Approximate Counting of Minimal Unsatisfiable
Subsets*

Jaroslav Bendik! and Kuldeep S. Meel?

! Masaryk University, Brno, Czech Republic
2 National University of Singapore, Singapore

Abstract. Given an unsatisfiable formula F' in CNF, i.e. a set of clauses,
the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify
a minimal subset of clauses N C F' such that N is unsatisfiable. The
emerging viewpoint of MUSes as the root causes of unsatisfiability has
led MUSes to find applications in a wide variety of diagnostic approaches.
Recent advances in identification and enumeration of MUSes have mo-
tivated researchers to discover applications that can benefit from rich
information about the set of MUSes. One such extension is that of count-
ing the number of MUSes. The current best approach for MUS counting
is to employ a MUS enumeration algorithm, which often does not scale
for the cases with a reasonably large number of MUSes.

Motivated by the success of hashing-based techniques in the context of
model counting, we design the first approximate MUS counting proce-
dure with (e,d) guarantees, called AMUSIC. Our approach avoids ex-
haustive MUS enumeration by combining the classical technique of uni-
versal hashing with advances in QBF solvers along with a novel usage
of union and intersection of MUSes to achieve runtime efficiency. Our
prototype implementation of AMUSIC is shown to scale to instances that
were clearly beyond the realm of enumeration-based approaches.

1 Introduction

Given an unsatisfiable Boolean formula F' as a set of clauses { f1, f2,... fn}, also
known as conjunctive normal form (CNF), a set N of clauses is a Minimal Un-
satisfiable Subset (MUS) of F' iff N C F', N is unsatisfiable, and for each f € N
the set N \ {f} is satisfiable. Since MUSes can be viewed as representing the
minimal reasons for unsatisfiability of a formula, MUSes have found applications
in wide variety of domains ranging from diagnosis [45], ontologies debugging [1],
spreadsheet debugging [29], formal equivalence checking [20], constrained count-
ing and sampling [28], and the like. As the scalable techniques for identification
of MUSes appeared only about decade and half ago, the earliest applications
primarily focused on a reduction to the identification of a single MUS or a
small set of MUSes. With an improvement in the scalability of MUS identifica-
tion techniques, researchers have now sought to investigate extensions of MUSes

* Work done in part while the first author visited National University of Singapore.

and their corresponding applications. One such extension is MUS counting, i.e.,
counting the number of MUSes of F. Hunter and Konieczny [26], Mu [45], and
Thimm [56] have shown that the number of MUSes can be used to compute
different inconsistency metrics for general propositional knowledge bases.

In contrast to the progress in the design of efficient MUS identification tech-
niques, the work on MUS counting is still in its nascent stages. Reminiscent of
the early days of model counting, the current approach for MUS counting is to
employ a complete MUS enumeration algorithm, e.g., [55,34,12,3], to explicitly
identify all MUSes. As noted in Section 2, there can be up to exponentially
many MUSes of F w.r.t. |F|, and thus their complete enumeration can be prac-
tically intractable. Indeed, contemporary MUS enumeration algorithms often
cannot complete the enumeration within a reasonable time [12,34,10,47]. In this
context, one wonders: whether it is possible to design a scalable MUS counter
without performing explicit enumeration of MUSes?

The primary contribution of this paper is a probabilistic counter, called
AMUSIC, that takes in a formula F', tolerance parameter ¢, confidence parameter
0, and returns an estimate guaranteed to be within (1 + ¢)-multiplicative factor
of the exact count with confidence at least 1 —§. Crucially, for F' defined over n
clauses, AMUSIC explicitly identifies only O(logn-log(1/4)-(£)~2) many MUSes
even though the number of MUSes can be exponential in n.

