The History of Fortran |, lI, and Il

JOHN BACKUS

This article discusses attitudes about “automatic programming,” the eco-
nomics of programming, and existing programming systems, all in the early
1950s. It describes the formation of the Fortran group, its knowledge of ex-
isting systems, its plans for Fortran, and the development of the language in
1954. It describes the development of the optimizing compiler for Fortran |,
of various language manuals, and of Fortran Il and Ill. It concludes with re-
marks about later developments and the impact of Fortran and its succes-
sors on programming today.

[Editor’s note: This paper originally appeared in the Annals of
the History of Computing, vol. 1, no. 1, July 1979. The sayings
used as “pull quotes” were not in the original paper but were on
cards that were distributed during the 1982 AFIPS National
Computing Conference, which included a “Pioneer Day” honor-
ing the Fortran pioneers. Readers interested in the topic of For-
tran should consult the Annals, vol. 6, no. 1, which was a special
issue devoted to the history of the language during its first 25
years.]

Early Background and Environment
Attitudes About Automatic Programming in the
1950s

Before 1954, almost all programming was done in machine lan-
guage or assembly language. Programmers rightly regarded their
work as a complex, creative art that required human inventiveness
to produce an efficient program. Much of their effort was devoted to
overcoming the difficulties created by the computers of that era:

e the lack of index registers,

e the lack of built-in floating-point operations,

e restricted instruction sets (which might have AND but not
OR, for example), and

e primitive input-output arrangements.

Given the nature of computers, the services that “automatic pro-
gramming” performed for the programmer were concerned with
overcoming the machine’s shortcomings. Thus, the primary con-
cern of some “automatic programming” systems was to allow the
use of symbolic addresses and decimal numbers (e.g., the MIDAC
Input Translation programlg).

But most of the larger “automatic programming” systems (with
the exception of J.H. Laning and N. Zierler’s algebraic system27
and the A-2 compilerzg’%) simply provided a synthetic “com-
puter” with an order code different from that of the real machine.
This synthetic computer usually had floating-point instructions
and index registers and had improved input-output commands; it
was, therefore, much easier to program than its real counterpart.

The A-2 compiler also came to be a synthetic computer some-
time after early 1954. But in early 1954, its input had a much
cruder form; instead of “pseudoinstructions,” its input was then a

complex sequence of “compiling instructions” that could take a
variety of forms, ranging from machine code itself to lengthy
groups of words constituting rather clumsy calling sequences for
the desired floating-point subroutine, to “abbreviated form” in-
structions that were converted by a “Translator” into ordinary
“compiling instructions.””’

After May 1954, the A-2 compiler acquired a “pseudocode” that
was similar to the order codes for many floating-point interpretive
systems that were already in operation in 1953, for example:

e the Los Alamos systems DUAL and SHACO,16’4O

e the Massachusetts Institute of Technology (MIT) “Summer
Session Computer,”l

e asystem for the Illiac designed by D.J. Wheeler,30 and

e the Speedcoding system for the IBM 701 N

The Laning and Zierler system was quite a different story: It
was the world’s first operating algebraic compiler, a rather elegant
but simple one. Donald Knuth and Luis Trabb Pardo®® assign this
honor to Alick Glennie’s Autocode, but I, for one, am unable to
recognize the sample Autocode program they give as “algebraic,”
especially when it is compared to the corresponding Laning and
Zierler program.

All of the early “automatic programming” systems were costly
to use, since they slowed down the machine by a factor of five or
10. The most common reason for the slowdown was that these
systems were spending most of their time in floating-point sub-
routines. Simulated indexing and other “housekeeping” operations
could be done with simple inefficient techniques, since, slow as
they were, they took far less time than the floating-point work.

Experience with slow “automatic programming” systems, plus
their own experience with the problems of organizing loops and
address modification, had convinced programmers that efficient
programming was something that could not be automated. An-
other reason that “automatic programming” was not taken seri-
ously by the computing community was due to the energetic pub-
lic relations efforts of some visionaries spreading the word that
their “automatic programming” systems had almost human abili-
ties to understand the language and the needs of the user, whereas
closer inspection of those systems would often reveal a complex,
exception-ridden performer of clerical tasks that was both difficult

1058-6180/98/$10.00 © 1998 IEEE

68 o [IEEFE Annals of the History of Computing, Vol. 20, No. 4, 1998



to use and inefficient. Whatever the reasons, it is difficult to
convey to a reader in the late 1970s the strength of the skepti-
cism about “automatic programming” in general and about its
ability to produce efficient programs in particular, as it existed
in 1954.

In the above discussion of attitudes about “automatic pro-
gramming” in 1954, I have mentioned only those actual systems
of which my colleagues and I were aware at the time. For a com-
prehensive treatment of early programming systems and lan-
guages, | recommend the articles by Knuth and Pardo”® and by
Jean Sammet.”®

The Economics of Programming

Another factor that influenced the development of Fortran was the
economics of programming in 1954. The cost of programmers
associated with a computer center was usually at least as great as
the cost of the computer itself. (This fact follows from the average
salary plus overhead and the number of programmers at each
center and from the computer rental figures.) In addition, from
one quarter to one half of the computer’s time was spent in de-
bugging. Thus, programming and debugging accounted for as
much as three quarters of the cost of operating a computer; and
obviously, as computers got cheaper, this situation would get
worse.

|

Fortran is a collection of warts, held
together by bits of syntax.

Anon.

This economic factor was one of the prime motivations that led
me to propose the Fortran project in a letter to my boss, Cuthbert
Hurd, in late 1953 (the exact date is not known, but other facts
suggest December 1953 as a likely date). I believe that the eco-
nomic need for a system like Fortran was one reason why IBM
and my successive bosses, Hurd, Charles DeCarlo, and John
McPherson, provided for our constantly expanding needs over the
next five years without ever asking us to project or justify those
needs in a formal budget.

Programming Systems in 1954

It is difficult for a programmer of today to comprehend what
“automatic programming” meant to programmers in 1954. To
many, it then meant simply providing mnemonic operation codes
and symbolic addresses; to others, it meant the simple process of
obtaining subroutines from a library and inserting the addresses of
operands into each subroutine. Most “automatic programming”
systems were assembly programs, subroutine-fixing programs, or,
most popularly, interpretive systems to provide floating-point and
indexing operations. My friends and I were aware of a number of
assembly programs and interpretive systems, some of which have
been mentioned above; besides these, there were 6primarily two
other systems of significance: the A-2 compiler29’3 and the Lan-
ing and Zierler’’ algebraic compiler at MIT. As noted above, the
A-2 compiler was, at that time, largely a subroutine fixer (its other
principal task was to provide for “overlays”); but from the stand-
point of its input “programs,” it provided fewer conveniences than
most of the then-current interpretive systems mentioned earlier; it

later adopted a “pseudocode” as input that was similar to the input
codes of these interpretive systems.

The Laning and Zierler system accepted as input an elegant,
but rather simple algebraic language. It permitted single-letter
variables (identifiers) that could have a single constant or variable
subscript. The repertoire of functions one could use was denoted
by “F” with an integer superscript to indicate the “catalog num-
ber” of the desired function. Algebraic expressions were compiled
into closed subroutines and placed on a magnetic drum for subse-
quent use. The system was originally designed for the Whirlwind
computer when it had 1,024 storage cells, with the result that it
caused a slowdown in execution speed by a factor of about 10."

