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Boolean Interpretations

F := (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2)

SAT: Is there is a truth assignment to the variables so that F is evaluated to True.

- Boolean Interpretation

- K = {0, 1}
- ¬:= NOT function
- ∧:= AND function
- ∨:= OR function

SAT: Compute maxπ{π(F )} over all interpretations π : X → K .

X is the set of variables and π(F ) is the natural extension of π to F .

F is satisfiable if and only if maxπ{π(F )} = 1.
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Beyond Boolean Interpretations

F := (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2)

Viterbi semiring interpretation

- K = [0, 1]

- ∧:= MULT function

- ∨:= MAX function

- ¬x := 1− x

Problem: Given F : Compute maxπ{π(F )} over all interpretations π : X → K .

For F above:

- max{x1x2(1− x1), x1x2(1− x2)}
- π(x1) = 0.5; π(x2) = 1

- π(F ) = 0.5 · 1 · 0.5 = 0.25

F is satisfiable (Boolean) ⇔ maxπ{π(F )} = 1 (Viterbi)
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Interpretation of Negation

How do we interpret ¬ : K → K?

¬(x) = 1− x is one of them.

For our upper bounds any “reasonable” interpretation of negation suffice.

¬¬(x) = x
¬(0) = 1
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Useful Semirings

- Viterbi semiring V = ([0, 1],max, ·, 0, 1).
- Database provenance, where x ∈ [0, 1] is interpreted as a confidence score.
- Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.

- Tropical semiring T = (R ∪ {∞},min,+,∞, 0).

- Cost analysis and algebraic formulation for shortest path algorithms.

- Fuzzy semiring F = ([0, 1],max,min, 0, 1).

- Access control semiring Ak = ([k],max,min, 0, k)

- Security Specification. Each i ∈ [k] is associated with a access control level
with natural ordering. 0 corresponds to public access and k corresponds to
no access at all.
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Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)

OptVal: Compute maxπ{π(F )} over all interpretations π : X → K .

What is the complexity of OptVal?

• Long history of work focused on development of practical tools in CSP community

• (Surprisingly) No prior work from computational complexity perspective for cases
other than Boolean semiring

Our Results (AAAI-23)

Fuzzy, Access Control Same as Boolean case

Viterbi, Tropical FPNP[log] ≤ OptVal ≤ FPNP.

And the proof arguments are really simple and beautiful (I am, of course, biased!)
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Upperbound: OptVal ∈ FPNP

Define a binary search language Lopt = {⟨F , v⟩ | OptVal(F ) ≥ v}.
- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F ) could potentially be any real number. Do not know when
to stop the binary search.

Example: F := (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2)
- Consider the optimal interpretation π̂ and suppose we know which literal takes
the maximum value in each of the clauses under π̂.

• Say π̂(¬x1 ∨ ¬x2)) = π̂(¬x2), i.e., ¬x2 takes the maximum value in the
clause (¬x1 ∨ ¬x2).

• π̂(F ) = π̂(x1) · π̂(x2) · π̂(¬x2) = π̂(x1) · π̂(x2) · (1− π̂(x2))
• π̂(x1) = 1 and π̂(x2) = 0.5

- Let xi and ¬xi takes maximum value in ℓi and ki clauses respectively

- Observation: π̂(F ) =
∏
xi

π̂(xi )
ℓi (1− π̂(xi ))

ki =
∏
xi

(
ℓi

ℓi+ki

)ℓi ·
(

ki
ℓi+ki

)ki

• Lemma: OptVal(F ) ∈ CN for N ∈ 2poly(size(F )).

CN : Farey Sequence of order N. Fractions of the form A/B, where 1 ≤ A,B ≤ N
and gcd(A,B) = 1.
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Hardness for Viterbi: MaxSAT ≤ OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the
maximum number of satisfiable clauses (over the Boolean semiring). Then,

π̂(F ) ≤
1

4m−r

Reduction F → F ′: Ci → (Ci ∨ yi ) ∧ (¬yi ) for each i

Claim: OptVal(F ′) = 1/4m−r

- We can give an interpretation π so that π(F ′) = 1/4m−r .

- That is the best possible since

• number of clauses of F ′ = 2m
• maximum number of clauses that can be satisfied is m + r
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Where we are and where do we go from here? – I

MaxSAT ≤ OptVal

Speculative Thoughts

• OptVal can be expressed as sum of logs of max over real-valued variables?

• Can this be a natural problem that’s more suited for continuous methods such as
Neural Networks?

• So a possibility would be to start with a MaxSAT problem, generate the
corresponding OptVal problem and use a continuous method to solve it and then
recover the answer.
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Where we are and where do we go from here? – II

FPNP[log] ≤ OptVal ≤ FPNP

Can we close the gap?

Two possibilities

• OptVal ∈ FPNP[log]

- Rely on the progress in MaxSAT solving to build practical tools
- Open up questions regarding optimal encoding to MaxSAT and if specialized
algorithms can outperform MaxSAT-based approaches

• OptVal is FPNP-hard

- Well, a natural problem that’s complete for FPNP

- How do we design practical algorithms that can rely on the progress in SAT
solving?

- Binary search-based techniques didn’t work well for MaxSAT.

In summary: The future is exciting either way!

These slides are available at www.cs.toronto.edu/~meel/talks.html
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Backup

Lopt is in NP

• Represent the NNF formula as a formula tree F

• Proof Tree of a formula: For every OR node in F keep one of the subtrees. For
every AND node keep both.

• optSemVal of a proof tree is of the form
(

a
a+b

)a
·
(

b
a+b

)b
.

• optSemVal(ϕ) is the maximum over optSemVal(T ) over all proof trees T .

• NP Algorithm: Guess a proof tree T and compute its optSemVal.

Algorithm

• Perform Binary search using Lopt till we find an interval [L,R] with R − L ≤ 1/N.

• Find a member of FN that lies in the interval [L,R].

• Use NP calls to an appropriately defined NP language over Farey sequences.
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