The design of AMUSIC is inspired by recent successes in the design of efficient
XOR hashing-based techniques [15,17] for the problem of model counting, i.e.,
given a Boolean formula G, compute the number of models (also known as
solutions) of G. We observe that both the problems are defined over a power-set
structure. In MUS counting, the goal is to count MUSes in the power-set of F,
whereas in model counting, the goal is to count models in the power-set that
represents all valuations of variables of G. Chakraborty et al. [18,52] proposed an
algorithm, called ApproxMC, for approximate model counting that also provides
the (e, 9) guarantees. ApproxMC is currently in its third version, ApproxMC3 [52].
The base idea of ApproxMC3 is to partition the power-set into nCells small cells,
then pick one of the cells, and count the number inCell of models in the cell. The
total model count is then estimated as nCells x inCell. Our algorithm for MUS
counting is based on ApproxMC3. We adopt the high-level idea to partition the
power-set of F' into small cells and then estimate the total MUS count based on a
MUS count in a single cell. The difference between ApproxMC3 and AMUSIC lies
in the way of counting the target elements (models vs. MUSes) in a single cell;
we propose novel MUS specific techniques to deal with this task. In particular,
our contribution is the following:

— We introduce a QBF (quantified Boolean formula) encoding for the problem
of counting MUSes in a single cell and use a X oracle to solve it.

— Let UMUp and IMUp be the union and the intersection of all MUSes of F,
respectively. We observe that every MUS of F' (1) contains IMUr and (2) is
contained in UMUg. Consequently, if we determine the sets UMUr and IMUp,
then we can significantly speed up the identification of MUSes in a cell.

— We propose a novel approaches for computing the union UMUp and the in-
tersection IMUg of all MUSes of F.

— We implement AMUSIC and conduct an extensive empirical evaluation on
a set of scalable benchmarks. We observe that AMUSIC is able to compute es-
timates for problems clearly beyond the reach of existing enumeration-based
techniques. We experimentally evaluate the accuracy of AMUSIC. In partic-
ular, we observe that the estimates computed by AMUSIC are significantly
closer to true count than the theoretical guarantees provided by AMUSIC.

Our work opens up several new interesting avenues of research. From a the-
oretical perspective, we make polynomially many calls to a X¥ oracle while
the problem of finding a MUS is known to be in FPNP ie. a MUS can be
found in polynomial time by executing a polynomial number of calls to an NP-
oracle [19,39]. Contrasting this to model counting techniques, where approximate
counter makes polynomially many calls to an NP-oracle when the underlying
problem of finding satisfying assignment is NP-complete, a natural question is
to close the gap and seek to design a MUS counting algorithm with polynomially
many invocations of an FPNF oracle. From a practitioner perspective, our work
calls for a design of MUS techniques with native support for XORs; the pursuit
of native support for XOR in the context of SAT solvers have led to an exciting
line of work over the past decade [53,52].

2 Preliminaries and Problem Formulation

A Boolean formula F' = {f1, fa,..., fn} in a conjunctive normal form (CNF)
is a set of Boolean clauses over a set of Boolean variables Vars(F'). A Boolean
clause is a set {l1,la,...,1;} of literals. A literal is either a variable x € Vars(F)

or its negation —z. A truth assignment I to the variables Vars(F') is a mapping
Vars(F) — {1,0}. A clause f € F is satisfied by an assignment I iff I(I) =1
for some [€ f or I(k) = 0 for some =k € f. The formula F is satisfied by I
iff I satisfies every f € F'; in such a case I is called a model of F. Finally, F is
satisfiable if it has a model; otherwise F' is unsatisfiable.

A QBF is a Boolean formula where each variable is either universally (V) or
existentially (3) quantified. We write Q1 - - - Qr-QBF, where Q1, ... Qx € {V¥, 3},
to denote the class of QBF with a particular type of alternation of the quantifiers,
e.g., IV-QBF or 3V3-QBF. Every QBF is either true (valid) or false (invalid).
The problem of deciding validity of a formula in Q1 - - - Q;-QBF where Q1 = 3
is XF-complete [43].

When it is clear from the context, we write just formula to denote either
a QBF or a Boolean formula in CNF. Moreover, throughout the whole text, we
use F' to denote the input Boolean Formula in CNF. Furthermore, we will use
capital letters, e.g., S, K, N, to denote other CNF formulas, small letters, e.g.,
/s f1, [i, to denote clauses, and small letters, e.g., =, 2’,y, to denote variables.

