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How do we guarantee that systems work 
correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ 10-15% of verification effort (my estimate)

▪ Dynamic verification: dominant approach
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Dynamic Verification

▪ Dominant approach! 

▪ Design is simulated with test vectors

▪ Test vectors represent different verification 
scenarios 

▪ Results compared to intended results

▪ Challenge: Exceedingly large test space!

3



Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we verify that circuit works ?

• Try for all values of a and b
• 2128 possibilities 
• Sun will go nova before done!
• Not scalable
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Constrained-Random Simulation

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200
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IBM Labs in Haifa © 2006 IBM Corporation

Constraint satisfaction for random stimuli generation

Yehuda Naveh

IBM Haifa Research Lab



Constrained-Random Simulation

Problem: How can we uniformly sample the values of a and b 
satisfying the above constraints? 8
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64 bit
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2. a <64 (b >> 4)
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1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200



Problem Formulation

Set of Constraints

Given a SAT formula,  sample solutions 
uniformly, while scaling to real world 
problems.

SAT Formula

Scalable Uniform Generation of SAT-Witnesses
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Search-
based 

Synthesis

Constrained 
Random 

Simulation

SAT Sampling
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Generation

Diverse Applications

Probabilistic 
Inference

Planning 
under 

uncertainity



Search-Based Synthesis

▪ Goal: synthesize from under-constrained 
specifications (“sketch”)

▪ Large space of programs that satisfy correctness 
conditions

▪ Task: Find  “optimal” program (wrt running time, 
memory, …)

▪ Method: Uniformly sample from the space of 
programs
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Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions

12



Uniform Generation

Ref: “A Scalable Near-Uniform Generator” (CAV 2013) 

“Balancing Scalability and Uniformity in SAT-Witness Generator” (DAC 2014)

“On Parallel Scalable Generation of SAT-Witnesses” (TACAS 2015)
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Prior Work

Heuristic Work
Guarantees: weak
Performance: strong 

BGP Algorithm XORSample’

Theoretical Work
Guarantees: strong
Performance: weak

BDD-based
Guarantees: strong
Performance: weak

SAT-based heuristics
Guarantees: weak
Performance: strong 

INDUSTRY

ACADEMIA
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Our Contribution

Heuristic Work
Guarantees: weak
Performance: strong 

BGP Algorithm XORSample’

Theoretical Work
Guarantees: strong
Performance: weak

BDD-based
Guarantees: strong
Performance: weak

SAT-based heuristics
Guarantees: weak
Performance: strong UniGen

Guarantees : strong
Performance: strong
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INDUSTRY

ACADEMIA
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Partitioning into equal “small” cells
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Partitioning into equal “small” cells
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Pick a random cell

Pick a random solution from this cell 

Partitioning into equal “small” cells



How to Partition?

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of 
solutions? 

Universal Hashing
[Carter-Wegman 1979] (IBM Research)
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Universal Hashing

20

▪ Hash functions: mapping {0,1}n to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of hash functions:
▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly equal 
(in expectation)



Universal Hashing and Independence
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▪ Hash functions from mapping {0,1}n to {0,1}m  

▪ (2n elements to 2m cells)

▪ Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on inputs => All cells are roughly 
equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ Different inputs might not be hashed independently



Strong Universality

▪ H(n,m,r): Family of r-universal hash functions mapping 
{0,1}n to {0,1}m  (2n elements to 2m cells)
▪ r: degree of independence of hashed inputs

▪ Higher r =>  Stronger guarantee on range of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Higher universality => Higher complexity
22



Hashing-based Approaches

n-universal hashing

Uniform Generation

All cells are small

BGP Algorithm

23

Solution space



Scaling to Thousands of Variables

n-universal hashing 3-universal hashing

Uniform Generation

Random

All cells are small Only a randomly chosen 
cell needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen

24

Solution space



Scaling to 100K  Variables

n-universal hashing 3-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen 
cells needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen

25

Solution space

From tens of variables to 
100K  variables! 



Notions of Uniformity

▪ Uniformity

▪ Almost-Uniformity

For every solution y of RF

Pr [y is output] = 1/|RF|

For every solution y of RF

1/(1+e) x 1/|RF| <= Pr [y is output] <= (1+e) /|RF|
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Partitioning

▪ How large should the cells be? 

▪ How many cells?

27



Size of cell

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high
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UniGen

# of sols < 
pivot?

RF

NO

29



UniGen

?
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UniGen

? NO# of sols 
< pivot?
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UniGen

?

??

???

# of sols < 
pivot?

YES
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UniGen

Select a solution 
randomly from cell.

33

# of sols 
< pivot

Non-empty

FAIL

Empty



Strong Theoretical Guarantees

▪ Almost-Uniformity

▪ Success Probability

▪ In practice, succ. Probability ~ 0.99

▪ Polynomial number of calls to SAT Solver

For every solution y of RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

UniGen succeeds with probability at least 0.52
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Results: Uniformity

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384
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2-3 Orders of Magnitude Faster
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Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions
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Extension to Approximate 
Probabilistic Inference

Ref: “A Scalable Approximate Model Counter” (CP 2013)
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Probabilistic Inference

39

Interest in 
topic

Trust in 
Speaker

Availability

Attend
Talk

Modeling Attendance for
Today’s Talk

Model 
CountingRoth, 1996

How do we infer useful information from the data 
filled with uncertainty?

