Improving Approximate Counting: From Linear to Logarithmic SAT calls (When Practice Drives Theory)

Kuldeep S. Meel Rice University

Joint work with Supratik Chakraborty (IIT Bombay) and Moshe Y. Vardi (Rice U.)

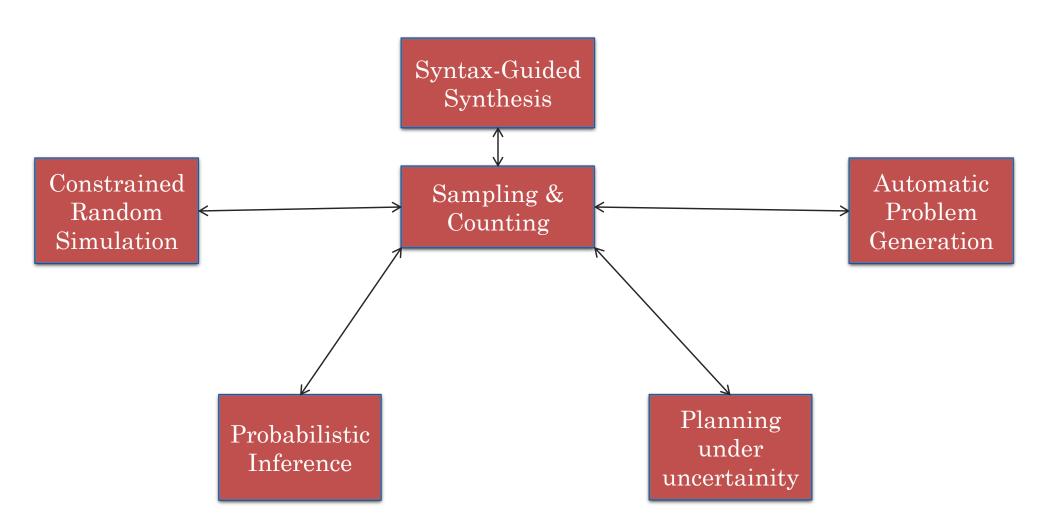
Constrained Counting

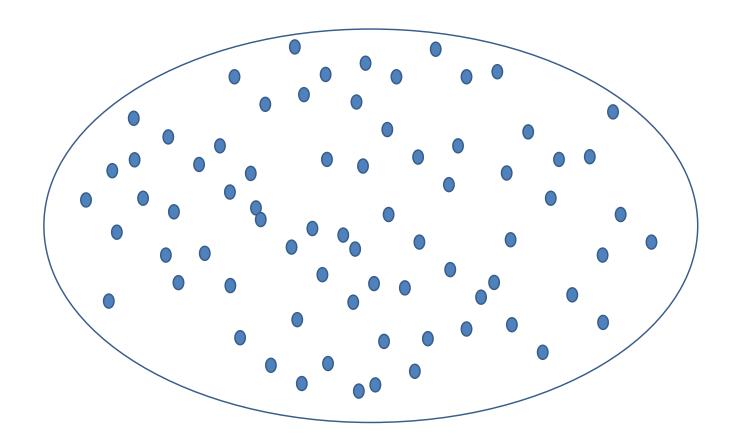
- *F*: CNF Formula; R_F : Solution Space of *F*
- F: (a $\lor b$); $R_F = \{(0,1), (1,0), (1,1); |R_F| = 3$

Probably Approximately Correct (PAC) Counter
Input: *F*, tolerance: *ε*, confidence: δ Output: *C*