Given a set X, we write P(X) to denote the power-set of X, and | X| to denote
the cardinality of X. Finally, we write Pr[O : P| to denote the probability of an

i

v1111)

fntate?
/ \x"~
0111 1 1101) Vv1110)
~ - ~_7
/ <
0011) (o101) (1001) (0110) (1010 @

0001 0010 0100 1000

\\//

0000

Fig. 1: Illustration of the power set of the formula F' from the Example 1. We
denote individual subsets of F' using the bit-vector representation. The subsets
with a dashed border are the unsatisfiable subsets, and the others are satisfiable
subsets. The MUSes are filled with a background color.

outcome O when sampling from a probability space P. When P is clear from the
context, we write just Pr[O)].

Minimal Unsatisfiability

Definition 1 (MUS). A set N, N C F, is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all f € N the set N\ {f} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. In gen-
eral, there can be up to exponentially many MUSes of F' w.r.t. |F| (see the
Sperner’s theorem [54]). We use AMUp to denote the set of all MUSes of F. Fur-
thermore, we write UMUr and IMUf to denote the union and the intersection of all
MUSes of F, respectively. Finally, note that every subset S of F' can be expressed
as a bit-vector over the alphabet {0,1}; for example, if F' = {f1, fa, f3, f4} and
S ={f1, f4}, then the bit-vector representation of S is 1001.

Definition 2. Let N be an unsatisfiable subset of F' and f € N. The clause f
is necessary for N iff N\ {f} is satisfiable.

The necessary clauses are sometimes also called transition [6] or critical [2]
clauses. Note that a set N is a MUS iff every f € N is necessary for N. Also,
note that a clause f € F' is necessary for F'iff f € IMUp.

Ezample 1. We demonstrate the concepts on an example, illustrated in Fig. 1.
Assume that F = {f1 = {a1}, fo = {~a1}, f3 = {x2}, fa = {~z1, 22} }. In this
case, AMUF = {{flaf2}7 {flaf37f4}}> IMUF = {f1}7 and UMUF =F.

Hash Functions

Let n and m be positive integers such that m < n. By {1,0}" we denote the set
of all bit-vectors of length n over the alphabet {1,0}. Given a vector v € {1,0}"

and i € {1,...,n}, we write v[i] to denote the i-th bit of v. A hash function h
from a family H,,-(n,m) of hash functions maps {1,0}" to {1,0}™. The family
Hop(n,m) is defined as {h | h(y)[i] = a;,0® (B _, (aixAy[k])) for all1 < i < m},
where @ and A denote the Boolean XOR and AND operators, respectively, and
aik € {1,0} forall 1 <i<mand1<k<n.

To choose a hash function uniformly at random from H,,.(n,m), we ran-
domly and independently choose the values of a;j. It has been shown [24]
that the family H,,.(n,m) is pairwise independent, also known as strongly 2-
universal. In particular, let us by h <= H,.(n,m) denote the probability space
obtained by choosing a hash function h uniformly at random from H,,(n,m).
The property of pairwise independence guarantees that for all ay, s € {1,0}™
and for all distinct y1,y2 € {1,0}", Pr[/\f:1 hyi) = a; : h + Hyor(n,m)] =
272m,

We say that a hash function h € Hyor(n,m) partitions {0,1}™ into 2™ cells.
Furthermore, given a hash function h € H,,-(n,m) and a cell « € {1,0}™ of h,
we define their prefiz-slices. In particular, for every k € {1,...,m}, the k" prefiz
of h, denoted h(¥), is a map from {1,0}" to {1,0}* such that h*)(y)[i] = h(y)[i]
for all y € {1,0}" and for alli € {1,...,k}. Similarly, the k*" prefix of o, denoted
a®) s an element of {1,0}* such that a®[i] = afi] for all i € {1,...,k}.
Intuitively, a cell a®) of h(¥) originates by merging the two cells of h(**1) that
differ only in the last bit.

In our work, we use hash functions from the family H,,.(n,m) to partition
the power-set P(F) of the given Boolean formula F' into 2™ cells. Furthermore,
given a cell a € {0,1}", let us by AMU z 1, o) denote the set of all MUSes in the
cell a; formally, AMU(f}, oy = {M € AMUF | h(bit(M)) = a}, where bit(M) is the
bit-vector representation of M. The following observation is crucial for our work.

