
Improving Approximate Counting:
From Linear to Logarithmic SAT

calls
(When Practice Drives Theory)

Kuldeep S. Meel

Rice University

Joint work with Supratik Chakraborty (IIT Bombay) and Moshe Y. Vardi (Rice U.)

Constrained Counting

• 𝐹: CNF Formula; RF ∶ Solution Space of 𝐹

• F: (a ∨ 𝑏); RF = {(0,1), (1,0), (1,1); |RF| = 3

• Probably Approximately Correct (PAC) Counter

 Input: 𝐹, tolerance: 𝜀, confidence: 𝛿 Output: 𝐶

Pr
𝑅𝐹
1 + 𝜀

≤ 𝐶 ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿

1

Constrained

Random

Simulation

Syntax-Guided

Synthesis

Sampling &

Counting

Automatic

Problem

Generation

Diverse Applications

Probabilistic

Inference

Planning

under

uncertainity

2

3

Partitioning into equal “small” cells

4

Approximate Counting

Pick a random cell

Estimate = # of solutions in cell * # of cells 5

Partitioning

1. How large is the “small” cell?

2. How do we compute solutions inside a cell?

3. How many cells?

6

Question 1: Size of cell

• Too large => Hard to enumerate

• Too small => Ratio of standard deviation to mean is
very high

7

thresh = 5 1 +
1

𝜀2
;

Question 2: Solving a cell

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚,
choose m random XORs

• Pick every variable with prob. ½ ,
XOR them and add 1 with prob. ½

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR
equation to 0 or 1 randomly

• The cell: F ∧ XORs
(𝐹 ∧ 𝑄1 ∧ 𝑄2⋯∧ 𝑄𝑚)

8

𝑄1 ≔ (X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-1 = 0)

𝑄2 ≔ (X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1)

𝑄3 ≔ (X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-1 = 0)

𝑄4 ≔ (X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0)

……

𝑄𝑚 ≔ (X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0)

m

XORs

#sols <

thresh

NO

9

Question 3: How many cells?

#sols <

thresh

NO

10

Question 3: How many cells?

11

Question 3: How many cells?

#sols <

thresh

NO

#sols <

thresh
YES

Estimate:

of sols * 2𝑚

12

Question 3: How many cells?

Question 3: How many cells?

• Query 1: # of sols 𝐹 ∧ 𝑄1
1 < 𝑡ℎ𝑟𝑒𝑠ℎ

• Query 2: # of sols 𝐹 ∧ 𝑄1
2 ∧ 𝑄2

2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1
𝑛 ∧ 𝑄2

𝑛⋯𝑄𝑛
𝑛 < thresh

• Stop when query m returns YES and return

of sols 𝐹 ∧ 𝑄1
𝑚 ∧ 𝑄2

𝑚⋯𝑄𝑛
𝑚 ∗ 2𝑚

• # of SAT calls is O(n)

13

Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿

Theorem 2:

ApproxMC(F,𝜀, 𝛿) makes O
𝑛 log

1

1−𝛿

𝜀2
calls to NP oracle

14

ApproxMC(F,𝜀, 𝛿)

Challenge

Can we improve number of SAT calls from O(n)?

15

Hashing-based Approaches to counting and sampling

• Stockmeyer 1983

• Jerrum, Valiant, and Vazirani 1986

• CAV 2013

• CP 2013

• UAI 2013

• NIPS 2013

• DAC 2014

• ICML 2014

• AAAI 2014

• TACAS 2015

• IJCAI 2015

• ICML 2015

• UAI 2015

• AAAI 2016

• AISTATS 2016

• ICML 2016

16

Improving SAT oracle based algorithms

J. Maques-Silva (Day 1 of this workshop)

Beyond Classical Oracle Model

• Query 1: # of sols 𝐹 ∧ 𝑄1
1 < 𝑡ℎ𝑟𝑒𝑠ℎ

• Query 2: # of sols 𝐹 ∧ 𝑄1
2 ∧ 𝑄2

2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1
𝑛 ∧ 𝑄2

𝑛⋯𝑄𝑛
𝑛 < thresh

• Practitioner’s view
1. Query 1 and Query n are not equally hard in practice

2. Solving 𝐹 ∧ 𝑄1
1 followed by 𝐹 ∧ 𝑄1

2 ∧ 𝑄2
2 is different than

solving 𝐹 ∧ 𝑄1
1 followed by 𝐹 ∧ 𝑄1

1 ∧ 𝑄2
2

17

Beyond ApproxMC
• What if we do:

 Query 1: # of sols 𝐹 ∧ 𝑄1 < thresh
 Query 2: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 < thresh
 …...
 Query n: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑛 < thresh

• Independence has been crucial to analysis of counting algorithms (Stockmeyer
1983, Jerrum, Valiant and Vazirani 1986…..)