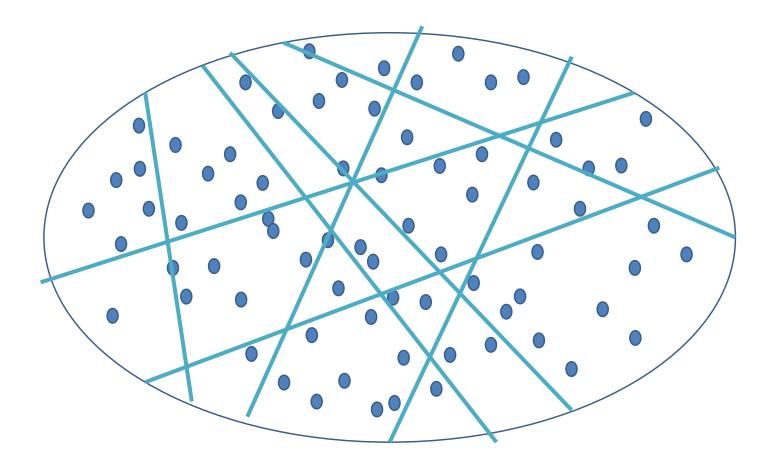
$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le C \le |R_F|(1+\varepsilon)\right] \ge \delta$$

Diverse Applications

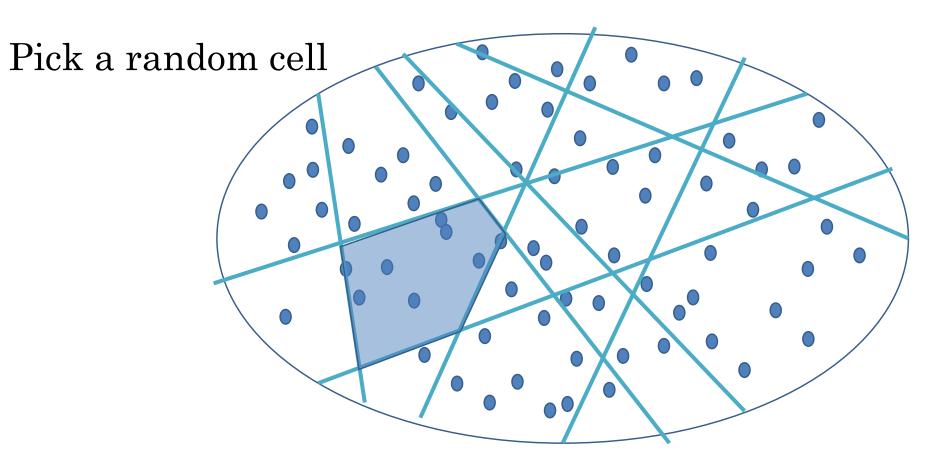




Partitioning into equal "small" cells



Approximate Counting



Estimate = # of solutions in cell * # of cells

Partitioning

1. How large is the "small" cell?

2. How do we compute solutions inside a cell?

3. How many cells?

Question 1: Size of cell

- Too large => Hard to enumerate
- Too small => Ratio of standard deviation to mean is very high

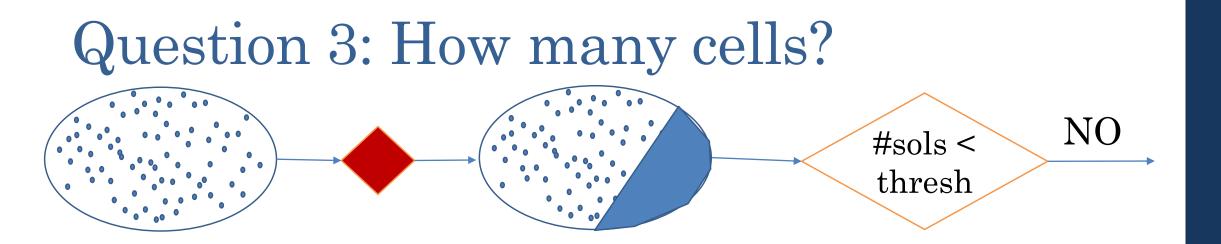
thresh =
$$5\left(1 + \frac{1}{\varepsilon^2}\right)$$
;