Observation 1 For every formula F, m € {1,...,|F| =1}, h € Hyor(|F|,m),
and a € {0,1}™ it holds that: AMU (i) () 2 AMU () o)y for every i < j.

Ezample 2. Assume that we are given a formula F' such that |F'| = 4 and a hash
function h € Hyor(4,2) that is defined via the following values of individual a; x:

aio = 07 ail = 1, a2 = 1, a1,3 = 0, a1,4 = 1
azo0 = 0, az1 = 1, az2 = O, az 3 = O7 a2.4 = 1
The hash function partitions P(F') into 4 cells. For example, h2(1100) = 01
since h(1100)[1] =00 (1 A1) & (1A1) & (0A0)& (L AO) =0 and ~(1100)2] =
0B (IN1)®&(0A1)B(0A0)® (1A0) = 1. Figure 2 illustrates the whole partition
and also illustrates the partition given by the prefix A1) of h.

2.1 Problem Definitions

In this paper, we are concerned with the following problems.

Name: (¢, d)-#MUS problem

Input: A formula F, a tolerance € > 0, and a confidence 1 —§ € (0, 1].
Output: A number ¢ such that Pr{|AMUR|/(14+¢€) < ¢ < |AMUp|-(1+4¢€)] > 1—0.

(a) Tllustration of h® = h with 4 cells: (b) Tllustration of A" with 2 cells:
(a=1D

Fig. 2: Tllustration of the partition of P(F) by h = h(® and (! from Example 2.
In the case of h, we use 4 colors, orange, pink, white, and blue, to highlight its
four cells. In case of h(!), there are only two cells: the white and the blue cells
are merged into a white cell, and the pink and the orange cells are merged into
an orange cell.

Name: MUS-membership problem
Input: A formula F' and a clause f € F.
Output: True if there isa MUS M € AMUp such that f € M and False otherwise.

Name: MUS-union problem
Input: A formula F.
Output: The union UMUf of all MUSes of F'.

Name: MUS-intersection problem
Input: A formula F'.
Output: The intersection IMUp of all MUSes of F'.

Name: (¢,d)-#SAT problem

Input: A formula F, a tolerance € > 0, and a confidence 1 —§ € (0, 1].
Output: A number m such that Prjm/(1+¢€) <c<m-(1+¢)] > 1—4, where
m is the number of models of F'.

The main goal of this paper is to provide a solution to the (e, d)-#MUS prob-
lem. We also deal with the MUS-membership, MUS-union and MUS-intersection
problems since these problems emerge in our approach for solving the (e, §)-#MUS
problem. Finally, we do not focus on solving the (¢, §)-#SAT problem, however
the problem is closely related to the (e, §)-#MUS problem.

3 Related Work

It is well-known (see e.g., [21,51,30]) that a clause f € F belongs to IMUp iff f is
necessary for F. Therefore, to compute IMUg, one can simply check each f € F
for being necessary for F'. We are not aware of any work that has focused on the
MUS-intersection problem in more detail.

The MUS-union problem was recently investigated by Mencia et al. [42]. Their
algorithm is based on gradually refining an under-approximation of UMUp until
the exact UMUp is computed. Unfortunately, the authors experimentally show
that their algorithm often fails to find the exact UMUp within a reasonable time
even for relatively small input instances (only an under-approximation is com-
puted). In our work, we propose an approach that works in the other way: we
start with an over-approzimation of UMUr and gradually refine the approxima-
tion to eventually get UMUg. Another related research was conducted by Jan-
ota and Marques-Silva [30] who proposed several QBF encodings for solving the
MUS-membership problem. Although they did not focus on finding UMUf, one can
clearly identify UMUp by solving the MUS-membership problem for each f € F.

As for counting the number of MUSes of F', we are not aware of any previous
work dedicated to this problem. Yet, there have been proposed plenty of algo-
rithms and tools (e.g., [35,9,3,47,12,11]) for enumerating/identifying all MUSes
of F. Clearly, if we enumerate all MUSes of F', then we obtain the exact value of
|AMU |, and thus we also solve the (e, §)-#MUS problem. However, since there can
be up to exponentially many of MUSes w.r.t. |F|, MUS enumeration algorithms
are often not able to complete the enumeration in a reasonable time and thus
are not able to find the value of |AMUp|.