The effect of the Laning and Zierler system on the develop-
ment of Fortran is a question that has been muddled by many
misstatements on my part. For many years, I believed that we had
gotten the idea for using algebraic notation in Fortran from seeing
a demonstration of the Laning and Zierler system at MIT. In pre-
paring a paper8 for the International Research Conference on the
History of Computing at Los Alamos, New Mexico, 10-15 June
1976, 1 reviewed the matter with Irving Ziller and obtained a copy
of a 1954 letter® (which Dr. Laning kindly sent to me). As a result,
the facts of the matter have become clear. The letter in question is
one I sent to Dr. Laning asking for a demonstration of his system.
It makes clear that we had learned of his work at the Office of
Naval Research Symposium on Automatic Programming for
Digital Computers, 13—14 May 1954, and that the demonstration
took place on 2 June 1954. The letter also makes clear that the
Fortran project was well under way when the letter was sent (21
May 1954) and included Harlan Herrick, Robert A. Nelson, and
Ziller, as well as myself. Furthermore, an article in the proceed-
ings of that same Office of Naval Research (ONR) symposium by
Herrick and myself11 shows clearly that we were already consid-
ering input expressions like “Za;; ¢ by” and “X + Y.” We went on
to raise the question: “Can a machine translate a sufficiently rich
mathematical language into a sufficiently economical program at
a sufficiently low cost to make the whole affair feasible?”

These and other remarks in our paper presented at the sympo-
sium in May 1954 make it clear that we were already considering
algebraic input considerably more sophisticated than that of Laning
and Zierler’s system when we first heard of their pioneering work.
Thus, although Laning and Zierler had already produced the world’s
first algebraic compiler, our basic ideas for Fortran had been devel-
oped independently; thus, it is difficult to know what, if any new
ideas we got from seeing the demonstration of their system.

(In response to suggestions of the Program Committee, let me
try to deal explicitly with the question of what work might have
influenced our early ideas for Fortran, although it is mostly a
matter of listing work of which we were then unaware. I have
already discussed the work of Laning and Zierler and the A-2
compiler. The work of Heinz Rutishauser®’ [1952] is discussed
later. Like most of the world (except perhaps Rutishauser and
Corrado Bohm, the latter of whom was the first to describe a
compiler in its own lanFuagels), we were entirely unaware of the
work of Konrad Zuse."'* Zuse’s “Plankalkiil,” which he com-
pleted in 1945, was, in some ways, a more elegant and advanced
programming language than those that appeared 10 and 15 years
later. We were also unaware of the work of John Mauchly et al.
(“Short Code,” 1950), Arthur Burks (“Intermediate PL,” 1950),
Bo6hm (1951), and Glennie (“Autocode,” 1952), all as discussed in
Knuth and Pardo.”® We were aware of but not influenced by the

IEEE Annals of the History of Computing, Vol. 20, No. 4, 1998 e 69



The History of Fortran I, Il, and Il

automatic programming efforts that simulated a synthetic com-
puter (e.g., MIT’s “Summer Session Computer,” SHACO, DUAL,
Speedcoding, and the Illiac system), since their languages and
systems were so different from those of Fortran. Also, we were
not influenced by algebraic systems that were designed after our
“Preliminary Report”34 but that began operation before Fortran
(e.g., BACAIC,” IT,”® and Mathe-Matic*). Although PACT 1"
was not an algebraic compiler, it deserves mention as a significant
development; it was designed after the Fortran language but was
in operation before Fortran; it did not influence our work.)

Our ONR symposium article'" also makes clear that the For-
tran group was already aware that it faced a new kind of problem
in automatic programming.

|

The one central attribute of Fortran
is its name.

Martin Greenfield

The viability of most compilers and interpreters prior to For-
tran had rested on the fact that most source language operations
were not machine operations. Thus, even large inefficiencies in
performing both looping/testing operations and computing ad-
dresses were masked by most of the operating time being spent in
floating-point subroutines. But the advent of the IBM 704 with
built-in floating point and indexing radically altered the situation.
The 704 presented a double challenge to those who wanted to
simplify programming; first, it removed the raison d’etre of earlier
systems by providing in hardware the operations they existed to
provide; second, it increased the problem of generating efficient
programs by an order of magnitude by speeding up floating-point
operations by a factor of 10 and, thereby, leaving inefficiencies
nowhere to hide. In view of the widespread skepticism about the
possibility of producing efficient programs with an automatic
programming system and the fact that inefficiencies could no
longer be hidden, we were convinced that the kind of system we
had in mind would be widely used only if we could demonstrate
that it would produce programs almost as efficient as hand-coded
ones and do so on virtually every job.

It was our belief that if Fortran, during its first months, were to
translate any reasonable “scientific” source program into an object
program only half as fast as its hand-coded counterpart, then ac-
ceptance of our system would be in serious danger. This belief
caused us to regard the design of the translator as the real chal-
lenge, not the simple task of designing the language. Our belief in
the simplicity of language design was partly confirmed by the
relative ease with which similar languages had been independ-
ently developed by Rutishauser,37 Laning and Zierler,27 and our-
selves, whereas we were alone in seeking to produce very efficient
object programs.

To this day, I believe that our emphasis on object program efti-
ciency rather than on language design was basically correct. I
believe that had we failed to produce efficient programs, the wide-
spread use of languages like Fortran would have been seriously
delayed. In fact, I believe that we are in a similar, but unrecog-
nized situation today: In spite of all the fuss that has been made
over myriad language details, current conventional languages are
still very weak programming aids, and far more powerful lan-

70 e IEEFE Annals of the History of Computing, Vol. 20, No. 4, 1998

guages would be in use today if anyone had found a way to make
them run with adequate efficiency. In other words, the next revo-
lution in programming will take place only when both of the fol-
lowing requirements have been met:

e a new kind of programming language, far more powerful
than those of today, has been developed and

e a technique has been found for executing its programs at
not much greater cost than that of today’s programs.

Because of our 1954 view that success in producing effi-
cient programs was more important than the design of the
Fortran language, I consider the history of the compiler con-
struction and the work of its inventors an integral part of the
history of the Fortran language; therefore, a later section deals
with that subject.

Early Stages of the Fortran Project

After Hurd approved my proposal to develop a practical automatic
programming system for the 704 in December 1953 or January
1954, Ziller was assigned to the project. We started work in one of
the many small offices the project was to occupy in the vicinity of
IBM headquarters at 590 Madison Avenue in New York; the first
of these was in the Jay Thorpe Building on Fifth Avenue. By May
1954, we had been joined by Herrick and then by a new employee
who had been hired to do technical typing, Nelson (with Ziller, he
soon began designing one of the most sophisticated sections of the
compiler; he is now an IBM Fellow). By about May, we had
moved to the 19th floor of the annex of 590 Madison Avenue,
next to the elevator machinery; the ground floor of this building
housed the 701 installation on which customers tested their pro-
grams before the arrival of their own machines. It was here that
most of the Fortran language was designed, mostly by Herrick,
Ziller, and myself, except that most of the input-output language
and facilities were designed by Roy Nutt, an employee of United
Aircraft Corp. who was soon to become a member of the Fortran
project. After we had finished designing most of the language, we
heard about Rutishauser’s proposals for a similar language.37 It
was characteristic of the unscholarly attitude of most program-
mers then, and of ourselves in particular, that we did not bother to
carefully review the sketchy translation of his proposals that we
finally obtained, since from their symbolic content, they did not
appear to add anything new to our proposed language. Rutishau-
ser’s language had a for statement and one-dimensional arrays,
but no IF, GOTO, or /O statements. Subscript variables could not
be used as ordinary variables, and operator precedence was ig-
nored. His 1952 article described two compilers for this language
(for more details, see the article by Knuth and Pard026).