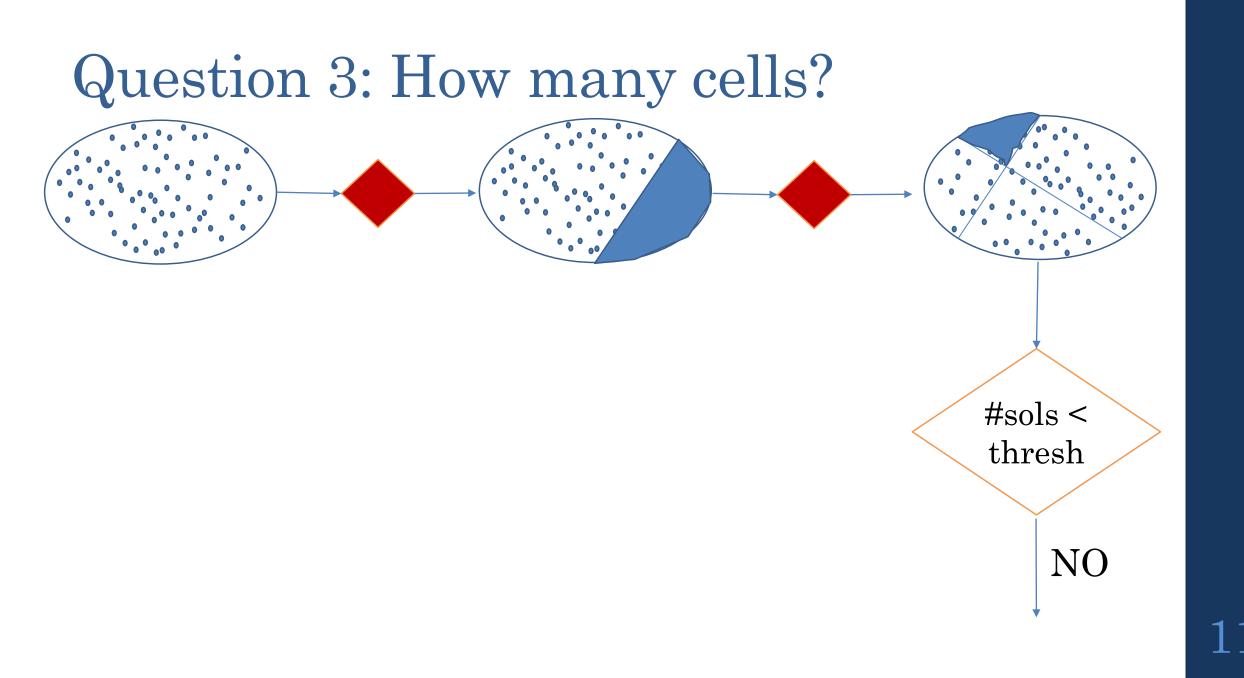
Question 2: Solving a cell

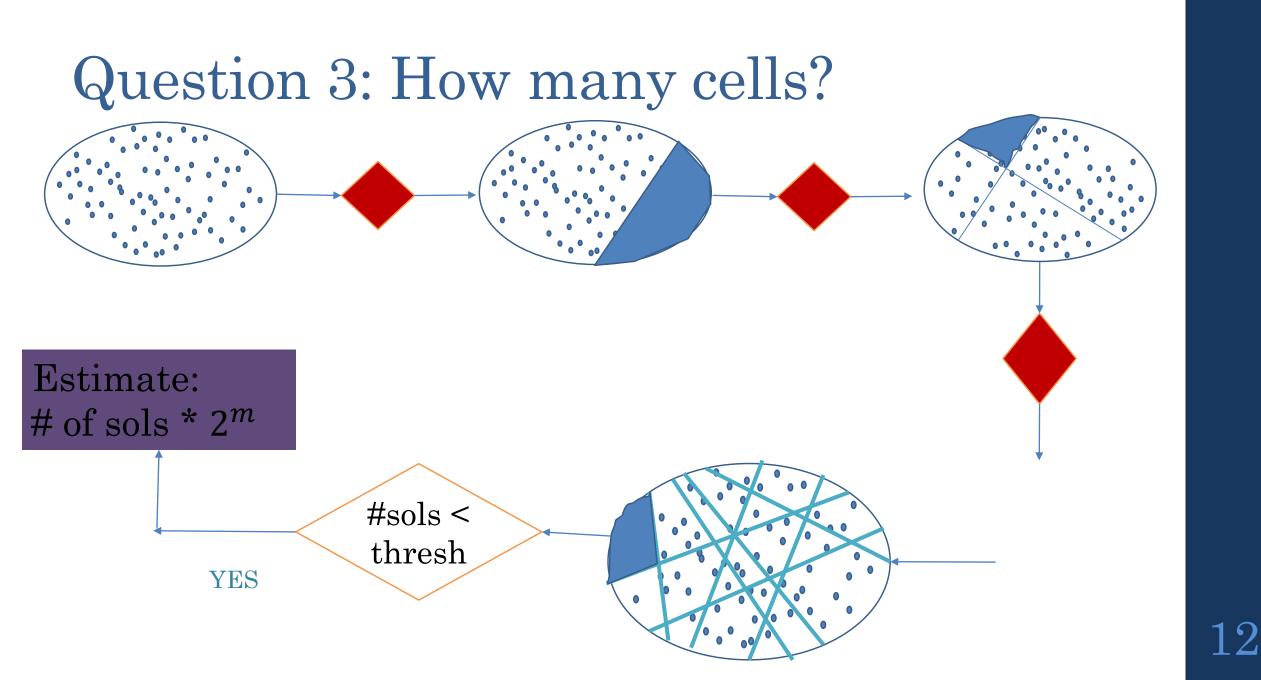
- Variables: $X_1, X_2, X_3, \dots, X_n$
- To construct h: $\{0,1\}^n \rightarrow \{0,1\}^m$, choose m random XORs
- Pick every variable with prob. $\frac{1}{2}$, XOR them and add 1 with prob. $\frac{1}{2}$
- E.g.: $X_1 \oplus X_3 \oplus X_6 \oplus \ldots \oplus X_{n-1}$
- $\alpha \in \{0,1\}^m \rightarrow \text{Set every XOR}$ equation to 0 or 1 randomly
- The cell: $F \land XORs$ $(F \land Q_1 \land Q_2 \cdots \land Q_m)$

$$\begin{array}{l} Q_{1} \coloneqq (\mathbf{X}_{1} \bigoplus \mathbf{X}_{3} \bigoplus \mathbf{X}_{6} \bigoplus \dots \mathbf{X}_{\mathbf{n} \cdot 1} = 0) \\ Q_{2} \coloneqq (\mathbf{X}_{1} \bigoplus \mathbf{X}_{2} \bigoplus \mathbf{X}_{4} \bigoplus \dots \mathbf{X}_{\mathbf{n} \cdot 1} = 1) \\ Q_{3} \coloneqq (\mathbf{X}_{1} \bigoplus \mathbf{X}_{3} \bigoplus \mathbf{X}_{5} \bigoplus \dots \mathbf{X}_{\mathbf{n} \cdot 1} = 0) \\ Q_{4} \coloneqq (\mathbf{X}_{2} \bigoplus \mathbf{X}_{3} \bigoplus \mathbf{X}_{4} \bigoplus \dots \mathbf{X}_{\mathbf{n} \cdot 1} = 0) \\ \dots \\ Q_{m} \coloneqq (\mathbf{X}_{1} \bigoplus \mathbf{X}_{2} \bigoplus \mathbf{X}_{3} \bigoplus \dots \mathbf{X}_{\mathbf{n} \cdot 1} = 0) \end{array} \right] \qquad \overset{\mathsf{m}}{\overset{\mathsf{XORs}}{\overset{\mathsf{MORs}}{\overset{\mathsf{$$

Question 3: How many cells? #sols < NO thresh







Question 3: How many cells?

- Query 1: # of sols $(F \land Q_1^1) < thresh$
- Query 2: # of sols $(F \wedge Q_1^2 \wedge Q_2^2) < {\rm thresh}$
- • • •
- Query n: # of sols $(F \wedge Q_1^n \wedge Q_2^n \cdots Q_n^n) < \text{thresh}$
- \bullet Stop when query m returns YES and return

of sols($F \land Q_1^m \land Q_2^m \cdots Q_n^m$) * 2^m

• # of SAT calls is O(n)

ApproxMC(F,
$$\varepsilon$$
, δ)

Theorem 1:

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le \operatorname{ApproxMC}(F,\varepsilon,\delta) \le |R_F|(1+\varepsilon)\right] \ge \delta$$

Theorem 2:

ApproxMC(F,
$$\varepsilon$$
, δ) makes $O\left(\frac{n \log \frac{1}{1-\delta}}{\varepsilon^2}\right)$ calls to NP oracle

Challenge

Hashing-based Approaches to counting and sampling

- Stockmeyer 1983
 Jerrum, Valiant, and Vazirani 1986
 CAV 2013
 ICML 2015
 ICML 2015
 CP 2013
 UAI 2013
 UAI 2013
 NIPS 2013
 AAAI 2016
 AISTATS 2016
 ICML 2014
 ICML 2016
- AAAI 2014

Can we improve number of SAT calls from O(n)?

Improving SAT oracle based algorithms

Extend reach of SAT oracle computing

- Consider other complexity classes
 - Most successes are for the lower levels of the (F)PH
- Develop tighter query complexity results
 - Provide optimal guarantees on the number of oracle calls
 - Also, account for non-constant run time of CDCL SAT oracle?
- Target other high-profile applications

J. Maques-Silva (Day 1 of this workshop)

Beyond Classical Oracle Model

- Query 1: # of sols $(F \land Q_1^1) < thresh$
- Query 2: # of sols $(F \wedge Q_1^2 \wedge Q_2^2) < {\rm thresh}$

•••••

• Query n: # of sols $(F \wedge Q_1^n \wedge Q_2^n \cdots Q_n^n) < \text{thresh}$

• Practitioner's view

- 1. Query 1 and Query n are not equally hard in practice
- 2. Solving $(F \land Q_1^1)$ followed by $(F \land Q_1^2 \land Q_2^2)$ is different than solving $(F \land Q_1^1)$ followed by $(F \land Q_1^1 \land Q_2^2)$

Beyond ApproxMC

- What if we do:
 - Query 1: # of sols($F \land Q_1$) < thresh
 - Query 2: # of sols ($F \land Q_1 \land Q_2$) < thresh
 - • Query n: # of sols $(F \land Q_1 \land Q_2 \land \cdots Q_n) < \text{thresh}$
- Independence has been crucial to analysis of counting algorithms (Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986.....)
- T_i : Query i returns YES; S_i : Estimate retuned by Query i on termination is correct
- Independence helped us to simplify $\Pr[T_i | \neg T_{i-1}] = \Pr[T_i]$ and $\Pr[T_i | \neg T_{i-1}] = \Pr[T_i]$
 - $\Pr[S_i | \neg T_{i-1}] = \Pr[S_i]$
- Contribution: A new analysis that applies to several hashing-based algorithms

The key idea behind New Analysis

• B: Event that estimate returned is outside the desired $(1 + \varepsilon)$ interval

•
$$m^* = \log \frac{|R_F|}{\text{thresh}}$$
 (i. e., $2^{m^*} = \frac{|R_F|}{\text{thresh}}$)

- T_i : Query i returns YES ; S_i : Estimate computed in Query i on termination is correct
- Lemma 1: $\Pr[B] = \Pr[\bigcup_{i=1}^{m^*-2} T_i] + \Pr[\neg S_{m^*-1} \cap T_{m^*-1}] + \Pr[\neg S_{m^*}]$
- Lemma 2: $\Pr[\bigcup_{i=1}^{m^*-2} T_i] < 0.1$
- Informally, Probability of making a bad choice early on is very small.

ApproxMC2

•

- Query 1: # of sols($F \land Q_1$) < thresh
- Query 2: # of sols($F \land Q_1 \land Q_2$) < thresh
- Query n: # of sols $(F \land Q_1 \land Q_2 \land \cdots Q_n) < \text{thresh}$
- \bullet Stop when query m returns YES and return

of sols($F \land Q_1 \land Q_2 \land \cdots Q_m$) * 2^m

- Observation: # of sols of formula in query i < # of sols of formula in query i-1
 - If Query i answers No, then Query i-1 must answer No
 - Binary search to find m