Very similar to the (e,d)-#MUS problem is the (e, d)-#SAT problem. Both
problems involve the same probabilistic and approximation guarantees. More-
over, both problems are defined over a power-set structure. In MUS counting,
the goal is to count MUSes in P(F'), whereas in model counting, the goal is to
count models in P(Vars(F)). In this paper, we propose an algorithm for solving
the (e,d)-#MUS problem that is based on ApproxMC3 [15,17,52]. In particular,
we keep the high-level idea of ApproxMC3 for processing/exploring the power-set
structure, and we propose new low-level techniques that are specific for MUS
counting.

4 AMUSIC: A Hashing-based MUS Counter

We now describe AMUSIC, a hashing-based algorithm designed to solve the (e, d)-
#MUS problem. The name of the algorithm is an acronym for Approximate Min-
imal Unsatisfiable Subsets Implicit Counter. AMUSIC is based on ApproxMC3,
which is a hashing-based algorithm to solve (e, §)-#SAT problem. As such, while
the high-level structure of AMUSIC and ApproxMC3 share close similarities, the
two algorithms differ significantly in the design of core technical subroutines.

We first discuss the high-level structure of AMUSIC in Section 4.1. We then
present the key technical contributions of this paper: the design of core subrou-
tines of AMUSIC in Sections 4.3, 4.4 and 4.5.

4.1 Algorithmic Overview

The main procedure of AMUSIC is presented in Algorithm 1. The algorithm takes
as an input a Boolean formula F' in CNF, a tolerance e (> 0), and a confidence

Algorithm 1: AMUSIC(F, ¢, d)

1 threshold «— 1+ 9.84(1+ 5)(1+ 1)*

2 Y < FindMUSes (F, threshold)

3 if |Y| < threshold then return |Y|

4 G + getUMU(F)

5 Ig + getIMU(G)

6 nCells < 2; C < emptyList;iter < 0

7 while iter < [17log,(3/0)] do

8 iter <— iter + 1

9 (nCells, nSols) <— AMUSICCore(G, I¢, threshold, nCells)
10 if nCells # null then AddToList (C, nCells x nSols)

return FindMedian(C)

=
=

parameter 6 € (0,1], and returns an estimate of |AMUp| within tolerance e and
with confidence at least 1 — §. Similar to ApproxMC3, we first check whether
|AMUF| is smaller than a specific threshold that is a function of . This check is
carried out via a MUS enumeration algorithm, denoted FindMUSes, that returns
aset Y of MUSes of F' such that |Y'| = min(threshold, |AMUFg|). If |Y'| < threshold,
the algorithm terminates while identifying the exact value of |AMUg|. In a sig-
nificant departure from ApproxMC3, AMUSIC subsequently computes the union
(UMUfp) and the intersection (IMUf) of all MUSes of F' by invoking the subrou-
tines GetUMU and GetIMU, respectively. Through the lens of set representation
of the CNF formulas, we can view UMUp as another CNF formula, G. Our key
observation is that AMUr = AMU¢ (see Section 4.2), thus instead of working with
the whole F', we can focus only on GG. The rest of the main procedure is similar to
ApproxMC3, i.e., we repeatedly invoke the core subroutine called AMUSICCore.
The subroutine attempts to find an estimate ¢ of |AMUg| within the tolerance
e. Briefly, to find the estimate, the subroutine partitions P(G) into nCells cells,
then picks one of the cells, and counts the number nSols of MUSes in the cell.
The pair (nCells, nSols) is returned by AMUSICCore, and the estimate ¢ of |AMU|
is then computed as nSols x nCells. There is a small chance that AMUSICCore
fails to find the estimate; it such a case nCells = nSols = null. Individual esti-
mates are stored in a list C. After the final invocation of AMUSICCore, AMUSIC
computes the median of the list C' and returns the median as the final estimate
of |AMUg|. The total number of invocations of AMUSICCore is in O(log(1/4))
which is enough to ensure the required confidence 1 — ¢ (details on assurance of
the (e, d) guarantees are provided in Section 4.2).