As far as we were aware, we simply made up the language as
we went along. We did not regard language design as a difficult
problem, merely a simple prelude to the real problem: designing a
compiler that could produce efficient programs. Of course, one of
our goals was to design a language that would make it possible for
engineers and scientists to write programs themselves for the 704.
We also wanted to eliminate a lot of the bookkeeping and detailed,
repetitive planning that hand-coding involved. Very early in our
work, we had in mind the notions of assignment statements, sub-
scripted variables, and the DO statement (which, I believe, was
proposed by Herrick). We felt that these provided a good basis for
achieving our goals for the language. Whatever else was needed



emerged as we tried to build a way of programming on these basic
ideas.

We certainly had no idea that languages almost identical to the
one we were working on would be used for more than one IBM
computer, not to mention those of other manufacturers. (After all,
there were very few computers around back then.) But we did
expect our system to have a big impact, in the sense that it would
make programming for the 704 very much faster, cheaper, and
more reliable. We also expected that if we were successful in
meeting our goals, other groups and manufacturers would follow
our example in reducing the cost of programming by providing
similar systems with different, but similar languages.

________________________________________________________________________|
Fortran—“the infantile disorder”—is
hopelessly inadequate for whatever

computer application you have in mind
today...too clumsy, too risky,
and too expensive.

Edsger Dijkstra

By the fall of 1954, we had become the “Programming Re-
search Group,” and I had become its “manager.” By November of
that year, we had produced a paper: “Preliminary Report, Specifi-
cations for the IBM Mathematical FORmula TRANslating Sys-
tem, Fortran,”34 dated 10 November 1954. In its introduction, we
noted that “systems which have sought to reduce the job of coding
and debugging problems have offered the choice of easy coding
and slow execution or laborious coding and fast execution.” On
the basis more of faith than of knowledge, we suggested that pro-
grams “will be executed in about the same time that would be
required had the problem been laboriously hand coded.” In what
turned out to be a true statement, we said that “Fortran may apply
complex, lengthy techniques in coding a problem which the hu-
man coder would have neither the time nor inclination to derive or
apply.”

The language described in the “Preliminary Report” had:

e variables of one or two characters in length,

e function names of three or more characters,

e recursively defined “expressions,”

e subscripted variables with up to three subscripts,

e “arithmetic formulas” (which turn out to be assignment

statements), and

¢ “DO formulas.”

These DO formulas could specify both the first and last statements
to be controlled, thus permitting a DO to control a distant se-
quence of statements, as well as specifying a third statement to
which control would pass following the end of the iteration. If
only one statement was specified, the “range” of the DO was the
sequence of statements following the DO down to the specified
statement.

Expressions in “arithmetic formulas” could be “mixed”: in-
volving both “fixed-point” (integer) and “floating-point” quanti-
ties. The arithmetic used (all integer or all floating point) to evalu-
ate a mixed expression was determined by the type of the variable
on the left of the “=" sign. “IF formulas” employed an equality or

inequality sign (“=" or “>”" or “>=") between two (restricted) ex-
pressions, followed by two statement numbers: one for the “true”
case, the other for the “false” case.

A “Relabel formula” was designed to make it easy to rotate,
say, the indices of the rows of a matrix so that the same computa-
tion would apply, after relabeling, even though a new row had
been read in and the next computation was now to take place on a
different, rotated set of rows. Thus, for example, if b is a 4 x 4
matrix, after RELABEL (3, 1), a reference to

e b(1,j) has the same meaning as b(3, j) before relabeling;
® b(2,)) after = b(4, j) before;

® Db(3,j) after = b(1, j) before; and

® Db(4,)) after = b(2, j) before relabeling.

The input-output statements that were provided included the
basic notion of specifying the sequence in which data were to be
read in or out, but did not include any “Format” statements.

The report also lists four kinds of “specification sentences™:

1) “dimension sentences” for giving the dimensions of arrays,

2) “equivalence sentences” for assigning the same storage lo-
cations to variables,

3) “frequency sentences” for indicating estimated relative fre-
quency of branch paths or loops to help the compiler opti-
mize the object program, and

4) “relative constant sentences” to indicate subscript variables,
which are expected to change their values very infrequently.

Toward the end of the report (pp. 26-27), there is a section
“Future Additions to the Fortran System.” Its first item is: “a vari-
ety of new input-output formulas which would enable the pro-
grammer to specify various formats for cards, printing, input tapes
and output tapes.” It is believed that this item is a result of our
early consultations with Nutt. This section goes on to list other
proposed facilities to be added:

¢ complex and double precision arithmetic,
® matrix arithmetic,

® sorting,

¢ solving simultaneous equations,

e differential equations, and

¢ linear programming problems.

It also describes function definition capabilities similar to those
that later appeared in Fortran II:

e facilities for numerical integration,
® a summation operator, and
e table lookup facilities.

The final section of the report (pp. 28-29) discusses program-
ming techniques to use to help the system produce efficient pro-
grams. It discusses how to use parentheses to help the system
identify identical subexpressions within an expression and thereby
eliminate their duplicate calculation. These parentheses had to be
supplied only when a recurring subexpression occurred as part of
a term (e.g., if a * b occurred in several places, it would be better
to write the term a * b * ¢ as (a * b) * ¢ to avoid duplicate calcu-
lation); otherwise the system would identify duplicates without
any assistance. It also observes that the system would not produce
optimal code for loops constructed without DO statements.

This final section of the report also notes that “no special pro-

IEEE Annals of the History of Computing, Vol. 20, No. 4, 1998 e 71



The History of Fortran I, Il, and Il

visions have been included in the Fortran system for locating er-
rors in formulas.” It suggests checking a program “by independ-
ently recreating the specifications for a problem from its Fortran
formulation [!].” It says nothing about the system catching syn-
tactic errors, but notes that an error-finding program can be writ-
ten after some experience with errors has been accumulated.
Unfortunately, we were hopelessly optimistic in 1954 about the
ease of debugging Fortran programs (thus, we find on page 2 of
the report: “Since Fortran should virtually eliminate coding and
debugging ... [!]”), and, hence, syntactic error-checking facilities
in the first distribution of Fortran I were weak. Better facilities
were added not long after distribution, and fairly good syntactic
checking was provided in Fortran II.
|

God is real (unless otherwise declared
in an explicit type statement or in an
implicit declaration).

B. Graham

The Fortran language described in the Programmer s Reference
Manual,** dated 15 October 1956, differed in a few respects from
that of the Preliminary Report, but considering our ignorance in
1954 of the problems we would later encounter in producing the
compiler, there were:

e remarkably few deletions (the Relabel and Relative Con-
stant statements);

e a few retreats, some fortunate, some not (simplification of
DO statements, dropping inequalities from IF statements
for lack of a “>" symbol, and prohibiting most “mixed” ex-
pressions and subscripted subscripts); and

e the rectification of a few omissions (addition of FORMAT,
CONTINUE, computed and assigned GOTO statements,
increasing the length of variables to up to six characters,
and general improvements of input-output statements).

Since our entire attitude about language design had always
been a very casual one, the changes we felt to be desirable during
the course of writing the compiler were made equally casually.

We never felt that any of them involved a real sacrifice in con-
venience or power (with the possible exception of the Relabel
statement, whose purpose was to coordinate input-output with
computations on arrays, but this was one facility that we felt
would have been very difficult to implement). I believe the sim-
plification of the original DO statement resulted from the realiza-
tions that:

1) it would be hard to describe precisely,
2) it was awkward to compile, and
3) it provided little power beyond that of the final version.

