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The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with
practical problems that involve millions of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome
Rearrangement, Telecom Feature Subscription, Resource Constrained
Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability
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Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F ) = { solutions of F }

• Counting: Determine |Sol(F )|
– Approximation: Pr

[
|Sol(F )|
1+ε ≤ c ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

• Uniform Sampling Pr[y is output] = 1
|Sol(F )|

– Almost-Uniform: 1
(1+ε)|Sol(F )| ≤ Pr[y is output] ≤ 1+ε

|Sol(F )|

• Given

– F := (X1 ∨ X2)

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F )| = 3
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Applications across Computer Science

Counting &
Sampling

Network
Reliability

Hardware
Validation

Explainable
AI

Neural
Network

Robustness

Quantified
Information

Flow
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Through the Lens of SAT Revolution

Obs 1 SAT Oracle 6= NP Oracle

• Returns UNSAT with a proof
• Return a satisfying assignment if satisfiable

Obs 2 SAT Solver 6= SAT oracle

• The performance of solver depends on the formulas

Obs 3 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C
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Today’s Menu

Constrained Counting

Hashing Framework

Constrained Sampling

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)
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Counting in Berkeley

How many people in Berkeley like coffee?

• Population of Berkeley = 112K

• Assign every person a unique (n =) 17 bit identifier (2n = 112K)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 112K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F ) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)
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2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity

– Z be the number of solutions in a randomly chosen cell

– E[Z ] = |Sol(F )|
2m

– σ2[Z ] ≤ E[Z ]
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2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)
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Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I ( CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
( IMMV; CP15, Constraints16)
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Handling CNF+XOR Formulas

• CNF + Sparse XORs are still CNF+XOR formulas.
• Translating XORs to CNF and performing CDCL is not sufficient

– XORs can be solved by Gaussian elimination

• CryptoMiniSAT: Solver designed to perform CDCL and Gaussian
Elimination in tandem (SNC09; SM19, SGM20 )

• BIRD (Blast, Inprocess, Recover, and Detach): Tighter integration
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based XORs
• Specialized CNF Solvers

Challenge 2 How many cells?

Challenge 3 What is exactly a small cell ?
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Challenge 2: How many cells?

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
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ApproxMC

# of sols
≤ thresh?
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ApproxMC

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes
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ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• Will this work? Will the “m” where we stop be close to m∗?

– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )
– Key Insight: The probability of making a bad choice of Qi is very

small for i � m∗

( CMV, IJCAI16)
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Taming the Curse of Dependence

Let 2m
∗

= |Sol(F )|
thresh (m∗ = log( |Sol(F )|thresh ))

Lemma (1)

ApproxMC terminates with m ∈ {m∗ − 1,m∗} with probability ≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(F )| with probability ≥ 0.8

Repeat O(log(1/δ)) times and return the median
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Challenges

Challenge 3 What is a small cell?

• A cell is small cell if it has ≈ thresh solutions.
• Approach 1: thresh = constant → 4-factor approximation

– From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F )

|Sol(G )|
4

≤C ≤ 4 · |Sol(G )| =⇒ |Sol(F )|
2

≤
√
C ≤ 2 · |Sol(F )|

– From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root

• Approach 2: thresh = O( 1
ε2

) gives (1 + ε)-approximation directly

Techniques based on thresh = O( 1
ε2

), despite worse complexity, e.g.,
ApproxMC scale significantly better than those based on
thresh = constant.

The performance of SAT solvers depend on the formulas
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ApproxMC

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log( 1

δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – different from the
Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)
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Improvements Over the Years
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Today’s Menu

Constrained Counting Hashing Framework

Constrained Sampling
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Constrained Sampling

• Given:

– Set of Constraints F over variables X1,X2, · · ·Xn

• Uniform Sampler

∀y ∈ Sol(F ),Pr[y is output] =
1

|Sol(F )|

• Almost-Uniform Sampler

∀y ∈ Sol(F ),
1

(1 + ε)|Sol(F )|
≤ Pr[y is output] ≤ (1 + ε)

|Sol(F )|
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Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls
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Key Ideas

• Check if a randomly picked cell is small

– If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?
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How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F )|
thresh ( m∗ = log |Sol(F )|thresh )

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F )|
1+ε ≤ C ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small

• Pr[y is output ] = Pr[y is chosen] Pr[Cell is small | y is in cell]

• The conditioning in Pr[Cell is small | y is in cell] leads to
requirement of 3-wise independence of 2-wise independence.

( CMV14, CFMSV14, CFMSV15,SGM20)
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Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F ), 1
(1+ε)|Sol(F )| ≤ Pr[y is output] ≤ 1+ε

|Sol(F )|

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate
counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

• JVV employs 2-wise independent hash functions

• UniGen employs 3-wise independent hash functions

Random XORs are 3-wise independent
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Quiz Time: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384
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Statistically Indistinguishable

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384
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Now that SAT is ”easy”, it is time to look beyond
satisfiability
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Improvements Over the Years
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Enabling “Beyond NP” Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Hardware Verification Handling SMT formulas with 10K nodes

Technical Directions

• Tighter integration between solvers and algorithms

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting

Questions?
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E ); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[ s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting ( DMPV, AAAI 17, ICASP-13, RESS 2019)
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?
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