We now turn to AMUSICCore which is described in Algorithm 2. The parti-
tion of P(G) into nCells cells is made via a hash function A from H,, (|G|, m), i.e.
nCells = 2™. The choice of m is a crucial part of the algorithm as it regulates the
size of the cells. Intuitively, it is easier to identify all MUSes of a small cell; how-
ever, on the contrary, the use of small cells does not allow to achieve a reasonable
tolerance. Based on ApproxMC3, we choose m such that a cell given by a hash
function h € H,,, (|G|, m) contains almost threshold many MUSes. In particular,

Algorithm 2: AMUSICCore(G, I, threshold, prevNCells)

Choose h at random from H.r (|G|, |G| — 1)

Choose « at random from {0,1}/¢1~!

nSols < CountInCell(G, I, h, c, threshold)

if nSols = threshold then return (null,null)

mPrev < log, prevNCells

(nCells, nSols) < LogMUSSearch(G, 1, h, a, threshold, mPrev)
return (nCells, nSols)

N O Ok WwN =

the computation of AMUSICCore starts by choosing at random a hash function h
from H,,, (|G|, |G|—1) and a cell & at random from {0, 1}/¢I=1. Subsequently, the
algorithm tends to identify m!" prefixes h(™ and o™ of h and «, respectively,
such that [AMU ¢ ;,(m) q(m)y| < threshold and [AMU ¢ ,(m-1) qm-1y| > threshold.
Recall that AMU(G,h(l),aU)) D e D AMU(G,hUGl—l),aUG\—U} (Observation 1, Sec-
tion 2). We also know that the cell a(®), i.e. the whole P(G), contains at least
threshold MUSes (see Algorithm 1, line 3). Consequently, there can exist at most
one such m, and it exists if and only if |AMU(G7h(|G\—1)7(1(\6‘\—1))| < threshold. There-
fore, the algorithm first checks whether |[AMU, ¢ j,(c1-1) q(ci-1y| < threshold. The
check is carried via a procedure CountlnCell that returns the number nSols =
min(|AMU<G)h<\c|_1>7a<\c_1>>|,thresho|d). If nSols = threshold, then AMUSICCore
fails to find the estimate of |[AMUg| and terminates. Otherwise, a procedure
LogMUSSearch is used to find the required value of m together with the num-
ber nSols of MUSes in a(™. The implementation of LogMUSSearch is directly
adopted from ApproxMC3 and thus we do not provide its pseudocode here (note
that in ApproxMC3 the procedure is called LogSATSearch). We only briefly sum-
marize two main ingredients of the procedure. First, it has been observed that
the required value of m is often similar for repeated calls of AMUSICCore. There-
fore, the algorithm keeps the value mPrev of m from previous iteration and first
test values near mPrev. If none of the near values is the required one, the algo-
rithm exploits that AMU(G,h(U,a(l)) D D AMU(G,h(\G*l),a(\GFl))7 which allows
it to find the required value of m via the galloping search (variation of binary
search) while performing only log |G| calls of CountInCell.

Note that in ApproxMC3, the procedure CountInCell is called BSAT and it
is implemented via an NP oracle, whereas we use a 231,3 oracle to implement
the procedure (see Section 4.3). The high-level functionality is the same: the
procedures use up to threshold calls of the oracle to check whether the number
of the target elements (models vs. MUSes) in a cell is lower than threshold.

4.2 Analysis and Comparison With ApproxMC3

Following from the discussion above, there are three crucial technical differences
between AMUSIC and ApproxMC3: (1) the implementation of the subroutine
CountInCell in the context of MUS, (2) computation of the intersection IMUp of
all MUSes of F' and its usage in CountInCell, and (3) computation of the union

UMUf of all MUSes of F' and invocation of the underlying subroutines with G
(i.e., UMUp) instead of F. The usage of CountInCell can be viewed as domain-
specific instantiation of BSAT in the context of MUSes. Furthermore, we use the
computed intersection of MUSes to improve the runtime efficiency of CountInCell.
It is perhaps worth mentioning that prior studies have observed that over 9% of
the runtime of ApproxMC3 is spent inside the subroutine BSAT [52]. Therefore,
the runtime efficiency of CountInCell is crucial for the runtime performance of
AMUSIC, and we discuss in detail, in Section 4.3, algorithmic contributions in
the context of CountInCell including usage of IMUrp. We now argue that the
replacement of F' with GG in line 4 in Algorithm 1 does not affect correctness
guarantees, which is stated formally below:

Lemma 1. For every G’ such that OMUr C G’ C F, the following hold:

AMUp = AMUq/ (1)
IMUp = IMUg (2)

Proof. (1) Since G’ C F then every MUS of G’ is also a MUS of F. In the other
direction, every MUS of F is contained in the union UMUg of all MUSes of F|,
and thus every MUS of F is also a MUS of G’ (2 UMUp).