In our naive unawareness of language design problems—of
course, we knew nothing of many issues that were later thought to
be important, e.g., block structure, conditional expressions, and
type declarations—it seemed to us that once one had the notions
of the assignment statement, the subscripted variable, and the DO
statement in hand (and these were among our earliest ideas), then
the remaining problems of language design were trivial. Their
solution was thrust on us either by the need to provide some ma-

72 e [EEFE Annals of the History of Computing, Vol. 20, No. 4, 1998

chine facility such as reading input or by some programming task
that could not be done with existing structures. (For example, skip
to the end of a DO loop without skipping the indexing instructions
there. This gave rise to the CONTINUE statement.)

One much-criticized design choice in Fortran concerns the use
of spaces: Blanks were ignored, even blanks in the middle of an
identifier. Nutt reminds me that that choice was partly in recogni-
tion of a problem widely known in SHARE (the 704 users’ asso-
ciation). There was a common problem with keypunchers not
recognizing or properly counting blanks in handwritten data, and
this caused many errors. We also regarded ignoring blanks as a
device to enable programmers to arrange their programs in a more
readable form without altering their meaning or introducing com-
plex rules for formatting statements.

Another debatable design choice was to rule out “mixed”-mode
expressions involving both integer and floating-point quantities.
Although our Preliminary Report had included such expressions
and rules for evaluating them, we felt that if code for type conver-
sion were to be generated, the user should be aware of that, and
the best way to ensure that he was aware was to ask him to specify
them. T believe we were also doubtful of the usefulness of the
rules in our report for evaluating mixed expressions. In any case,
the most common sort of “mixture” was allowed: Integer expo-
nents and function arguments were allowed in a floating-point
expression.

In late 1954 and early 1955, after completing the Preliminary
Report, Herrick, Ziller, and 1T gave perhaps five or six talks about
our plans for Fortran to various groups of IBM customers who
had ordered a 704 (the 704 had been announced about May 1954).
At these talks, we covered the material in the report and discussed
our plans for the compiler (which was to be completed within
about six months [!]; this was to remain the interval to completion
whenever we were asked, until it actually was completed over two
years later, in April 1957). In addition to informing customers
about our plans, another purpose of these talks was to assemble a
list of their objections and further requirements. In this we were
disappointed; our listeners were mostly skeptical; 1 believe they
had heard too many glowing descriptions of what turned out to be
clumsy systems to take us seriously. In those days, one was ac-
customed to finding lots of peculiar, but significant restrictions in
a system when it finally arrived that had not been mentioned in its
original description. Most of all, our claims that we would pro-
duce efficient object programs were disbelieved. Whatever the
reasons, we received almost no suggestions or feedback; our lis-
teners had done almost no thinking about the problems we faced
and had almost no suggestions or criticisms. Thus, we felt that our
trips to Washington, D.C., Albuquerque, Pittsburgh, Los Angeles,
and one or two other places were not very helpful.

One trip to give our talk, probably in January 1955, had an ex-
cellent payoft. This talk, at United Aircraft Corp., resulted in an
agreement between our group and Walter Ramshaw at United
Aircraft that Nutt would become a regular part of our effort (al-
though remaining an employee of United Aircraft) to contribute
his expertise on input-output and assembly routines. With a few
breaks due to his involvement in writing various SHARE pro-
grams, he would thenceforth come to New York two or three
times a week until early 1957.

It is difficult to assess the influence the early work of the For-
tran group had on other projects. Certainly the discussion of Lan-



ing and Zierler’s algebraic compiler at the ONR symposium in
May 1954 would have been more likely to persuade someone to
undertake a similar line of effort than would the brief discussion
of the merits of using “a fairly natural mathematical language”
that appeared there in the paper by Herrick and myself.” But it
was our impression that our discussions with various groups after
that time, their access to the Preliminary Report, and their aware-
ness of the extent and seriousness of our efforts, that these factors
either gave the initial stimulus to some other projects or at least
caused them to be more active than they might have been other-
wise. It was our impression, for example, that the “IT” project33 at
Purdue University and later at Carnegie-Mellon University began
shortly after the distribution of our Preliminary Report, as did the
“Math-Matic” project4 at Sperry Rand.

________________________________________________________________________|
I don’t know what the language of the
year 2000 will look like, but | know it
will be called Fortran.

Tony Hoare

It is not clear what influence, if any, our Los Angeles talk and
earlier contacts with members of their group had on the PACT I
effor’[,13 which I believe was already in its formative stages when
we got to Los Angeles. It is clear that whatever influence the
specifications for Fortran may have had on other projects in 1954—
1956, our plans were well-advanced and quite firm by the end of
1954, before we had contact or knowledge of those other projects.
Our specifications were not affected by them in any significant
way, as far as I am aware, even though some were operating be-
fore Fortran (since they were primarily interested in providing an
input language rather than an optimization, their task was consid-
erably simpler than ours).

The Construction of the Compiler

The Fortran compiler (or “translator,” as we called it then) was
begun in early 1955, although a lot of work on various schemes
that would be used in it had been done in 1954. Herrick had done
a lot of trial programming to test our language, and we had
worked out the basic sort of machine programs that we wanted the
compiler to generate for various source language phrases. Ziller
and I had worked out a basic scheme for translating arithmetic
expressions.

But the real work on the compiler got under way in our third
location on the fifth floor of 15 East 56th Street in New York. By
the middle of February, three separate efforts were under way. The
first two of these concerned sections 1 and 2 of the compiler, and
the third concerned the input, output, and assembly programs we
were going to need (see below). We believed back then that these
efforts would produce most of the compiler.

(The entire project was carried out by a loose cooperation be-
tween autonomous, separate groups of one, two, or three people;
each group was responsible for a “section” of the compiler; each
group gradually developed and agreed on its own input and output
specifications with the groups for neighboring sections; each
group invented and programmed the necessary techniques for
doing its assigned job.)

Section 1 was to read the entire source program, compile what
instructions it could, and file all the rest of the information from
the source program in appropriate tables. Thus, the compiler was
“one pass,” in the sense that it “saw” the source program only
once. Herrick was responsible for creating most of the tables,
Peter Sheridan (who had recently joined us) compiled all the
arithmetic expressions, and Nutt compiled and/or filed the 1/O
statements. Herrick, Sheridan, and Nutt got some help later on
from R.J. Beeber and H. Stern, but they were the architects of
section 1 and wrote most of its code. Sheridan devised and im-
plemented a number of optimizing transformations on expres-
sions®” that sometimes radically altered them (of course, without
changing their meaning). Nutt transformed the I/O “lists of quan-
tities” into nests of DO statements, which were then treated by the
regular mechanisms of the compiler. The rest of the I/O informa-
tion he filed for later treatment in section 6, the assembler section.
(For further details about how the various sections of the compiler
worked, see the 1957 paper by Backus et al.lz)

Using the information that was filed in section 1, section 2
faced a completely new kind of problem; it was required to ana-
lyze the entire structure of the program in order to generate opti-
mal code from DO statements and references to subscripted vari-
ables. The simplest way to effect a reference to A(I, J) is to evalu-
ate an expression involving the address of A(1, 1), I, and K x J,
where K is the length of a column (when A is stored column-
wise). But this calculation, with its multiplication, is much less
efficient than the way most hand-coded programs effect a refer-
ence to A(I, J), namely, by adding an appropriate constant to the
address of the preceding reference to the array A whenever [ and J
are changing linearly. To employ this far-more-efficient method,
section 2 had to determine when the surrounding program was
changing I and J linearly.

Thus, one problem was that of distinguishing between, on the
one hand, references to an array element that the translator might
treat by incrementing the address used for a previous reference
and those array references, on the other hand, that would require
an address calculation starting from scratch with the current val-
ues of the subscripts.

