marginal differential is O(1)).

Lemma A.2: Let f be a flow that SSP calculates in its ith iteration in G8
f . We denote respectively by f ji , f

j , fi

the flow through (aj , ti), the flow through aj and the flow through ti . Then the minimal monotone paths weights in

G8
f can be computed in O(1) by the marginal-differential functions (Claim 5.1) as given in the following formulas:

1) wf (x
min→ aj) = ∆γj(f j + 1). 2) wf (aj

min→ ti) = ∆γji (f
j
i + 1). 3) wf (tj

min→ ai) = −∆γji (f
j
i) if f ji > 0 and

otherwise ∞. 4) wf (ti
min→ y) = ∆γi(fi + 1).

Proof of Lemma A.2: Note that a flow passing through vertex (aj , n) has a weight of ∆γj(n). As the marginal

differential functions are monotonically increasing, a min-cost flow must pass through vertices (aj , 1), (aj , 2), . . . , (aj , f j).

Thus, the weight forward paths x-(aj , n)-aj is ∆γj(n) iff n > f j and otherwise ∞. Thus, the minimal monotone

path between the source x and an area node aj must pass through vertices (aj , f j+1) with a weight of ∆γj(f j+1).

We have prove part 1), and parts 2), 3) and 4) can be proved by a similar way.

Lemma A.3: Let f and π be the node-potentials that SSP calculates in its ith iteration in G8
f , and let dB(v) be

the shortest path weight between x and v in the bipartite graph GBf (not the 8-layer residual G8
f graph) respect

to the node potentials π. Then, SSP updates the node potentials as π(v) = π(v)− dB(v) for every vertex v in V B .

Proof of Lemma A.3: For this proof we denote d8(v) = d(v) as the shortest path weight between x and v in

the 8-layer residual G8
f graph , with respect to π. Then SSP updates the node potentials as π = π − d8 = π − d

(See Section VI). Thus, it is sufficient to prove that for every vertex v we have dB(v) = d8(v).

Let v be a vertex in V B , and let pBopt(v) be the shortest path in G8. Then we have dB(v) = wπf (pBopt(v)). In

[18] they prove that the reduce weight for every path p between vertices a and b in a general graph G equals to

wπ(p) = w(p)− π(a) + π(b) where w(p) is the path weight. Thus, the shortest path respect to the node potentials

π equals to dB(v) = wf (pBopt(v))− π(x) + π(v)

Similarly to the proof Theorem 7.1, there exists a path p8opt(v) which has the same weight of pBopt(v) and is the

shortest path in G8
f , namely wf (pBopt(v)) = wf (p8opt(v)). This implies that shortest path respect to π in 8-layer

residual equals to d8(v) = wf (p8opt(v))− π(x) + π(v) = wf (pBopt(v))− π(x) + π(v) = dB(v), as required.

BGA COMPLEXITY AND THE BOUNDED CASE

First we prove the BGA complexity according to the following claim.

Claim A.4: BGA runs in O(lkm) where l is the number of iterations

Proof: In every iteration the algorithm finds the shortest paths in GBf by Dijkstra algorithm, which costs

O(|E|+ |V | log |V |) = O(km). Updating the node potentials and the flow values takes at most O(|V |) = O(k+m)

time, and updating the graph weights is at most O(|E|) = O(km) time.

To solve the bounded case (i.e sk are finite) we can set the marginal differential functions to ∆γj(n) = ∞,

where n ≥ sj + 1 and run BGA according to these new weights. In every iteration, BGA finds a shortest path that

can either the edge (x, y) with a zero weight (and therefore by the non-negative stopping rule BGA terminates) or

a shortest path that passes through areas node aj , which must have negative weight.

Assume that in the first s iterations BGA finds only negative shortest paths through areas node aj . Then according

to Lemma A.2 every edge (x, aj) in these shortest paths satisfied f j ≤ sj . Otherwise, the edges (x, aj) have infinity

weight, and the shortest path does not passes them. Since
∑k
j=1 f

j equals to the number of iterations (which is

s), then for every area j we have f j = sj . Thus, in the next iteration of BGA the shortest path must be the edge

(x, y), and BGA terminates.

Thus, after at most s iterations BGA terminates, and its complexity will be at most O(smk) for the bounded

case.

OUT-OF-KILTER-ALGORITHM

Let f flow be a flow defined on the graph G =< V,E >, and assume the reduced weight function wπ is defined

on Gf =< V,Ef >, such that wπ does not satisfies the non-negative reduced weight property.

An edge e ∈ Ef in the residual graph Gf is called out-of-kilter edge if its reduce weight is negative, i.e

wπf (e) < 0. For those edges we define its kilter number k(e) to be its residual capacity k(e) = cf (e). Note that if

the kilter number must be different then zero; otherwise, the residual capacity is zero, and the edge weight wf (e)

is set to infinite. For an in-kilter edge the kilter number is set to zero.

The out-of-kilter-algorithm (Algorithm 2) finds in every iteration an out-of-kilter edge and decreases its kilter

number. In [18] they proved the following Lemma.

Lemma A.5: Let f flow be a flow defined on the graph G =< V,E > and let π be an arbitrary node-potentials

function. Suppose we run the out-of-kilter algorithm on these parameters, and let ei = (u, v) and πi be respectively

the out-of-kilter edge chosen in Step2 and node potentials of the ith iteration (defined in step 5). Then the following

claims take place:

1) If e is an out-of-kilter edge in the cycle w of Step 7 respect to node potentials πi, then its kilter number is

strictly decreases. Moreover, the kilter number of ei strictly decreases.

2) All edges e in the cycle w have non-positive reduce weights (i.e. wπ(e) ≤ 0). Moreover, e is an in-kilter

edge in the cycle w, then its reduce weight wπi(e) equals to zero.

3) The kilter number of every edge in the residual graph does not increased.

Of course, combining the previous lemma with the non-negative reduced weight condition proves the optimality

of the algorithm.

Algorithm 2 The out-of-kilter-algorithm
Require: A feasible flow f on G, a residual graph Gf , node potentials π, a source x and a sink y in G.

1: while the network contains an out-of-kilter edge in Gf do
2: Select an out-of-kilter edge (u, v) in G.
3: Define the length of each arc e in Gf as max 0, wπ(e).
4: Let d() denote the shortest path distances from node v to all other nodes in Gf − {(u, v)} and let p denote

a shortest path from node v to node u
5: Update π(v) = π(v)− d(v) for every vertex v
6: if wπ(u, v) < 0 then
7: Define the cycle w = p

⋃
(u, v)

8: Find δ = min{c(e)|e ∈ E}).
9: Augment δ units of flow through f .

10: end if
11: end while