(2) IMUF = ﬂMeAMUF = ﬂ]\/IEAMUG/ = IMUg'.

Equipped with Lemma 1, we now argue that each run of AMUSIC can be
simulated by a run of ApproxMC3 for an appropriately chosen formula. Given
an unsatisfiable formula F' = {f1,..., fijp}, let us by Br denote a satisfi-
able formula such that: (1) Vars(Br) = {z1,...,2|p|} and (2) an assignment
I : Vars(Bp) — {1,0} is a model of Bp iff {f;|I(x;) = 1} is a MUS of F. In-
formally, models of Br one-to-one map to MUSes of F'. Hence, the size of sets
returned by CountInCell for F is identical to the corresponding BSAT for Bp.
Since the analysis of ApproxMC3 only depends on the correctness of the size of
the set returned by BSAT, we conclude that the answer computed by AMUSIC
would satisfy (e,d) guarantees. Furthermore, observing that CountInCell makes
threshold many queries to X1 -oracle, we can bound the time complexity. For-
mally,

Theorem 1. Given a formula F, a tolerance ¢ > 0, and a confidence 1 — 6 €
(0,1], let AMUSIC(F,e,0) return c. Then Pr[|AMUg|/(1+¢€) < ¢ < |[AMUR| - (1 +
€)] > 1 — 8. Furthermore, AMUSIC makes O(log|F| - % -log(1/6)) calls to X3

oracle.

Few words are in order concerning the complexity of AMUSIC. As noted
in Section 1, for a formula on n variables, approximate model counters make
O(logn - % - log(1/6)) calls to an NP oracle, whereas the complexity of finding
a satisfying assignment is NP-complete. In our case, we make calls to a 21" oracle
while the problem of finding a MUS is in FPV". Therefore, a natural direction
of future work is to investigate the design of a hashing-based technique that
employs an FPN oracle.

Algorithm 3: CountlInCell(G, Ig, h, , threshold)

1 c+ 0, M+ {}

2 while ¢ < threshold do

3 M + GetMUS(G, I¢, M, h,a)
4 if M = null then return c
5 M~ MU{M}
6

7

c+—c+1

return c

4.3 Counting MUSes in a Cell: CountInCell

In this section, we describe the procedure CountInCell. The input of the pro-
cedure is the formula G (i.e., UMUp), the set Iz = IMUg, a hash function
h € Hyor(|G],m), a cell @ € {0,1}™, and the threshold value. The output is
¢ = min(threshold, |AMU ¢ 1, a)|)-

The description is provided in Algorithm 3. The algorithm iteratively calls
a procedure GetMUS that returns either a MUS M such that M € (AMU(g p,q0) \M)
or null if there is no such MUS. For each M, the value of c¢ is increased and M is
added to M. The loop terminates either when ¢ reaches the value of threshold or
when GetMUS fails to find a new MUS (i.e., returns null). Finally, the algorithm
returns c.

GetMUS To implement the procedure GetMUS, we build an 3v3-QBF formula
MUSInCell such that each witness of the formula corresponds to a MUS from
AMU (G .a) \ M. The formula consists of several parts and uses several sets of
variables that are described in the following.

The main part of the formula, shown in Equation (3), introduces the first
existential quantifier and a set P = {p1,...,p|g|} of variables that are quantified
by the quantifier. Note that each valuation I of P corresponds to a subset S of
G; in particular let us by Ip g denote the set {f; € G|I(p;) = 1}. The formula
is build in such a way that a valuation [is a witness of the formula if and
only if Ip ¢ is a MUS from AMU ¢ 4 oy \ M. This property is expressed via three
conjuncts, denoted inCell (P), unexplored(P), and isMUS (P), encoding that
(i) Ip,c isin the cell o, (ii) Ip ¢ is not in M, and (iii) Ip,q is a MUS, respectively.