It was decided that it was not practical to track down and iden-
tify linear changes in subscripts resulting from assignment state-
ments. Thus, the sole criterion for linear changes, and hence for
efficient handling of array references, was to be that the subscripts
involved were being controlled by DO statements. Despite this
simplifying assumption, the number of cases that section 2 had to
analyze in order to produce optimal or near-optimal code was very
large. (The number of such cases increased exponentially with the
number of subscripts; this was a prime factor in our decision to
limit them to three; the fact that the 704 had only three index reg-
isters was not a factor.)

It is beyond the scope of this paper to go into the details of the
analysis that section 2 carried out. It will suffice to say that it pro-
duced code of such efficiency that its output would startle the
programmers who studied it. It moved code out of loops where
that was possible; it took advantage of the differences between
row-wise and column-wise scans; it took note of special cases to
optimize even the exits from loops. The degree of optimization
performed by section 2 in its treatment of indexing, array refer-
ences, and loops was not equaled until optimizing compilers be-
gan to appear in the middle and late 1960s.

IEEE Annals of the History of Computing, Vol. 20, No. 4, 1998 e 73



The History of Fortran I, Il, and Il

The architecture and all the techniques employed in section 2
were invented by Nelson and Ziller. They planned and pro-
grammed the entire section. Originally, it was their intention to
produce the complete code for their area, including the choice of
the index register to be used (the 704 had three index registers).
When they started looking at the problem, it rapidly became clear
that it was not going to be easy to treat it optimally. At that point,
I proposed that they should produce a program for a 704 with an
unlimited number of index registers and that later sections would
analyze the frequency of execution of various parts of the program
(by a Monte Carlo simulation of its execution) and then make
index register assignments so as to minimize the transfers of items
between the store and the index registers.

|

Fortran is a language to avoid—unless
you want some answers.

Anon.

This proposal gave rise to two new sections of the compiler
that we had not anticipated, sections 4 and 5 (section 3 was added
to convert the output of sections 1 and 2 to the form required for
sections 4, 5, and 6). In the fall of 1955, Lois Mitchell Haibt
joined our group to plan and program section 4:

e to analyze the flow of a program produced by sections 1
and 2;

e to divide the program into “basic blocks” (which contained
no branching);

e to do a Monte Carlo (statistical) analysis of the expected
frequency of execution of basic blocks—by simulating the
behavior of the program and keeping counts of the use of
each block—using information from DO statements and
FREQUENCY statements; and

e to collect information about index register usage (for more
details, see the paper by Backus et al." and the one by John
Cocke and J.T. Schwartz'**>'").

Section 5 would then do the actual transformation of the program
from one having an unlimited number of index registers to one
having only three. Again, the section was entirely planned and
programmed by Haibt.

Section 5 was planned and programmed by Sheldon Best, who
was loaned to our group by agreement with his employer, Charles
W. Adams at the Digital Computer Laboratory at MIT. During his
stay with us, Best was a temporary IBM employee. Starting in the
ecarly fall of 1955, he designed what turned out to be, along with
section 2, one of the most intricate and complex sections of the
compiler, one that had perhaps more influence on the methods
used in later compilers than any other part of the Fortran compiler.
(For a discussion of his techniques, see the paper by Cocke and
Schwartz.w’pp'sm'ﬂs) It is impossible to describe his register allo-
cation method here; it suffices to say that it was to become the
basis for much subsequent work and produced code very difficult
to improve.

Although I believe that no provably optimal register allocation
algorithm is known for general programs with loops etc., empiri-
cally, Best’s 1955-1956 procedure appeared to be optimal. For
straight-line code, Best’s replacement policy was the same as that

74 e IEEFE Annals of the History of Computing, Vol. 20, No. 4, 1998

used in L.A. Belady’s MIN algorithm, which Belady proved to be
optimal.14 Although Best did not publish a formal proof, he had
convincing arguments for the optimality of his policy in 1955.

Late in 1955, it was recognized that yet another section, section 3,
was needed. This section merged the outputs of the preceding
sections into a single uniform 704 program that could refer to any
number of index registers. It was planned and programmed by
Richard Goldberg, a mathematician who joined us in November
1955. Also, late in 1956, after Best had returned to MIT and dur-
ing the debugging of the system, section 5 was taken over by
Goldberg and David Sayre (see below), who diagrammed it care-
fully and took charge of its final debugging.

The final section of the compiler, section 6, assembled the final
program into a relocatable binary program (it could also produce a
symbolic program in SAP, the SHARE Assembly Program for the
704). It produced a storage map of the program and the data that
was a compact summary of the Fortran output. Of course, it also
obtained the necessary library programs for inclusion in the object
program, including those required to interpret FORMAT state-
ments and perform input-output operations. Taking advantage of
the special features of the programs it assembled, this assembler
was about 10 times faster than SAP. It was designed and pro-
grammed by Nutt, who also wrote all the I/O programs and the
relocating binary loader for loading object programs.

By the summer of 1956, large parts of the system were work-
ing. Sections 1, 2, and 3 could produce workable code, provided
no more than three index registers were needed. A number of test
programs were compiled and run at this time. Nutt took part of the
system to United Aircraft (sections 1, 2, and 3 and the part of
section 6 that produced SAP output). This part of the system was
productive there from the summer of 1956 until the complete
system was available in early 1957.

From late spring of 1956 to early 1957, the pace of debugging
was intense; often we would rent rooms in the Langdon Hotel
(which disappeared long ago) on 56th Street, sleep there a little
during the day, and then stay up all night to get as much use of the
computer (in the headquarters annex on 57th Street) as possible.

It was an exciting period; when we later began to get fragments
of compiled programs out of the system, we were often astonished
at the surprising transformations in the indexing operations and in
the arrangement of the computation that the compiler made,
changes that made the object program efficient but that we would
not have thought to make as programmers ourselves (even though,
of course, Nelson or Ziller could figure out how the indexing
worked, Sheridan could explain how an expression had been op-
timized beyond recognition, and Goldberg or Sayre could tell us
how section 5 had generated additional indexing operations).
Transfers of control appeared that corresponded to no source
statement, expressions were radically rearranged, and the same
DO statement might produce no instructions in the object program
in one context, and in another it would produce many instructions
in different places in the program.

By the summer of 1956, what appeared to be the imminent
completion of the project started us worrying (for perhaps the first
time) about documentation. Sayre, a crystallographer who had
joined us in the spring (he had earlier consulted with Best on the
design of section 5 and had later begun serving as second-in-
command of what was now the “Programming Research Depart-
ment”), took up the task of writing the Programmer’s Reference



Manual ** 1t appeared in a glossy cover, handsomely printed, with
the date 15 October 1956. It stood for some time as a unique ex-
ample of a manual for a programming language (perhaps it still
does): It had wide margins, yet was only 51 pages long. Its de-
scription of the Fortran language, exclusive of input-output state-
ments, was 21 pages; the 1/O description occupied another 11
pages; the rest of it was examples and details about arithmetic,
tables, etc. It gave an elegant recursive definition of expressions
(as given by Sheridan) and concise, clear descriptions, with ex-
amples, of each statement type, of which there were 32, mostly
machine-dependent items like SENSE LIGHT, IF DIVIDE
CHECK, PUNCH, READ DRUM, and so on.