ApproxMC2: The twist in Binary search

- Query m: # of sols $(F \land Q_1 \land Q_2 \land \cdots Q_m) < \text{thresh}$
- The # of solutions is typically very small compared to 2ⁿ
 We terminate for m << n
- Performing "Query n/2" is very very expensive (in practice)
 - • In fact, for almost all our benchmarks, CMS will time
out with "Query n/2"
- Galloping search

ApproxMC2 (F, ε , δ)

Theorem 1:

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le \operatorname{ApproxMC2}(F,\varepsilon,\delta) \le |R_F|(1+\varepsilon)\right] \ge \delta$$

Theorem 2:

ApproxMC2(F,
$$\varepsilon$$
, δ) makes $O\left(\frac{(\log n) \log \frac{1}{1-\delta}}{\varepsilon^2}\right)$ calls to NP oracle

Theorem 3:

If F is DNF formula, then ApproxMC2 is FPRAS – fundamentally different from the only other known FPRAS for DNF (Karp, Luby 1983)

22

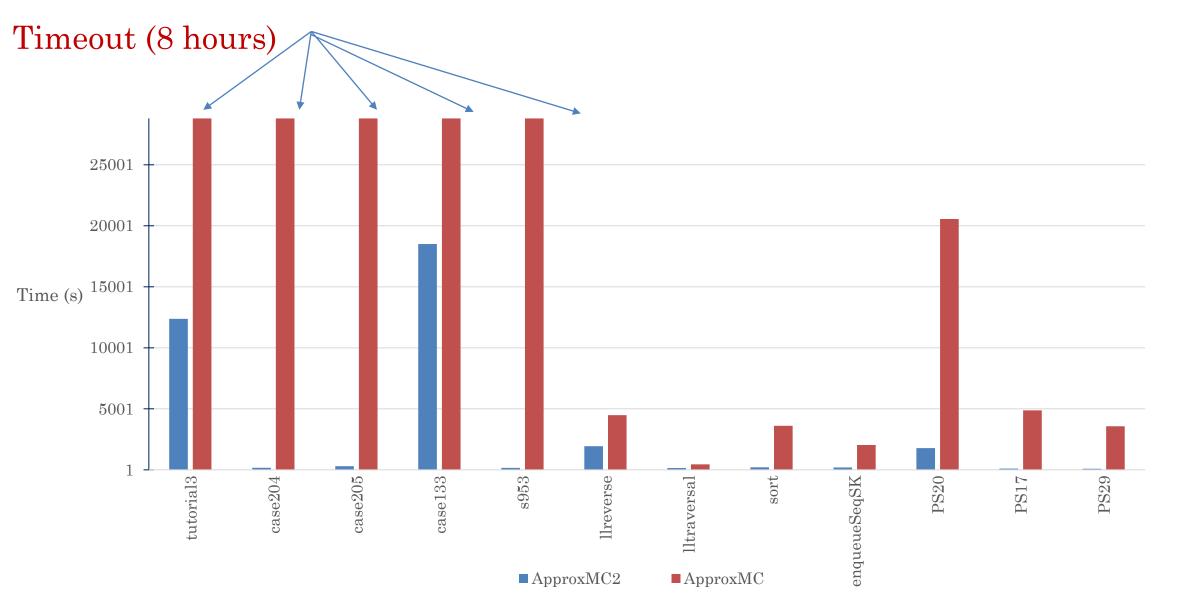
Beyond ApproxMC

• The proposed proof framework can be applied to other algorithms

- PAWS (Ermon et al 2014)
- WeightMC (Chakraborty et al 2014, Belle et al 2015)

- Reduces number of SAT calls from O(n) or $O(n \mbox{ log } n)$ to $O(\mbox{ log } n)$

Runtime Performance Comparison



Conclusion

- The success of CDCL presents opportunities to solve problems in higher complexity classes
- Hashing-based techniques combine progress in SAT solving with theoretical strength of universal hashing
- Revisiting Oracle Model:
 - ${\boldsymbol \cdot}$ Not every call to SAT oracle requires similar computational effort
 - SAT oracles require more than constant time to run
- Resulting analysis improves both theoretical and practical complexity.