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Constrained Counting

• 𝐹: CNF Formula;   RF ∶ Solution Space of 𝐹

• F: (a ∨ 𝑏); RF = {(0,1), (1,0), (1,1); |RF| = 3

• Probably Approximately Correct (PAC) Counter

 Input:   𝐹, tolerance: 𝜀, confidence: 𝛿 Output: 𝐶

Pr
𝑅𝐹
1 + 𝜀

≤ 𝐶 ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿
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Partitioning into equal “small” cells
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Approximate Counting

Pick a random cell

Estimate = # of solutions in cell * # of cells 5



Partitioning

1. How large is the “small” cell? 

2. How do we compute solutions inside a cell?

3. How many cells?
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Question 1: Size of cell

• Too large => Hard to enumerate

• Too small => Ratio of standard deviation to mean is 
very high
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thresh = 5 1 +
1

𝜀2
;



Question 2: Solving a cell

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚, 
choose m random XORs

• Pick every variable with prob. ½ , 
XOR them and add 1 with prob. ½ 

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR 
equation to 0 or 1 randomly

• The cell:  F ∧ XORs
(𝐹 ∧ 𝑄1 ∧ 𝑄2⋯∧ 𝑄𝑚)
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𝑄1 ≔ (X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-1 = 0)

𝑄2 ≔ (X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1)

𝑄3 ≔ (X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-1 = 0)

𝑄4 ≔ (X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0)

……

𝑄𝑚 ≔ (X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0)

m 

XORs



#sols < 

thresh

NO
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Question 3: How many cells?



#sols < 

thresh

NO
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Question 3: How many cells?
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Question 3: How many cells?

#sols < 

thresh

NO



#sols < 

thresh
YES

Estimate: 

# of sols * 2𝑚

12

Question 3: How many cells?



Question 3: How many cells?

• Query 1: # of sols 𝐹 ∧ 𝑄1
1 < 𝑡ℎ𝑟𝑒𝑠ℎ

• Query 2: # of sols 𝐹 ∧ 𝑄1
2 ∧ 𝑄2

2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1
𝑛 ∧ 𝑄2

𝑛⋯𝑄𝑛
𝑛 < thresh

• Stop when query m returns YES and return 

# of sols 𝐹 ∧ 𝑄1
𝑚 ∧ 𝑄2

𝑚⋯𝑄𝑛
𝑚 ∗ 2𝑚

• # of SAT calls is O(n) 

13



Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿

Theorem 2:

ApproxMC(F,𝜀, 𝛿) makes O
𝑛 log

1

1−𝛿

𝜀2
calls to NP oracle
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ApproxMC(F,𝜀, 𝛿)



Challenge

Can we improve number of SAT calls from O(n)?
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Hashing-based Approaches to counting and sampling

• Stockmeyer 1983

• Jerrum, Valiant, and Vazirani 1986

• CAV 2013

• CP 2013

• UAI 2013

• NIPS 2013

• DAC 2014

• ICML 2014

• AAAI 2014

• TACAS 2015

• IJCAI 2015

• ICML 2015

• UAI 2015

• AAAI 2016

• AISTATS 2016

• ICML 2016
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Improving SAT oracle based algorithms

J. Maques-Silva (Day 1 of this workshop)



Beyond Classical Oracle Model

• Query 1: # of sols 𝐹 ∧ 𝑄1
1 < 𝑡ℎ𝑟𝑒𝑠ℎ

• Query 2: # of sols 𝐹 ∧ 𝑄1
2 ∧ 𝑄2

2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1
𝑛 ∧ 𝑄2

𝑛⋯𝑄𝑛
𝑛 < thresh

• Practitioner’s view
1. Query 1 and Query n are not equally hard in practice

2. Solving 𝐹 ∧ 𝑄1
1 followed by 𝐹 ∧ 𝑄1

2 ∧ 𝑄2
2 is different than 

solving 𝐹 ∧ 𝑄1
1 followed by 𝐹 ∧ 𝑄1

1 ∧ 𝑄2
2
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Beyond ApproxMC
• What if we do:

 Query 1: # of sols 𝐹 ∧ 𝑄1 < thresh
 Query 2: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 < thresh
 …...
 Query n: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑛 < thresh

• Independence has been crucial to analysis of counting algorithms  (Stockmeyer
1983, Jerrum, Valiant and Vazirani 1986…..)

• 𝑇𝑖: Query i returns YES;  𝑆𝑖: Estimate retuned by Query i on termination is correct

• Independence helped us to simplify

Pr[𝑇𝑖 ¬𝑇𝑖−1 = Pr 𝑇𝑖 and       Pr 𝑆𝑖 ¬𝑇𝑖−1 = Pr 𝑆𝑖

• Contribution: A new analysis that applies to several hashing-based algorithms
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The key idea behind New Analysis

• B: Event that estimate returned is outside the desired 1 + 𝜀
interval

• 𝑚∗ = log
|𝑅𝐹|

thresh
(i. e. , 2𝑚

∗
=

|𝑅𝐹|

thresh
)

• 𝑇𝑖: Query i returns YES ; 𝑆𝑖: Estimate computed in Query i on termination is correct

• Lemma 1: Pr 𝐵 = Pr[∪𝑖=1
𝑚∗−2 𝑇𝑖] + Pr ¬𝑆𝑚∗−1 ∩ 𝑇𝑚∗−1 + Pr ¬𝑆𝑚∗

• Lemma 2: Pr[∪𝑖=1
𝑚∗−2 𝑇𝑖] < 0.1

• Informally, Probability of making a bad choice early on is very 
small. 
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ApproxMC2
• Query 1: # of sols 𝐹 ∧ 𝑄1 < thresh

• Query 2: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 < thresh

• …...

• Query n: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑛 < thresh

• Stop when query m returns YES and return 

# of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑚 ∗ 2𝑚

• Observation: # of sols of formula in query i < # of sols of 
formula in query i-1 
 If Query i answers No, then Query i-1 must answer No

 Binary search to find m
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ApproxMC2: The twist in Binary search

• Query m: # of sols 𝐹 ∧ 𝑄1 ∧ 𝑄2 ∧ ⋯𝑄𝑚 < thresh

• The # of solutions is typically very small compared to 2𝑛

 We terminate for m << n

• Performing “Query n/2” is very very expensive (in practice)
 In fact, for almost all our benchmarks, CMS will timeout with “Query 

n/2” 

• Galloping search 
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Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC2(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 𝛿

Theorem 2:  

ApproxMC2(F,𝜀, 𝛿) makes O
(𝐥𝐨𝐠 𝐧) log

1

1−𝛿

𝜀2
calls to NP oracle

Theorem 3: 

If F is DNF formula, then ApproxMC2 is FPRAS – fundamentally 
different from the only other known FPRAS for DNF (Karp, Luby 1983) 22

ApproxMC2 (F,𝜀, 𝛿)
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Beyond ApproxMC

• The proposed proof framework can be applied to other 
algorithms

 PAWS (Ermon et al 2014)

 WeightMC (Chakraborty et al 2014, Belle et al 2015)

• Reduces number of SAT calls from O(n) or O(n log n) to 
O(log n)
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Runtime Performance Comparison
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Conclusion

• The success of CDCL presents opportunities to solve 
problems in higher complexity classes

• Hashing-based techniques combine progress in SAT 
solving with theoretical strength of universal hashing

• Revisiting Oracle Model:
 Not every call to SAT oracle requires similar computational effort

 SAT oracles require more than constant time to run

• Resulting analysis improves both theoretical and practical 
complexity. 
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