One feature of Fortran I is missing from the Programmers
Reference Manual, not from an oversight of Sayre’s, but because
it was added to the system after the manual was distributed. This
feature was the ability to define a function by a “function state-
ment.” These statements had to precede the rest of the program.
They looked like assignment statements, with the defined function
and dummy arguments on the left and an expression involving
those arguments on the right. They are described in the addenda to
the Programmers Reference Mcmual,2 which we sent on 8 Febru-
ary 1957 to John Greenstadt, who was in charge of IBM’s facility
for distributing information to SHARE. They are also described in
all subsequent material on Fortran 1.

|

In the good old days, physicists
repeated each other’s experiments, just
to be sure. Today, they stick to Fortran

so they can share each others’

programs, bugs included.

Edsger Dijkstra

The next documentation task we set ourselves was to write a
paper describing the Fortran language and the translator program.
The result was a paper entitled, “The Fortran Automatic Coding
System,”12 which we presented at the Western Joint Computer
Conference in Los Angeles in February 1957. I have mentioned
all of the 13 authors of that paper in the preceding narrative except
one: Robert A. Hughes. He was employed by the Livermore Ra-
diation Laboratory; by arrangement with Sidney Fernbach, he
visited us for two or three months in the summer of 1956 to help
us document the system.

At about the time of the Western Joint Computer Conference,
we spent some time in Los Angeles still frantically debugging the
system. North American Aviation gave us time at night on their
704 to help us in our mad rush to distribute the system. Up to this
point, there had been relatively little interest from 704 installa-
tions (with the exception of Ramshaw’s United Aircraft shop,
Harry Cantrell’s GE installation in Schenectady, New York, and
Fernbach’s Livermore operation), but now that the full system was
beginning to generate object programs, interest picked up in a
number of places.

Sometime in early April 1957, we felt the system was suffi-
ciently bug-free to distribute to all 704 installations. Sayre and
Grace E. Mitchell (see below) started to punch out the binary
decks of the system, each of about 2,000 cards, with the intention

to make 30 or 40 decks for distribution. This process was so error-
prone that they had to give up after spending an entire night in
producing only one or two decks. Apparently one of those decks
was sent, without any identification or directions, to the Westing-
house-Bettis installation, where a puzzled group headed by Her-
bert S. Bright, suspecting that it might be the long-awaited Fortran
deck, proceeded, entirely by guesswork, to get it to compile a test
program—after a diagnostic printout noted that a comma was
missing in a specific statement! This program then printed 28
pages of correct results—with a few FORMAT errors. The date:
20 April 1957. Bright wrote an amusing account of this incident in
Computers and Automation."” |Editor’s note: This story is also
told in Annals, vol. 1, no. 1, pp. 72-74.]

After failing to produce binary decks, Sayre devised and pro-
grammed the simple editor and loader that made it possible to
distribute and update the system from magnetic tapes; this ar-
rangement served as the mechanism for creating new system tapes
from a master tape and the binary correction cards that our group
would generate in large numbers during the long field debugging
and maintenance period that followed distribution.

With the distribution of the system tapes went a Preliminary
Operator'’s Manual’* dated 8 April 1957. 1t describes how to use
the tape editor and how to maintain the library of functions. Five
pages of such general instructions are followed by 32 pages of
error stops, many of these say, “source program error, get off ma-
chine, correct formula in question and restart problem” and then,
for example, (stop 3,624) “non-zero level reduction due to insuffi-
cient or redundant parentheses in arithmetic or IF-type formula.”
Shortly after the distribution of the system, we distributed—one
copy per installation—what was fondly known as the “Tome,” the
complete symbolic listing of the entire compiler plus other system
and diagnostic information, an 11 X 15 inch volume about four or
five inches thick.

The proprietors of the six sections were kept busy tracking
down bugs elicited by our customers’ use of Fortran until the late
summer of 1957. Hal Stern served as the coordinator of the field
debugging and maintenance effort; he received a stream of tele-
grams, mail, and phone calls from all over the country and dis-
tributed the incoming problems to the appropriate members of our
group to track down the errors and generate correction cards,
which he then distributed to every installation.

In the spring of 1957, Mitchell joined our group to write the
Programmer’s Primer for Fortran. The primer was divided into
three sections; each described successively larger subsets of the
language, accompanied by many example programs. The first
edition of the primer was issued in the late fall or winter of 1957;
a slightly revised edition appeared in March 1958. Mitchell
planned and wrote the 64-page primer with some consultation with
the rest of the group; she later programmed most of the extensive
changes in the system that resulted in Fortran II (see below).

The primer had an important influence on the subsequent
growth in the use of the system. I believe it was the only available
simplified instruction manual (other than reference manuals) until
the later appearance of books such as those by Daniel
McCracken® (1961), Elliot Organick™” (1963), and many others.

A report on Fortran usage in November 1958’ says that “a sur-
vey in April [1958] of twenty-six 704 installations indicates that
over half of them use Fortran [I] for more than half of their prob-
lems. Many use it for 80% or more of their work ... and almost all

IEEE Annals of the History of Computing, Vol. 20, No. 4, 1998 e 75



The History of Fortran I, Il, and Il

use it for some of their work.” By the fall of 1958, there were
some 60 installations with about 66 704s and “more than half the
machine instructions for these machines are being produced by
Fortran. SHARE recently designated Fortran as the second official
medium for transmittal of programs [SAP was the first].”

Fortran Il

During the field debugging period, some shortcomings of the
system design, which we had been aware of earlier but had no
time to correct, were constantly coming to our attention. In the
early fall of 1957, we started to plan ways of correcting these
shortcomings; a document dated 25 September 1957%° character-
izes them as:

1) the need for better diagnostics (clearer comments about the
nature of source program errors) and
2) the need for subroutine definition capabilities.

(Although one Fortran I diagnostic would pinpoint, in a print-
out, a missing comma in a particular statement, others could
be very cryptic.) This document is titled, “Proposed Specifica-
tions for Fortran II for the 704”; it sketches a more general
diagnostic system and describes the new “subroutine defini-
tion” and END statements, plus some others that were not
implemented. It describes how symbolic information is re-
tained in the relocatable binary form of a subroutine so that the
“binary symbolic subroutine [BSS] loader” can implement
references to separately compiled subroutines. It describes
new prologues for these subroutines and points out that mix-
tures of Fortran-coded and assembly-coded relocatable binary
programs could be loaded and run together. It does not discuss
the FUNCTION statement that was also available in Fortran II.
Fortran I was designed mostly by Nelson, Ziller, and myself.
Mitchell programmed the majority of new code for Fortran II
(with the most unusual feature that she delivered it ahead of
schedule). She was aided in this by Bernyce Brady and LeRoy
May. Sheridan planned and made the necessary changes in his
part of section 1; Nutt did the same for section 6. Fortran II
was distributed in the spring of 1958.

Fortran lll

While Fortran II was being developed, Ziller was designing an
even more advanced system that he called Fortran III. It allowed
one to write intermixed symbolic instructions and Fortran state-
ments. The symbolic (704) instructions could have Fortran vari-
ables (with or without subscripts) as “addresses.” In addition to
this machine-dependent feature (which assured the demise of
Fortran 111 along with that of the 704), it contained early versions
of a number of improvements that were later to appear in Fortran
IV. 1t had “Boolean” expressions, function and subroutine names
could be passed as arguments, and it had facilities for handling
alphanumeric data, including a new FORMAT code “A” similar to
codes “I” and “E.” This system was planned and programmed by
Ziller with some help from Nelson and Nutt. Ziller maintained it
and made it available to about 20 (mostly IBM) installations. It
was never distributed generally. It was accompanied by a brief
descriptive document.” It became available on this limited scale in
the winter of 1958-1959 and was in operation until the early
1960s, in part on the 709 using the compatibility feature (which
made the 709 order code the same as that of the 704).

