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Boolean Interpretations

F = (x1) A (x2) A (—x1 V x2)

SAT: Is there is a truth assignment to the variables so that F is evaluated to True.
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Boolean Interpretations

F = () A () A (mxa vV —=x2)
SAT: Is there is a truth assignment to the variables so that F is evaluated to True.
- Boolean Interpretation
- K={0,1}
- —:= NOT function

- A:= AND function
- V:= OR function

SAT: Compute max,{m(F)} over all interpretations 7 : X — K.

X is the set of variables and 7(F) is the natural extension of 7 to F.

F is satisfiable if and only if max,{m(F)} = 1.
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Beyond Boolean Interpretations

F := (Xl) A (Xz) /\( 1x1 V \Xz)
Viterbi semiring interpretation
- K=1[0,1]
- A:= MULT function
- V:= MAX function

- xi=1-x

Problem: Given F: Compute max,{m(F)} over all interpretations 7 : X — K.
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Beyond Boolean Interpretations

F = (x1) A (x2) A (—x1 V —x2)
Viterbi semiring interpretation
- K=1[0,1]
- A:= MULT function
- V:= MAX function

- x:=1-x
Problem: Given F: Compute max,{m(F)} over all interpretations 7 : X — K.
For F above:

- max{xix2(1 — x1), x1x2(1 — x2)}
- () =05 m(x) =1

- 7(F)=05-1-0.5=[0.25]
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Beyond Boolean Interpretations

F = (x1) A (x2) A (—x1 V —x2)
Viterbi semiring interpretation

- K=1[0,1]
- A:= MULT function
- V:= MAX function

- xi=1-x

Problem: Given F: Compute max,{m(F)} over all interpretations 7 : X — K.

For F above:
- max{xix2(1 — x1), x1x2(1 — x2)}
- w(x1) =05 7(x)=1

- 7(F)=05-1-0.5=[0.25]

F is satisfiable (Boolean) < max.{w(F)} =1 (Viterbi)
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Interpretation of Negation

How do we interpret = : K — K?

=(x) =1 — x is one of them.

For our upper bounds any ‘“reasonable” interpretation of negation suffice.

() =
ﬂ(O)
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Useful Semirings

- Viterbi semiring V = ([0, 1], max, -, 0, 1).
- Database provenance, where x € [0,1] is interpreted as a confidence score.
- Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.

- Tropical semiring T = (R U {oo}, min, +, 0o, 0).
- Cost analysis and algebraic formulation for shortest path algorithms.

- Fuzzy semiring F = ([0, 1], max, min, 0,1).

- Access control semiring Ay = ([k], max, min, 0, k)
- Security Specification. Each i € [k] is associated with a access control level
with natural ordering. O corresponds to public access and k corresponds to
no access at all.
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Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)
OptVal: Compute max-{m(F)} over all interpretations 7 : X — K.

What is the complexity of OptVal?
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Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)
OptVal: Compute max-{m(F)} over all interpretations 7 : X — K.

What is the complexity of OptVal?
® |ong history of work focused on development of practical tools in CSP community

® (Surprisingly) No prior work from computational complexity perspective for cases
other than Boolean semiring

Our Results (AAAI-23)

Fuzzy, Access Control Same as Boolean case
Viterbi, Tropical FPNPloel < Optval < FPNP.

And the proof arguments are really simple and beautiful (I am, of course, biased!)
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

- Perform binary search over [0, 1] by making queries to Lopt
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.
Example: F = (x1) A (x0) A (5x1 V —x0)

- Consider the optimal interpretation 7 and suppose we know which literal takes
the maximum value in each of the clauses under 7.
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.

Example: F = (x1) A (x0) A (5x1 V —x0)
- Consider the optimal interpretation 7 and suppose we know which literal takes
the maximum value in each of the clauses under 7.
® Say A(—x1 V x2)) = A(—x2), i.e., —xo takes the maximum value in the

clause (ﬁXl V‘!Xz).
* #(F) = #(x1) - #(0x) - #(—x2) = #(x1) - 7(x2) - (1 — #(x2))
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.

Example: F = (x1) A (x0) A (5x1 V —x0)
Consider the optimal interpretation @ and suppose we know which literal takes
the maximum value in each of the clauses under 7.
® Say A(—x1 V x2)) = A(—x2), i.e., —xo takes the maximum value in the
clause (ﬁXl Vv ‘|X2).
* #(F) =#(x) - #(x2) - A(—x2) = #(x) - #(x) - (1 — £(x2))
L4 ﬁ(xl) =1 and fr(XQ) =0.5

Let x; and —x; takes maximum value in ¢; and k; clauses respectively

Observation: #(F) = [T#(x;)% (1 — #(x;))k

Xi
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.

Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.

Example: F = (x1) A (x0) A (5x1 V —x0)
Consider the optimal interpretation @ and suppose we know which literal takes
the maximum value in each of the clauses under 7.
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Upperbound: OptVal € FPNP

Define a binary search language Lop: = {(F, v) | OptVal(F) > v}.
- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when
to stop the binary search.

Example: F = (x1) A (x0) A (5x1 V —x0)
- Consider the optimal interpretation 7 and suppose we know which literal takes
the maximum value in each of the clauses under 7.
® Say A(—x1 V x2)) = A(—x2), i.e., —xo takes the maximum value in the
clause (ﬁXl Vv ‘|X2).
* #(F) =#(x) - #(x2) - A(—x2) = #(x) - #(x) - (1 — £(x2))
L4 ﬁ(xl) =1 and fr(XQ) =0.5

- Let x; and —x; takes maximum value in £; and k; clauses respectively

- Observation: #(F) = [T#(x)% (1 — #(x))% = [T (zﬁk’_)e" : (z,ﬂ,)h

Xi Xi

e Lemma: OptVal(F) € Cy for N € 2pely(size(F)),

Cy : Farey Sequence of order N. Fractions of the form A/B, where 1 < A/ B< N
and gcd(A, B) = 1.
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Hardness for Viterbi: MaxSAT < OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the
maximum number of satisfiable clauses (over the Boolean semiring). Then,

#(F) <

gm—r
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Hardness for Viterbi: MaxSAT < OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the
maximum number of satisfiable clauses (over the Boolean semiring). Then,

#(F) <

gm—r

Reduction F — F’: C; — (G V y;) A (—y;) for each i
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Hardness for Viterbi: MaxSAT < OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the
maximum number of satisfiable clauses (over the Boolean semiring). Then,

#(F) <

gm—r

Reduction F — F’: C; — (G V y;) A (—y;) for each i

Claim: OptVal(F’) =1/4m—"

- We can give an interpretation 7 so that w(F’) = 1/4™~".

- That is the best possible since

® number of clauses of F/ =2m
® maximum number of clauses that can be satisfied is m+ r
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Where we are and where do we go from here? — |

MaxSAT < OptVal

Speculative Thoughts

® OptVal can be expressed as sum of logs of max over real-valued variables?

® Can this be a natural problem that’s more suited for continuous methods such as
Neural Networks?

® So a possibility would be to start with a MaxSAT problem, generate the
corresponding OptVal problem and use a continuous method to solve it and then
recover the answer.
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Where we are and where do we go from here? — Il

FPNPlleel < Optval < FPNP

Can we close the gap?

Two possibilities

e OptVal € FPNPllog]
- Rely on the progress in MaxSAT solving to build practical tools

- Open up questions regarding optimal encoding to MaxSAT and if specialized
algorithms can outperform MaxSAT-based approaches
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Where we are and where do we go from here? — Il

FPNPlleel < Optval < FPNP

Can we close the gap?
Two possibilities

e OptVal € FPNPllog]

- Rely on the progress in MaxSAT solving to build practical tools
- Open up questions regarding optimal encoding to MaxSAT and if specialized
algorithms can outperform MaxSAT-based approaches

® OptVal is FPNP_hard
- Well, a natural problem that’s complete for FPNP
- How do we design practical algorithms that can rely on the progress in SAT
solving?
- Binary search-based techniques didn't work well for MaxSAT.
In summary: The future is exciting either way!

These slides are available at www.cs.toronto.edu/~meel/talks.html
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Backup

Lopt is in NP

® Represent the NNF formula as a formula tree F
® Proof Tree of a formula: For every OR node in F keep one of the subtrees. For
every AND node keep both.

a b
® optSemVal of a proof tree is of the form (?ab) . (be) .

® optSemVal(¢) is the maximum over optSemVal(T) over all proof trees T.
® NP Algorithm: Guess a proof tree T and compute its optSemVal.

Algorithm

® Perform Binary search using Lop: till we find an interval [L, R] with R — L < 1/N.
® Find a member of Fy that lies in the interval [L, R].
® Use NP calls to an appropriately defined NP language over Farey sequences.
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