+
Pr(Attending Talk 
|Interest in topic = True )



Model Counting

▪ Model Counting: Given a Boolean Formula F, count 
the number of models of F .

▪ #P-complete 
▪ #P: Class of counting problem whose decision 

problems lie in NP 40

	

F= (aÚb)

R
F
:= {(a= 0,b=1),(a=1,b= 0),(a=1,b=1)}

|R
F
|	= 3



Practical Applications

41

Wide range of applications!

▪ Estimating coverage achieved

▪ Probabilistic reasoning/Bayesian inference 

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning 

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]



Counting through Partitioning
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Counting through Partitioning 

43

Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells



ApproxMC in Action
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………….…

t

Algorithm

690 710 730 730 731 834831
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Algorithm

690 710 730 730 731 834………….…

t

Median

ApproxMC in Action

831



Strong Theoretical Results
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										ApproxMC(F,tolerance:e,confidence	parameter :d)

Suppose	ApproxMC(F,e,d)	returns	C.	Then

Pr[
|R

F
|

1+ e
	£ 	C	£ 	|R

F
|(1+	e)]³1-d

		

ApproxMC	runs	in	time	polynomial	in	F,e-1 ,log(1-d)	

relative	to	SAT	oracle
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Results: Performance 
Comparison
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Can Solve a Large Class of Problems
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Large class of problems that lie beyond the exact 
counters but can be computed by ApproxMC
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Mean Error: Only 4% (allowed: 
75%)
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Mean error: 4% – much smaller than the 
theoretical guarantee of 75%
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Approximate Weighted 
Counting

Ref: “Distribution-Aware Sampling and Weighted Model Counting for 
SAT” (In Proc. of AAAI 2014 )
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Weighted Counting

Given
▪ CNF Formula F

▪ Weight Function W over assignments

Problem
▪ What is the sum of weights of satisfying assignments?

Example
▪ F = (a ∨ b) 

▪ W([0,1]) = W([1,0]) = 1/3      W([1,1]) = W([0,0]) = 1/6

▪ W(F) = 1/3 + 1/3 + 1/6 = 5/6
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53

Partition into (weighted) equal 
“small” cells
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Pick a random cell

Weighted Count = Weight of random cell
* total # of cells

Partition into (weighted) equal 
“small” cells



Can you always achieve 
partitioning?

What if one solution dominates the entire solution 
space

Tilt = wmax/wmin

Small tilt →All solutions contribute 
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.992

.001

.002

.001

.001

.002

.001 .001

.002

Tilt = 992

How to handle large tilt?
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.992

.001

.002 .001

.001 .002

.001

.001

.002 .001 ≤ wt < .002

.50 ≤ wt < 1

Handling Large Tilt

Can be achieved with Pseudo-Boolean Solver
Still a SAT problem not Optimization
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Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions
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Construction of Efficient 
Hash Functions

Ref: “On Computing Minimal Independent Support and Its Applications to 
Sampling and Counting” 

(In Proc. of CP 2015 and Invited to “Constraints” Journal)
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Best Student Paper Award



XOR-Based Hashing

▪ 3-universal hashing

▪ Partition 2n space into  2m cells

▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and 
equate to 0/1 with prob. ½ 

▪ X1+X3+X6+…. Xn-1 = 0   (splits solution space)

▪ m XOR equations -> 2m cells

▪ The cell:  F XOR (CNF+XOR)

60
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XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR

▪ Avg Length : n/2 

▪ Smaller the XORs, better the performance

How to shorten XOR clauses? 
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Independent Support

▪ Set of variables such that assignments to these 
uniquely determine assignments to rest of 
variables for formula to be true

▪ c ⟷ (a V b) ; Independent Support (I): {a, b}

▪ If                   agree on I then 

▪ Hash only on the independent variables

62

		s1	and	s2 		s1		=	s2



Computing Minimal Independent 
Support

▪ Reduction to the problem of computing MUS 
(Minimal Unsatisfiable Subset)

▪ Minimal Independent supports are 1/100 – 1/1000 
of the size of X

▪ Provides 1-2 orders of magnitude
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Future Directions
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Extension to More Expressive 
Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes 

▪ Extending bit-wise XOR to SMT provides 
guarantees but no advantage of SMT progress

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT 
domain

▪ Similar solvers for other domains? 
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Handling Distributions

▪ Design of Pseudo-Boolean solvers to handle tilt

▪ Classification of problems according to tilt

▪ Online estimation of tilt

▪ Other techniques for high-tilt distributions
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Questions?

Papers and tools: http://www.kuldeepmeel.com

67

http://www.kuldeepmeel.com
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