76 o IEEFE Annals of the History of Computing, Vol. 20, No. 4, 1998

Fortran After 1958, Comments

By the end of 1958 or early 1959, the Fortran group (the Pro-
gramming Research Department), while still helping with an oc-
casional debugging problem with Fortran II, was primarily occu-
pied with other research. Another IBM department had long since
taken responsibility for the Fortran system and was revising it in
the course of producing a translator for the 709 that used the same
procedures as the 704 Fortran II translator. Since my friends and I
no longer had responsibility for Fortran and were busy thinking
about other things by the end of 1958, that seems like a good point
to break off this account. There remain only a few comments to be
made about the subsequent development of Fortran.

The most obvious defect in Fortran II for many of its users was
the time spent in compiling. Even though the facilities of Fortran
Il permitted separate compilation of subroutines and, hence,
eliminated the need to recompile an entire program at each step in
debugging it, nevertheless, compile times were long and, during
debugging, the considerable time spent in optimizing was wasted.
I repeatedly suggested to those who were in charge of Fortran that
they should now develop a fast compiler and/or interpreter with-
out any optimizing at all for use during debugging and for short-
run jobs. Unfortunately, the developers of Fortran IV thought they
could have the best of both worlds in a single compiler—one that
was both fast and produced optimized code. I was unsuccessful in
convincing them that two compilers would have been far better
than the compromise that became the original Fortran IV com-
piler. The latter was not nearly as fast as later compilers like
WATFOR? and did not produce as good code as Fortran II. (For
more discussion of later developments with Fortran, see the 1964
paper by Backus and W.P. Heising. l0)

My own opinion as to the effect of Fortran on later languages
and the collective impact of such languages on programming gen-
erally is not a popular opinion. That viewpoint is the subject of a
long paper.9 I now regard all conventional languages (e.g., the
Fortrans, the Algols, and their successors and derivatives) as in-
creasingly complex elaborations of the style of programming dic-
tated by the von Neumann computer. These “von Neumann lan-
guages” create enormous, unnecessary intellectual roadblocks in
thinking about programs and in creating the higher-level combin-
ing forms required in a powerful programming methodology. The
von Neumann languages constantly keep our noses pressed in the
dirt of address computation and the separate computation of single
words, whereas we should be focusing on the form and content of
the overall result we are trying to produce. We have come to re-
gard the DO, FOR, and WHILE statements and the like as power-
ful tools, whereas they are, in fact, weak palliatives that are neces-
sary to make the primitive von Neumann style of programming
viable at all.

By splitting programming into a world of expressions, on the
one hand, and a world of statements, on the other, von Neumann
languages prevent the effective use of higher-level combining
forms; the lack of the latter makes the definitional capabilities of
von Neumann languages so weak that most of their important
features cannot be defined, starting with a small, elegant frame-
work—but must be built into the framework of the language at the
outset. The gargantuan size of recent von Neumann languages is
eloquent proof of their inability to define new constructs: No one
would build in so many complex features if they could be defined
and would fit into the existing framework later.



The world of expressions has some elegant and useful mathe-
matical properties, whereas the world of statements is a disorderly
one without useful mathematical properties. Structured program-
ming can be viewed as a modest effort to introduce a small
amount of order into the chaotic world of statements. The work of
C.AR. Hoare® (1969), Edsger Dijkstra21 (1976), and others to
axiomatize the properties of the statement world can be viewed as
a valiant and effective effort to be precise about those properties,
ungainly as they may be.

This is not the place for me to elaborate any further my views
about von Neumann languages. My point is this: While it was
perhaps natural and inevitable that languages like Fortran and its
successors should have developed out of the concept of the von
Neumann computer as they did, the fact that such languages have
dominated our thinking for 20 years is unfortunate. It is unfortu-
nate because their long-standing familiarity will make it hard for
us to understand and adopt new programming styles that one day
will offer far greater intellectual and computational power.

Acknowledgments

My greatest debt in connection with this paper is to my old friends
and colleagues whose creativity, hard work, and invention made
Fortran possible. It is a pleasure to acknowledge my gratitude to
them for their contributions to the project, for making our work
together so long ago such a congenial and memorable experience,
and, more recently, for providing me with a great amount of in-
formation and helpful material in preparing this paper and for
their careful reviews of an earlier draft. For all this, I thank all
those who were associated with the Fortran project but who are
too numerous to list here. In particular, [ want to thank those who
were the principal movers in making Fortran a reality: Sheldon
Best, Richard Goldberg, Lois Haibt, Harlan Herrick, Grace
Mitchell, Robert Nelson, Roy Nutt, David Sayre, Peter Sheridan,
and Irving Ziller. I also wish to thank Bernard Galler, J.A.N. Lee,
and Henry Tropp for their amiable, extensive, and invaluable sug-
gestions for improving the first draft of this paper. [ am grateful,
too, for all the work of the Program Committee in preparing help-
ful questions that suggested a number of topics in the paper.

References

[Editor’s note: Most of the items listed below have dates in the
1950s, thus many that appeared in the open literature will be ob-
tainable only in the largest and oldest collections. The items with
an asterisk were either not published or were of such a nature as
to make their availability even less likely than that of the other

items.]

[1] Adams, Charles W., and Laning, J.H., Jr., “The MIT Systems of
Automatic Coding: Comprehensive, Summer Session, and Alge-
braic,” Proc. Symp. Automatic Programming for Digital Computers.
Washington, D.C.: Office of Naval Research, May 1954.

*Addenda to the Fortran Programmer’s Reference Manual, 8 Febru-
ary 1957. (Transmitted to Dr. John Greenstadt, Special Programs
Group, Applied Science Division, IBM, for distribution to SHARE
members, by letter from John W. Backus, Programming Research
Dept. IBM. 5 pages.)

*Additions to Fortran 11, Description of Source Language Additions
to the Fortran 11 System. New York: Programming Research, IBM
Corp., 1958. (Distributed to users of Fortran III. 12 pages.)

*Ash, R., Broadwin, E., Della Valle, V., Katz, C., Green, M., Jenny,
A., and Yu, L., Preliminary Manual for MATH-MATIC and ARITH-
MATIC Systems (for Algebraic Translations and Compilation for
UNIVAC I and II). Philadelphia: Remington Rand Univac, 1957.

2]

Bl

(4]

(5]

[6]
(7]

(8]

91

[10]

[11]

[12]

[13]

[14

=

[15]

[16]

[17]

[18]

[19]

[20]

[21

—

[22]
[23]

[24]

[25]

[26]

[27]

Backus, J.W., “The IBM 701 Speedcoding System,” J. ACM, vol. 1,
no. 1, pp. 4-6, Jan. 1954.

* Backus, John, Letter to J.H. Laning, Jr., 21 May 1954.

Backus, J.W., “Automatic Programming : Properties and Perform-
ance of FOR'I'RAN Systems I and I1,”” Proc. Symp. Mechanisation of
Thought Processes. Teddington, Middlesex, England, National
Physical Laboratory, Nov. 1958.

Backus, John, “Programming in America in the Nineteen Fifties—
Some Personal Impressions,” N. Metropolis, J. Howlett, and Gian-
Carlo Rota, eds., A4 History of Computing in the Twentieth Century
(Proc. Int’l Conf. History of Computing, Los Alamos, N.M., 1978).
New York: Academic Press, in press.

Backus, John, “Can Programming Be Liberated From the von Neu-
mann Style? A Functional Style and Its Algebra of Programs,”
Comm. ACM, vol. 21, no. 8, pp. 613-641, Aug. 1978.

Backus, J.W., and Heising, W.P., “Fortran,” /[EEE Trans. Electronic
Computers, vol. 13, no. 4, pp. 382-385, Aug. 1964.