• 𝑇𝑖: Query i returns YES; 𝑆𝑖: Estimate retuned by Query i on termination is correct

• Independence helped us to simplify

Pr[𝑇𝑖 ¬𝑇𝑖−1 = Pr 𝑇𝑖 and Pr 𝑆𝑖 ¬𝑇𝑖−1 = Pr 𝑆𝑖

• Contribution: A new analysis that applies to several hashing-based algorithms

18

The key idea behind New Analysis

• B: Event that estimate returned is outside the desired 1 + 𝜀
interval

• 𝑚∗ = log
|𝑅𝐹|

thresh
(i. e. , 2𝑚

∗
=

|𝑅𝐹|

thresh
)

• 𝑇𝑖: Query i returns YES ; 𝑆𝑖: Estimate computed in Query i on termination is correct

• Lemma 1: Pr 𝐵 = Pr[∪𝑖=1
𝑚∗−2 𝑇𝑖] + Pr ¬𝑆𝑚∗−1 ∩ 𝑇𝑚∗−1 + Pr ¬𝑆𝑚∗

• Lemma 2: Pr[∪𝑖=1
𝑚∗−2 𝑇𝑖] < 0.1

• Informally, Probability of making a bad choice early on is very
small.

19

ApproxMC2
• Query 1: # of sols 𝐹 ∧ 𝑄1 < thresh

• Query 2: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑛 < thresh

• Stop when query m returns YES and return

of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑚 ∗ 2𝑚

• Observation: # of sols of formula in query i < # of sols of
formula in query i-1
 If Query i answers No, then Query i-1 must answer No

 Binary search to find m
20

ApproxMC2: The twist in Binary search

• Query m: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑚 < thresh

• The # of solutions is typically very small compared to 2𝑛

 We terminate for m << n

• Performing “Query n/2” is very very expensive (in practice)
 In fact, for almost all our benchmarks, CMS will timeout with “Query

n/2”

• Galloping search

21

Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC2(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿

Theorem 2:

ApproxMC2(F,𝜀, 𝛿) makes O
(𝐥𝐨𝐠 𝐧) log

1

1−𝛿

𝜀2
calls to NP oracle

Theorem 3:

If F is DNF formula, then ApproxMC2 is FPRAS – fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983) 22

ApproxMC2 (F,𝜀, 𝛿)

A
p

p
ro

x
M

C
2

Beyond ApproxMC

• The proposed proof framework can be applied to other
algorithms

 PAWS (Ermon et al 2014)

 WeightMC (Chakraborty et al 2014, Belle et al 2015)

• Reduces number of SAT calls from O(n) or O(n log n) to
O(log n)

23

A
p

p
ro

x
M

C
2

Runtime Performance Comparison

1

5001

10001

15001

20001

25001

	
	

tu
to

ri
a
l3

	
	

ca
se

2
0
4

	
	

ca
se

2
0
5

	
	

ca
se

1
3
3

s9
5
3

	
	

ll
re

v
e
rs

e

	
	

ll
tr

a
v
e
rs

a
l

so
rt

	
	

e
n

q
u

e
u

e
S

e
q
S

K

P
S

2
0

P
S

1
7

P
S

2
9

Time (s)

ApproxMC2 ApproxMC

Timeout (8 hours)

24

A
p

p
ro

x
M

C
2

Conclusion

• The success of CDCL presents opportunities to solve
problems in higher complexity classes

• Hashing-based techniques combine progress in SAT
solving with theoretical strength of universal hashing

• Revisiting Oracle Model:
 Not every call to SAT oracle requires similar computational effort

 SAT oracles require more than constant time to run

• Resulting analysis improves both theoretical and practical
complexity.

25

	Slide 0: Improving Approximate Counting: From Linear to Logarithmic SAT calls (When Practice Drives Theory)
	Slide 1: Constrained Counting
	Slide 2
	Slide 3
	Slide 4: Partitioning into equal “small” cells
	Slide 5: Approximate Counting
	Slide 6: Partitioning
	Slide 7: Question 1: Size of cell
	Slide 8: Question 2: Solving a cell
	Slide 9: Question 3: How many cells?
	Slide 10: Question 3: How many cells?
	Slide 11: Question 3: How many cells?
	Slide 12: Question 3: How many cells?
	Slide 13: Question 3: How many cells?
	Slide 14: ApproxMC(F,script epsilon ,, delta close paren
	Slide 15: Challenge
	Slide 16: Improving SAT oracle based algorithms
	Slide 17: Beyond Classical Oracle Model
	Slide 18: Beyond ApproxMC
	Slide 19: The key idea behind New Analysis
	Slide 20: ApproxMC2
	Slide 21: ApproxMC2: The twist in Binary search
	Slide 22: ApproxMC2 (F,script epsilon ,, delta close paren
	Slide 23: Beyond ApproxMC
	Slide 24: Runtime Performance Comparison
	Slide 25: Conclusion

