Improving Approximate Counting:
From Linear to Logarithmic SAT

calls
(When Practice Drives Theory)

Kuldeep S. Meel

Rice University

Joint work with Supratik Chakraborty (IIT Bombay) and Moshe Y. Vardi (Rice U.)

Constrained Counting

- F: CNF Formula; Rg : Solution Space of F
- | (a \% b), RF — {(0,1), (]_,O), (1,1), | RF | =3

- Probably Approximately Correct (PAC) Counter
- Input: F, tolerance: &, confidence: § Output: C

pr| IRF <C<|Re|(1+8)|=6
(1+ ¢)

Diverse Applications

Syntax-Guided
Synthesis

Constrained

Sampling &

Automatic

Random
Simulation

Counting

Probabilistic
Inference

Problem

Generation

Planning
under
uncertainity

Partitioning into equal “small” cells

A

Approximate Counting

Pick a random cell

Estimate = # of solutions in cell * # of cells

Partitioning

1. How large 1s the “small” cell?
2. How do we compute solutions 1nside a cell?

3. How many cells?

Question 1: Size of cell

- Too large => Hard to enumerate

- Too small => Ratio of standard deviation to mean 1s
very high

thresh =5 (1 + giz),

Question 2: Solving a cell

- Variables: X, X,, X,,....., X

- To construct h: {0,1}" - {0,1}™,
choose m random XORs

- Pick every variable with prob. % ,
XOR them and add 1 with prob. %

"Eg: X XX D... DX,
-a €{0,1}" - Set every XOR

. 0, =X OX, OXB.... X, =0)
equation to O or 1 randomly 0, =X OX,0X,@.. X =1)
- The cell: F A XORs Q3 =X, O X; B X, @ ... X, =0) 2
(FAQ{AQy--AQ,) Qs =X, dX; X, ... X ; =0)
Qm=(X1@X2@X3@ Xn-l_O)J

Question 3: How many cells?

#sols < NO X
thresh

Question 3: How many cells?

H#sols < NO X
thresh

H#sols <
thresh

NO

Question 3: How many cells?

i e (T

Question 3: How many cells?

- Query 1: # of sols (F A Q1) < thresh

- Query 2: # of sols (F A Q2 A Q2) < thresh

- Query n: # of sols (FA Q! AQ}--- Q1) < thresh

- Stop when query m returns YES and return
of sols(F A Q{* A Q" --- Q') x 2™

- # of SAT calls 1s O(n)

ApproxMC(F,e¢, §)

Theorem 1:

> 0

R
Pr [(1| _:lg) < ApproxMC(F,s,6) < |Rg|(1+ ¢)

Theorem 2:

log——
ApproxMC(F,¢, §) makes O (ke Og1‘5) calls to NP oracle

c2

Challenge

Hashing-based Approaches to counting and sampling

- Stockmeyer 1983 - TACAS 2015
- Jerrum, Valiant, and Vazirani 1986 . LJCAI 2015
L CAV 2018 . ICML 2015
- CP 2013
- UAI 2015
- UAI 2013
- AAAI 2016
- NIPS 2013
- ICML 2014 - ICML 2016
- AAAI 2014

Can we 1improve number of SAT calls from O(n)?

Improving SAT oracle based algorithms

Extend reach of SAT oracle computing

e Consider other complexity classes
— Most successes are for the lower levels of the (F)PH

e Develop tighter query complexity results

— Provide optimal guarantees on the number of oracle calls
— Also, account for non-constant run time of CDCL SAT oracle?

e Target other high-profile applications

64 /73

J. Maques-Silva (Day 1 of this workshop)

Beyond Classical Oracle Model

- Query 1: # of sols (F A Q1) < thresh
- Query 2: # of sols (F A Q2 A Q3) < thresh

- Query n: # of sols (FAQ} AQ%Z--- QM) < thresh

- Practitioner’s view
1. Query 1 and Query n are not equally hard in practice
2. Solving (F A Q) followed by (F A Qf A Q%) is different than
solving (F A Q1) followed by (F A Q{ A Q5)

Beyond ApproxMC

- What if we do:
* Query 1: # of sols(F A Q1) < thresh
* Query 2: # of sols(F A Q; A Q,) < thresh

* Query n: #of sols (FAQ, AQ, A+ Q) < thresh
- Independence has been crucial to analysis of counting algorithms (Stockmeyer
1983, Jerrum, Valiant and Vazirani 1986.....)