MUSInCell = 3P.inCell(P) A unexplored(P) A isMUS(P) (3)

Recall that the family H,,(n, m) of hash functions is defined as {h | h(y)[i] =

ai0®(@y_y aixA\ylk]) for alll < i < m}, where a; , € {0,1} (Section 2). A hash

function h € Hyor(n, m) is given by fixing the values of individual a; ;, and a cell

a of h is a bit-vector from {0,1}". The formula inCell(P) encoding that the
set Ip g is in the cell v of h is shown in Equation (4).

m

inCell(P) = N\(aio®(@ p)®-alil) (4)

=1 pE{prlair=1}

To encode that we are not interested in MUSes from M, we can simply
block all the valuations of P that correspond to these MUSes. However, we can
do better. In particular, recall that if M is a MUS, then no proper subset and
no proper superset of M can be a MUS; thus, we prune away all these sets from
the search space. The corresponding formula is shown in Equation (5).

unexplored(P) = /\ ((\/ —pi) A (\/ Pi)) (5)

MeM f,eM figM

The formula isMUS(P) encoding that Ip ¢ is a MUS is shown in Equation (6).
Recall that Ip ¢ is a MUS if and only if Ip ¢ is unsatisfiable and for every closest
subset S of Ip it holds that S is satisfiable, where closest subset means that
[Ip.c \ S| = 1. We encode these two conditions using two subformulas denoted
by unsat(P) and noUnsatSubset(P).

isMUS(P) = unsat (P) A noUnsatSubset (P) (6)

The formula unsat (P), shown in Equation (7), introduces the set Vars(G)
of variables that appear in G and states that every valuation of Vars(G) falsifies
at least one clause contained in Ip .

unsat (P) = VVars(G). \/ (pi A f3) (7)
fieG@

The formula noUnsatSubset (P), shown in Equation (8), introduces another
set of variables: @ = {q1,...,q|¢}. Similarly as in the case of P, each valuation
I of @ corresponds to a subset of G defined as I ¢ = {f; € G|I(¢g;) = 1}. The
formula expresses that for every valuation I of @ it holds that I ¢ is satisfiable
or Ig g is not a closest subset of Ip .

noUnsatSubset (P) = V(Q.sat(Q) V —subset (Q, P) (8)

The requirement that I ¢ is satisfiable is encoded in Equation (9). Since we
are already reasoning about the satisfiability of G’s clauses in Equation (7), we
introduce here a copy G’ of G where each variable z; of G is substituted by its
primed copy z. Equation (9) states that there exists a valuation of Vars(G’)
that satisfies I .

sat(Q) = 3Vars(G'). N (-a:V f) (9)

fieq’

Equation (10) encodes that Ig ¢ is a closest subset of Ip . To ensure that
Ig,c is a subset of Ipg, we add the clauses ¢; — p;. To ensure the close-
ness, we use cardinality constraints. In particular, we introduce another set
R ={r1,...,7q} of variables and enforce their values via r; <+ (p; A ~¢g;). Intu-
itively, the number of variables from R that are set to 1 equals to |Ip \ Ig,¢|-
Finally, we add cardinality constraints, denoted by exactlyOne(R), ensuring
that exactly one r; is set to 1.

subset (Q, P) = 3R. /\ ((gi = pi) N (ri <> (pi A —q;)) A exactlyOne(R) (10)
pi€EP

Note that instead of encoding a closest subset in Equation 10, we could just
encode that I ¢ is an arbitrary proper subset of Ip ¢ as it would still preserve
the meaning of Equation 6 that Ip g is a MUS. Such an encoding would not
require introducing the set R of variables and also, at the first glance, would
save a use of one existential quantifier. The thing is that the whole formula
would still be in the form of IV3-QBF due to Equation 9 (which introduces
the second existential quantifier). The advantage of using a closet subset is that
we significantly prune the search space of the QBF solver. It is thus matter of
contemporary QBF solvers whether it is more beneficial to reduce the number
of variables (by re