Backus, John W., and Herrick, Harlan, “IBM 701 Speedcoding and
Other Automatic Programming Systems,” Proc. Symp. Automatic
Programming for Digital Computers. Washington, D.C.: Office of
Naval Research, May 1954.

Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Haibt, L.M.,
Herrick, H.L., Nelson, R.A., Sayre, D., Sheridan, P.B, Stern, H.,
Ziller, 1., Hughes, R.A., and Nutt, R., “The Fortran Automatic Cod-
ing System,” Proc. Western Joint Computer Conf., Los Angeles,
Feb. 1957.

Baker, Charles L., “The PACT I Coding System for the IBM Type
701,” J. ACM, vol. 3, no. 4, pp. 272-278, Oct. 1956.

Belady, L.A., Measurements on Programs: One Level Store Simula-
tion. Yorktown Heights, N.Y.: IBM Thomas J. Watson Research
Center, Tech. Rep. RC 1420, 15 June 1965.

Bo6hm, Corrado, “Calculatrices digitales: Du déchiffrage de formules
logico-mathématiques par la machine méme dans la conception du
programme,” Ann. di Mat. Pura ed Applicata, vol. 37, no. 4, pp. 175-
217, 1954.

Bouricius, Willard G., “Operating Experience With the Los Alamos
701,” Proc. Eastern Joint Computer Conf., Washington, D.C., Dec.
1953.

Bright, Herbert S.,. “Fortran Comes to Westinghouse-Bettis,” Com-
puters and Automation, Nov. 1971. Also in Annals of the History of
Computing, July 1979.

Brown, J.H. and Carr, John W., 111, “Automatic Programming and Its
Development on MIDAC,” Proc. Symp. Automatic Programming for
Digital Computers. Washington, D.C.: Office of Naval Research,
May 1954.

Cocke, John, and Schwartz, J.T., Programming Languages and
Their Compilers. New York: New York Univ., Courant Institute of
Mathematical Sciences, Apr. 1970.

Cress, Paul, Dirksen, Paul, and Graham, J. Wesley, Fortran IV With
WATFOR and WATF1V. Englewood Cliffs, N.J.: Prentice Hall, 1970.
Dijkstra, Edsger W., A Discipline of Programming. Englewood
Cliffs, N.J.: Prentice Hall, 1976.

Grems, Mandalay, and Porter, R.E., “A Truly Automatic Program-
ming System,” Proc. Western Joint Computer Conf., 1956.

Hoare, C.A.R., “An Axiomatic Basis for Computer Programming,”
Comm. ACM, vol. 12, pp. 576-580, 583, Oct. 1969.

*IBM, Programmer's Reference Manual, the Fortran Automatic
Coding System for the IBM 704 EDPM. New York: IBM Corp., 15
Oct. 1956 (Applied Science Division and Programming Research
Dept., Working Committee: J.W. Backus, R.J. Beeber, S. Best, R.
Goldberg, H.L. Herrick, R.A. Hughes [Univ. of Calif. Radiation
Lab., Livermore, Calif.], L.B. Mitchell, R.A. Nelson, R. Nutt [United
Aircraft Corp., East Hartford, Conn.] D. Sayre, P.B. Sheridan, H.
Stern, 1. Ziller).

* IBM, Programmer’s Primer for Fortran Automatic Coding System
for the IBM 704. New York: IBM Corp., form no. 32-0306, 1957.
Knuth, Donald E., and Pardo, Luis Trabb, “Early Development of
Programming Languages,” Encyclopedia of Computer Science and
Technology, vol. 7, p. 419. New York: Marcel Dekker, 1977.
*Laning, J.H., and Zierler, N., A Program for Translation of Mathe-
matical Equations for Whirlwind 1. Cambridge, Mass.: MIT Instru-
mentation Lab., Engineering Memorandum E-364, Jan. 1954.

IEEE Annals of the History of Computing, Vol. 20, No. 4, 1998 e 77



The History of Fortran I, Il, and Il

[28] McCracken, Daniel D., A Guide to Fortran Programming. New
York: John Wiley, 1961.

[29] Moser, Nora B., “Compiler Method of Automatic Programming,”
Proc. Symp. Automatic Programming for Digital Computers.
Washington, D.C.: Office of Naval Research, May 1954.

[30] Muller, David E., “Interpretive Routines in the ILLIAC Library.”
Proc. Symp. Automatic Programming for Digital Computers.
Washington, D.C.: Office of Naval Research, May 1954.

[31] *Preliminary Operator’s Manual for the Fortran Automatic Coding
System for the IBM 704 EDPM. New York: IBM Corp., Program-
ming Research Dept., 8 Apr. 1957.

[32] Organick, Elliot 1., 4 Fortran Primer. Reading, Mass.: Addison-
Wesley, 1963.

[33] *Perlis, A.J., Smith, J.W., and Van Zoeren, H.R., Internal Translator
(UT): A Compiler for the 650. Pittsburgh, Pa.: Carnegie Institute of
Technology, Mar. 1957.

[34] * “Preliminary Report,” Specifications for the IBM Mathematical
FORmula TRANslating System, Fortran. New York: IBM Corp., 10
Nov. 1954 (report by Programming Research Group, Applied Sci-
ence Division, IBM. Distributed to prospective 704 customers and
other interested parties. 29 pp.).

[35] * “Proposed Specifications,” Proposed Specifications for Fortran 11
for the 704, 25 Sept. 1957. (Unpublished memorandum, Program-
ming Research Dept., IBM.)

[36] *Remington Rand, Inc., The A-2 Compiler System Operations Man-
ual. Prepared by Richard K. Ridgway and Margaret H. Harper under
the direction of Grace M. Hopper, 15 Nov. 1953.

[37] Rutishauser, Heinz, “Automatische Rechenplanfertigung bei pro-
grammgesteuerten Rechenmaschinen,” Mitteilungen aus dem Inst. fir
angew. Math. an der E. T. H. Zunch., nr. 3. Basel: Birkhauser, 1952.

[38] Sammet, Jean E., Programming Languages: History and Funda-
mentals. Englewood Cliffs, N.J.: Prentice Hall, 1969.

[39] Sheridan, Peter B., “The Arithmetic Translator-Compiler of the IBM
Fortran Automatic Coding System,” Comm. ACM, vol. 2, no. 2, pp.
9-21, Feb. 1959.

[40] *Schlesinger, S.I., Dual Coding System. Los Alamos, N.M.: Los
Alamos Science Lab., Rep. LA1573, July 1953.

[41] Zuse, K., “Uber den Plankalkiil,” Electron Rechenanl., vol. 1, pp.
68-71, 1959.

[42] Zuse, K., “Der Plankalkiil,” Benchte der Cesellschaft fiir Mathematik
und Datenverarbeitung, vol. 63, part 3. Bonn, 1972. (Manuscript
prepared in 1945.)

John Backus led the development of For-
tran and participated in designing the IBM
704 and Algol, he proposed “BNF” for syn-
tax description. He received the National
Medal of Science in 1975, the Turing Award
(ACM) in 1977, the IEEE Computer Society
Pioneer Award in 1980, and the Charles
Stark Draper Award from the National
Academy of Engineering in 1993. He is a
member of the National Academy of Sci-
ences and the National Academy of Engineering. He is currently
retired from his job at the IBM Research Laboratory, San Jose,
California, but continues to consult with IBM from time to time.

The author can be contacted at
91 St. Germain Ave.
San Francisco, CA 94114

78 e IEEFE Annals of the History of Computing, Vol. 20, No. 4, 1998