 T;: Query 1 returns YES; S;: Estimate retuned by Query 1 on termination is correct

- Independence helped us to simplify
Pr[Til_'Ti—l] — Pr[Tl] and Pr[Sil—uTi_l] — Pr[Sl]

- Contribution: A new analysis that applies to several hashing-based algorithms

The key 1dea behind New Analysis

- B: Event that estimate returned 1s outside the desired (1 + ¢)
Interval

* |RF| . m* |IRF|
- m” =lo lLe.,2™ =
5thresh (e, thresh)
 T;: Query 1 returns YES ; S;: Estimate computed in Query 1 on termination 1is correct

. Lemma 1: Pr[B] = Pr[UT; 2 T;] 4+ Pr[=S;s—q1 N Type_q | + Pr[—S,-]
- Lemma 2: Pr[U’lf'fl_2 T;]1 <0.1

- Informally, Probability of making a bad choice early on 1s very
small.

ApproxMC2

- Query 1: # of sols(F A Q,) < thresh
- Query 2: # of sols(F A Q; A Q,) < thresh

- Query n: # of sols (FAQ; AQ, A---Q,) < thresh
- Stop when query m returns YES and return

of SOls(FAQy ANQ, A+ Q) ¥ 2™

- Observation: # of sols of formula 1n query 1 < # of sols of
formula 1n query 1-1
- If Query 1 answers No, then Query 1-1 must answer No
- Binary search to find m

ApproxMC(C2: The twist in Binary search

« Query m: # of sols (FAQ; AQ, A+ Q,,,) < thresh

- The # of solutions 1s typically very small compared to 2™
- We terminate for m <<n

- Performing “Query n/2” is very very expensive (1n practice)

- In fact, for almost all our benchmarks, CMS will timeout with “Query
n/2”

- Galloping search

ApproxMC2 (F,¢, §)

Theorem 1:

R
Pr[Rr < ApproxMC2(F,e,8) < |Rp|(14+¢&)| =6

(1+¢&) ™

Theorem 2:

1 log——
ApproxMC2(F, e, §) makes O ((logn) log——

g2

) calls to NP oracle

Theorem 3:

If F 1s DNF formula, then ApproxMC2 1s FPRAS — fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983)

Beyond ApproxMC

- The proposed proof framework can be applied to other
algorithms

- PAWS (Ermon et al 2014)
- WeightMC (Chakraborty et al 2014, Belle et al 2015)

- Reduces number of SAT calls from O(n) or O(n log n) to
O(log n)

Runtime Performance Comparison

Timeout (8 hours)

25001 +
20001 +
Time (¢) 1900 T
10001 +
5001 +
| al 1 = = _I 1

N

;
b
e
~
Q
o,

<X

o - T) o o Tcs £ % o o~ o
! = S & Yol @ < & s Q — N
8 N N — o) & & 2 2 N mn n
o o)) [<)) o) n S) D A [l ol
o 0) 0 > >
S < S < e © n
S O 13 O -~ b Q
= O] O] O] — ke =
= O O O] = o
O O O 2,
B ApproxMC2 gpproxMC g
O
O

Conclusion

- The success of CDCL presents opportunities to solve
problems in higher complexity classes

- Hashing-based techniques combine progress in SAT
solving with theoretical strength of universal hashing

- Revisiting Oracle Model:
- Not every call to SAT oracle requires similar computational effort
- SAT oracles require more than constant time to run

- Resulting analysis improves both theoretical and practical
complexity.

	Slide 0: Improving Approximate Counting: From Linear to Logarithmic SAT calls (When Practice Drives Theory)
	Slide 1: Constrained Counting
	Slide 2
	Slide 3
	Slide 4: Partitioning into equal “small” cells
	Slide 5: Approximate Counting
	Slide 6: Partitioning
	Slide 7: Question 1: Size of cell
	Slide 8: Question 2: Solving a cell
	Slide 9: Question 3: How many cells?
	Slide 10: Question 3: How many cells?
	Slide 11: Question 3: How many cells?
	Slide 12: Question 3: How many cells?
	Slide 13: Question 3: How many cells?
	Slide 14: ApproxMC(F,script epsilon ,, delta close paren
	Slide 15: Challenge
	Slide 16: Improving SAT oracle based algorithms
	Slide 17: Beyond Classical Oracle Model
	Slide 18: Beyond ApproxMC
	Slide 19: The key idea behind New Analysis
	Slide 20: ApproxMC2
	Slide 21: ApproxMC2: The twist in Binary search
	Slide 22: ApproxMC2 (F,script epsilon ,, delta close paren
	Slide 23: Beyond ApproxMC
	Slide 24: Runtime Performance Comparison
	Slide 25: Conclusion

